JP2017003176A - Refrigeration device and refrigerator including the same - Google Patents

Refrigeration device and refrigerator including the same Download PDF

Info

Publication number
JP2017003176A
JP2017003176A JP2015116543A JP2015116543A JP2017003176A JP 2017003176 A JP2017003176 A JP 2017003176A JP 2015116543 A JP2015116543 A JP 2015116543A JP 2015116543 A JP2015116543 A JP 2015116543A JP 2017003176 A JP2017003176 A JP 2017003176A
Authority
JP
Japan
Prior art keywords
evaporator
evaporators
valve
defrosting
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015116543A
Other languages
Japanese (ja)
Inventor
正治 亀井
Masaharu Kamei
正治 亀井
平井 剛樹
Tsuyoki Hirai
剛樹 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015116543A priority Critical patent/JP2017003176A/en
Publication of JP2017003176A publication Critical patent/JP2017003176A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve energy saving regarding a refrigeration device which performs a cooling operation by a plurality of evaporators.SOLUTION: A plurality of evaporators 30, 31 are adjacently arranged, and a heat insulation material 32 is provided between the adjacent evaporators. By allowing the plurality of evaporators 30, 31 to perform the cooling operation or a defrosting operation alternately, the plurality of evaporators 30, 31 can be arranged compactly, and also, as the movement of heat between the plurality of evaporators is suppressed by the heat insulation material 32, it becomes possible to allow one of the plurality of evaporators to perform the cooling operation and the other to perform the defrosting operation, and the inside of a storage chamber can be continuously cooled without stopping. Also, it can be suppressed that temperature of the food in the storage chamber rises during the defrosting time of the evaporators and that temperature fluctuation in the storage chamber becomes large by the cooling and defrosting operation of the evaporators. Thus, deterioration of food quality can be prevented, and a refrigerator of higher quality can be provided.SELECTED DRAWING: Figure 1

Description

本発明は、複数の蒸発器で冷却運転を行う冷凍装置及び冷蔵庫に関するものである。 The present invention relates to a refrigeration apparatus and a refrigerator that perform a cooling operation with a plurality of evaporators.

従来、この種の冷凍装置及びそれを備えた冷蔵庫は、複数の蒸発器を備え、それらの蒸発器を交互に冷却、或いは、除霜運転を行っている(例えば、特許文献1参照)。   Conventionally, this type of refrigeration apparatus and a refrigerator including the same include a plurality of evaporators, and alternately cool or defrost the evaporators (see, for example, Patent Document 1).

図10は、特許文献1に記載された従来の冷凍装置を示すものである。図10に示すように、冷媒ガスを高温、高圧に圧縮する圧縮機1、圧縮機1から吐出された冷媒ガスを凝縮,液化する凝縮器2、凝縮器2で液化された液体冷媒を減圧,膨張させて低温冷媒にする減圧装置18,19、減圧装置18,19で低温となった液体冷媒を蒸発させる蒸発器14,15、送風機16,17、両蒸発器14,15に対応する除霜用の加熱器6,7、蒸発器14,15から滴下する除霜水を受けるドレンパン8,9、蒸発器14,15等を収納する筐体12,13、電磁弁20,21、電磁弁20,21の信号を受けて送風機16,17の回転数を制御する送風機制御装置23である。   FIG. 10 shows a conventional refrigeration apparatus described in Patent Document 1. In FIG. As shown in FIG. 10, the compressor 1 compresses the refrigerant gas to a high temperature and a high pressure, the condenser 2 that condenses and liquefies the refrigerant gas discharged from the compressor 1, and the liquid refrigerant liquefied by the condenser 2 is decompressed. Depressurizers 18 and 19 that are expanded into low-temperature refrigerant, evaporators 14 and 15 that evaporate liquid refrigerant that has become low temperature in decompressor 18 and 19, blowers 16 and 17, and defrosters corresponding to both evaporators 14 and 15. Heaters 6, 7, drain pans 8, 9 that receive defrost water dripping from evaporators 14, 15, housings 12, 13 that store evaporators 14, 15, etc., solenoid valves 20, 21, solenoid valve 20 , 21 is a blower control device 23 that controls the rotational speeds of the blowers 16, 17 in response to the signal of 21.

このように構成された冷凍装置において、冷却運転時に両電磁弁20,21を開放して、両蒸発器14,15によって負荷を冷却する。一方除霜運転時には、両電磁弁20,21のうち、例えば電磁弁20のみを開放して、片方の蒸発器14によって負荷を冷却する。この時電磁弁21の閉信号を受け取り、送風機制御装置23により、蒸発器14の送風機16の風量を上げる。この時、加熱器7を通電することにより他方の蒸発器15に発生した霜を除去する。この動作を両蒸発器で交互に実施する。このようにすれば、片方の蒸発器(風量アップにより冷却能力が増加)で負荷が冷却されるので、片方の蒸発器が除霜中でも、庫内温度が押えられる。   In the refrigeration apparatus configured as described above, both the solenoid valves 20 and 21 are opened during the cooling operation, and the load is cooled by the both evaporators 14 and 15. On the other hand, at the time of defrosting operation, for example, only the solenoid valve 20 of both the solenoid valves 20 and 21 is opened, and the load is cooled by one evaporator 14. At this time, the closing signal of the electromagnetic valve 21 is received, and the air volume of the blower 16 of the evaporator 14 is increased by the blower control device 23. At this time, the frost generated in the other evaporator 15 is removed by energizing the heater 7. This operation is performed alternately in both evaporators. In this way, the load is cooled by one of the evaporators (the cooling capacity increases by increasing the air volume), so that the internal temperature can be suppressed even when one of the evaporators is defrosted.

特開平4−90478号公報Japanese Patent Laid-Open No. 4-90478

しかしながら、前記従来の構成では、蒸発器の除霜を加熱器で行っているため、外部電力が必要で、省エネルギー効果が殆どない。また、各々の蒸発器に対して個別に送風機を設けているので、コストアップに繋がると共に、複数の送風路を構成する必要があり、その分、断熱材の領域が侵食されるので断熱性能が悪化する。さらに、加熱器で除霜するため、冷却中の蒸発器と除霜中の蒸発器との仕切りを、断熱材で構成する事ができず、耐熱性能の高い金属板で構成しているため、両蒸発器間で熱の授受が行われ、電力を浪費してしまうという課題を有していた。   However, in the said conventional structure, since defrosting of an evaporator is performed with a heater, external electric power is required and there is almost no energy saving effect. In addition, since an individual blower is provided for each evaporator, it leads to an increase in cost, and it is necessary to configure a plurality of air passages. Getting worse. Furthermore, because it is defrosted with a heater, the partition between the evaporator during cooling and the evaporator during defrost cannot be composed of a heat insulating material, and is composed of a metal plate with high heat resistance, Heat was exchanged between the two evaporators, and power wasted.

本発明は上記従来の課題を解決するものであり、複数の蒸発器で冷却運転を行う冷凍装置に関し、省エネルギー化を図ることができる冷凍装置および冷蔵庫を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the freezing apparatus and refrigerator which can aim at energy saving regarding the freezing apparatus which performs cooling operation with a some evaporator.

前記従来の課題を解決するために、本発明の冷凍装置は、複数の蒸発器を隣接配置するとともに、隣り合う蒸発器との間に断熱材を設け、前記複数の蒸発器を交互に冷却運転、あるいは除霜運転させるものである。   In order to solve the above-described conventional problems, the refrigeration apparatus of the present invention has a plurality of evaporators arranged adjacent to each other, and a heat insulating material is provided between adjacent evaporators, and the plurality of evaporators are alternately cooled. Or, defrosting operation is performed.

これによって、隣接配置する複数の蒸発器を断熱材で断熱しているので、複数の蒸発器間の熱の授受を抑制することができる。   Thereby, since the several evaporator arrange | positioned adjacently is heat-insulated with the heat insulating material, transfer of the heat | fever between several evaporators can be suppressed.

本発明の冷凍装置は、断熱材により複数の蒸発器間の熱の移動を抑制しているので、複数の蒸発器の一方を冷却運転、他方を除霜運転としたときにおいても、高低の温度の異なる複数の蒸発器を、個別に断熱しながら、冷却運転或いは除霜運転を行うことができ、高低の熱が蒸発器間で短絡・相殺することによる電力消費の浪費をなくし、省エネルギー化を図ることができる。   Since the refrigeration apparatus of the present invention suppresses the movement of heat between the plurality of evaporators by the heat insulating material, even when one of the plurality of evaporators is in the cooling operation and the other is in the defrosting operation, the temperature is high or low. It is possible to perform cooling operation or defrosting operation while individually insulating a plurality of evaporators with different temperatures, eliminating waste of power consumption due to short-circuiting and offsetting of high and low heat between the evaporators, saving energy. Can be planned.

本発明の実施の形態1における冷凍装置の構成図The block diagram of the freezing apparatus in Embodiment 1 of this invention 本発明の実施の形態1における冷凍装置の開閉弁仕様の冷凍サイクル図Refrigeration cycle diagram of open / close valve specifications of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の開閉弁仕様の冷凍サイクル図Refrigeration cycle diagram of open / close valve specifications of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の開閉弁仕様の冷凍サイクル図Refrigeration cycle diagram of open / close valve specifications of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の三方弁仕様の冷凍サイクル図Refrigeration cycle diagram of the three-way valve specification of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の三方弁仕様の冷凍サイクル図Refrigeration cycle diagram of the three-way valve specification of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の三方弁仕様の冷凍サイクル図Refrigeration cycle diagram of the three-way valve specification of the refrigeration system in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の全体構成図Whole block diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍装置の構成図The block diagram of the freezing apparatus in Embodiment 1 of this invention 従来の冷凍装置の構成図Configuration diagram of conventional refrigeration equipment

第1の発明は、複数の蒸発器を隣接配置するとともに、隣り合う蒸発器との間に断熱材を設け、前記複数の蒸発器を交互に冷却運転、あるいは除霜運転させることにより、複数の蒸発器をコンパクトに配置できるとともに、断熱材により複数の蒸発器間の熱の移動が抑制されているので、複数の蒸発器の一方を冷却運転、他方を除霜運転とすることが可能となり、貯蔵室内を途絶えることなく連続して冷却することが可能となる。また、蒸発器の除霜時などに貯蔵室内の食品の温度が上昇したり、蒸発器の冷却・除霜運転により貯蔵室内の温度変動が大きくなる事を抑制でき、食品の品質の劣化を防止することが可能となり、より高品位な冷蔵庫を提供することができる。   In the first invention, a plurality of evaporators are arranged adjacent to each other, a heat insulating material is provided between the adjacent evaporators, and the plurality of evaporators are alternately cooled or defrosted, whereby a plurality of evaporators are provided. Since the evaporator can be arranged in a compact manner and the heat transfer between the plurality of evaporators is suppressed by the heat insulating material, it becomes possible to perform one of the plurality of evaporators for cooling operation and the other for defrosting operation, It is possible to continuously cool the storage chamber without interruption. In addition, the food temperature in the storage room rises during defrosting of the evaporator, and the temperature fluctuation in the storage room increases due to the cooling and defrosting operation of the evaporator, preventing deterioration of food quality. This makes it possible to provide a higher-quality refrigerator.

