JP2017003376A - Corrosion sensor and measuring method of corrosion amount - Google Patents
Corrosion sensor and measuring method of corrosion amount Download PDFInfo
- Publication number
- JP2017003376A JP2017003376A JP2015116359A JP2015116359A JP2017003376A JP 2017003376 A JP2017003376 A JP 2017003376A JP 2015116359 A JP2015116359 A JP 2015116359A JP 2015116359 A JP2015116359 A JP 2015116359A JP 2017003376 A JP2017003376 A JP 2017003376A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- sensor
- unit
- sensor unit
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、腐食センサおよび腐食量の測定方法に関する。 The present invention relates to a corrosion sensor and a method for measuring a corrosion amount.
自動車用鋼板や橋梁などの大型構造物に用いられる鉄鋼材料は、使用環境条件がほぼ一定の室内構造部材と異なり、濡れ時間や海塩粒子量などの腐食性因子が複雑に関係する腐食環境に曝露されている。鉄鋼材料が使用される環境でどれくらいどのように腐食されるかを知ることは、耐食材料や防食技術の運用や開発を考えるうえで必須である。これは、鉄鋼材料に限らず、亜鉛、銅、銀、アルミニウムやそれらの合金などをはじめ、腐食を問題とするあらゆる金属材料に共通する。 Steel materials used in large structures such as steel plates for automobiles and bridges differ from indoor structural members that have almost constant operating environment conditions, and in corrosive environments in which corrosive factors such as wetting time and the amount of sea salt particles are complicatedly related. Have been exposed. Knowing how much and how much corrosion occurs in the environment in which the steel material is used is essential when considering the operation and development of corrosion-resistant materials and anti-corrosion technologies. This is not limited to steel materials, but is common to all metal materials that are subject to corrosion, including zinc, copper, silver, aluminum, and alloys thereof.
金属材料の腐食を評価する技術としては、電気抵抗式の腐食センサが知られている。電気抵抗式の腐食センサは、腐食環境に曝露されて腐食するセンサ部(導電体)と腐食環境から遮断される参照部(導電体)とを有し、参照部の電気抵抗値と腐食に起因して増大するセンサ部の電気抵抗値とに基づいてセンサ部の腐食量を求めるものであり、例えば、非特許文献1には、センサ部と参照部とが並列配置された腐食センサが開示されている。 As a technique for evaluating the corrosion of a metal material, an electrical resistance type corrosion sensor is known. The electrical resistance type corrosion sensor has a sensor part (conductor) that corrodes when exposed to a corrosive environment and a reference part (conductor) that is cut off from the corrosive environment, and is caused by the electrical resistance value and corrosion of the reference part. For example, Non-Patent Document 1 discloses a corrosion sensor in which a sensor part and a reference part are arranged in parallel. ing.
温度変化する任意の環境(上述した腐食環境を含む)において、電気抵抗式の腐食センサの腐食量の測定精度を上げるために、温度補償、すなわち、温度変化による影響を受けにくくすることが考えられる。
具体的には、例えば、任意の環境から遮断される参照部の電気抵抗値が変化した場合には、この変化が温度変化に起因するものとして、変化した参照部の電気抵抗値に基づいて、測定される腐食量を補正する。
しかしながら、本発明者らは、センサ部と参照部とが並列配置された従来の腐食センサ(例えば、非特許文献1を参照)では、参照部の温度変化がセンサ部の温度変化を十分に追従せず、腐食量の測定精度が十分に上がらない場合があることを見出した。
In an arbitrary environment where the temperature changes (including the above-mentioned corrosive environment), in order to increase the measurement accuracy of the corrosion amount of the electric resistance type corrosion sensor, it is conceivable that the temperature compensation, that is, the influence of the temperature change is less likely to be caused. .
Specifically, for example, when the electrical resistance value of the reference portion that is blocked from an arbitrary environment has changed, this change is attributed to the temperature change, based on the changed electrical resistance value of the reference portion, Correct the amount of corrosion measured.
However, in the conventional corrosion sensor in which the sensor unit and the reference unit are arranged in parallel (for example, see Non-Patent Document 1), the inventors of the present invention sufficiently follow the temperature change of the sensor unit. It was found that the measurement accuracy of the corrosion amount may not be sufficiently improved.
本発明は、以上の点を鑑みてなされたものであり、温度変化する任意の環境であっても精度良く腐食量を測定できる腐食センサを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a corrosion sensor that can accurately measure the amount of corrosion even in any environment where the temperature changes.
本発明者らは、上記目的を達成するために鋭意検討した結果、センサ部と参照部とが特定の構造を採用することで、温度補償がより適正になされることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have found that the temperature compensation can be made more appropriate by adopting a specific structure for the sensor unit and the reference unit, and the present invention has been completed. I let you.
すなわち、本発明は、以下の[1]〜[5]を提供する。
[1]任意の環境に曝露される導電体からなるセンサ部、および、上記任意の環境から遮断される導電体からなる参照部を備え、上記センサ部と上記参照部とが絶縁体を介して積層される、腐食センサ。
[2]任意の環境に曝露される導電体からなるセンサ部、および、上記任意の環境から遮断される導電体からなる参照部を備え、上記センサ部と上記参照部とが絶縁体を介して積層され、上記参照部の電気抵抗値および上記センサ部の電気抵抗値に基づいて上記センサ部の腐食量が測定されるとともに、上記参照部の電気抵抗値に基づいて上記センサ部の腐食量が補正される、腐食センサ。
[3]上記センサ部および上記参照部の導電体が、鉄、鋼または亜鉛である、上記[1]または[2]に記載の腐食センサ。
[4]上記[1]〜[3]のいずれかに記載の腐食センサを用いて、任意の環境に曝露された上記センサ部の腐食量を測定する、腐食量の測定方法。
[5]上記[1]〜[3]のいずれかに記載の腐食センサを任意の環境に曝露し、上記センサ部の腐食量を測定する、腐食量の測定方法であって、上記参照部の電気抵抗値、および、上記センサ部の電気抵抗値に基づいて上記センサ部の腐食量を測定し、上記参照部の電気抵抗値が変化した場合には、この電気抵抗値の変化に基づいて、測定される上記センサ部の腐食量を補正する、腐食量の測定方法。
That is, the present invention provides the following [1] to [5].
[1] A sensor unit made of a conductor exposed to an arbitrary environment and a reference unit made of a conductor cut off from the arbitrary environment, the sensor unit and the reference unit being interposed via an insulator Stacked, corrosion sensor.
[2] A sensor unit made of a conductor exposed to an arbitrary environment and a reference unit made of a conductor cut off from the arbitrary environment are provided, and the sensor unit and the reference unit are interposed via an insulator. The corrosion amount of the sensor unit is measured based on the electrical resistance value of the reference unit and the electrical resistance value of the sensor unit, and the corrosion amount of the sensor unit is measured based on the electrical resistance value of the reference unit. Corrosion sensor to be corrected.
[3] The corrosion sensor according to [1] or [2], wherein the conductor of the sensor unit and the reference unit is iron, steel, or zinc.
[4] A method for measuring a corrosion amount, wherein the corrosion amount of the sensor part exposed to an arbitrary environment is measured using the corrosion sensor according to any one of [1] to [3].
[5] A method for measuring a corrosion amount, wherein the corrosion sensor according to any one of [1] to [3] is exposed to an arbitrary environment, and the corrosion amount of the sensor unit is measured. The amount of corrosion of the sensor unit is measured based on the electrical resistance value and the electrical resistance value of the sensor unit, and when the electrical resistance value of the reference unit changes, based on the change in the electrical resistance value, A method for measuring the amount of corrosion, wherein the amount of corrosion of the sensor part to be measured is corrected.
