JP2006250849A - Optical image measuring method using light coherence tomography apparatus and optical image measuring device - Google Patents

Optical image measuring method using light coherence tomography apparatus and optical image measuring device Download PDF

Info

Publication number
JP2006250849A
JP2006250849A JP2005070563A JP2005070563A JP2006250849A JP 2006250849 A JP2006250849 A JP 2006250849A JP 2005070563 A JP2005070563 A JP 2005070563A JP 2005070563 A JP2005070563 A JP 2005070563A JP 2006250849 A JP2006250849 A JP 2006250849A
Authority
JP
Japan
Prior art keywords
optical
light
interference
light wave
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005070563A
Other languages
Japanese (ja)
Inventor
Naohiro Tanno
直弘 丹野
Eriko Umetsu
枝里子 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROTOMOGRAPHY KK
Tanno Naohiro
Original Assignee
MICROTOMOGRAPHY KK
Tanno Naohiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROTOMOGRAPHY KK, Tanno Naohiro filed Critical MICROTOMOGRAPHY KK
Priority to JP2005070563A priority Critical patent/JP2006250849A/en
Publication of JP2006250849A publication Critical patent/JP2006250849A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical image measuring method using a light coherence tomography apparatus of extracting an image only of an interference signal component by removing the component due to background noise light by applying the inter-pixel operation of an image, which contains a spatial interference fringe, automatically formed by predetermined spatial frequency only by acquiring one spatial interference image without requiring a detailed movable mirror by an electrostatic method without relying on mechanical operation, and also to provide an optical image measuring device. <P>SOLUTION: In an interference optical system using a light source with a wide band wavelength range, a reference light wave is passed through a diffraction grating 9 and a diffracted light wave, which is delayed in dependence on the incident position of the diffraction grating 9 and has a spatial delay correlation wave front contributing to the interference with a matter light wave, which forms an angle with respect to the equal phase front of diffracted light, is formed to be combined with and allowed to interfere with the reference light wave so as to form a predetermined angle with respect to the matter light wave. Optical array sensor elements 12 are arranged at every appropriate phase position of the spatial cycle of the spatial interference fringe due to these two luminous fluxes and the signals at every phase from the optical array sensor elements 12 are detected and mutually operated to draw the interference signal intensity distribution or phase distribution of two luminous fluxes in a real time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光コヒーレンストモグラフィー装置を用いた光画像計測方法及びその装置に関するものである。   The present invention relates to an optical image measurement method using an optical coherence tomography apparatus and an apparatus therefor.

広帯域な波長幅を有する光源を用いた光コヒーレンストモグラフィー装置が既に開発され、現在実用化されて医療分野で使用され、広く利用されている(例えば、下記特許文献1および非特許文献1)。従来の回折格子による空間相関波の発生を用いた1次元断層分布の計測方法による光コヒーレンストモグラフィー装置(例えば、下記特許文献2)においては、参照光と物体光は同軸で干渉を生じるようにして、光路長を波長程度変位させ、その都度画像を取得した後、通常の位相シフト法を適用して背景雑音光成分による直流成分を除去して、干渉信号画像を抽出する方法が用いられている。   An optical coherence tomography apparatus using a light source having a wide wavelength range has been developed, is currently put into practical use, is used in the medical field, and is widely used (for example, Patent Document 1 and Non-Patent Document 1 below). In a conventional optical coherence tomography apparatus (for example, Patent Document 2 below) based on a one-dimensional tomographic distribution measurement method using generation of a spatial correlation wave by a diffraction grating, the reference light and the object light are coaxially caused to interfere with each other. In this method, the optical path length is displaced by about the wavelength, an image is acquired each time, and then a normal phase shift method is applied to remove the DC component due to the background noise light component to extract the interference signal image. .

図5は従来の回折格子による空間相関波を用いた同軸型空間光干渉断層画像計測装置の模式図である。   FIG. 5 is a schematic diagram of a conventional coaxial spatial light coherence tomographic image measurement apparatus using a spatial correlation wave by a diffraction grating.

この図において、101は広帯域波長光源〔例えば、SLD(スーパールミネッセントダイオード)光源〕、102は光束拡大レンズ、103はハーフミラー、104はミラー、105は対物レンズ、106は被測定物体、107はハーフミラー、108は可動ミラー、109は回折格子、110はレンズ、111はハーフミラー、112は光アレイセンサである。
特許第2010042号 特願2004−249545号 光学、28巻3号、1999年 pp.116−125
In this figure, 101 is a broadband wavelength light source (for example, an SLD (super luminescent diode) light source), 102 is a light beam magnifying lens, 103 is a half mirror, 104 is a mirror, 105 is an objective lens, 106 is an object to be measured, 107 Is a half mirror, 108 is a movable mirror, 109 is a diffraction grating, 110 is a lens, 111 is a half mirror, and 112 is an optical array sensor.
Patent No. 20110042 Japanese Patent Application No. 2004-249545 Optics, Vol. 28, No. 3, 1999 pp. 116-125

しかしながら、上記した従来の同軸型空間干渉断層画像計測装置では、前記可動ミラー108を光源の光波長の1/2乃至1/4程度光軸方向に機械的に移動して、その都度画像分布を観測し、画像記録媒体に収納した後、例えば各3枚の画像間で、この機械的な光路長変化による位相シフト画像演算を施して背景雑音光による成分を除去して、干渉信号成分のみの画像を抽出しなければならなかった。   However, in the conventional coaxial spatial coherence tomographic image measuring apparatus described above, the movable mirror 108 is mechanically moved in the optical axis direction by about 1/2 to 1/4 of the light wavelength of the light source, and the image distribution is changed each time. After observing and storing in an image recording medium, for example, between three images, a phase shift image calculation by this mechanical optical path length change is performed to remove a component due to background noise light, and only an interference signal component is obtained. The image had to be extracted.