第2の発明は、第1の発明において、貯蔵室内の冷却負荷の大きいときに、複数の蒸発器を同時に冷却運転させることにより、高負荷時には、複数の蒸発器を全て冷却運転とすることもできるので、単一の蒸発器のみの冷凍サイクルと比べて、複数の蒸発器の各々の冷却能力を小さく設計する事ができ、この複数の蒸発器の冷却運転の個数を選択することにより、冷凍サイクルの総冷却能力を制御することも可能となる。   According to a second invention, in the first invention, when the cooling load in the storage chamber is large, the plurality of evaporators are simultaneously operated for cooling, and at the time of high load, the plurality of evaporators are all set to a cooling operation. Therefore, the cooling capacity of each of the plurality of evaporators can be designed to be smaller than that of a refrigeration cycle with only a single evaporator, and by selecting the number of cooling operations of the plurality of evaporators, It is also possible to control the total cooling capacity of the cycle.

第3の発明は、第1または2の発明において、前記複数の蒸発器は、冷気の流れに対して並列に配置させることにより、コンパクトに設置でき、配管や配線、開閉弁などの機能部品を集中的に配置することが可能となる。また、冷蔵庫の外形寸法の増大を最小限に抑制するとともに、製造時の工数を効率化し、コストアップを抑制できる。   According to a third invention, in the first or second invention, the plurality of evaporators can be installed compactly by arranging them in parallel with the flow of cold air, and functional parts such as piping, wiring, and on-off valves can be installed. It becomes possible to arrange in a concentrated manner. Moreover, while suppressing the increase in the external dimension of a refrigerator to the minimum, the man-hour at the time of manufacture can be made efficient and a cost increase can be suppressed.

第4の発明は、第1から3のいずれかの発明において、圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続してなる冷凍サイクルを有し、冷却運転を休止している他方の蒸発器を、前記凝縮器の入口側のホットガス冷媒を導くバイバス配管からの冷媒で除霜することにより、蒸発器の除霜を冷凍サイクルのホットガス冷媒を導いて行うので、除霜ヒータなどの部品が不要となり、コストダウンと共に、除霜ヒータを駆動していた電力が削減でき、大幅な省エネルギー化が図れる。   A fourth invention has a refrigeration cycle in which the compressor, the condenser, the expansion valve, and the evaporator are annularly connected in any one of the first to third inventions, and the cooling operation is stopped. Since the other evaporator is defrosted with a refrigerant from a bypass pipe that guides the hot gas refrigerant on the inlet side of the condenser, the evaporator is defrosted by guiding the hot gas refrigerant of the refrigeration cycle. Parts such as a defrost heater are not required, and the power used to drive the defrost heater can be reduced along with cost reduction, and a significant energy saving can be achieved.

第5の発明は、第1から3のいずれかの発明において、冷却運転を休止している他方の蒸発器に、冷却器ファンによる風を流通させることにより、霜を昇華させて除霜を行うことにより、霜の付いた蒸発器を加熱させる除霜方式とは異なり、貯蔵室内に除霜時の熱が侵入することがない。また、除霜時に高温の熱が発生しないので、貯蔵室内の食品が熱により劣化する事がなく、除霜後の蒸発器の温度も低温に維持されるため、除霜後に蒸発器をクールダウンさせる必要もない。さらに、短時間で除霜運転から冷却運転へと切替える事が可能となり、梅雨時など湿度が高く、直ぐに蒸発器に着霜が発生する場合においても、冷却運転と除霜運転の切替えを直ぐに行えるので、貯蔵室の温度を適温に維持することが可能となる。   In a fifth aspect of the invention according to any one of the first to third aspects, defrosting is performed by sublimating the frost by causing the air from the cooler fan to flow through the other evaporator that has stopped the cooling operation. Thus, unlike the defrosting method in which the frosted evaporator is heated, heat at the time of defrosting does not enter the storage chamber. In addition, since no high-temperature heat is generated during defrosting, the food in the storage room is not deteriorated by heat, and the evaporator temperature after defrosting is maintained at a low temperature. There is no need to let them. In addition, it is possible to switch from the defrosting operation to the cooling operation in a short time, and even when the humidity is high during the rainy season and frosting occurs immediately on the evaporator, the switching between the cooling operation and the defrosting operation can be performed immediately. Therefore, it becomes possible to maintain the temperature of the storage room at an appropriate temperature.

第6の発明は、第4の発明において、前記圧縮機から吐出される高温のガス冷媒を、前記蒸発器の入口側へと導く開閉弁を備えたバイパス配管と、圧縮機からの高温のガス冷媒を前記凝縮器へと導く開閉弁を有することにより、冷凍サイクルのホットガス冷媒を分流して供給するのではなく、全てのホットガス冷媒を一方の蒸発器へと導くので、冷凍サイクルの凝縮器と膨張弁を介して、他方の蒸発器で冷却作用を行う冷媒も冷凍サイクル中の全量となるので、冷却作用を最大限に発揮することができる。また、除霜する蒸発器にも全量のホットガス冷媒が流れるので、除霜作用の最大化を図ることができる。また、冷凍サイクルのホットガス冷媒で除霜を行う方式において、冷凍サイクル中の冷媒を分流することなく、全量を有効に利用して効率的な除霜と冷却運転を行うことができる。   According to a sixth invention, in the fourth invention, a bypass pipe provided with an on-off valve for guiding the high-temperature gas refrigerant discharged from the compressor to the inlet side of the evaporator, and the high-temperature gas from the compressor By having an on-off valve that guides the refrigerant to the condenser, the hot gas refrigerant in the refrigeration cycle is not supplied in a divided manner, but all the hot gas refrigerant is led to one evaporator, so that the condensation of the refrigeration cycle Since the refrigerant that performs the cooling operation in the other evaporator also becomes the total amount in the refrigeration cycle via the evaporator and the expansion valve, the cooling operation can be maximized. In addition, since the entire amount of hot gas refrigerant flows through the evaporator to be defrosted, the defrosting action can be maximized. Further, in the method of performing defrosting with the hot gas refrigerant of the refrigeration cycle, efficient defrosting and cooling operation can be performed by effectively using the entire amount without diverting the refrigerant in the refrigeration cycle.

第7の発明は、第4の発明において、前記凝縮器で冷却された冷媒を前記膨張弁を介して前記蒸発器へと導く開閉弁を備えたことにより、キャピラリチューブのように全閉機能がなくても、開閉弁で冷凍サイクルを開閉する事ができ、比較的安価に、かつ、信頼性を向上させることができる。   According to a seventh invention, in the fourth invention, an open / close valve that guides the refrigerant cooled by the condenser to the evaporator through the expansion valve has a fully closed function like a capillary tube. Even if it is not, the refrigeration cycle can be opened and closed with the on-off valve, and the reliability can be improved relatively inexpensively.

第8の発明は、第4の発明において、前記蒸発器の出口側に前記蒸発器を除霜したホットガス冷媒を前記凝縮器へ導くための開閉弁を備えたバイパス配管と、前記蒸発器で冷却作用が行われたあと前記圧縮機へ冷媒を還流させる開閉弁を有することにより、蒸発器の出口側から冷媒を圧縮機、或いは、凝縮器へと流れるように開閉弁で制御することができ、バイパス管路をシンプルな構成としつつ、除霜時の冷熱回収も可能となる。また、通常のホットガスバイパスによる除霜だけでなく、同時に蒸発器の冷熱を回収することで、凝縮器の負荷を低減し、冷凍サイクルの効率を向上させることができる。   According to an eighth invention, in the fourth invention, there is provided a bypass pipe provided with an open / close valve for guiding hot gas refrigerant defrosted from the evaporator to the condenser on an outlet side of the evaporator, and the evaporator. By having an on-off valve that recirculates the refrigerant to the compressor after the cooling operation is performed, the on-off valve can be controlled so that the refrigerant flows from the outlet side of the evaporator to the compressor or the condenser. In addition, it is possible to collect cold heat during defrosting while making the bypass pipe line simple. Moreover, not only the defrosting by the normal hot gas bypass but also recovering the cold heat of the evaporator at the same time can reduce the load on the condenser and improve the efficiency of the refrigeration cycle.

第9の発明は、断熱箱体および扉を有し、第1から8のいずれかの発明の冷凍装置を備えた冷蔵庫であり、省エネ性を高め、温度変動を抑制した冷蔵庫を提供することができる。   A ninth invention is a refrigerator having a heat insulating box and a door and including the refrigeration apparatus according to any one of the first to eighth inventions, and provides a refrigerator that enhances energy saving and suppresses temperature fluctuations. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍装置の構成図、図2〜4は、本発明の第1の実施の形態における冷凍装置の開閉弁仕様の冷凍サイクル図、図5〜7は、本発明の第1の実施の形態における冷凍装置の三方弁仕様の冷凍サイクル図、図8は、本発明の第1の実施の形態における冷蔵庫の全体構成図、図9は、本発明の第1の実施の形態における冷凍装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 is a configuration diagram of a refrigeration apparatus according to the first embodiment of the present invention, FIGS. 2 to 4 are refrigeration cycle diagrams of open / close valve specifications of the refrigeration apparatus according to the first embodiment of the present invention, and FIGS. 7 is a refrigeration cycle diagram of the three-way valve specification of the refrigeration apparatus in the first embodiment of the present invention, FIG. 8 is an overall configuration diagram of the refrigerator in the first embodiment of the present invention, and FIG. 9 is the present invention. The block diagram of the freezing apparatus in 1st Embodiment of this is shown.