本発明によれば、温度変化する任意の環境であっても精度良く腐食量を測定できる腐食センサを提供することができる。 According to the present invention, it is possible to provide a corrosion sensor that can accurately measure the amount of corrosion even in an arbitrary environment where the temperature changes.
まず、本発明の電気抵抗式の腐食センサの構造について、図1(A)および図1(B)に基づいて説明する。なお、本発明の腐食センサは、図1(A)および図1(B)に基づいて説明する腐食センサには限定されない。 First, the structure of the electrical resistance type corrosion sensor of the present invention will be described based on FIG. 1 (A) and FIG. 1 (B). In addition, the corrosion sensor of this invention is not limited to the corrosion sensor demonstrated based on FIG. 1 (A) and FIG. 1 (B).
図1(A)は、本発明の電気抵抗式の腐食センサの一例を模式的に示す平面図である。図1(B)は、図1(A)のA−A線断面図である。図1(C)は、本発明の電気抵抗式の腐食センサにおける電流源および電圧測定部との接続状態の一例を説明するための断面図である。電気抵抗式の腐食センサ1は、任意の環境に曝露されるセンサ部11と、センサ部11が曝露される任意の環境から遮断される参照部21とを有する。 FIG. 1A is a plan view schematically showing an example of an electrical resistance type corrosion sensor of the present invention. FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 1C is a cross-sectional view for explaining an example of a connection state between the current source and the voltage measuring unit in the electrical resistance type corrosion sensor of the present invention. The electrical resistance type corrosion sensor 1 includes a sensor unit 11 that is exposed to an arbitrary environment and a reference unit 21 that is shielded from an arbitrary environment to which the sensor unit 11 is exposed.
なお、センサ部11が曝露される「任意の環境」は、センサ部11が腐食するような環境である「腐食環境」を含む、各種の環境を内包した概念である。すなわち、本発明の腐食センサ1は、センサ部11が腐食する腐食環境で使用されることはもちろん、センサ部11が腐食しない環境で使用されてもよい。 The “arbitrary environment” to which the sensor unit 11 is exposed is a concept including various environments including the “corrosive environment” in which the sensor unit 11 corrodes. That is, the corrosion sensor 1 of the present invention may be used not only in a corrosive environment where the sensor unit 11 corrodes but also in an environment where the sensor unit 11 does not corrode.
図1(B)に示すように、まず、平板状の基板31の一面上に、導電体からなる参照部21が絶縁シート41を介して配置されている。そして、参照部21における基板31側とは反対側の一面上に、絶縁体61を介して、導電体からなるセンサ部11が配置されている。すなわち、センサ部11と参照部21とは絶縁体61を介して積層されている。
センサ部11および参照部21の断面は、所定の厚さを有する矩形(正方形を含む)である。センサ部11および参照部21の両側面は、絶縁性の樹脂51で覆われている。
As shown in FIG. 1B, first, a reference portion 21 made of a conductor is disposed on one surface of a flat substrate 31 via an insulating sheet 41. And the sensor part 11 which consists of conductors is arrange | positioned through the insulator 61 on one surface on the opposite side to the board | substrate 31 side in the reference part 21. As shown in FIG. That is, the sensor unit 11 and the reference unit 21 are stacked via the insulator 61.
The cross section of the sensor unit 11 and the reference unit 21 is a rectangle (including a square) having a predetermined thickness. Both side surfaces of the sensor unit 11 and the reference unit 21 are covered with an insulating resin 51.
すなわち、図1(B)に示すように、腐食センサ1を断面視した場合、矩形である参照部21の両側面および上下面は各部材で覆われている。このため、腐食センサ1が任意の環境下にあっても、参照部21は、この任意の環境から遮断される。
その一方で、図1(B)に示すように、腐食センサ1を断面視した場合、矩形であるセンサ部11の両側面および下面は各部材で覆われているが、上面は露出している。このため、腐食センサ1が任意の環境下にある場合、センサ部11の上面は、この任意の環境に曝露される。上面が曝露されたセンサ部11は、その厚さ方向(上面側から下面側に向かう方向)に腐食が進行する。
That is, as shown in FIG. 1B, when the corrosion sensor 1 is viewed in cross section, both side surfaces and upper and lower surfaces of the rectangular reference portion 21 are covered with each member. For this reason, even if the corrosion sensor 1 exists in arbitrary environments, the reference part 21 is interrupted | blocked from this arbitrary environments.
On the other hand, as shown in FIG. 1B, when the corrosion sensor 1 is viewed in cross section, both sides and the lower surface of the rectangular sensor portion 11 are covered with the respective members, but the upper surface is exposed. . For this reason, when the corrosion sensor 1 is in an arbitrary environment, the upper surface of the sensor unit 11 is exposed to the arbitrary environment. Corrosion proceeds in the thickness direction (direction from the upper surface side to the lower surface side) of the sensor unit 11 to which the upper surface is exposed.
基板31としては、例えば、ステンレス鋼板などの金属板が取り扱いやすく好適に挙げられるが、これに限定されるものではなく、例えば、ガラス、セラミックス、プラスチックなどの絶縁体;シリコンウエハなどの半導体;であってもよい。
基板31上に配置される絶縁シート41としては、特に限定されず、従来公知の材料を使用でき、例えば、PET(ポリエチレンテレフタレート)等からなるプラスチックフィルムが挙げられる。絶縁シート41の厚さ(図1(B)中の上下方向の長さ(以下、同様))は、例えばステンレス鋼板である基板31と導電体である参照部21とを絶縁できる厚さであればよく、例えば5μm以上である。
なお、基板31として導電体(金属板など)および半導体を使用した場合には、絶縁シート41は必要であるが、基板31として絶縁体を使用した場合には、絶縁シート41は不要となる。
As the substrate 31, for example, a metal plate such as a stainless steel plate is preferably used because it is easy to handle. However, the substrate 31 is not limited to this, and examples thereof include insulators such as glass, ceramics, and plastics; semiconductors such as silicon wafers. There may be.
As the insulating sheet 41 arrange | positioned on the board | substrate 31, it does not specifically limit, A conventionally well-known material can be used, For example, the plastic film which consists of PET (polyethylene terephthalate) etc. is mentioned. The thickness of the insulating sheet 41 (the length in the vertical direction in FIG. 1B (hereinafter the same)) may be a thickness that can insulate the substrate 31 that is a stainless steel plate and the reference portion 21 that is a conductor, for example. What is necessary is just 5 micrometers or more, for example.
In addition, when a conductor (metal plate or the like) and a semiconductor are used as the substrate 31, the insulating sheet 41 is necessary. However, when an insulator is used as the substrate 31, the insulating sheet 41 is not necessary.
樹脂51の材料としては、特に限定されず、従来公知の材料を使用でき、例えば、エポキシ樹脂、アクリル樹脂などが挙げられる。樹脂51の厚さは、センサ部11および参照部21の厚さに準ずる。 The material of the resin 51 is not particularly limited, and a conventionally known material can be used, and examples thereof include an epoxy resin and an acrylic resin. The thickness of the resin 51 conforms to the thickness of the sensor unit 11 and the reference unit 21.