また、画像の取得に時間を要し、さらには各3枚の画像を記録する間、被測定物体は静止している必要があり、また、光波長程度の可動ミラーの精密な機械的制御を必要とするなど問題があった。   In addition, it takes time to acquire an image, and the object to be measured needs to be stationary while recording each of the three images, and precise mechanical control of the movable mirror at the optical wavelength level is required. There was a problem such as need.

本発明は、上記状況に鑑みて、機械的な操作に頼ることなく、静的電気的な方法で、かつ精細な可動ミラーを要せず、一枚の空間干渉画像を取得するのみで、所定の空間周波数で自動的に生成した空間干渉縞を含む画像の画素間演算を施すことにより、背景雑音光による成分を除去し、干渉信号成分のみの画像を抽出できる、光コヒーレンストモグラフィー装置を用いた光画像計測方法及びその装置を提供することを目的とする。   In view of the above situation, the present invention is not limited to mechanical operation, is a static electrical method, does not require a fine movable mirror, and only acquires a single spatial interference image. Using an optical coherence tomography device that removes the component due to background noise light and extracts only the interference signal component by performing inter-pixel calculation on the image including the spatial interference fringes automatically generated at the spatial frequency of It is an object of the present invention to provide an optical image measurement method and apparatus.

本発明は、上記目的を達成するために、
〔1〕光コヒーレンストモグラフィー装置を用いた光画像計測方法において、広帯域な波長幅の光源を用いる干渉光学系において、参照光波を回折格子を経由させ、前記回折格子の入射位置に依存して遅延する、回折光の等位相面と角度を成す物体光波との干渉に寄与する空間遅延相関波面をもつ回折光波を発生させ、物体光波と所定の角度を成して合波干渉させ、この2光束による空間干渉縞の空間周期の適宜な位相位置毎に光アレイセンサ素子を配置し、前記各光アレイセンサ素子からの各位相毎の信号を検出し相互に演算することにより、前記2光束の干渉信号強度分布や位相分布を描画することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In an optical image measurement method using an optical coherence tomography apparatus, in an interference optical system using a light source with a wide wavelength range, a reference light wave is delayed through a diffraction grating depending on the incident position of the diffraction grating. A diffracted light wave having a spatially delayed correlation wave front that contributes to interference with the object light wave that forms an angle with the equiphase surface of the diffracted light is generated, and is combined with the object light wave at a predetermined angle to cause interference. An optical array sensor element is arranged for each appropriate phase position of the spatial period of the spatial interference fringes, and a signal for each phase from each optical array sensor element is detected and calculated mutually, whereby the interference signal of the two light fluxes It is characterized by drawing intensity distribution and phase distribution.

〔2〕光コヒーレンストモグラフィー装置において、波長帯域幅の広い光波を射出する光源と、この光源からの射出光を平行光束に変換するレンズと、前記平行光束を、被測定物体が配置される光路を辿る物体光波と、前記回折格子を配置した光路を辿る参照光波とに2分割し、前記被測定物体より反射した物体光波と、参照光路長を調節するための遅延機構を経由し前記回折格子を経て空間遅延相関波面をもつ参照光波とを所定の角度で交差して合波干渉させる干渉光学系と、前記2光束による空間干渉縞の空間周期の適宜な位相位置毎に配置した光アレイセンサ素子と、この各光アレイセンサ素子からの位相毎の信号を相互に演算する演算手段と、この演算手段からの信号強度分布や位相分布を画像化するコンピュータおよび表示装置とを具備することを特徴とする。   [2] In an optical coherence tomography apparatus, a light source that emits a light wave having a wide wavelength bandwidth, a lens that converts the light emitted from the light source into a parallel light beam, and the parallel light beam through an optical path on which an object to be measured is placed The object light wave to be traced and the reference light wave to be traced along the optical path on which the diffraction grating is arranged are divided into two, the object light wave reflected from the object to be measured, and the diffraction grating through the delay mechanism for adjusting the reference optical path length. An interference optical system that crosses and interferes with a reference light wave having a spatially delayed correlation wavefront at a predetermined angle, and an optical array sensor element disposed at each appropriate phase position of the spatial period of the spatial interference fringes by the two light beams A computing means for mutually computing signals for each phase from the respective optical array sensor elements, and a computer and a display device for imaging the signal intensity distribution and phase distribution from the computing means, Characterized by comprising.

〔3〕上記〔2〕記載の光コヒーレンストモグラフィー装置において、前記演算する手段に、デジタル演算電子回路を具備することを特徴とする。   [3] The optical coherence tomography device according to [2], wherein the calculation means includes a digital calculation electronic circuit.

〔4〕上記〔2〕記載の光コヒーレンストモグラフィー装置において、前記演算する手段に、デジタル演算プログラムを用いることを特徴とする。   [4] In the optical coherence tomography device described in [2], a digital operation program is used as the operation unit.

〔5〕上記〔2〕記載の光コヒーレンストモグラフィー装置において、前記参照光路の前記回折格子からの回折光波を略フーリエ変換−フーリエ逆変換するレンズ系と空間フィルターを具備し、前記回折光波を前記光アレイセンサ素子面に投影することを特徴とする。   [5] The optical coherence tomography device according to [2], further comprising: a lens system that substantially Fourier transforms-inverses Fourier transforms a diffracted light wave from the diffraction grating in the reference light path; Projecting on the array sensor element surface is characterized.