図1〜図9において、内箱60と外箱61の間に発泡ウレタン63が充填されて冷蔵庫本体62を構成している。冷蔵室68、第一冷凍室77、第二冷凍室78、野菜室79は
、仕切壁69〜71で仕切られ、冷蔵庫本体62の前面側には、各室を開閉するドア73〜76が設けられている。機械室64内には圧縮機35が設置され、機械室カバー65で覆われている。蒸発器81で冷却された冷気は、ダクト67内を通って、冷蔵室68に冷気を供給している。
1 to 9, a urethane foam 63 is filled between an inner box 60 and an outer box 61 to constitute a refrigerator main body 62. The refrigerator compartment 68, the first freezer compartment 77, the second freezer compartment 78, and the vegetable compartment 79 are partitioned by partition walls 69 to 71, and doors 73 to 76 that open and close each chamber are provided on the front side of the refrigerator main body 62. It has been. A compressor 35 is installed in the machine room 64 and is covered with a machine room cover 65. The cold air cooled by the evaporator 81 passes through the duct 67 and supplies the cold air to the refrigerator compartment 68.

除霜水処理部82は、蒸発器81の下部に設置されており、冷蔵庫本体62の背面には、真空断熱材80が配設されている。前面側蒸発器30と、背面側蒸発器31は、断熱材32を挟んで、重なるように対向配置されている。ダンパ33は、前面側蒸発器30、或いは、背面側蒸発器31のどちらかの風路をファン34に連通させるものである。そして、圧縮機35、凝縮器36、膨張弁37,38、蒸発器30,31、開閉弁41〜50、で冷凍サイクルを構成している。また、三方弁55〜58を用いると、開閉弁の数量を減少させることができる。   The defrosting water treatment unit 82 is installed in the lower part of the evaporator 81, and a vacuum heat insulating material 80 is disposed on the back surface of the refrigerator main body 62. The front-side evaporator 30 and the back-side evaporator 31 are arranged to face each other with the heat insulating material 32 interposed therebetween. The damper 33 causes the air path of either the front side evaporator 30 or the back side evaporator 31 to communicate with the fan 34. The compressor 35, the condenser 36, the expansion valves 37 and 38, the evaporators 30 and 31, and the on-off valves 41 to 50 constitute a refrigeration cycle. Further, when the three-way valves 55 to 58 are used, the number of on-off valves can be reduced.

以上のように構成された冷凍装置及びそれを備えた冷蔵庫について、以下その動作、作用を説明する。   About the freezing apparatus comprised as mentioned above and a refrigerator provided with the same, the operation | movement and an effect | action are demonstrated below.

まず、冷蔵庫本体62は、外箱61と内箱60の間に発泡ウレタン63が充填され、仕切壁69〜71で仕切られた、冷蔵室68、第一冷凍室77、第二冷凍室78、野菜室79などの異なる温度帯の貯蔵室が周囲と断熱された状態で維持されているので、保存温度帯の異なる色々な食品を、熱効率良く、適正な温度で保存することができる。   First, the refrigerator main body 62 is filled with the urethane foam 63 between the outer box 61 and the inner box 60 and partitioned by the partition walls 69 to 71, the refrigerator compartment 68, the first freezer compartment 77, the second freezer compartment 78, Since the storage rooms of different temperature zones such as the vegetable room 79 are kept insulated from the surroundings, various foods having different storage temperature ranges can be stored at an appropriate temperature with high thermal efficiency.

また、各々の貯蔵室にはドア73〜76が設けられ、各々の貯蔵室を単独状態で開閉する事が可能となっており、開閉時の冷気流出を抑制している。   In addition, doors 73 to 76 are provided in each storage chamber, and each storage chamber can be opened and closed in a single state, and the outflow of cold air at the time of opening and closing is suppressed.

圧縮機35は、冷蔵庫本体62の背面上部に設けられた機械室64に設置され、機械室カバー65で覆うことにより、塵誇が侵入するのを抑制している。   The compressor 35 is installed in a machine room 64 provided on the upper rear surface of the refrigerator main body 62 and is covered with a machine room cover 65 to prevent dust from entering.

ダクト67は、蒸発器81で生成された冷気を、図示しないファンによって各々の貯蔵室68,77,78へ供給するための風路であり、蒸発器の設置高さに自由度を持たせることができ、設計プランの幅を拡げることが可能となっている。   The duct 67 is an air passage for supplying the cool air generated by the evaporator 81 to each of the storage rooms 68, 77, 78 by a fan (not shown), and allows the installation height of the evaporator to be flexible. It is possible to expand the range of design plans.

蒸発器81の下部に除霜水処理部82を設けることで、除霜水を床に漏水させることなく、冷蔵庫本体62自体で処理することが可能となっている。真空断熱材80を冷蔵庫本体62の背面に配設することにより、省エネルギー化を図っている。   By providing the defrost water processing part 82 in the lower part of the evaporator 81, it is possible to process the defrost water in the refrigerator main body 62 itself without leaking the defrost water to the floor. Energy saving is achieved by disposing the vacuum heat insulating material 80 on the rear surface of the refrigerator main body 62.

次に、冷蔵庫を設置して運転を開始するときには、2つの蒸発器30,31をいずれも冷却運転させるように、開閉弁41〜50の開閉制御を行った後、圧縮機35を運転開始する。この制御を行うことにより、設置時、フルパワーの冷却能力で、冷蔵庫内を迅速に設定温度に到達させることができる。冷蔵庫内が設定温度に到達した後、大きな冷却負荷が存在していない場合は、2つの蒸発器30,31の内、冷蔵庫の前面側の蒸発器30を冷却運転、冷蔵庫の背面側の蒸発器31を停止状態となるように開閉弁41〜50の開閉制御を行う。   Next, when the refrigerator is installed and the operation is started, the compressor 35 is started after the opening / closing valves 41 to 50 are controlled so that both the evaporators 30 and 31 are cooled. . By performing this control, it is possible to quickly reach the set temperature in the refrigerator with full power cooling capacity at the time of installation. When a large cooling load does not exist after the inside of the refrigerator reaches the set temperature, the evaporator 30 on the front side of the refrigerator is cooled in the two evaporators 30 and 31, and the evaporator on the back side of the refrigerator On / off control of the on-off valves 41 to 50 is performed so that 31 is stopped.

ここで、冷蔵庫の前面側の蒸発器31を冷却運転側として選択する理由は、冷蔵庫の背面からの外部侵入熱の影響を極力小さくするためである。   Here, the reason for selecting the evaporator 31 on the front side of the refrigerator as the cooling operation side is to minimize the influence of external intrusion heat from the back side of the refrigerator.

そして、開閉弁41〜50を切替えて、停止状態の背面側蒸発器31に、圧縮機35から吐出される高温のガス冷媒を導いて、背面側蒸発器31のホットガスデフロストを行う。このホットガスデフロストの終了時点において、前面側蒸発器30の着霜が所定値以上と判断された場合に、開閉弁41〜50を切替えて、前面側蒸発器30の運転を停止させ
るとともに、停止状態の前面側蒸発器30に、圧縮機35から吐出される高温のガス冷媒を導いて、前面側蒸発器30のホットガスデフロストを開始する。
And the on-off valve 41-50 is switched, the hot gas refrigerant discharged from the compressor 35 is guide | induced to the back side evaporator 31 of a stop state, and the hot gas defrost of the back side evaporator 31 is performed. When the frosting of the front side evaporator 30 is determined to be greater than or equal to a predetermined value at the end of the hot gas defrost, the on-off valves 41 to 50 are switched to stop the operation of the front side evaporator 30 and stop. The hot gas refrigerant discharged from the compressor 35 is guided to the front side evaporator 30 in the state, and hot gas defrost of the front side evaporator 30 is started.

このとき、冷蔵庫内の冷却作用は、除霜が完了した背面側蒸発器31の冷却運転によって行われる。そして、背面側蒸発器31の着霜が所定値以上と判断した場合に、開閉弁41〜50を切替えて、背面側蒸発器31の運転を停止させるとともに、停止状態の背面側蒸発器31をホットガスデフロストする。   At this time, the cooling operation in the refrigerator is performed by the cooling operation of the back side evaporator 31 after the defrosting is completed. And when it determines that the frost formation of the back side evaporator 31 is more than predetermined value, while switching the on-off valves 41-50, the operation | movement of the back side evaporator 31 is stopped, and the back side evaporator 31 of a stop state is made. Hot gas defrost.

このとき、冷蔵庫内の冷却作用は、除霜が完了した前面側蒸発器30の冷却運転によって行われることとなる。このように、前面側蒸発器30、背面側蒸発器31の2つの蒸発器30,31を交互に冷却運転、除霜運転に切り替えることにより、冷蔵庫の貯蔵室を途絶えることなく連続して冷却運転することが可能となる。   At this time, the cooling operation in the refrigerator is performed by the cooling operation of the front side evaporator 30 after the defrosting is completed. In this way, the two evaporators 30 and 31 of the front side evaporator 30 and the back side evaporator 31 are alternately switched to the cooling operation and the defrosting operation, thereby continuously cooling the refrigerator storage room without interruption. It becomes possible to do.

また、一方の蒸発器のホットガスデフロストが終了した時点において、冷蔵庫内が食品で満杯になっている時や、外気温の高い夏季などの冷却負荷が大きい時には、2つの蒸発器30,31を同時に冷却運転して、貯蔵室内の温度を設定値に維持させるように制御する。ここで、各蒸発器30,31の除霜のタイミングであるが、通常時と同じく、各々個別の蒸発器の着霜が所定値以上となった時点で除霜となるが、そのとき、2つの蒸発器30,31が同時に除霜タイミングとなった場合は、前面側蒸発器30の冷却運転を継続し、先ず、背面側蒸発器31からホットガスデフロストを行うように制御する。   In addition, when the hot gas defrost of one of the evaporators is completed, when the refrigerator is full of food or when the cooling load is large such as in summer when the outside air temperature is high, the two evaporators 30 and 31 are connected. At the same time, the cooling operation is performed to control the temperature in the storage chamber to be maintained at the set value. Here, the defrosting timing of each of the evaporators 30 and 31 is defrosted when the frosting of each individual evaporator becomes a predetermined value or more, as in normal times. When the two evaporators 30 and 31 reach the defrosting timing at the same time, the cooling operation of the front side evaporator 30 is continued, and first, control is performed so that hot gas defrosting is performed from the back side evaporator 31.