絶縁体61の材料としては、センサ部11と参照部21とが電気的に接続されない材料であれば特に限定されず、例えば、ガラス、セラミックス、プラスチック(合成樹脂)、天然樹脂などが挙げられる。なお、絶縁体61の熱伝導性が悪いとセンサ部11と参照部21と温度差が生じやすくなることから、なるべく熱伝導率が高い材料を選択することが好ましい。
また、絶縁体61は、厚すぎると熱伝導性が悪くなりやすく、一方で薄すぎると電気的に短絡するリスクが生じやすくなる。絶縁体61の好適な厚さは、その材料により異なるが、例えば絶縁体61がポリ塩化ビニル、ポリエチレン、ポリプロピレン等のプラスチックフィルムである場合、5〜200μmが好ましい。
The material of the insulator 61 is not particularly limited as long as the sensor unit 11 and the reference unit 21 are not electrically connected, and examples thereof include glass, ceramics, plastic (synthetic resin), and natural resin. In addition, if the thermal conductivity of the insulator 61 is poor, a temperature difference between the sensor unit 11 and the reference unit 21 is likely to occur. Therefore, it is preferable to select a material having as high a thermal conductivity as possible.
Further, if the insulator 61 is too thick, the thermal conductivity tends to be poor, whereas if it is too thin, there is a risk of an electrical short circuit. Although the suitable thickness of the insulator 61 varies depending on the material, for example, when the insulator 61 is a plastic film such as polyvinyl chloride, polyethylene, or polypropylene, the thickness is preferably 5 to 200 μm.
なお、絶縁体61とセンサ部11および参照部21との間に隙間が生じないように密着させることが好ましい。隙間が生じると熱伝導性が損なわれやすくなるからである。このため、絶縁体61とセンサ部11および参照部21とを、十分な力で圧着させるか、または、熱伝導性の接着剤を使用して貼り合わせることが好ましい。なお、貼り合わせに際しては、貼り合わせ面に汚れや埃などが残らないように十分に洗浄することが好ましい。 In addition, it is preferable to closely contact the insulator 61 with the sensor unit 11 and the reference unit 21 so that no gap is generated. This is because if the gap is generated, the thermal conductivity tends to be impaired. For this reason, it is preferable to make the insulator 61, the sensor part 11, and the reference part 21 pressure-bond with sufficient force, or to stick together using a heat conductive adhesive. Note that, when bonding, it is preferable to sufficiently wash so that dirt or dust does not remain on the bonding surface.
センサ部11を構成する導電体は、腐食量を測定する対象(金属材料)から選択され、特に限定されるものではないが、例えば、鉄、鋼;亜鉛、銅、銀、チタン、アルミニウム、マグネシウム、これらの合金;等が挙げられる。なかでも、鉄、鋼または亜鉛は、大気曝露試験に供されることが多く、本発明の効果が大きく特に有用である。
なお、参照部21を構成する導電体としては、センサ部11を構成する導電体と同じ材料であることが好ましい。
The conductor constituting the sensor unit 11 is selected from objects (metal materials) whose corrosion amount is to be measured, and is not particularly limited. For example, iron, steel; zinc, copper, silver, titanium, aluminum, magnesium These alloys; etc. are mentioned. Among them, iron, steel, or zinc is often subjected to an atmospheric exposure test, and the effect of the present invention is large and particularly useful.
The conductor constituting the reference unit 21 is preferably the same material as the conductor constituting the sensor unit 11.
センサ部11および参照部21を構成する導電体は、電気抵抗値の変化が測定されるため、一定の長さを持った長尺状の形状であることが好ましく、例えば、図1(A)に示すように、一定間隔で屈曲した蛇行形状が挙げられる。
このとき、センサ部11の長さ(全長)は、例えば10〜40cmが挙げられる。また、図1(B)に示すようにセンサ部11を断面視した場合において、その厚さは、例えば100〜1000μmが挙げられ、幅は、例えば1〜3mmが挙げられる。
参照部21の形状は、センサ部11と同一形状であることが好ましいが、例えば、センサ部11と断面積を同じにして長さを短くしてもよい。参照部21の長さをセンサ部11よりも短くすることで、センサ部11の温度変化に対する追従性を良好にする効果が期待できる。
なお、センサ部11と参照部21とは、絶縁体61を介して重なっていることを要するが、このとき、少なくともその一部どうしが重なっていればよい。
The conductors constituting the sensor unit 11 and the reference unit 21 are preferably in a long shape having a certain length because a change in electric resistance value is measured. For example, FIG. As shown in Fig. 4, a meandering shape bent at regular intervals can be mentioned.
At this time, the length (full length) of the sensor unit 11 is, for example, 10 to 40 cm. In addition, when the sensor unit 11 is viewed in cross section as shown in FIG. 1B, the thickness is, for example, 100 to 1000 μm, and the width is, for example, 1 to 3 mm.
The shape of the reference unit 21 is preferably the same shape as the sensor unit 11, but the cross-sectional area may be the same as that of the sensor unit 11 and the length may be shortened, for example. By making the length of the reference part 21 shorter than the sensor part 11, it is possible to expect an effect of improving the followability to the temperature change of the sensor part 11.
In addition, although the sensor part 11 and the reference part 21 need to overlap via the insulator 61, the part should just overlap at least at this time.
長尺状のセンサ部11の両端は、端子となっており、一方の端子11aと他方の端子11bとからなっている。同様に、参照部21の両端も、端子となっており、一方の端子21aと他方の端子21bとからなっている。腐食センサ1として用いるときには、これらの端子に、電流源と電圧測定部とを、または、電圧源と電流測定部とを接続する。以下では、センサ部11の両端子と参照部21の両端子とに、電流源と電圧測定部とを接続する場合について説明する。 Both ends of the long sensor portion 11 are terminals, and are composed of one terminal 11a and the other terminal 11b. Similarly, both ends of the reference portion 21 are also terminals, and are composed of one terminal 21a and the other terminal 21b. When used as the corrosion sensor 1, a current source and a voltage measuring unit, or a voltage source and a current measuring unit are connected to these terminals. Below, the case where a current source and a voltage measurement part are connected to both terminals of the sensor part 11 and both terminals of the reference part 21 is demonstrated.
図1(C)に示すように、センサ部11の一方の端子11aと他方の端子11bとにセンサ部11用の電圧測定部81を接続し、参照部21の一方の端子21aと他方の端子21bとに参照部21用の電圧測定部91を接続する。電流源については、センサ部11および参照部21を電流源に対して直列に接続することが、電流変動の影響を低減できるため、好ましい。そこで、センサ部11の他方の端子11bと参照部21の他方の端子21bとを電気的に接続すると共に、センサ部11の一方の端子11aと参照部21の一方の端子21aとに電流源71を接続する。ここで、センサ部11の他方の端子11bと参照部21の他方の端子21bとの電気的な接続には、従来公知の方法が使用でき、具体的には、導電性を有する材料を用いて電気的に接続する方法(例えば、両端子に半田や溶接で別配線を接続する方法、両端子を導電性テープで接続する方法など)が好適に挙げられる。 As shown in FIG. 1C, a voltage measurement unit 81 for the sensor unit 11 is connected to one terminal 11a and the other terminal 11b of the sensor unit 11, and one terminal 21a and the other terminal of the reference unit 21 are connected. The voltage measuring unit 91 for the reference unit 21 is connected to 21b. For the current source, it is preferable to connect the sensor unit 11 and the reference unit 21 in series with the current source because the influence of current fluctuation can be reduced. Therefore, the other terminal 11b of the sensor unit 11 and the other terminal 21b of the reference unit 21 are electrically connected, and a current source 71 is connected to one terminal 11a of the sensor unit 11 and one terminal 21a of the reference unit 21. Connect. Here, for electrical connection between the other terminal 11b of the sensor unit 11 and the other terminal 21b of the reference unit 21, a conventionally known method can be used. Specifically, a conductive material is used. A method of electrical connection (for example, a method of connecting separate wires to both terminals by soldering or welding, a method of connecting both terminals with a conductive tape, or the like) is preferable.