〔6〕上記〔2〕記載の光コヒーレンストモグラフィー装置であって、前記干渉光学系において、被測定物体に物体光波を照射するとき、光軸方向に垂直な面で走査する手段を具備したことを特徴とする。   [6] The optical coherence tomography device according to [2], wherein the interference optical system includes means for scanning a surface perpendicular to the optical axis direction when irradiating an object light wave on an object to be measured. Features.

本発明によれば、従来の機械的な操作に頼ることなく、静的電気的な手法で、かつ波長オーダーで制御しなければならない光路長の変化を要せず、一枚の空間干渉画像を取得するのみで、所定の空間周波数で自動的に生成した空間干渉縞を含む画像の電子的画素間演算を施し、背景雑音光による成分を除去して、干渉信号成分のみの画像を実時間で観測できる。さらに、この装置は安価に簡易に実用化でき、多くの医療現場で使用され、医者や患者に有益な診断効果をもたらすことができる。   According to the present invention, a single spatial interference image can be obtained by a static electrical method and without changing the optical path length that must be controlled in the wavelength order without relying on conventional mechanical operations. By simply acquiring the image, it automatically performs an inter-pixel calculation on the image including the spatial interference fringes that is automatically generated at a predetermined spatial frequency, removes the component due to background noise light, and creates an image with only the interference signal component in real time. Observable. Furthermore, this device can be easily and inexpensively put into practical use, used in many medical settings, and can provide a useful diagnostic effect for doctors and patients.

本発明の光コヒーレンストモグラフィー装置は、波長帯域幅の広い光波を射出する光源と、この光源からの射出光を平行光束に変換するレンズと、前記平行光束を、被測定物体が配置される光路を辿る物体光波と、前記回折格子を配置した光路を辿る参照光波とに2分割し、前記被測定物体より反射した物体光波と、参照光路長を調節するための遅延機構を経由し前記回折格子を経て空間遅延相関波面をもつ参照光波とを所定の角度で交差して合波干渉させる干渉光学系と、前記2光束による空間干渉縞の空間周期の適宜な位相位置毎に配置した光アレイセンサ素子と、この各光アレイセンサ素子からの位相毎の信号を相互に演算する演算手段と、この演算手段からの信号強度分布や位相分布を画像化するコンピュータおよび表示装置とを具備する。よって、所定の空間周波数で自動的に生成した空間干渉縞を含む画像の電子的画素間演算を施し、背景雑音光による成分を除去して、干渉信号成分のみの画像を実時間で観測できる。   An optical coherence tomography apparatus of the present invention includes a light source that emits a light wave having a wide wavelength bandwidth, a lens that converts the light emitted from the light source into a parallel light beam, and the parallel light beam through an optical path on which an object to be measured is disposed. The object light wave to be traced and the reference light wave to be traced on the optical path on which the diffraction grating is arranged are divided into two parts. The object light wave reflected from the object to be measured and the diffraction grating through the delay mechanism for adjusting the reference optical path length. Interferometric optical system that crosses and interferes with a reference light wave having a spatially delayed correlation wavefront at a predetermined angle, and an optical array sensor element arranged at each appropriate phase position of the spatial period of the spatial interference fringes by the two light beams And computing means for mutually computing signals for each phase from the respective optical array sensor elements, and a computer and a display device for imaging the signal intensity distribution and phase distribution from the computing means. To. Therefore, it is possible to perform an electronic inter-pixel calculation of an image including a spatial interference fringe automatically generated at a predetermined spatial frequency, remove a component due to background noise light, and observe an image of only an interference signal component in real time.

以下、本発明の実施の形態について詳細に説明する。
〔実施例1〕
図1は本発明の画像計測による光コヒーレンストモグラフィー装置の模式図である。
Hereinafter, embodiments of the present invention will be described in detail.
[Example 1]
FIG. 1 is a schematic diagram of an optical coherence tomography apparatus based on image measurement according to the present invention.

この図において、1は広帯域波長光源〔例えば、SLD(スーパールミネッセントダイオード)光源〕、2は光束拡大レンズ、3は第1のハーフミラー(2分割用ハーフミラー)、4は反射ミラー 5は対物レンズ、6は被測定物体、7は第2のハーフミラー、8は可動ミラー、8aは可動ミラー8の駆動機構、9は回折格子(本実施例では、透過型を例示)、10は結像レンズ、11は第3のハーフミラー、12は光アレイセンサ、12aは例えばデジタル演算回路、12bはコンピュータおよび表示装置である。   In this figure, 1 is a broadband wavelength light source (for example, an SLD (super luminescent diode) light source), 2 is a light beam magnifying lens, 3 is a first half mirror (half mirror for splitting), 4 is a reflection mirror 5 Objective lens, 6 is an object to be measured, 7 is a second half mirror, 8 is a movable mirror, 8a is a drive mechanism for the movable mirror 8, 9 is a diffraction grating (in this embodiment, a transmission type is exemplified), and 10 is a connection An image lens, 11 is a third half mirror, 12 is an optical array sensor, 12a is, for example, a digital arithmetic circuit, and 12b is a computer and a display device.