また、食品の急速冷凍時など、大きな冷却能力が必要となる場合にも、開閉弁41〜50を切り替えて、2つの蒸発器30,31で冷却運転を行う。このとき、片方の蒸発器がホットガスデフロスト中である場合、除霜が終了するまで、もう一方の蒸発器の単独の冷却運転で我慢するか、開閉弁41〜50を切り替えて、除霜を強制終了し、2つの蒸発器30,31で冷却運転するかの、どちらかに予め決めておくか、使用者に選択させるようにしてもよい。この急速冷凍が終了すると、除霜を強制終了させた一方の蒸発器のホットガスデフロストの再開と、他方の蒸発器での冷却運転の継続へと移行する。   Also, when a large cooling capacity is required, such as during quick freezing of food, the on-off valves 41 to 50 are switched to perform the cooling operation with the two evaporators 30 and 31. At this time, if one of the evaporators is in hot gas defrost, until the defrosting ends, either endure with the single cooling operation of the other evaporator or switch the on-off valves 41 to 50 to remove the defrost. It may be forcibly terminated and the user may select whether to perform the cooling operation with the two evaporators 30 and 31 in advance. When this quick freezing is completed, the process proceeds to the restart of the hot gas defrost of one evaporator for which the defrosting is forcibly terminated and the continuation of the cooling operation in the other evaporator.

このように、特殊な制御対応が要求される場合もあるが、それは、全期間を通してみれば、極短時間な事象であり、殆どの場合は、2つの蒸発器30,31の内、一方の蒸発器で冷却運転している間に、他方の蒸発器を除霜するもので、貯蔵室内を連続して冷却することが可能となり、貯蔵室内の温度変動を抑制し、食品の温度上昇による劣化現象を防止するものである。   In this way, there is a case where a special control response is required, but this is an extremely short-time event over the entire period, and in most cases, one of the two evaporators 30 and 31 is one of the two. The other evaporator is defrosted while the cooling operation is performed in the evaporator, and it becomes possible to continuously cool the storage room, suppress the temperature fluctuation in the storage room, and deteriorate due to the temperature rise of food. This is to prevent the phenomenon.

また、2つの蒸発器30,31の間には、断熱材32が配置されているので、一方の蒸発器を冷却運転、他方の蒸発器を除霜運転する場合でも、2つの蒸発器30,31間の熱移動が抑制されるので、冷熱と温熱が短絡するのを未然に防止することができる。そして、2つの蒸発器30,31は、断熱材32を介して隣接して配置されているので、コンパクトに設置することが可能で、例えば、重ねて配置する場合においては、単一の冷却器カバー内に2つの蒸発器30,31を一緒に収納して設置することが可能となり、従来構成のファンや基本風路をそのまま、或いは、少しの変更を加えることで済み、新たに複数の風路構成などを形成しなくても良く、非常に簡素な構成となる。   In addition, since the heat insulating material 32 is disposed between the two evaporators 30 and 31, even when one evaporator is cooled and the other evaporator is defrosted, Since the heat transfer between 31 is suppressed, it is possible to prevent the cold and warm from being short-circuited. And since the two evaporators 30 and 31 are arrange | positioned adjacently via the heat insulating material 32, it is possible to install compactly, for example, when arrange | positioning in piles, a single cooler It is possible to store and install the two evaporators 30 and 31 together in the cover, and the conventional fan and basic air path can be used as they are or with a slight change. It is not necessary to form a road configuration or the like, and the configuration is very simple.

また、ホットガスデフロストについては、圧縮機35の吐出ガスをバイバスさせて、一方の蒸発器を除霜したあと、凝縮器36の入口側へと導き、他方の蒸発器で冷却作用に寄与させており、冷凍サイクル内の全冷媒を冷却作用に利用可能としている。   As for hot gas defrost, the discharge gas of the compressor 35 is bypassed, and after defrosting one of the evaporators, it is led to the inlet side of the condenser 36, and the other evaporator contributes to the cooling action. Thus, all the refrigerant in the refrigeration cycle can be used for cooling.

ここで、ホットガスデフロストの方法については、様々な構成があり、例えば、圧縮機の吐出ガスをバイパスさせて、一方の蒸発器を除霜したあと、圧縮機の入口側に還流させ
る方式がある。この場合には、冷凍サイクルの構成としては、簡素化できるが、蒸発器を除霜した冷媒が、直に、圧縮機へと還流されるため、このバイバス管路を通過していく冷媒量については、冷却作用に寄与しないため、冷却作用に大きく影響する冷媒循環量が一時的に減少して、他の蒸発器での冷却能力が低下する。
Here, there are various configurations for the hot gas defrosting method, for example, there is a method of bypassing the discharge gas of the compressor, defrosting one of the evaporators, and then refluxing to the inlet side of the compressor . In this case, the configuration of the refrigeration cycle can be simplified, but since the refrigerant defrosted from the evaporator is directly returned to the compressor, the amount of refrigerant passing through this bypass pipe line Since it does not contribute to the cooling action, the refrigerant circulation amount that greatly affects the cooling action is temporarily reduced, and the cooling capacity in other evaporators is reduced.

そして、片肺運転のため、冷却能力は大きく低下してしまう。さらに、蒸発器を除霜した後の比較的高温のガス冷媒を、圧縮機に戻すので、圧縮機の吸入温度が上昇し、圧縮機の許容温度範囲以上となって、機構部品が熱変形して破損する恐れがある。一般的には、ホットガスデフロストの時間が短く、回数も少ないので、圧縮機への影響が小さく、許容範囲内と判断されている場合もある。   And since it is a single lung driving | operation, a cooling capability will fall large. Furthermore, since the relatively high-temperature gas refrigerant after defrosting the evaporator is returned to the compressor, the suction temperature of the compressor rises, exceeds the allowable temperature range of the compressor, and the mechanical components are thermally deformed. There is a risk of damage. In general, since the hot gas defrost time is short and the number of times is small, the influence on the compressor is small, and it may be determined that it is within an allowable range.

また、2つの蒸発器30,31を交互に冷却、或いは、除霜運転することにより、蒸発器の能力を可変することが可能となり、圧縮機回転数のインバータ制御と組み合わせることで、更なる省エネルギー化も可能となる。例えば、冷蔵庫の貯蔵室内の食品の負荷が標準的なものであるとき、2つの蒸発器30,31の内、1つのみを交互に冷却運転することにより、貯蔵室内を設定温度に維持したまま、消費電力を削減することが可能となる。   In addition, by alternately cooling or defrosting the two evaporators 30 and 31, it becomes possible to vary the capacity of the evaporator, and by combining with inverter control of the compressor speed, further energy saving It becomes possible. For example, when the load of food in the refrigerator storage room is standard, only one of the two evaporators 30 and 31 is alternately cooled to keep the storage room at a set temperature. It becomes possible to reduce power consumption.

そして、この状態から貯蔵室の負荷が微妙に変化した場合に、圧縮機回転数制御により、冷媒循環量を調節して増減する負荷に対応可能となる。もちろん、貯蔵室内の負荷が大きく増大した場合には、2つある蒸発器30,31を同時に冷却運転にして、圧縮機回転数も増加させる。すなわち、貯蔵室内を冷却する蒸発器を2つにすることにより、冷却能力の制御を単純に、2倍細かく制御することができ、その分、極め細やかで、省エネルギーな運転が可能となる。さらに、2つの蒸発器30,31のうち、どちらか一方は貯蔵室内の冷却運転を行っているので、除霜時に運転を停止する場合に比べて、貯蔵室内の食品の温度上昇が抑えられ、食品の温度変動幅の小さい冷蔵庫を提供することが可能となる。   And when the load of a store room changes delicately from this state, it becomes possible to cope with a load that increases or decreases by adjusting the refrigerant circulation amount by compressor rotation speed control. Of course, when the load in the storage chamber is greatly increased, the two evaporators 30 and 31 are simultaneously put into a cooling operation to increase the rotational speed of the compressor. In other words, by using two evaporators for cooling the storage chamber, the control of the cooling capacity can be simply controlled twice as finely, and accordingly, extremely fine and energy-saving operation becomes possible. Furthermore, since one of the two evaporators 30 and 31 is performing the cooling operation in the storage chamber, compared to the case where the operation is stopped during defrosting, the temperature rise of the food in the storage chamber is suppressed, It becomes possible to provide a refrigerator having a small temperature fluctuation range of food.

また、上述のホットガスデフロスト方式とは異なる除霜方式として、着霜した一方の蒸発器の冷媒流通を止めて、ファンからの風を通風し、蒸発器に付いた霜を昇華作用によって除霜する方式を取り入れても良い。   In addition, as a defrosting method different from the hot gas defrost method described above, the refrigerant flow of one of the frosted evaporators is stopped, the air from the fan is blown, and the frost attached to the evaporator is defrosted by sublimation. You may adopt the method to do.

この場合、ホットガスデフロスト方式に比べて、除霜に時間がかかるので、あまり沢山の霜が付いてから除霜するのでは、時間がかかり過ぎてしまう。そこで、霜付き状態が少ないうちに、早めに除霜動作に入るように制御すると、霜付き状態が少ないので通風が行き渡り、蒸発器のチューブに冷媒が流れていないので、実用レベルの除霜時間内で、除霜を完了することが可能となる。   In this case, since it takes time to defrost as compared with the hot gas defrost method, it takes too much time to defrost after much frost is added. Therefore, if control is performed so that the defrosting operation is started early while the frosted state is small, the frosted state is small, so the ventilation is spread, and the refrigerant does not flow into the evaporator tube, so the defrosting time is at a practical level. It is possible to complete the defrosting.

また、この昇華作用を利用した除霜と、ホットガスデフロストを融合させて、除霜を行っても良く、除霜時間の短縮が図れる。また、昇華作用のみの除霜にして、2つの蒸発器30,31の冷却、除霜サイクルを短くして、少量の霜付き段階で、早めに昇華による除霜を行って運転することにより、ホットガスバイパス回路などの除霜回路を省略することが可能となり、低コスト化を図ることができる。   Further, the defrosting utilizing the sublimation action and the hot gas defrost may be fused to perform the defrosting, and the defrosting time can be shortened. In addition, by defrosting only the sublimation action, shortening the cooling and defrosting cycles of the two evaporators 30 and 31, and performing operation by performing defrosting by sublimation at an early stage with a small amount of frosting, A defrosting circuit such as a hot gas bypass circuit can be omitted, and the cost can be reduced.