なお、本発明の腐食センサ1における電流源と電圧測定部との接続に関する別態様としては、以下の態様が挙げられる。長尺状のセンサ部11の一方の端子11aと他方の端子11bとの間に電流源71が接続され、さらに、センサ部11の一方の端子11aと他方の端子11bとの間に電圧測定部81が接続される。同様に、参照部21の一方の端子21aと他方の端子21bとの間に電流源と電圧測定部とが接続される。参照部21の電流源および電圧測定部は、センサ部11の電流源71および電圧測定部81と別物であってもよいし、同じ電流源71および電圧測定部81を使用してもよい。同じ電流源71および電圧測定部81を使用する場合、電流源71および電圧測定部81の接続先をセンサ部11と参照部21とに切り替えできるようにすればよい。 In addition, the following aspects are mentioned as another aspect regarding the connection of the current source and voltage measurement part in the corrosion sensor 1 of this invention. A current source 71 is connected between one terminal 11a and the other terminal 11b of the elongated sensor unit 11, and a voltage measuring unit is connected between the one terminal 11a and the other terminal 11b of the sensor unit 11. 81 is connected. Similarly, a current source and a voltage measurement unit are connected between one terminal 21a and the other terminal 21b of the reference unit 21. The current source and voltage measurement unit of the reference unit 21 may be different from the current source 71 and voltage measurement unit 81 of the sensor unit 11, or the same current source 71 and voltage measurement unit 81 may be used. When the same current source 71 and voltage measuring unit 81 are used, the connection destination of the current source 71 and voltage measuring unit 81 may be switched between the sensor unit 11 and the reference unit 21.
このような本発明の電気抵抗式の腐食センサ1において、電流源71から定電流を流し、電圧を測定することにより、センサ部11および参照部21の各々の電気抵抗値を求める。なお、本発明は、上述したように電圧源と電流測定部とを接続し定電圧を印加して電流を測定することで、センサ部11および参照部21の電気抵抗値を求める態様を排除するものではない。 In such an electrical resistance type corrosion sensor 1 of the present invention, a constant current is passed from the current source 71 and the voltage is measured to determine the electrical resistance values of the sensor unit 11 and the reference unit 21. Note that the present invention eliminates the aspect of obtaining the electrical resistance values of the sensor unit 11 and the reference unit 21 by connecting the voltage source and the current measurement unit and measuring the current by applying a constant voltage as described above. It is not a thing.
このとき、センサ部11は、任意の環境に曝露されることにより次第に腐食が進行した場合、センサ部11の電気抵抗値は、当初の値から次第に増大する。その一方で、参照部21はセンサ部11が曝露されている任意の環境から遮断されているため、腐食は進行せず、参照部21の電気抵抗値は、後述する温度変化に起因する変化を除き、基本的には当初の値から不変である。 At this time, if the sensor unit 11 is gradually corroded by being exposed to an arbitrary environment, the electrical resistance value of the sensor unit 11 gradually increases from the initial value. On the other hand, since the reference unit 21 is cut off from any environment to which the sensor unit 11 is exposed, corrosion does not proceed, and the electrical resistance value of the reference unit 21 changes due to a temperature change described later. Except for the above, it is basically unchanged from the original value.
なお、センサ部11の腐食の進行と電気抵抗値の増大とが関係している理由は、一般的には、以下のように考えられている。
センサ部11を構成する導電体は、腐食が進行するに伴い、任意の環境に曝露されている領域を起点にして厚さ方向に減肉する。減肉分の導電体は、表面から失われるか、または、腐食生成物に置き換わって表面に残存する。この腐食生成物は、不導体、または、導電体であったとしても元の導電体と比較して導電性が非常に低いものとなることが多い。結果として、腐食による電気抵抗値の増大は、センサ部11を構成する導電体の減肉によるものと見なされることが一般的である。
The reason why the progress of corrosion of the sensor unit 11 and the increase in the electric resistance value are related is generally considered as follows.
As the corrosion progresses, the conductor constituting the sensor unit 11 is thinned in the thickness direction starting from a region exposed to an arbitrary environment. The thinning conductor is lost from the surface or remains on the surface in place of corrosion products. In many cases, the corrosion product has a very low conductivity compared to the original conductor even if it is a nonconductor or a conductor. As a result, the increase in the electric resistance value due to corrosion is generally considered to be due to the thinning of the conductor constituting the sensor unit 11.
このようにして、腐食センサ1においては任意の一定間隔でセンサ部11および参照部21の電気抵抗値を求め、求めた電気抵抗値に基づいてセンサ部11の腐食量(腐食深さ)を測定(換算)する。腐食量の換算式は、より詳細には、下記式(1)で表される。
CD=tinit{(Rref,init/Rsens,init)−(Rref/Rsens)} … (1)
CD:腐食量(腐食深さ)[μm]
tinit:参照部の当初厚さ[μm]
Rref,init:参照部の当初の電気抵抗値[Ω]
Rsens,init:センサ部の当初の電気抵抗値[Ω]
Rref:参照部の測定時の電気抵抗値[Ω]
Rsens:センサ部の測定時の電気抵抗値[Ω]
In this way, in the corrosion sensor 1, the electrical resistance values of the sensor unit 11 and the reference unit 21 are obtained at arbitrary constant intervals, and the corrosion amount (corrosion depth) of the sensor unit 11 is measured based on the obtained electrical resistance value. (Converted). More specifically, the conversion formula of the corrosion amount is represented by the following formula (1).
CD = t init {(R ref, init / R sens, init ) − (R ref / R sens )} (1)
CD: Corrosion amount (corrosion depth) [μm]
t init : initial thickness of reference part [μm]
R ref, init : Initial resistance value of the reference part [Ω]
R sens, init : Initial electrical resistance value of sensor unit [Ω]
R ref : Electric resistance value [Ω] at the time of measurement of the reference part
R sens : Electric resistance value [Ω] when measuring the sensor
ここで、上記式(1)に基づいて、腐食量を仮定のもとに計算する。
例えば、参照部21の当初厚さ(tinit)およびセンサ部11の当初厚さが共に「100μm」であり、参照部21の当初の電気抵抗値(Rref,init)およびセンサ部11の当初の電気抵抗値(Rsens,init)が共に「0.1Ω」であり、かつ、参照部21の測定時の電気抵抗値(Rref)は当初から不変の「0.1Ω」であったが、一方で、センサ部11の腐食が進行して電気抵抗値(Rsens)が「0.11Ω」に増大していた場合、腐食量は、上記式(1)から、100×{(0.1/0.1)−(0.1/0.11)}で、「9.1μm」と計算される。
Here, based on the above formula (1), the amount of corrosion is calculated under the assumption.
For example, the initial thickness (t init ) of the reference unit 21 and the initial thickness of the sensor unit 11 are both “100 μm”, the initial electrical resistance value (R ref, init ) of the reference unit 21 and the initial value of the sensor unit 11. Both of the electrical resistance values (R sens, init ) were “0.1Ω”, and the electrical resistance value (R ref ) at the time of measurement of the reference unit 21 was “0.1Ω” which was unchanged from the beginning. On the other hand, when the corrosion of the sensor unit 11 proceeds and the electric resistance value (R sens ) increases to “0.11Ω”, the amount of corrosion is 100 × {(0. 1 / 0.1) − (0.1 / 0.11)} and calculated as “9.1 μm”.