ショートコヒーレンス光源となる広帯域波長光源1からの光を光束拡大レンズ2で略平行光束に拡大して第1のハーフミラー3で2分割する。参照光となる光束は第2のハーフミラー7を経て可動ミラー8で戻され、可動ミラー8の駆動機構8aにより参照光路長を長短遅延調整して、第2のハーフミラー7で反射して回折格子9に入射する。回折格子9からの透過光は、空間遅延相関波面を発生し、レンズ10で光アレイセンサ12に投影される。一方、物体光となる光束は反射ミラー4で反射され、対物レンズ5で被測定物体6に照射される。被測定物体6の表面乃至深層からの反射物体光は対物レンズ5で集光され、所定の角度で傾斜させた第3のハーフミラー11で反射され、光アレイセンサ12に入射する。このとき、上記参照光と所定の角度で交差し合波して干渉し、光アレイセンサの2乗検波により干渉縞が検出される。   The light from the broadband wavelength light source 1 serving as a short coherence light source is expanded into a substantially parallel light beam by the light beam expanding lens 2 and divided into two by the first half mirror 3. The light beam that becomes the reference light is returned by the movable mirror 8 through the second half mirror 7, and the reference optical path length is adjusted by the drive mechanism 8 a of the movable mirror 8 to adjust the length of the reference optical path, and is reflected and diffracted by the second half mirror 7. Incident on the grating 9. The transmitted light from the diffraction grating 9 generates a spatially delayed correlation wavefront and is projected onto the optical array sensor 12 by the lens 10. On the other hand, the light beam that becomes object light is reflected by the reflecting mirror 4 and is irradiated onto the object 6 to be measured by the objective lens 5. Reflected object light from the surface or deep layer of the object to be measured 6 is collected by the objective lens 5, reflected by the third half mirror 11 inclined at a predetermined angle, and incident on the optical array sensor 12. At this time, it intersects with the reference light at a predetermined angle and multiplexes and interferes, and interference fringes are detected by square detection of the optical array sensor.

本実施例では、広帯域波長光源にSLDを用いる例を示したが、波長幅の広いコヒーレンス長の短いレーザーを光源として用いても良いことは明らかである。   In this embodiment, an example is shown in which an SLD is used as a broadband wavelength light source. However, it is obvious that a laser having a wide wavelength width and a short coherence length may be used as the light source.

図2は、本発明の参照光er と物体光es の干渉する波面の様子を図示したものである。 Figure 2 is an illustration of the state of the interfering wavefronts of the reference beam e r and the object beam e s of the present invention.

前記空間遅延相関波面9aは伝播方向に対し傾斜して伝播する。他方、物体光は深層からの反射波面6aほど遅れて伝搬してくる。合波干渉する波面同士は、垂直入射の参照光に対して物体光は交差角θでセンサ面で干渉し合う。交差角が零度の場合は、上記特許文献2の図3に示されるように両者の交差点では、例えばガウス分布の一つの干渉強度分布が光アレイセンサの出力に観測される。しかし、本実施例では、所定の角度で交差させることにより、ガウス分布の中に空間干渉縞12cが観測されることになる。   The spatial delay correlation wavefront 9a propagates with an inclination with respect to the propagation direction. On the other hand, the object light propagates with a delay of the reflected wavefront 6a from the deep layer. In the wave fronts where the combined interference occurs, the object light interferes with the perpendicularly incident reference light at the crossing angle θ on the sensor surface. When the intersection angle is zero degree, as shown in FIG. 3 of Patent Document 2, for example, one interference intensity distribution of Gaussian distribution is observed at the output of the optical array sensor at the intersection of both. However, in the present embodiment, the spatial interference fringes 12c are observed in the Gaussian distribution by intersecting at a predetermined angle.

この干渉縞は、干渉に基づく空間周波数の周期λS (=λ/sinθ、λ:光源の中心波長)で明暗の縞と成る。この周期λS に合せ、例えばλs /4毎に光アレイセンサの各素子を配置する。光アレイセンサ12の素子間隔が既定のものであれば、交差角θを適宜調節してその周期に合わせる。例えば、光源の中心波長λを0.8μm、光アレイセンサの1素子の周期長を10μmとすると、交差角θを0.57度と設定することで、λs /4毎のすなわち位相にして90度毎の出力が並んだ各素子より出力できる。今、該空間周波数の波数をks(=2π/λS )とすると、光アレイセンサのn行m列にある素子からの干渉項を含んだ出力In,mは次式のように表される。 This interference fringe becomes a light and dark fringe with a spatial frequency period λ S (= λ / sin θ, λ: center wavelength of the light source) based on interference. In accordance with this period λ S , for example, each element of the optical array sensor is arranged every λ s / 4. If the element spacing of the optical array sensor 12 is a predetermined one, the crossing angle θ is appropriately adjusted to match the cycle. For example, if the central wavelength λ of the light source is 0.8 μm and the period length of one element of the optical array sensor is 10 μm, the crossing angle θ is set to 0.57 degrees, so that the phase is set to every λ s / 4. It can be output from each element in which outputs every 90 degrees are arranged. Now, assuming that the wave number of the spatial frequency is ks (= 2π / λ S ), an output In n including an interference term from an element in n rows and m columns of the optical array sensor is expressed as follows. The

n,m =Dn,m 十An,m cos(kz+φ−ksz) …(1)
ここで、Dn,m は背景雑音光なども含む直流成分、An,m は画像情報を含む干渉成分の振幅強度、kは波数(=2π/λ)、zは被測定物体深部方向の距離に比例する光アレイセンサ面上のm列方向の距離、φは初期位相である。
I n, m = D n, m + A n, m cos (kz + φ−ksz) (1)
Here, D n, m is a DC component including background noise light, A n, m is an amplitude intensity of an interference component including image information, k is a wave number (= 2π / λ), and z is a depth direction of the measured object. The distance in the m-row direction on the optical array sensor surface proportional to the distance, φ is the initial phase.