また、除霜方式としてホットガスデフロスト方式を適用しているので、除霜ヒータなどの加熱器のように、発熱温度が300℃程度になって、蒸発器周辺の温度が非常に高い温度になることがないので、2つの蒸発器30,31の間に金属板ではなく、断熱材32を配設することが可能となる。   Moreover, since the hot gas defrost method is applied as the defrosting method, the heat generation temperature becomes about 300 ° C. and the temperature around the evaporator becomes very high like a heater such as a defrosting heater. Therefore, it is possible to dispose a heat insulating material 32 instead of a metal plate between the two evaporators 30 and 31.

そして、一方の蒸発器で冷却運転しながら、他方の蒸発器を除霜しているときなどの場合、即ち、2つの蒸発器30,31の片方のみを冷却運転とする場合に、冷却能力の向上を目的として、ファンの回転数をアップさせることが考えられるが、熱の移動面となる蒸
発器の表面積は一定で変わらないので、冷却能力の顕著な向上は、期待できないと考えられる。これを鑑みて、2つの蒸発器30,31の各々にファンを設けることなく、断熱材32を介し隣接配置した2つの蒸発器30,31に対し、共通のファン34を1つ設けている。
And, in the case where the other evaporator is defrosted while cooling with one evaporator, that is, when only one of the two evaporators 30 and 31 is cooled, For the purpose of improvement, it is conceivable to increase the number of rotations of the fan. However, since the surface area of the evaporator serving as a heat transfer surface is constant and does not change, it is considered that a significant improvement in cooling capacity cannot be expected. In view of this, one common fan 34 is provided for the two evaporators 30 and 31 disposed adjacent to each other via the heat insulating material 32 without providing a fan for each of the two evaporators 30 and 31.

さらに、ファン34を1つにすることにより、2つの蒸発器30,31の風路を兼用することが可能となり、省スペースな構成とすることができる。そして、各々の蒸発器30,31が冷却運転、除霜運転となった場合の貯蔵室への風の流れの切り替えは、複数の蒸発器とファン34の間にダンパ33を設けて、ダンパ33の開閉制御でもって行うことにより、机上の検討上では単純化できる。即ち、複数の蒸発器30,31の内、冷却運転されている方のダンパを開制御し、その開口より冷却された空気をファンによって、貯蔵室内へと供給する。   Furthermore, by using one fan 34, it becomes possible to share the air path of the two evaporators 30 and 31, and a space-saving configuration can be achieved. And when each evaporator 30 and 31 becomes cooling operation and defrost operation, switching of the flow of the wind to a storage room provides the damper 33 between several evaporators and the fan 34, and damper 33 This can be simplified in consideration of the desk. That is, among the plurality of evaporators 30 and 31, the damper that is being cooled is opened and air cooled from the opening is supplied to the storage chamber by the fan.

また、除霜手段としてペルチェを用いることも考えられ、この場合、ペルチェは、隣り合う2つの蒸発器30,31の間に設けられた断熱材32に組み込んで構成するのが望ましい。ペルチェの放熱側を除霜運転を行う側の蒸発器に、ペルチェの冷却側を冷却運転を行っている側の蒸発器に対面するように設置する。蒸発器は冷却運転と除霜運転を交互に繰り返すので、ペルチェを回転させる、或いは、2個設ける、などの対応が必要となってくる。   It is also conceivable to use a Peltier as the defrosting means. In this case, it is desirable that the Peltier is built in a heat insulating material 32 provided between two adjacent evaporators 30 and 31. The heat release side of the Peltier is installed on the evaporator that performs the defrosting operation, and the cooling side of the Peltier is installed so as to face the evaporator that performs the cooling operation. Since the evaporator repeats the cooling operation and the defrosting operation alternately, it is necessary to take measures such as rotating the Peltier or providing two.

また、複数の蒸発器30,31とファン34の間にダンパ33を設けているが、前述の霜の付いた蒸発器に風を通風させて除霜する昇華作用、或いは、他の除霜方式によって、ダンパ33が不要になる可能性もある。そして、ホットガスデフロスト中の蒸発器にもファンによる風を流通させて、冷却運転中の蒸発器を流通してきた冷気と、混合させて一緒に貯蔵室へと供給する方法も考えられが、これは一緒になった冷気の温度が低温になることが前提条件となっており、仮に−20℃の冷気と50℃の空気が同じ量で混合されると、15℃の空気となり貯蔵室を冷却することはできない。   Moreover, although the damper 33 is provided between the several evaporators 30 and 31 and the fan 34, the sublimation effect | action which ventilates the above-mentioned evaporator with a frost and defrosts, or another defrosting system Therefore, the damper 33 may be unnecessary. A method is also conceivable in which the fan air is circulated through the evaporator in the hot gas defrost, and mixed with the cold air that has circulated through the evaporator during the cooling operation and supplied to the storage chamber together. The precondition is that the temperature of the combined cold air will be low, and if the same amount of -20 ° C cold air and 50 ° C air is mixed, it will become 15 ° C air and cool the storage room I can't do it.

次に、冷凍サイクル図を参考にして、その動作を説明する。まず、図2に示すように、2つの蒸発器30,31を一緒に冷却運転する場合は、圧縮機35により吐出されたガス冷媒は、開閉弁41と開閉弁43を通過して凝縮器36に導かれる。このとき、開閉弁42と開閉弁44は閉止されており、蒸発器30及び蒸発器31の方へは流れないようになっている。凝縮器36で冷却された冷媒は、開閉弁45及び開閉弁48を通過して、キャピラリチューブなどの膨張弁37及び膨張弁38で減圧されて、前面側蒸発器30と背面側蒸発器31へと供給され、ここで冷却作用を行ったのち、開閉弁47及び開閉弁50を通過して圧縮機35に還流する。   Next, the operation will be described with reference to the refrigeration cycle diagram. First, as shown in FIG. 2, when the two evaporators 30 and 31 are cooled together, the gas refrigerant discharged by the compressor 35 passes through the on-off valve 41 and the on-off valve 43 and passes through the condenser 36. Led to. At this time, the on-off valve 42 and the on-off valve 44 are closed so that they do not flow toward the evaporator 30 and the evaporator 31. The refrigerant cooled by the condenser 36 passes through the opening / closing valve 45 and the opening / closing valve 48, and is decompressed by the expansion valve 37 and the expansion valve 38 such as a capillary tube, to the front side evaporator 30 and the back side evaporator 31. After the cooling action is performed here, the gas passes through the on-off valve 47 and the on-off valve 50 and returns to the compressor 35.

また、図3に示すように、前面側蒸発器30を冷却運転、背面側蒸発器31を除霜運転する場合は、圧縮機35により吐出されたガス冷媒は、開閉弁41及び開閉弁44を通過して背面側蒸発器31に導かれる。ここで、除霜作用を行ったのち開閉弁49を通過して開閉弁43と凝縮器36の間に流出させる。そして凝縮器36へと導かれ、放熱作用を行って気液混合状態となった冷媒は、開閉弁45を通過して膨張弁37により減圧された後、蒸発器30へと導かれ、ここで冷却作用を行い、開閉弁47を通過して圧縮機35に還流される。このとき、開閉弁42、開閉弁43、開閉弁46、開閉弁48、開閉弁50は閉止状態となっている。   In addition, as shown in FIG. 3, when the front side evaporator 30 is cooled and the back side evaporator 31 is defrosted, the gas refrigerant discharged by the compressor 35 passes through the on-off valve 41 and the on-off valve 44. It passes through and is led to the back side evaporator 31. Here, after performing the defrosting action, it passes through the on-off valve 49 and flows out between the on-off valve 43 and the condenser 36. Then, the refrigerant that has been led to the condenser 36 and has performed a heat dissipation action and has become a gas-liquid mixed state passes through the on-off valve 45 and is decompressed by the expansion valve 37, and is then led to the evaporator 30, where A cooling action is performed, and the gas passes through the on-off valve 47 and is returned to the compressor 35. At this time, the on-off valve 42, the on-off valve 43, the on-off valve 46, the on-off valve 48, and the on-off valve 50 are closed.

また、図4に示すように、前面側蒸発器30を除霜運転、背面側蒸発器31を冷却運転する場合は、圧縮機35により吐出されたガス冷媒は、開閉弁42を通過して前面側蒸発器30に導かれる。ここで、放熱作用を行ったのち開閉弁46を通過して開閉弁41と開閉弁43の間に流出させる。そして、開閉弁43を通過して凝縮器36へと導かれる。こ
こで、放熱作用を行って気液混合状態となった冷媒は、開閉弁48を通過して膨張弁38により減圧された後、蒸発器31へと導かれ、ここで冷却作用を行い、開閉弁50を通過して圧縮機35に還流される。このとき、開閉弁41、開閉弁44、開閉弁45、開閉弁47、開閉弁49は閉止状態となっている。
Further, as shown in FIG. 4, when the front side evaporator 30 is defrosted and the back side evaporator 31 is cooled, the gas refrigerant discharged by the compressor 35 passes through the on-off valve 42 and flows to the front side. It is led to the side evaporator 30. Here, after performing a heat radiation action, the gas passes through the on-off valve 46 and flows between the on-off valve 41 and the on-off valve 43. Then, it passes through the on-off valve 43 and is led to the condenser 36. Here, the refrigerant that has become a gas-liquid mixed state by performing the heat radiation action passes through the opening / closing valve 48 and is decompressed by the expansion valve 38, and then is guided to the evaporator 31, where it performs the cooling action and opens / closes It passes through the valve 50 and is returned to the compressor 35. At this time, the on-off valve 41, the on-off valve 44, the on-off valve 45, the on-off valve 47, and the on-off valve 49 are closed.