このとき、本発明の腐食センサ1においては、温度補償を行う。すなわち、腐食量の測定に際して、参照部21の電気抵抗値が変化した場合には、この変化が温度変化に起因するものとして、この変化に基づいて、測定される腐食量を補正する。
一般に、金属は温度が高くなるほどに電気抵抗率が高くなる。そこで、例えば、上記仮定において、当初よりも温度が上昇していて、測定時におけるセンサ部11の電気抵抗値(Rsens)が「0.11Ω」ではなく、その10%増しの「0.121Ω」になっていたとする。この場合、仮に、上記式(1)から、100×{(0.1/0.1)−(0.1/0.121)}で計算すると、腐食量は「17μm」となり、本来の腐食量「9.1μm」とは大きく相違する。
しかし、このとき、例えば、参照部21の電気抵抗値(Rref)も同様に、温度上昇によって、「0.1Ω」から10%増しの「0.11Ω」に変化していれば、この変化に基づいて腐食量を補正できる。すなわち、腐食量は、上記式(1)から、100×{(0.1/0.1)−(0.11/0.121)}で、「9.1μm」と計算され、温度変化がなかった場合と同様の結果が得られる。
At this time, temperature compensation is performed in the corrosion sensor 1 of the present invention. That is, when the electrical resistance value of the reference unit 21 is changed during the measurement of the corrosion amount, the measured corrosion amount is corrected based on the change, assuming that the change is caused by the temperature change.
In general, the electrical resistivity of a metal increases as the temperature increases. Therefore, for example, in the above assumption, the temperature has increased from the beginning, and the electric resistance value (R sens ) of the sensor unit 11 at the time of measurement is not “0.11Ω”, but is increased by 10% to “0.121Ω. ”. In this case, if calculated from the above formula (1) by 100 × {(0.1 / 0.1) − (0.1 / 0.121)}, the corrosion amount becomes “17 μm”, and the original corrosion It is very different from the quantity “9.1 μm”.
However, at this time, for example, if the electrical resistance value (R ref ) of the reference unit 21 is also changed from “0.1Ω” to “0.11Ω”, which is increased by 10%, due to the temperature rise, this change will occur. The amount of corrosion can be corrected based on That is, the amount of corrosion is calculated from the above formula (1) as 100 × {(0.1 / 0.1) − (0.11 / 0.121)} and is “9.1 μm”, and the temperature change is The result is the same as if it were not.
ここで、従来の電気抵抗式の腐食センサの構造について、図2(A)および図2(B)に基づいて説明する。
図2(A)は、従来の電気抵抗式の腐食センサの一例を模式的に示す平面図である。図2(B)は、図2(A)のB−B線断面図である。なお、図1(A)および図1(B)に基づいて説明した部分と同じ部分については、同じ符号で示し、説明も省略する。
図2(A)および図2(B)に示すように、従来の腐食センサ101において、センサ部11および参照部21は、平板状の基板31の一面上に、絶縁シート41を介して、並列配置されている。センサ部11および参照部21の両側面は、絶縁性の樹脂51で覆われている。さらに、参照部21の上面のみ、絶縁性のカバー161で覆われている。
センサ部11と参照部21とは、例えば、図2(A)に示すように、連続した一連の長尺状の導電体であってもよい。この場合、センサ部11および参照部21を構成する一連の導電体の両端に電流源71が接続され、センサ部11の両端に電圧測定部81が接続され、参照部21の両端に電圧測定部91が接続される。
Here, the structure of a conventional electrical resistance type corrosion sensor will be described based on FIGS. 2 (A) and 2 (B).
FIG. 2A is a plan view schematically showing an example of a conventional electrical resistance type corrosion sensor. FIG. 2B is a cross-sectional view taken along line BB in FIG. Note that portions that are the same as those described based on FIGS. 1A and 1B are denoted by the same reference numerals, and description thereof is also omitted.
As shown in FIGS. 2A and 2B, in the conventional corrosion sensor 101, the sensor unit 11 and the reference unit 21 are arranged in parallel on one surface of a flat substrate 31 via an insulating sheet 41. Has been placed. Both side surfaces of the sensor unit 11 and the reference unit 21 are covered with an insulating resin 51. Furthermore, only the upper surface of the reference portion 21 is covered with an insulating cover 161.
The sensor unit 11 and the reference unit 21 may be, for example, a continuous series of long conductors as shown in FIG. In this case, a current source 71 is connected to both ends of a series of conductors constituting the sensor unit 11 and the reference unit 21, a voltage measurement unit 81 is connected to both ends of the sensor unit 11, and a voltage measurement unit is connected to both ends of the reference unit 21. 91 is connected.
このような従来の腐食センサ101においても、本発明の腐食センサ1と同様に、温度補償しつつ腐食量の測定を行う。
しかしながら、従来の腐食センサ101におけるセンサ部11と参照部21とは、並列配置されていることから互いの距離が遠く、かつ、参照部21はカバー161で覆われている。このため、従来の腐食センサ101においては、センサ部11と参照部21とで温度環境が異なりやすく、熱伝導性や熱容量などに違いが生じやすい。
したがって、従来の腐食センサ101においては、露出しているセンサ部11の温度が例えば「T℃」から「T+10℃」に上がっても、参照部21は温度が上がりにくく、その時点では、例えば「T+3℃」程度であったり「T℃」のままであったりと、温度変化の追従が不十分な場合がある。
そして、時間が経過し、参照部21の温度も「T+10℃」になった後に、環境温度が低下して、センサ部11の温度が再び「T℃」に戻った場合にも、参照部21の温度は維持されて、その時点では例えば「T+7℃」程度であったり「T+10℃」のままであったりと、やはり、温度変化の追従が不十分な場合がある。
In such a conventional corrosion sensor 101 as well as the corrosion sensor 1 of the present invention, the amount of corrosion is measured with temperature compensation.
However, since the sensor unit 11 and the reference unit 21 in the conventional corrosion sensor 101 are arranged in parallel, the distance between them is long, and the reference unit 21 is covered with the cover 161. For this reason, in the conventional corrosion sensor 101, the temperature environment is likely to be different between the sensor unit 11 and the reference unit 21, and differences in thermal conductivity, heat capacity, and the like are likely to occur.
Therefore, in the conventional corrosion sensor 101, even if the temperature of the exposed sensor unit 11 rises from, for example, “T ° C.” to “T + 10 ° C.”, the temperature of the reference unit 21 hardly rises. If the temperature is about “T + 3 ° C.” or remains “T ° C.”, tracking of the temperature change may be insufficient.
Then, after the time has passed and the temperature of the reference unit 21 has reached “T + 10 ° C.”, the reference unit 21 can also be used when the environmental temperature decreases and the temperature of the sensor unit 11 returns to “T ° C.” again. The temperature is maintained, and at that time, for example, about “T + 7 ° C.” or “T + 10 ° C.”, tracking of the temperature change may still be insufficient.
このように、従来の腐食センサ101を用いた場合には温度変化の追従が不十分なことがある。このため、従来の腐食センサ101において、センサ部11の温度が上がった場合にも参照部21は直ちに温度上昇せず、例えば、上述した仮定のように、測定時点では、参照部21の電気抵抗値(Rref)は「0.1Ω」のままとなり、腐食量は「17μm」となって、本来の「9.1μm」とは相違し、測定精度が不十分となる場合がある。 Thus, when the conventional corrosion sensor 101 is used, the tracking of the temperature change may be insufficient. For this reason, in the conventional corrosion sensor 101, even when the temperature of the sensor unit 11 rises, the reference unit 21 does not immediately rise in temperature. For example, as described above, the electrical resistance of the reference unit 21 is measured at the time of measurement. The value (R ref ) remains “0.1Ω” and the corrosion amount becomes “17 μm”, which is different from the original “9.1 μm”, and the measurement accuracy may be insufficient.