光アレイセンサ12の各素子で検出された出力に対して、次式のような相互演算を実行することを考える。   Consider performing the mutual operation of the following expression on the output detected by each element of the optical array sensor 12.

ac=(In,m −1n,m+1 2 +(In,m+l −In,m+2 2 …(2)
Φ=tan-1[(In,m+1 −In,m+2 )/(In,m −In,m+l )]…(3)
これにより、(2)式の出力Iacには、直流成分を除去した干渉光成分の4(An,m 2 が観測され、また(3)式の出力Φには同様に直流成分を除去した位相分布Φが観測される。上記演算を各素子からの出力に対して、一つずつ乃至複数個ごとにずらしながら行うことで、干渉成分の画素ごとの強度や位相が各々得られる。
I ac = (I n, m −1 n, m + 1 ) 2 + (I n, m + l −I n, m + 2 ) 2 (2)
Φ = tan −1 [(I n, m + 1 −I n, m + 2 ) / (I n, m −I n, m + l )] (3)
As a result, the interference light component 4 (A n, m ) 2 from which the direct current component is removed is observed in the output I ac of the equation (2), and the direct current component is similarly applied to the output Φ of the equation (3). The removed phase distribution Φ is observed. The intensity and phase of each interference component for each pixel can be obtained by performing the above calculation while shifting the output from each element one by one or plural.

このような演算は線形演算であるので、既存のデジタル演算電子回路で実行することは容易であり、また、コンピュータの演算プログラムで実行することも容易である。そのようなデジタル演算回路12aを具備し、さらにコンピュータおよび表示装置12bを具備して、m列方向の、したがって被測定物体の深層方向の画像分布を計測できる。   Since such an operation is a linear operation, it is easy to execute with an existing digital arithmetic electronic circuit, and it is also easy to execute with an arithmetic program of a computer. Such a digital arithmetic circuit 12a is provided, and further a computer and a display device 12b are provided to measure the image distribution in the m column direction, and thus in the depth direction of the measured object.

他の演算方法として、背景雑音の直流成分が素子毎で異なる場合には、図1の可動ミラー8を駆動機構8aで移動して参照光路長を長短にして、物体反射光に対して最初は干渉を生じないように設定する。このようにして、予め直流成分Dn,m を観測しておき、次式の演算を実行しても良い。 As another calculation method, when the DC component of the background noise varies from element to element, the movable mirror 8 in FIG. 1 is moved by the drive mechanism 8a to shorten the reference optical path length, and at first the object reflected light is reduced. Set to avoid interference. In this way, the DC component D n, m may be observed in advance , and the calculation of the following equation may be executed.

ac=(In,m −Dn,m 2 +(In,m+1 −Dn,m+l 2 …(4)
Φ=tan-1[(In,m+1 −Dn,m+l )/(In,m −Dn,m )] …(5)
なお、この場合は光アレイセンサの素子周期は空間周波数の周期λs/2に設定して、検出すればよい。
I ac = (I n, m −D n, m ) 2 + (I n, m + 1 −D n, m + l ) 2 (4)
Φ = tan −1 [(I n, m + 1 −D n, m + 1 ) / (I n, m −D n, m )] (5)
In this case, the element period of the optical array sensor may be detected by setting the period λs / 2 of the spatial frequency.

本実施例では、図1に示す座標系でX−Z面内で第3のハーフミラー11をθだけ傾斜して干渉縞を形成する方法を説明したが、Y−Z面内で第3のハーフミラー11をθだけ傾斜して、干渉縞を形成しても同様な結果が得られることは明らかである。
〔実施例2〕
図3は本発明のフーリエ変換参照光を配置した画像計測による光コヒーレンストモグラフィー装置の構成図である。
In the present embodiment, the method of forming the interference fringes by inclining the third half mirror 11 in the XZ plane by θ in the coordinate system shown in FIG. 1 is described. However, the third half mirror 11 is formed in the YZ plane. It is obvious that the same result can be obtained even if the half mirror 11 is inclined by θ to form interference fringes.
[Example 2]
FIG. 3 is a configuration diagram of an optical coherence tomography apparatus based on image measurement in which the Fourier transform reference light of the present invention is arranged.

図3において、13は円柱レンズ、17はフーリエ変換レンズ、18は空間フィルター、19はフーリエ逆変換レンズである。他の構成要素は図1と同じであるので説明は省略する。   In FIG. 3, 13 is a cylindrical lens, 17 is a Fourier transform lens, 18 is a spatial filter, and 19 is a Fourier inverse transform lens. The other components are the same as in FIG.

この構成によって、回折格子9からの空間遅延相関波はフーリエ変換レンズ17でフーリエ変換されてその焦点面に回折像を結ぶ。この回折像に対し、空間フィルター18を配置して、略0次回折光を透過させ、フーリエ逆変換レンズ19で略平面波を光アレイセンサ12の検出面に照射する。その結果、検出面にはほぼ理想的な強度分布も一様な平面波が参照光として得られ、物体光との空間干渉において理想的な干渉縞を自動的に形成できる。   With this configuration, the spatially delayed correlation wave from the diffraction grating 9 is Fourier transformed by the Fourier transform lens 17 to form a diffraction image on the focal plane. A spatial filter 18 is disposed on the diffracted image to transmit substantially zero-order diffracted light, and a substantially plane wave is applied to the detection surface of the optical array sensor 12 by the Fourier inverse transform lens 19. As a result, a plane wave having a substantially uniform intensity distribution on the detection surface is obtained as reference light, and ideal interference fringes can be automatically formed in spatial interference with object light.