また、上述の基本となる冷凍サイクルの開閉弁を三方弁に置き換えて、弁の数量を削減することもできる。具体的には、図5から図7に示すように、開閉弁1と開閉弁2を三方弁55に、開閉弁3と開閉弁4を三方弁56に、開閉弁6と開閉弁7を三方弁57に、開閉弁9と開閉弁10を三方弁58に置き換えることが可能である。ここで、三方弁55〜58とは、3方向の配管継ぎ手を備える流路切り替え弁のことであり、三方弁へ流入してくる冷媒を、異なる2つの方向のどちらかに切り替えて流通させる機能部品のことである。   Further, the number of valves can be reduced by replacing the on-off valve of the basic refrigeration cycle with a three-way valve. Specifically, as shown in FIGS. 5 to 7, the on-off valve 1 and the on-off valve 2 are three-way valve 55, the on-off valve 3 and on-off valve 4 are on three-way valve 56, and the on-off valve 6 and on-off valve 7 are three-way. It is possible to replace the opening / closing valve 9 and the opening / closing valve 10 with a three-way valve 58 in place of the valve 57. Here, the three-way valves 55 to 58 are flow path switching valves provided with three-way pipe joints, and the function of switching the refrigerant flowing into the three-way valve to flow in one of two different directions. It is a part.

具体的には、3方向ある流路の中央の流路を共通の流路、即ち、三方弁の入口として、この中央の流路と右側の流路が半円弧上に形成された連通路で連通し、左側の流路に切り替える場合には、前述の半円弧状の連通路が左側に移動して、中央の流路と左側の流路を連通させる。簡単に表現すれば、中央の流路を含む2つの流路を連通させることができ、電気信号によってアクチュエータを駆動させて、中央と右を連通、中央と左を連通、を切り替え可能にする機能部品のことである。   Specifically, a central flow path in three directions is used as a common flow path, that is, a communication path in which the central flow path and the right flow path are formed on a semicircular arc. When switching to the left flow path, the semicircular arc-shaped communication path moves to the left side to connect the central flow path and the left flow path. In simple terms, the two channels including the central channel can be communicated, and the actuator can be driven by an electrical signal to switch between the center and right and the center and left. It is a part.

そして、膨張弁37,38は抵抗が固定されているキャピラリチューブであるが、抵抗を可変できる電動膨張弁を使用して全閉が可能なタイプであれば、開閉弁45及び開閉弁48も不要となる。この電動膨張弁には種々のタイプがあるが、仮に、開口に弁座を設け、この弁座に三角錐状のニードルを抜き差しして、弁座の開口面積、即ち、流路抵抗を可変可能とするものがある。このタイプでは、三角錐状のニードルを弁座に密着するまで、押し下げることで、流路を閉止することが可能となる。   The expansion valves 37 and 38 are capillary tubes with fixed resistances. However, the open / close valve 45 and the open / close valve 48 are not required as long as the expansion valves 37 and 38 can be fully closed using an electric expansion valve that can change the resistance. It becomes. There are various types of this electric expansion valve. Temporarily, a valve seat is provided in the opening, and a triangular pyramid needle is inserted and removed from this valve seat, so that the opening area of the valve seat, that is, the flow path resistance can be varied. There is something to do. In this type, it is possible to close the flow path by pushing down the triangular pyramid needle until it is in close contact with the valve seat.

そして、三角錐状のニードルにモータの回転を上下動に変換するための溝を切っておくことで、電気的に流路抵抗を調整できるものである。また、開閉弁とは、配管内の流路の開閉を行うものであり、例えば、円柱状のメタルに直線状のトンネルのような流路、即ち、開口を設け、開時にはその開口を通過して冷媒が導通し、閉時には円柱状のメタルを90度回転させて、円柱状のメタルの側壁によって、流路、即ち、開口を閉止するものである。   The flow path resistance can be adjusted electrically by cutting a groove for converting the rotation of the motor into a vertical movement in the triangular pyramid needle. The open / close valve is used to open and close the flow path in the pipe. For example, a flow path such as a straight tunnel is provided in a columnar metal, that is, an opening is opened, and the opening passes through the opening. Then, the refrigerant conducts, and when closed, the columnar metal is rotated 90 degrees, and the flow path, that is, the opening is closed by the side wall of the columnar metal.

また、通常運転時、貯蔵室内の負荷が標準で安定状態のときなどは、大きな容量の蒸発器は必要とせず、小さな容量の蒸発器を使用する方が効率的となる。そして、小さな容量の蒸発器を短い周期で冷却運転と除霜運転を切替えることで、常時、霜付きが非常に少ない状態で冷却運転を行うことができる。ここで、2つの小さな蒸発器の容量は、一つの大きな容量の蒸発器のおよそ半分以下に設定する。また、この他2つ以上の小さな蒸発器を使用する場合において、小さな蒸発器の容量は、様々に設定可能であるが、複数の小さな蒸発器の総容量は一つの大きな蒸発器の容量とほぼ同じにする。この場合、冷凍サイクルの能力は、複数の小さな蒸発器の数量に応じて、可変制御することが可能となる。   Also, during normal operation, when the load in the storage chamber is standard and stable, it is not necessary to use a large capacity evaporator, and it is more efficient to use a small capacity evaporator. And a cooling operation can always be performed in a state with very little frost by switching a cooling operation and a defrosting operation for a small capacity evaporator with a short cycle. Here, the capacity of the two small evaporators is set to about half or less of one large capacity evaporator. In addition, when two or more small evaporators are used, the capacity of the small evaporator can be set variously, but the total capacity of the plurality of small evaporators is almost equal to the capacity of one large evaporator. Make the same. In this case, the capacity of the refrigeration cycle can be variably controlled according to the number of small evaporators.

また、複数の蒸発器30,31を隣接配置するとともに、隣り合う蒸発器との間に断熱材32を設け、複数の蒸発器30,31を交互に冷却運転、或いは、交互に除霜運転させることにより、隣接配置する複数の蒸発器30,31を断熱材32で断熱するので、複数の蒸発器30,31をコンパクトに配置できるとともに、断熱材32により複数の蒸発器30,31間の熱の移動が抑制されているので、複数の蒸発器30,31の一方を冷却運転、他方を除霜運転とすることが可能となり、貯蔵室内を途絶えることなく連続して冷却することが可能となる。   Moreover, while arrange | positioning the several evaporators 30 and 31 adjacently, the heat insulating material 32 is provided between adjacent evaporators, and the several evaporators 30 and 31 are made to carry out cooling operation alternately or defrosting operation alternately. Thus, the plurality of evaporators 30, 31 arranged adjacent to each other are insulated by the heat insulating material 32, so that the plurality of evaporators 30, 31 can be arranged in a compact manner, and the heat between the plurality of evaporators 30, 31 can be provided by the heat insulating material 32. Therefore, one of the evaporators 30 and 31 can be cooled and the other can be defrosted, and the storage chamber can be continuously cooled without interruption. .

もちろん、貯蔵室内の食品の負荷状況などによって、蒸発器の冷却運転を一時停止することも可能である。また、蒸発器の除霜時などに貯蔵室内の食品の温度が上昇したり、蒸発器の冷却・除霜運転により貯蔵室内の温度変動が大きくなる事を抑制でき、食品の品質の劣化を防止することが可能となり、より高品位な冷蔵庫を提供することができる。   Of course, the cooling operation of the evaporator can be temporarily stopped depending on the load condition of the food in the storage chamber. In addition, the food temperature in the storage room rises during defrosting of the evaporator, and the temperature fluctuation in the storage room increases due to the cooling and defrosting operation of the evaporator, preventing deterioration of food quality. This makes it possible to provide a higher-quality refrigerator.

また、貯蔵室内の食品が満杯状態の時など貯蔵室内の冷却負荷の大きいときに、複数の蒸発器30,31を同時に冷却運転させることにより、高負荷時には、複数の蒸発器30,31を全て冷却運転とすることもできるので、単一の蒸発器のみの冷凍サイクルと比べて、複数の蒸発器30,31の各々の冷却能力を小さく設計する事ができ、この複数の蒸発器30,31の冷却運転の個数を選択することにより、冷凍サイクルの総冷却能力を制御することも可能となる。   In addition, when the cooling load in the storage chamber is large, such as when the food in the storage chamber is full, the plurality of evaporators 30 and 31 are simultaneously operated for cooling, so that all of the plurality of evaporators 30 and 31 can be operated at a high load. Since the cooling operation can also be performed, the cooling capacity of each of the plurality of evaporators 30 and 31 can be designed to be smaller than that of a refrigeration cycle having only a single evaporator, and the plurality of evaporators 30 and 31 can be designed. By selecting the number of cooling operations, the total cooling capacity of the refrigeration cycle can be controlled.

また、二つ以上の蒸発器の、第一の蒸発器と第二の蒸発器とを前後方向に配置、或いは、第一の蒸発器と第二の蒸発器とを上下方向に配置、或いは、第一の蒸発器と第二の蒸発器とを左右方向に配置させることにより、複数の蒸発器を3次元方向のいずれかに隣接配置することにより、コンパクトに設置でき、配管や配線、開閉弁などの機能部品を集中的に配置することが可能となる。また、冷蔵庫の外形寸法の増大を最小限に抑制するとともに、製造時の工数を効率化し、コストアップを抑制できる。   Also, two or more evaporators, the first evaporator and the second evaporator are arranged in the front-rear direction, or the first evaporator and the second evaporator are arranged in the up-down direction, or By arranging the first and second evaporators in the left-right direction, it is possible to install a plurality of evaporators adjacent to each other in any of the three-dimensional directions so that they can be installed compactly. It is possible to concentrate functional parts such as. Moreover, while suppressing the increase in the external dimension of a refrigerator to the minimum, the man-hour at the time of manufacture can be made efficient and a cost increase can be suppressed.

また、圧縮機35と、凝縮器36と、膨張弁37,38と、蒸発器とを環状に接続してなる冷凍サイクルを有し、蒸発器は複数の蒸発器が並列に配置されており、前記複数の蒸発器の入口側に設けられた開閉弁45,48により選択的に一方の蒸発器を冷却運転するとともに、冷却運転を休止している他方の蒸発器を、凝縮器36の入口側のホットガス冷媒を導くバイバス配管からの冷媒で除霜することにより、蒸発器の除霜を冷凍サイクルのホットガス冷媒を導いて行うので、除霜ヒータなどの部品が不要となり、コストダウンと共に、除霜ヒータを駆動していた電力が削減でき、大幅な省エネルギー化が図れる。   The compressor 35, the condenser 36, the expansion valves 37 and 38, and the evaporator have a refrigeration cycle formed in an annular shape, and the evaporator has a plurality of evaporators arranged in parallel. One evaporator is selectively cooled by the on-off valves 45 and 48 provided on the inlet side of the plurality of evaporators, and the other evaporator that has stopped the cooling operation is connected to the inlet side of the condenser 36. By defrosting with the refrigerant from the bypass pipe that guides the hot gas refrigerant, the defrosting of the evaporator is conducted by guiding the hot gas refrigerant of the refrigeration cycle, so parts such as a defrosting heater become unnecessary, along with cost reduction, The electric power that has driven the defrosting heater can be reduced, and significant energy saving can be achieved.