これに対して、本発明の腐食センサ1においては、図1(A)および図1(B)に示すように、センサ部11と参照部21とは、絶縁体61を介して積層されているため、互いに熱の奪い合いおよび与え合いをしやすい状態にあり、熱伝導性や熱容量などに違いが生じにくく、温度変化が同時に進行しやすい。
このため、本発明の腐食センサ1を用いることで、センサ部11の温度変化に対して、参照部21が速やかに追従して温度変化する。すなわち、本発明の腐食センサ1においては、センサ部11の温度が上がった場合にも参照部21は直ちに温度上昇し、例えば、上述した仮定のように、測定時点での参照部21の電気抵抗値(Rref)は「0.11Ω」に上がり、腐食量は「9.1μm」となって、温度変化がなかった場合と同様の結果が得られる。このように、測定精度が優れる。
On the other hand, in the corrosion sensor 1 of the present invention, as shown in FIGS. 1A and 1B, the sensor unit 11 and the reference unit 21 are stacked via an insulator 61. Therefore, it is in a state where it is easy to scramble and give heat to each other, a difference in thermal conductivity, heat capacity, etc. hardly occurs, and a temperature change tends to proceed simultaneously.
For this reason, by using the corrosion sensor 1 of the present invention, the reference unit 21 quickly follows the temperature change of the sensor unit 11 and changes in temperature. That is, in the corrosion sensor 1 of the present invention, even when the temperature of the sensor unit 11 rises, the reference unit 21 immediately rises in temperature, for example, the electrical resistance of the reference unit 21 at the time of measurement as described above. The value (R ref ) rises to “0.11Ω” and the corrosion amount becomes “9.1 μm”, which is the same result as when there was no temperature change. Thus, the measurement accuracy is excellent.
本発明の腐食センサ1は、特に、腐食量のリアルタイムモニタリングに用いた場合、享受される効果が大きい。リアルタイムモニタリングとは、例えば屋外での曝露試験やラボでの腐食促進試験などで、温度や湿度などの腐食環境が刻一刻と変化するのに応じて、そのときの腐食量の変化を経時的に記録する測定方法である。本発明の腐食センサ1では、上述したように温度変化への追従性が良いため、腐食環境が大きく変化した場合においても、その環境変化に応じた腐食量の変化を正確に測定することができる。 The corrosion sensor 1 of the present invention has a great effect when it is used for real-time monitoring of the amount of corrosion. Real-time monitoring refers to, for example, outdoor exposure tests and laboratory corrosion acceleration tests, and changes in the amount of corrosion over time as the corrosive environment such as temperature and humidity changes every moment. Measurement method to record. Since the corrosion sensor 1 of the present invention has good followability to temperature changes as described above, even when the corrosive environment changes greatly, it is possible to accurately measure the change in the corrosion amount according to the environmental change. .
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
<実施例1>
図1(A)および図1(B)に基づいて説明した電気抵抗式の腐食センサ1を、次のようにして作製した。
まず、軟鋼板を蛇行形状に切断加工し、センサ部11を構成する長尺状の導電体(厚さ:500μm、幅:2mm、全長:200mm)とした。また、参照部21も、センサ部11と同形状にした。ステンレス鋼板である基板31(65mm×60mm)上に、ポリエチレンテレフタレートからなる絶縁シート41(デュポン社製のマイラーシート、厚さ:100μm)を配置し、その上に、参照部21を配置した。絶縁シート41上に、エポキシ樹脂である樹脂51を、参照部21の厚さ分だけ平坦に敷き詰めて、参照部21の両側面を覆った。その上に、プラスチックフィルムである絶縁体61(ポリ塩化ビニル、厚さ:100μm)を配置し、さらに、絶縁体61を介して参照部21と重なり合うように、センサ部11を配置した。絶縁体61上に、エポキシ樹脂である樹脂51を、センサ部11の厚さ分だけ平坦に敷き詰めて、センサ部11の両側面を覆った。
<Example 1>
The electrical resistance type corrosion sensor 1 described with reference to FIGS. 1A and 1B was manufactured as follows.
First, a mild steel plate was cut into a meandering shape to obtain a long conductor (thickness: 500 μm, width: 2 mm, total length: 200 mm) constituting the sensor unit 11. Further, the reference portion 21 has the same shape as the sensor portion 11. On a substrate 31 (65 mm × 60 mm) which is a stainless steel plate, an insulating sheet 41 made of polyethylene terephthalate (Mylar sheet manufactured by DuPont, thickness: 100 μm) was placed, and a reference portion 21 was placed thereon. A resin 51, which is an epoxy resin, was laid flat on the insulating sheet 41 by the thickness of the reference portion 21 to cover both side surfaces of the reference portion 21. An insulator 61 (polyvinyl chloride, thickness: 100 μm), which is a plastic film, is disposed thereon, and the sensor unit 11 is disposed so as to overlap the reference unit 21 via the insulator 61. A resin 51 that is an epoxy resin was laid flat on the insulator 61 by the thickness of the sensor unit 11 to cover both side surfaces of the sensor unit 11.
<比較例1>
図2(A)および図2(B)に基づいて説明した従来の電気抵抗式の腐食センサ101を、次のようにして作製した。
まず、軟鋼板を蛇行形状に切断加工し、センサ部11および参照部21を構成する一連の導電体(厚さ:500μm、幅:2mm、全長:400mm)とした。ステンレス鋼板である基板31(65mm×120mm)上に、ポリエチレンテレフタレートからなる絶縁シート41(デュポン社製のマイラーシート、厚さ:100μm)を配置し、その上に、センサ部11および参照部21を配置した。絶縁シート41上に、エポキシ樹脂である樹脂51を、センサ部11および参照部21の厚さ分だけ平坦に敷き詰めて、センサ部11および参照部21の両側面を覆った。さらに、参照部21の上面をエポキシ樹脂で被覆してカバー161(厚さ:1mm)を形成した。
<Comparative Example 1>
The conventional electrical resistance type corrosion sensor 101 described based on FIGS. 2A and 2B was manufactured as follows.
First, a mild steel plate was cut into a meandering shape to form a series of conductors (thickness: 500 μm, width: 2 mm, total length: 400 mm) constituting the sensor unit 11 and the reference unit 21. An insulating sheet 41 (Mylon sheet manufactured by DuPont, thickness: 100 μm) made of polyethylene terephthalate is disposed on a substrate 31 (65 mm × 120 mm) which is a stainless steel plate, and the sensor unit 11 and the reference unit 21 are disposed thereon. Arranged. A resin 51, which is an epoxy resin, was laid flat on the insulating sheet 41 by the thickness of the sensor unit 11 and the reference unit 21 to cover both side surfaces of the sensor unit 11 and the reference unit 21. Furthermore, a cover 161 (thickness: 1 mm) was formed by covering the upper surface of the reference portion 21 with an epoxy resin.
<腐食量の測定>
実施例1および比較例1の腐食センサを、大気腐食を模擬した腐食環境に曝露して、腐食量(腐食深さ)の経時変化を測定した。このとき、上述したようにして、参照部21およびセンサ部11の電気抵抗値に基づいてセンサ部11の腐食量[μm]を測定し、参照部21の電気抵抗値の変化が温度変化に起因するものとして、この変化に基づいて、腐食量を補正した。なお、腐食環境は、下記低温条件および下記高温条件の2種とした。
<Measurement of corrosion amount>
The corrosion sensors of Example 1 and Comparative Example 1 were exposed to a corrosive environment simulating atmospheric corrosion, and the change over time in the amount of corrosion (corrosion depth) was measured. At this time, as described above, the corrosion amount [μm] of the sensor unit 11 is measured based on the electrical resistance values of the reference unit 21 and the sensor unit 11, and the change in the electrical resistance value of the reference unit 21 is caused by the temperature change. The amount of corrosion was corrected based on this change. Note that the corrosive environment was classified into the following low temperature conditions and the following high temperature conditions.