本実施例では、さらに、円柱レンズ13を配置して、物体光を短冊型の強度断面として、物体をスリット状に照射する。この照射により、物体深層のX−Z面の断層反射分布光が、光アレイセンサ12の検出面に投影される。このようなスリット状の物体光を用いることにより、他の機械的光遅延装置や1次元走査機構を具備すること無く、X−Z面の2次元断層画像を実時間で得ることができる。円柱レンズ13を適宜光軸に対して回転させれば、任意の破断面の断層像を観測できることは明らかである。
〔実施例3〕
図4は、本発明の物体照射位置を決めるX−Y面走査機構を配置した画像計測による光コヒーレンストモグラフィー装置の構成図である。
In the present embodiment, the cylindrical lens 13 is further arranged to irradiate the object in a slit shape with the object light as a strip-shaped intensity cross section. By this irradiation, the tomographic reflection distribution light on the XZ plane of the deep object is projected onto the detection surface of the optical array sensor 12. By using such slit-like object light, a two-dimensional tomographic image of the XZ plane can be obtained in real time without providing another mechanical optical delay device or a one-dimensional scanning mechanism. It is clear that a tomographic image of an arbitrary fracture surface can be observed by appropriately rotating the cylindrical lens 13 with respect to the optical axis.
Example 3
FIG. 4 is a configuration diagram of an optical coherence tomography apparatus based on image measurement in which an XY plane scanning mechanism for determining an object irradiation position according to the present invention is arranged.

図4において、15はX軸走査ミラー、16はY軸走査ミラーであり、例えばガルバノミラーなどにより構成する。上記スリット状に物体光を被測定物体6の面上に照射する時、観測したい破断面の位置を決めるのに光軸に垂直な面すなわちX−Y面光束走査機構として用いることができる。他の構成要素は、図3と同じであるので説明は省略する。   In FIG. 4, 15 is an X-axis scanning mirror, and 16 is a Y-axis scanning mirror, which is constituted by a galvanometer mirror, for example. When the object light is irradiated onto the surface of the object 6 to be measured in the slit shape, it can be used as a plane perpendicular to the optical axis, that is, an XY plane light beam scanning mechanism to determine the position of the fracture surface to be observed. The other components are the same as in FIG.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形、組み合わせが可能であり、これらを発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation and combination are possible based on the meaning of this invention, These are not excluded from the scope of the invention.

本発明の光コヒーレンストモグラフィー装置を用いた光画像計測方法及びその装置は、医療の分野において広く利用可能である。   The optical image measurement method and apparatus using the optical coherence tomography apparatus of the present invention can be widely used in the medical field.

本発明の画像計測による光コヒーレンストモグラフィー装置の模式図である。It is a schematic diagram of the optical coherence tomography apparatus by the image measurement of this invention. 本発明の参照光er と物体光es の干渉する波面の様子を示す図である。It is a diagram showing a state of interfering wave fronts of the reference beam e r and the object beam e s of the present invention. 本発明のフーリエ変換参照光を配置した画像計測による光コヒーレンストモグラフィー装置の模式図である。It is a schematic diagram of the optical coherence tomography apparatus by the image measurement which has arrange | positioned the Fourier-transform reference light of this invention. 本発明の物体照射位置を決めるX−Y面走査機構を配置した画像計測による光コヒーレンストモグラフィー装置の模式図である。It is a schematic diagram of the optical coherence tomography apparatus by image measurement which has arrange | positioned the XY plane scanning mechanism which determines the object irradiation position of this invention. 従来の回折格子による空間相関波を用いた同軸型空間光干渉断層画像計測装置の模式図である。It is a schematic diagram of a coaxial spatial optical coherence tomographic image measurement apparatus using a spatial correlation wave by a conventional diffraction grating.

符号の説明Explanation of symbols

1 広帯域波長光源
2 光束拡大レンズ
3 第1のハーフミラー
4 反射ミラー
5 対物レンズ
6 被測定物体
7 第2のハーフミラー
8 可動ミラー
8a 可動ミラーの駆動機構
9 回折格子
10 結像レンズ
11 第3のハーフミラー
12 光アレイセンサ
12a デジタル演算回路
12b コンピュータおよび表示装置
12c 空間干渉縞
13 円柱レンズ
15 X軸走査ミラー
16 Y軸走査ミラー
17 フーリエ変換レンズ
18 空間フィルター
19 フーリエ逆変換レンズ
DESCRIPTION OF SYMBOLS 1 Broadband wavelength light source 2 Light beam expansion lens 3 1st half mirror 4 Reflecting mirror 5 Objective lens 6 Object to be measured 7 2nd half mirror 8 Movable mirror 8a Movable mirror drive mechanism 9 Diffraction grating 10 Imaging lens 11 3rd Half mirror 12 Optical array sensor 12a Digital arithmetic circuit 12b Computer and display device 12c Spatial interference fringe 13 Cylindrical lens 15 X axis scanning mirror 16 Y axis scanning mirror 17 Fourier transform lens 18 Spatial filter 19 Fourier inverse transform lens

Claims (6)