ここで、冷凍サイクルの凝縮器36の入口側のホットガス冷媒を使用して除霜する方法は、冷凍空調分野に属するエアコンなどでは一般的であるが、それを冷蔵庫にそのまま適用すると、貯蔵室内に暖気が漏洩して食品を傷めてしまう。また、除霜中は貯蔵室内の温度が上昇しても、冷却する事ができない。除霜モードから冷却モードへ移行する際に、蒸発器本体の温度をクールダウンさせなくてはならないなどの課題があり、実現されていなかった。   Here, the method of defrosting using the hot gas refrigerant on the inlet side of the condenser 36 of the refrigeration cycle is common in air conditioners and the like belonging to the refrigeration air conditioning field. The warm air leaks and damages the food. Moreover, even if the temperature in the storage chamber rises during defrosting, it cannot be cooled. When shifting from the defrosting mode to the cooling mode, there has been a problem that the temperature of the evaporator main body must be cooled down, which has not been realized.

そこで、冷蔵庫に複数の蒸発器30,31を設けることで、他の蒸発器が除霜中にあっても、一方の蒸発器を冷却運転することができ、貯蔵室内の負荷増大に伴う対応も可能となり、食品を傷めてしまう事も防止できる。さらに、複数の蒸発器の各々について、冷却運転と除霜運転が混在する状況においては、除霜中の蒸発器から得られる冷熱の影響で、冷凍サイクル中の凝縮器36の放熱負荷が低減するので、冷蔵庫の冷凍サイクルを高効率で運転する事が可能となり、結果として、消費電力量を削減できる。   Therefore, by providing a plurality of evaporators 30 and 31 in the refrigerator, even if another evaporator is in the defrosting state, one of the evaporators can be cooled, and a response accompanying an increase in the load in the storage chamber is also possible. It is possible to prevent food from being damaged. Furthermore, for each of the plurality of evaporators, in a situation where the cooling operation and the defrosting operation are mixed, the heat radiation load of the condenser 36 in the refrigeration cycle is reduced due to the influence of the cold obtained from the evaporator during the defrosting. Therefore, the refrigeration cycle of the refrigerator can be operated with high efficiency, and as a result, power consumption can be reduced.

また、冷却運転を休止している他方の蒸発器に、ファン34による風を流通させて、霜を昇華させて除霜を行うことにより、霜の付いた蒸発器を加熱させる除霜方式とは異なり、貯蔵室内に除霜時の熱が侵入することがない。また、除霜時に高温の熱が発生しないので、貯蔵室内の食品が熱により劣化する事がなく、除霜後の蒸発器の温度も低温に維持されるため、除霜後に蒸発器をクールダウンさせる必要もない。さらに、短時間で除霜運転から冷却運転へと切替える事が可能となり、梅雨時など湿度が高く、直ぐに蒸発器に着霜が発生する場合においても、冷却運転と除霜運転の切替えを直ぐに行えるので、貯蔵室の温度を適温に維持することが可能となる。   Also, what is the defrosting method that heats the frosted evaporator by circulating the air from the fan 34 to the other evaporator that has stopped the cooling operation to sublimate the frost and defrost it? In contrast, heat during defrosting does not enter the storage chamber. In addition, since no high-temperature heat is generated during defrosting, the food in the storage room is not deteriorated by heat, and the evaporator temperature after defrosting is maintained at a low temperature. There is no need to let them. In addition, it is possible to switch from the defrosting operation to the cooling operation in a short time, and even when the humidity is high during the rainy season and frosting occurs immediately on the evaporator, the switching between the cooling operation and the defrosting operation can be performed immediately. Therefore, it becomes possible to maintain the temperature of the storage room at an appropriate temperature.

また、圧縮機35から吐出される高温のガス冷媒を、蒸発器の入口側へと導く開閉弁42,44を備えたバイパス配管と、圧縮機からの高温のガス冷媒を凝縮器36へと導く開閉弁41,43を有することにより、冷凍サイクルのホットガス冷媒を分流して供給するのではなく、全てのホットガス冷媒を一方の蒸発器へと導くので、冷凍サイクルの凝縮器36と膨張弁37,38を介して、他方の蒸発器で冷却作用を行う冷媒も冷凍サイクル中の全量となるので、冷却作用を最大限に発揮することができる。   Further, a bypass pipe provided with on-off valves 42 and 44 for guiding the high-temperature gas refrigerant discharged from the compressor 35 to the inlet side of the evaporator, and a high-temperature gas refrigerant from the compressor are led to the condenser 36. By providing the on-off valves 41 and 43, the hot gas refrigerant of the refrigeration cycle is not supplied in a diverted state, but all the hot gas refrigerant is guided to one evaporator, so that the condenser 36 and the expansion valve of the refrigeration cycle are provided. Since the refrigerant that performs the cooling operation in the other evaporator is also in the total amount in the refrigeration cycle via 37 and 38, the cooling operation can be maximized.

また、除霜する蒸発器にも全量のホットガス冷媒が流れるので、除霜作用の最大化を図ることができる。また、冷凍サイクルのホットガス冷媒で除霜を行う方式において、冷凍サイクル中の冷媒を分流することなく、全量を有効に利用して効率的な除霜と冷却運転を行うことができる。   In addition, since the entire amount of hot gas refrigerant flows through the evaporator to be defrosted, the defrosting action can be maximized. Further, in the method of performing defrosting with the hot gas refrigerant of the refrigeration cycle, efficient defrosting and cooling operation can be performed by effectively using the entire amount without diverting the refrigerant in the refrigeration cycle.

また、凝縮器36で冷却された冷媒を膨張弁37,38を介して蒸発器へと導く開閉弁45,48を備えたことにより、キャピラリチューブのように膨張弁37,38に全閉機能がなくても、開閉弁45,48で冷凍サイクルを開閉する事ができる。また、全閉機能付きの電動膨張弁を使用する方法も有用であるが、開口を調節するという構成上、全閉性能に限界があり、弁の動作時間も長くなると考えられ、機能上の信頼性に不安が残るとともに、高価であるので、キャピリーチューブと開閉弁を組み合わせる構成として比較的安価に、かつ、信頼性を向上させたものである。   In addition, since the on-off valves 45 and 48 for introducing the refrigerant cooled by the condenser 36 to the evaporator via the expansion valves 37 and 38 are provided, the expansion valves 37 and 38 have a fully closed function like a capillary tube. Even if not, the open / close valves 45 and 48 can open and close the refrigeration cycle. In addition, the method of using an electric expansion valve with a fully-closed function is also useful, but due to the configuration of adjusting the opening, there is a limit to the fully-closed performance, and the valve operation time is considered to be long, and functional reliability is expected. In addition to being uneasy about the performance and being expensive, the structure combining the capillary tube and the on-off valve is relatively inexpensive and has improved reliability.

また、蒸発器の出口側に前記蒸発器を除霜したホットガス冷媒を凝縮器36へ導くための開閉弁46,49を備えたバイパス配管と、前記蒸発器で冷却作用が行われたあと前記圧縮機35へ冷媒を還流させる開閉弁47,50を有することにより、蒸発器の出口側から冷媒を圧縮機35、或いは、凝縮器36へと流れるように開閉弁で制御する事により、バイパス管路をシンプルな構成としつつ、除霜時の冷熱回収も成立させている。また、通常のホットガスバイパスによる除霜だけでなく、同時に蒸発器の冷熱を回収することで、凝縮器36の負荷を低減し、冷凍サイクルの効率を向上させることができる。   Further, a bypass pipe provided with on-off valves 46 and 49 for guiding the hot gas refrigerant defrosted from the evaporator to the condenser 36 on the outlet side of the evaporator, and after the cooling operation is performed by the evaporator By having the on-off valves 47 and 50 for returning the refrigerant to the compressor 35, the bypass pipe is controlled by controlling the on-off valve so that the refrigerant flows from the outlet side of the evaporator to the compressor 35 or the condenser 36. While making the path simple, cold heat recovery during defrosting is also established. Moreover, not only the defrosting by the normal hot gas bypass but also recovering the cold heat of the evaporator at the same time can reduce the load on the condenser 36 and improve the efficiency of the refrigeration cycle.

以上のように、本実施の形態においては、複数の蒸発器30,31を隣接配置するとともに、隣り合う蒸発器との間に断熱材32を設け、複数の蒸発器30,31を交互に冷却運転、或いは、交互に除霜運転させる過程において、隣接配置する複数の蒸発器30,31が断熱材32で断熱されているので、複数の蒸発器30,31間の熱の移動が抑制され、複数の蒸発器30,31の一方を冷却運転、他方を除霜運転とする場合において、冷熱と温熱が短絡して、無駄な消費電力が発生するのを抑制しつつ、貯蔵室内を途絶えることなく連続して冷却することが可能となる。もちろん、貯蔵室内の食品の負荷状況などによって、蒸発器の冷却運転を一時停止することも可能である。また、蒸発器の除霜時などに貯蔵室内の食品の温度が上昇したり、蒸発器の冷却・除霜運転により貯蔵室内の温度変動が大きくなる事を抑制でき、食品の品質の劣化を防止することが可能となり、より高品位な冷蔵庫を提供することができる。   As described above, in the present embodiment, a plurality of evaporators 30 and 31 are disposed adjacent to each other, and a heat insulating material 32 is provided between adjacent evaporators, thereby cooling the plurality of evaporators 30 and 31 alternately. In the process of operation or alternately defrosting operation, the adjacent evaporators 30 and 31 are insulated by the heat insulating material 32, so that the heat transfer between the evaporators 30 and 31 is suppressed, In the case where one of the plurality of evaporators 30 and 31 is a cooling operation and the other is a defrosting operation, the cold and the heat are short-circuited, and generation of useless power consumption is suppressed, and the storage chamber is not interrupted. It becomes possible to cool continuously. Of course, the cooling operation of the evaporator can be temporarily stopped depending on the load condition of the food in the storage chamber. In addition, the food temperature in the storage room rises during defrosting of the evaporator, and the temperature fluctuation in the storage room increases due to the cooling and defrosting operation of the evaporator, preventing deterioration of food quality. This makes it possible to provide a higher-quality refrigerator.