・低温条件:乾燥(温度40℃、相対湿度30%、4時間)と湿潤(25℃、相対湿度95%、4時間)とを繰り返した。乾燥から2時間かけて湿潤に移行し、再び2時間かけて乾燥に移行するまでを1サイクルとし、5サイクルごとに、腐食センサを水洗して、付着量塩分1000mg/m2で人工海水を噴霧した。 Low temperature condition: drying (temperature 40 ° C., relative humidity 30%, 4 hours) and wetting (25 ° C., relative humidity 95%, 4 hours) were repeated. It takes 1 cycle from drying to wet over 2 hours, and again to dry over 2 hours, and the corrosion sensor is washed with water every 5 cycles, and artificial seawater is sprayed with a deposited amount of salt of 1000 mg / m 2. did.
・高温条件:乾燥(温度60℃、相対湿度30%、4時間)と湿潤(40℃、相対湿度95%、4時間)とを繰り返した。乾燥から2時間かけて湿潤に移行し、再び2時間かけて乾燥に移行するまでを1サイクルとし、5サイクルごとに、腐食センサを水洗して、付着量塩分1000mg/m2で人工海水を噴霧した。 High temperature conditions: drying (temperature 60 ° C., relative humidity 30%, 4 hours) and wetting (40 ° C., relative humidity 95%, 4 hours) were repeated. It takes 1 cycle from drying to wet over 2 hours, and again to dry over 2 hours, and the corrosion sensor is washed with water every 5 cycles, and artificial seawater is sprayed with a deposited amount of salt of 1000 mg / m 2. did.
<評価>
図3は、比較例1の腐食センサの高温条件での測定結果を示すグラフである。図3中、実線グラフは腐食量を表し、破線グラフは腐食環境の温度を表し、横軸に測定時間[h]を示し、左縦軸に腐食量[μm]を示し、右縦軸に温度[℃]を示している。
図3のグラフを見ると、腐食量(実線グラフ)は、おおよそには経時的に右肩上がりに上昇しているが、腐食環境の温度(破線グラフ)の変化時において、右肩上がりの中心線から大きく上下に変動していることが分かる。これは、参照部21の温度変化が、センサ部11の温度変化に十分に追従できず、その結果、本来の腐食量よりも大きくなった、または、小さくなったものと考えられる。
<Evaluation>
FIG. 3 is a graph showing measurement results of the corrosion sensor of Comparative Example 1 under high temperature conditions. In FIG. 3, the solid line graph represents the corrosion amount, the broken line graph represents the temperature of the corrosive environment, the horizontal axis represents the measurement time [h], the left vertical axis represents the corrosion amount [μm], and the right vertical axis represents the temperature. [° C.].
Looking at the graph in FIG. 3, the amount of corrosion (solid line graph) rises to the right with increasing time, but when the temperature of the corrosive environment (broken line graph) changes, It can be seen that it fluctuates up and down greatly from the line. This is considered that the temperature change of the reference part 21 cannot fully follow the temperature change of the sensor part 11, and as a result, became larger or smaller than the original amount of corrosion.
そこで、図3のグラフに示すように、腐食量の中心線からの変動幅をΔd[μm]とし、温度補償性能の指標とした。なお、腐食量(実線グラフ)のピーク的な突出は変動幅と見なさず、また、腐食量の中心線から等距離になるように変動幅の上下線をとった。
実施例1の低温条件および高温条件ならびに比較例1の低温条件についても、比較例1の高温条件と同様に、Δdを求めた。Δdの値が小さいほど、センサ部11の温度変化に参照部21が追従でき、腐食量の測定精度に優れるものとして評価できる。結果を下記第1表に示す。
Therefore, as shown in the graph of FIG. 3, the fluctuation range from the center line of the corrosion amount is Δd [μm], which is an index of temperature compensation performance. In addition, the peak protrusion of the corrosion amount (solid line graph) is not regarded as the fluctuation range, and the upper and lower lines of the fluctuation range are taken so as to be equidistant from the center line of the corrosion amount.
Also for the low temperature condition and high temperature condition of Example 1 and the low temperature condition of Comparative Example 1, Δd was determined in the same manner as the high temperature condition of Comparative Example 1. As the value of Δd is smaller, the reference unit 21 can follow the temperature change of the sensor unit 11 and can be evaluated as being excellent in the measurement accuracy of the corrosion amount. The results are shown in Table 1 below.
上記第1表に示す結果から明らかなように、低温条件および高温条件のいずれにおいても、実施例1は、比較例1よりもΔdの値が小さく、精度良く腐食量を測定できることが分かった。 As is apparent from the results shown in Table 1 above, it was found that Example 1 has a smaller Δd value than Comparative Example 1 and can measure the corrosion amount with high accuracy under both low temperature conditions and high temperature conditions.
1:本発明の電気抵抗式の腐食センサ
11:センサ部
11a:センサ部の端子(一方の端子)
11b:センサ部の端子(他方の端子)
21:参照部
21a:参照部の端子(一方の端子)
21b:参照部の端子(他方の端子)
31:基板
41:絶縁シート
51:樹脂
61:絶縁体
71:電流源
81:電圧測定部
91:電圧測定部
101:従来の電気抵抗式の腐食センサ
161:カバー
1: Corrosion sensor of electrical resistance type of the present invention 11: Sensor unit 11a: Terminal of sensor unit (one terminal)
11b: Terminal of the sensor unit (the other terminal)
21: Reference part 21a: Terminal of reference part (one terminal)
21b: Reference portion terminal (the other terminal)
31: Substrate 41: Insulating sheet 51: Resin 61: Insulator 71: Current source 81: Voltage measuring unit 91: Voltage measuring unit 101: Conventional electric resistance type corrosion sensor 161: Cover
Claims (5)
前記センサ部と前記参照部とが絶縁体を介して積層される、腐食センサ。 A sensor unit made of a conductor exposed to an arbitrary environment, and a reference unit made of a conductor cut off from the arbitrary environment,
The corrosion sensor, wherein the sensor unit and the reference unit are stacked via an insulator.
前記センサ部と前記参照部とが絶縁体を介して積層され、
前記参照部の電気抵抗値および前記センサ部の電気抵抗値に基づいて前記センサ部の腐食量が測定されるとともに、前記参照部の電気抵抗値に基づいて前記センサ部の腐食量が補正される、腐食センサ。 A sensor unit made of a conductor exposed to an arbitrary environment, and a reference unit made of a conductor cut off from the arbitrary environment,
The sensor unit and the reference unit are stacked via an insulator,
The amount of corrosion of the sensor unit is measured based on the electric resistance value of the reference unit and the electric resistance value of the sensor unit, and the amount of corrosion of the sensor unit is corrected based on the electric resistance value of the reference unit. , Corrosion sensor.