広帯域な波長幅の光源を用いる干渉光学系において、参照光波を回折格子を経由させ、前記回折格子の入射位置に依存して遅延する、回折光の等位相面と角度を成す物体光波との干渉に寄与する空間遅延相関波面をもつ回折光波を発生させ、物体光波と所定の角度を成して合波干渉させ、該2光束による空間干渉縞の空間周期の適宜な位相位置毎に光アレイセンサ素子を配置し、前記各光アレイセンサ素子からの各位相毎の信号を検出し相互に演算することにより、前記2光束の干渉信号強度分布や位相分布を描画することを特徴とする光コヒーレンストモグラフィー装置を用いた光画像計測方法。   In an interference optical system using a light source with a wide wavelength range, interference with an object light wave that forms an angle with the equiphase surface of the diffracted light, which delays the reference light wave through the diffraction grating and depends on the incident position of the diffraction grating. A diffracted light wave having a spatially delayed correlation wavefront that contributes to the light is generated and combined with the object light wave at a predetermined angle to cause interference, and an optical array sensor for each appropriate phase position of the spatial period of the spatial interference fringes by the two light beams An optical coherence tomography characterized in that an element is arranged, and an interference signal intensity distribution and a phase distribution of the two light fluxes are drawn by detecting a signal for each phase from each optical array sensor element and calculating each other. Optical image measurement method using the apparatus. (a)波長帯域幅の広い光波を射出する光源と、
(b)該光源からの射出光を平行光束に変換するレンズと、
(c)前記平行光束を、被測定物体が配置される光路を辿る物体光波と、回折格子を配置した光路を辿る参照光波とに2分割し、前記被測定物体より反射した物体光波と、参照光路長を調節するための遅延機構を経由し前記回折格子を経て空間遅延相関波面をもつ参照光波とを、所定の角度で交差して合波干渉させる干渉光学系と、
(d)前記2光束による空間干渉縞の空間周期の適宜な位相位置毎に配置した光アレイセンサ素子と、
(e)該各光アレイセンサ素子からの位相毎の信号を相互に演算する演算手段と、
(f)該演算手段からの信号強度分布や位相分布を画像化するコンピュータおよび表示装置とを具備することを特徴とする光画像計測法による光コヒーレンストモグラフィー装置。
(A) a light source that emits a light wave having a wide wavelength bandwidth;
(B) a lens that converts light emitted from the light source into a parallel light beam;
(C) The parallel light beam is divided into two, an object light wave that follows an optical path in which the object to be measured is arranged and a reference light wave that follows an optical path in which a diffraction grating is arranged, and the object light wave reflected from the object to be measured is referred to An interference optical system that crosses a reference light wave having a spatially delayed correlation wavefront through a diffraction mechanism via a delay mechanism for adjusting an optical path length and intersects at a predetermined angle,
(D) an optical array sensor element disposed at each appropriate phase position of the spatial period of the spatial interference fringes by the two light beams;
(E) computing means for mutually computing signals for each phase from the respective optical array sensor elements;
(F) An optical coherence tomography apparatus based on an optical image measurement method, comprising a computer and a display device for imaging a signal intensity distribution and a phase distribution from the calculation means.
請求項2記載の光画像計測法による光コヒーレンストモグラフィー装置において、前記演算手段がデジタル演算電子回路を具備することを特徴とする光画像計測法による光コヒーレンストモグラフィー装置。   3. An optical coherence tomography apparatus using an optical image measurement method according to claim 2, wherein the arithmetic means comprises a digital arithmetic electronic circuit. 請求項2記載の光画像計測法による光コヒーレンストモグラフィー装置において、前記演算手段がデジタル演算プログラムを用いることを特徴とする光画像計測法による光コヒーレンストモグラフィー装置。   3. An optical coherence tomography apparatus using an optical image measurement method according to claim 2, wherein the calculation means uses a digital calculation program. 請求項2記載の光画像計測法による光コヒーレンストモグラフィー装置において、前記参照光路の前記回折格子からの回折光波を略フーリエ変換−フーリエ逆変換するレンズ系と空間フィルターを具備し、前記回折光波を前記光アレイセンサ素子面に投影することを特徴とする光画像計測法による光コヒーレンストモグラフィー装置。   3. The optical coherence tomography apparatus according to claim 2, further comprising: a lens system that substantially Fourier transform-Fourier inversely transforms a diffracted light wave from the diffraction grating in the reference light path; and a spatial filter, An optical coherence tomography apparatus based on an optical image measurement method, which projects onto an optical array sensor element surface. 請求項2記載の光画像計測法による光コヒーレンストモグラフィー装置であって、前記干渉光学系において、被測定物体に物体光波を照射するとき、光軸方向に垂直な面で走査する手段を具備したことを特徴とする光画像計測法による光コヒーレンストモグラフィー装置。   3. An optical coherence tomography apparatus according to the optical image measurement method according to claim 2, wherein said interference optical system comprises means for scanning with a plane perpendicular to the optical axis direction when irradiating an object light wave on an object to be measured. An optical coherence tomography device using an optical image measurement method.
JP2005070563A 2005-03-14 2005-03-14 Optical image measuring method using light coherence tomography apparatus and optical image measuring device Pending JP2006250849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070563A JP2006250849A (en) 2005-03-14 2005-03-14 Optical image measuring method using light coherence tomography apparatus and optical image measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070563A JP2006250849A (en) 2005-03-14 2005-03-14 Optical image measuring method using light coherence tomography apparatus and optical image measuring device

Publications (1)

Publication Number Publication Date
JP2006250849A true JP2006250849A (en) 2006-09-21

Family

ID=37091511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070563A Pending JP2006250849A (en) 2005-03-14 2005-03-14 Optical image measuring method using light coherence tomography apparatus and optical image measuring device

Country Status (1)

Country Link
JP (1) JP2006250849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008393A (en) * 2007-06-26 2009-01-15 Kowa Co Optical image measuring device
KR101029606B1 (en) 2007-10-19 2011-05-09 주식회사 엠티씨메디칼 Optical Coherence Tomography
CN103328921A (en) * 2011-01-25 2013-09-25 麻省理工学院 Single-shot full-field reflection phase microscopy
JP2015503128A (en) * 2011-12-22 2015-01-29 ゼネラル・エレクトリック・カンパニイ Quantitative phase microscopy for high-contrast cell imaging without labels
WO2021246602A1 (en) * 2020-06-05 2021-12-09 서울대학교산학협력단 Device for measuring reflectance and incident light quantity
WO2022163969A1 (en) * 2021-01-28 2022-08-04 서울대학교산학협력단 Apparatus for measuring thickness and shape of thin film by using interference and wavenumber high-frequency modulation, and method for measuring thickness and shape of thin film using same
CN115877032A (en) * 2022-12-08 2023-03-31 青岛众瑞智能仪器股份有限公司 Method for detecting flue gas flow velocity by light interference scintillation method and novel flue gas flow velocity measuring instrument

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008393A (en) * 2007-06-26 2009-01-15 Kowa Co Optical image measuring device
KR101029606B1 (en) 2007-10-19 2011-05-09 주식회사 엠티씨메디칼 Optical Coherence Tomography
US10451402B2 (en) 2011-01-25 2019-10-22 Massachusetts Institute Of Technology Single shot full-field reflection phase microscopy
JP2014508922A (en) * 2011-01-25 2014-04-10 マサチューセッツ インスティテュート オブ テクノロジー Single-shot full-field reflection phase microscopy
JP2018105875A (en) * 2011-01-25 2018-07-05 マサチューセッツ インスティテュート オブ テクノロジー Off-axis reflection phase microscope system and method for off-axis phase microscope
CN103328921A (en) * 2011-01-25 2013-09-25 麻省理工学院 Single-shot full-field reflection phase microscopy
JP2015503128A (en) * 2011-12-22 2015-01-29 ゼネラル・エレクトリック・カンパニイ Quantitative phase microscopy for high-contrast cell imaging without labels
WO2021246602A1 (en) * 2020-06-05 2021-12-09 서울대학교산학협력단 Device for measuring reflectance and incident light quantity
KR20210151585A (en) * 2020-06-05 2021-12-14 서울대학교산학협력단 Apparatus for measuring reflectivity and incident light
KR102380250B1 (en) 2020-06-05 2022-03-29 서울대학교산학협력단 Apparatus for measuring reflectivity and incident light
WO2022163969A1 (en) * 2021-01-28 2022-08-04 서울대학교산학협력단 Apparatus for measuring thickness and shape of thin film by using interference and wavenumber high-frequency modulation, and method for measuring thickness and shape of thin film using same
CN115877032A (en) * 2022-12-08 2023-03-31 青岛众瑞智能仪器股份有限公司 Method for detecting flue gas flow velocity by light interference scintillation method and novel flue gas flow velocity measuring instrument
CN115877032B (en) * 2022-12-08 2023-08-08 青岛众瑞智能仪器股份有限公司 Method for detecting smoke flow velocity by optical interference scintillation method and smoke flow velocity measuring instrument

Similar Documents

Publication Publication Date Title
CA2687763C (en) Three dimensional imaging
JP4378533B2 (en) Calibration method for components of optical coherence tomography
US9494411B2 (en) Three-dimensional shape measuring device, method for acquiring hologram image, and method for measuring three-dimensional shape
US10473452B2 (en) Method for phase resolved heterodyne shearographic measurements
JP2013545113A (en) Image map optical coherence tomography
KR102604960B1 (en) Method and system of holographic interferometry
JP2007298461A (en) Instrument for measuring polarized light light-receiving image
TWI797377B (en) Surface shape measuring device and surface shape measuring method
JP2006250849A (en) Optical image measuring method using light coherence tomography apparatus and optical image measuring device
US10386174B2 (en) Three-dimensional interferometer, method for calibrating such an interferometer and method for reconstructing an image
WO2015186726A1 (en) Polarization sensitive optical image measurement system, and program loaded into said system
JP7175982B2 (en) Optical measurement device and sample observation method
JP3619113B2 (en) Angular dispersive optical spatial coherence tomographic imaging system
US7719691B2 (en) Wavefront measuring apparatus for optical pickup
Kumar et al. Highly stable vibration measurements by common-path off-axis digital holography
JP5173305B2 (en) Measurement signal noise processing method
JP2007240465A (en) Method and instrument for measuring three-dimensional displacement and distortion
JP2010164574A (en) Multiplexing spectrum interference optical coherence tomography
JP3934131B2 (en) Coaxial spatial optical coherence tomographic image measurement device
JP2007071583A (en) Device providing reproduced image of object, phase shift digital holography displacement distribution measuring device, and method for identifying parameter
US20110299090A1 (en) Real-time interferometer
JP2018100915A (en) Phase distribution measurement device, phase distribution measurement method and phase distribution measurement program
JP5518187B2 (en) Deformation measurement method
JP2022162306A (en) Surface shape measurement device and surface shape measurement method
JP6623029B2 (en) Optical distance measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023