前記参照部の電気抵抗値、および、前記センサ部の電気抵抗値に基づいて前記センサ部の腐食量を測定し、
前記参照部の電気抵抗値が変化した場合には、該電気抵抗値の変化に基づいて、測定される前記センサ部の腐食量を補正する、腐食量の測定方法。 A corrosion amount measuring method for exposing the corrosion sensor according to any one of claims 1 to 3 to an arbitrary environment and measuring the corrosion amount of the sensor unit,
Measure the corrosion amount of the sensor unit based on the electrical resistance value of the reference unit and the electrical resistance value of the sensor unit,
A method for measuring a corrosion amount, wherein when the electrical resistance value of the reference portion changes, the corrosion amount of the sensor unit to be measured is corrected based on the change in the electrical resistance value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015116359A JP2017003376A (en) | 2015-06-09 | 2015-06-09 | Corrosion sensor and measuring method of corrosion amount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015116359A JP2017003376A (en) | 2015-06-09 | 2015-06-09 | Corrosion sensor and measuring method of corrosion amount |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017003376A true JP2017003376A (en) | 2017-01-05 |
Family
ID=57751900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015116359A Pending JP2017003376A (en) | 2015-06-09 | 2015-06-09 | Corrosion sensor and measuring method of corrosion amount |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017003376A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100208A1 (en) * | 2018-11-13 | 2020-05-22 | 三菱電機株式会社 | Semiconductor device and semiconductor device leak inspection method |
JP2021148574A (en) * | 2020-03-18 | 2021-09-27 | 株式会社ベンチャー・アカデミア | Estimation device for thickness reduction amount of metallic member and estimation method for thickness reduction amount of metallic member employing the same |
US20230152209A1 (en) * | 2020-05-19 | 2023-05-18 | Jfe Steel Corporation | Corrosion sensor designing method, corrosion sensor manufacturing method, and corrosion sensor |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734435A (en) * | 1980-08-11 | 1982-02-24 | Rovac Corp | Corrosion measuring technology by secondary temperature compensation |
JPS6454244A (en) * | 1987-08-25 | 1989-03-01 | Honda Motor Co Ltd | Sensor for measuring corrosion capacity of corrosive environment |
JPH02124541U (en) * | 1989-03-24 | 1990-10-15 | ||
US5446369A (en) * | 1992-10-09 | 1995-08-29 | Battelle Memorial Institute | Continuous, automatic and remote monitoring of corrosion |
JP2001296237A (en) * | 2000-04-17 | 2001-10-26 | Babcock Hitachi Kk | Corrosion sensor, supersensitive corrosion monitor and method |
JP2007292747A (en) * | 2006-03-29 | 2007-11-08 | Nippon Steel Corp | Corrosion amount measuring sensor |
JP2008209180A (en) * | 2007-02-26 | 2008-09-11 | Ihi Corp | Measuring electrode, corrosion monitoring device, and corrosion monitoring method |
JP2012501461A (en) * | 2008-09-02 | 2012-01-19 | ザ・ボーイング・カンパニー | Health sensor using laminated hybrid structure of elastic layer and fragile layer |
US20120176148A1 (en) * | 2011-01-10 | 2012-07-12 | International Business Machines Corporation | Methods and apparatus for detection of gaseous corrosive contaminants |
JP2013160541A (en) * | 2012-02-02 | 2013-08-19 | Kyushu Univ | Corrosion sensor |
JP2013205211A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Electric Corp | Corrosion sensor, deterioration detection sensor, and deterioration monitor |
-
2015
- 2015-06-09 JP JP2015116359A patent/JP2017003376A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734435A (en) * | 1980-08-11 | 1982-02-24 | Rovac Corp | Corrosion measuring technology by secondary temperature compensation |
JPS6454244A (en) * | 1987-08-25 | 1989-03-01 | Honda Motor Co Ltd | Sensor for measuring corrosion capacity of corrosive environment |
JPH02124541U (en) * | 1989-03-24 | 1990-10-15 | ||
US5446369A (en) * | 1992-10-09 | 1995-08-29 | Battelle Memorial Institute | Continuous, automatic and remote monitoring of corrosion |
JP2001296237A (en) * | 2000-04-17 | 2001-10-26 | Babcock Hitachi Kk | Corrosion sensor, supersensitive corrosion monitor and method |
JP2007292747A (en) * | 2006-03-29 | 2007-11-08 | Nippon Steel Corp | Corrosion amount measuring sensor |
JP2008209180A (en) * | 2007-02-26 | 2008-09-11 | Ihi Corp | Measuring electrode, corrosion monitoring device, and corrosion monitoring method |
JP2012501461A (en) * | 2008-09-02 | 2012-01-19 | ザ・ボーイング・カンパニー | Health sensor using laminated hybrid structure of elastic layer and fragile layer |
US20120176148A1 (en) * | 2011-01-10 | 2012-07-12 | International Business Machines Corporation | Methods and apparatus for detection of gaseous corrosive contaminants |
JP2013160541A (en) * | 2012-02-02 | 2013-08-19 | Kyushu Univ | Corrosion sensor |
JP2013205211A (en) * | 2012-03-28 | 2013-10-07 | Mitsubishi Electric Corp | Corrosion sensor, deterioration detection sensor, and deterioration monitor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100208A1 (en) * | 2018-11-13 | 2020-05-22 | 三菱電機株式会社 | Semiconductor device and semiconductor device leak inspection method |
JPWO2020100208A1 (en) * | 2018-11-13 | 2021-04-01 | 三菱電機株式会社 | Leak inspection method for semiconductor devices and semiconductor devices |
CN112955725A (en) * | 2018-11-13 | 2021-06-11 | 三菱电机株式会社 | Semiconductor device and leak inspection method for semiconductor device |
CN112955725B (en) * | 2018-11-13 | 2023-03-21 | 三菱电机株式会社 | Semiconductor device and leak inspection method for semiconductor device |
US11967537B2 (en) | 2018-11-13 | 2024-04-23 | Mitsubishi Electric Corporation | Semiconductor apparatus and semiconductor apparatus leak inspection method |
JP2021148574A (en) * | 2020-03-18 | 2021-09-27 | 株式会社ベンチャー・アカデミア | Estimation device for thickness reduction amount of metallic member and estimation method for thickness reduction amount of metallic member employing the same |
JP7356684B2 (en) | 2020-03-18 | 2023-10-05 | 株式会社ベンチャー・アカデミア | Device for estimating the amount of thinning of a metal member and method for estimating the amount of thinning of a metal member using the same |
US20230152209A1 (en) * | 2020-05-19 | 2023-05-18 | Jfe Steel Corporation | Corrosion sensor designing method, corrosion sensor manufacturing method, and corrosion sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6448007B2 (en) | High-speed response / high sensitivity wet / dry sensor | |
CA2818121C (en) | Method of detecting a leak in a membrane of a roof | |
JP6058442B2 (en) | Corrosion sensor, corrosion rate measuring method and corrosion rate measuring apparatus using the same | |
JP2017003376A (en) | Corrosion sensor and measuring method of corrosion amount | |
JP6084935B2 (en) | Corrosion sensor and manufacturing method thereof | |
JP5172858B2 (en) | Thermocouple circuit and method and system for its formation | |
US3056935A (en) | Feeler element for a humidostat | |
JP6815841B2 (en) | Corrosion monitoring device | |
JP2011219173A5 (en) | ||
JP2014238291A (en) | Method of using acm sensor | |
WO2021235475A1 (en) | Corrosion sensor designing method, corrosion sensor manufacturing method, and corrosion sensor | |
US11088399B2 (en) | Current sensor and battery comprising such a current sensor | |
JP7024553B2 (en) | Probe of corrosion environment measuring device and corrosion environment measuring device | |
CN110411938A (en) | A kind of corrosion sensor | |
JP2020020735A (en) | Method and device for monitoring corrosion | |
JP6834558B2 (en) | Corrosion monitoring measurement module, corrosion monitoring measurement method, corrosion monitoring system, and corrosion monitoring method | |
US8400172B2 (en) | Degradation sensor | |
JP5946867B2 (en) | Method for identifying corrosion location of steel material in concrete structure and potential difference measuring device for identifying corrosion location | |
JP6536608B2 (en) | Pollution monitoring device | |
RU2017131799A (en) | Method and device for continuous monitoring of pitting corrosion of the inner walls of metal structures | |
JP2019152516A (en) | Corrosion sensor, corrosion resistance measurement device, and corrosion resistance evaluation method | |
RU2442148C1 (en) | Method and device for converting gas humidity into electric potential (current) | |
US20140159751A1 (en) | Passive Multi-Layered Corrosion Sensor | |
JP2021032582A (en) | Corrosion sensor | |
JP6332162B2 (en) | Current measuring method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180516 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181225 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190108 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20190301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191024 |