なお、本実施の形態では、複数の蒸発器を構成する右側蒸発器90と左側蒸発器91を、左右に配置することにより、冷蔵庫の奥行き寸法を短くすることができ、冷蔵庫の内容積の減少を効果的に抑制することが可能となる。   In addition, in this Embodiment, the depth dimension of a refrigerator can be shortened by arrange | positioning the right side evaporator 90 and the left side evaporator 91 which comprise several evaporators on either side, and reduction of the internal volume of a refrigerator Can be effectively suppressed.

以上のように、本発明にかかる冷凍装置及びそれを備えた冷蔵庫は、複数の蒸発器の一方を冷却運転、他方を除霜運転とする場合において、冷熱と温熱が短絡して、無駄な消費電力が発生するのを抑制しつつ、貯蔵室内を途絶えることなく連続して冷却することが可能となるので、貯蔵室内の食品の温度変動を小さく抑えることができ、貯蔵室内の食品の劣
化を未然に防止することが可能となる。
As described above, the refrigeration apparatus according to the present invention and the refrigerator equipped with the refrigeration apparatus, when one of the plurality of evaporators is set as a cooling operation and the other is set as a defrosting operation, the cold heat and the heat are short-circuited, and wasteful consumption While it is possible to continuously cool the storage chamber without interruption while suppressing the generation of electric power, the temperature fluctuations of the food in the storage chamber can be kept small, and the deterioration of the food in the storage chamber can be prevented. Can be prevented.

30 前面側蒸発器(蒸発器)
31 背面側蒸発器(蒸発器)
32 断熱材
33 ダンパ
34 ファン
35 圧縮機
36 凝縮器
37、38 膨張弁
41〜50 開閉弁
55〜58 三方弁
60 内箱
61 外箱
62 冷蔵庫本体
63 発泡ウレタン
69〜71 仕切壁
68 冷蔵室(貯蔵室)
73〜76 ドア
77 第一冷凍室(貯蔵室)
78 第二冷凍室(貯蔵室)
79 野菜室(貯蔵室)
80 真空断熱材
81 蒸発器
82 除霜水処理部
90 右側蒸発器(蒸発器)
91 左側蒸発器(蒸発器)
30 Front side evaporator (evaporator)
31 Back side evaporator (evaporator)
32 Heat insulating material 33 Damper 34 Fan 35 Compressor 36 Condenser 37, 38 Expansion valve 41-50 Open / close valve 55-58 Three-way valve 60 Inner box 61 Outer box 62 Refrigerator main body 63 Foamed urethane 69-71 Partition wall 68 Cold storage room (storage) Room)
73-76 Door 77 First freezer compartment (storage room)
78 Second freezer room (storage room)
79 Vegetable room (storage room)
80 Vacuum insulation material 81 Evaporator 82 Defrost water treatment part 90 Right side evaporator (evaporator)
91 Left evaporator (evaporator)

Claims (9)

複数の蒸発器を隣接配置するとともに、隣り合う蒸発器との間に断熱材を設け、前記複数の蒸発器を交互に冷却運転、あるいは除霜運転させることを特徴とする冷凍装置。 A refrigerating apparatus in which a plurality of evaporators are arranged adjacent to each other, a heat insulating material is provided between adjacent evaporators, and the plurality of evaporators are alternately cooled or defrosted. 貯蔵室内の冷却負荷の大きいときに、複数の蒸発器を同時に冷却運転させることを特徴とする請求項1に記載の冷凍装置。 The refrigerating apparatus according to claim 1, wherein when the cooling load in the storage chamber is large, a plurality of evaporators are simultaneously cooled. 前記複数の蒸発器は、冷気の流れに対して並列に配置させることを特徴とする請求項1または2に記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2, wherein the plurality of evaporators are arranged in parallel with a flow of cold air. 圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続してなる冷凍サイクルを有し、冷却運転を休止している他方の蒸発器を、前記凝縮器の入口側のホットガス冷媒を導くバイバス配管からの冷媒で除霜することを特徴とする請求項1から3のいずれか一項に記載の冷凍装置。 The other evaporator having a refrigeration cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected in an annular shape and stopping the cooling operation is used as a hot gas on the inlet side of the condenser. The refrigeration apparatus according to any one of claims 1 to 3, wherein the refrigerant is defrosted with a refrigerant from a bypass pipe that guides the refrigerant. 冷却運転を休止している他方の蒸発器に、冷却器ファンによる風を流通させることにより、霜を昇華させて除霜を行うことを特徴とする請求項1から3のいずれか一項に記載の冷凍装置。 4. The defrosting is performed by sublimating frost by allowing the air from the cooler fan to flow through the other evaporator that has stopped the cooling operation. 5. Refrigeration equipment. 前記圧縮機から吐出される高温のガス冷媒を、前記蒸発器の入口側へと導く開閉弁を備えたバイパス配管と、圧縮機からの高温のガス冷媒を前記凝縮器へと導く開閉弁を有することを特徴とする請求項4に記載の冷凍装置。 A bypass pipe having an on-off valve for guiding the high-temperature gas refrigerant discharged from the compressor to the inlet side of the evaporator; and an on-off valve for guiding the high-temperature gas refrigerant from the compressor to the condenser. The refrigeration apparatus according to claim 4. 前記凝縮器で冷却された冷媒を前記膨張弁を介して前記蒸発器へと導く開閉弁を備えたことを特徴とする請求項4に記載の冷凍装置。 The refrigerating apparatus according to claim 4, further comprising an on-off valve that guides the refrigerant cooled by the condenser to the evaporator through the expansion valve. 前記蒸発器の出口側に前記蒸発器を除霜したホットガス冷媒を前記凝縮器へ導くための開閉弁を備えたバイパス配管と、前記蒸発器で冷却作用が行われたあと前記圧縮機へ冷媒を還流させる開閉弁を有することを特徴とする請求項4に記載の冷凍装置。 A bypass pipe provided with an open / close valve for introducing hot gas refrigerant defrosted from the evaporator to the condenser on the outlet side of the evaporator, and refrigerant after being cooled by the evaporator to the compressor; The refrigerating apparatus according to claim 4, further comprising an on-off valve that recirculates the gas. 断熱箱体および扉を有し、請求項1から8のいずれか一項に記載の冷凍装置を備えた冷蔵庫。 The refrigerator which has a heat insulation box and a door, and was equipped with the freezing device according to any one of claims 1 to 8.
JP2015116543A 2015-06-09 2015-06-09 Refrigeration device and refrigerator including the same Withdrawn JP2017003176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116543A JP2017003176A (en) 2015-06-09 2015-06-09 Refrigeration device and refrigerator including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116543A JP2017003176A (en) 2015-06-09 2015-06-09 Refrigeration device and refrigerator including the same

Publications (1)

Publication Number Publication Date
JP2017003176A true JP2017003176A (en) 2017-01-05

Family

ID=57753850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116543A Withdrawn JP2017003176A (en) 2015-06-09 2015-06-09 Refrigeration device and refrigerator including the same

Country Status (1)

Country Link
JP (1) JP2017003176A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086311A (en) * 2018-01-12 2019-07-22 엘지전자 주식회사 Refrigeration system
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
KR20200092604A (en) * 2019-01-25 2020-08-04 엘지전자 주식회사 Air conditioner
JP2021018035A (en) * 2019-07-23 2021-02-15 富士電機株式会社 Cooling device
JP2021016518A (en) * 2019-07-19 2021-02-15 富士電機株式会社 Showcase
CN112880218A (en) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 Refrigerator defrosting system, refrigerator and refrigerator defrosting method
CN112984924A (en) * 2021-03-26 2021-06-18 珠海格力电器股份有限公司 Sublimation defrosting system, refrigeration equipment and control method of refrigeration equipment
CN113701375A (en) * 2021-09-09 2021-11-26 珠海格力电器股份有限公司 Frostless type refrigeration house and control method thereof
JP2021193323A (en) * 2020-06-08 2021-12-23 富士電機株式会社 Cooling device
WO2021255816A1 (en) * 2020-06-16 2021-12-23 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN113959162A (en) * 2021-05-13 2022-01-21 海信(山东)冰箱有限公司 Refrigerator and control method thereof
KR20220101366A (en) * 2021-01-11 2022-07-19 이영환 High humidity evaporator for refrigeration

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078276B1 (en) 2018-01-12 2020-02-17 엘지전자 주식회사 Refrigeration system
KR20190086311A (en) * 2018-01-12 2019-07-22 엘지전자 주식회사 Refrigeration system
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
KR102704627B1 (en) 2019-01-25 2024-09-06 엘지전자 주식회사 Air conditioner
KR20200092604A (en) * 2019-01-25 2020-08-04 엘지전자 주식회사 Air conditioner
JP2021016518A (en) * 2019-07-19 2021-02-15 富士電機株式会社 Showcase
JP2021018035A (en) * 2019-07-23 2021-02-15 富士電機株式会社 Cooling device
JP2021193323A (en) * 2020-06-08 2021-12-23 富士電機株式会社 Cooling device
JP7468167B2 (en) 2020-06-08 2024-04-16 富士電機株式会社 Cooling system
WO2021255816A1 (en) * 2020-06-16 2021-12-23 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2021255816A1 (en) * 2020-06-16 2021-12-23
KR20220101366A (en) * 2021-01-11 2022-07-19 이영환 High humidity evaporator for refrigeration
KR102448496B1 (en) * 2021-01-11 2022-09-27 이영환 High humidity evaporator for refrigeration
CN112984924A (en) * 2021-03-26 2021-06-18 珠海格力电器股份有限公司 Sublimation defrosting system, refrigeration equipment and control method of refrigeration equipment
CN112880218A (en) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 Refrigerator defrosting system, refrigerator and refrigerator defrosting method
CN113959162A (en) * 2021-05-13 2022-01-21 海信(山东)冰箱有限公司 Refrigerator and control method thereof
CN113701375A (en) * 2021-09-09 2021-11-26 珠海格力电器股份有限公司 Frostless type refrigeration house and control method thereof

Similar Documents

Publication Publication Date Title
JP2017003176A (en) Refrigeration device and refrigerator including the same
JP5135045B2 (en) refrigerator
WO2013135149A1 (en) Refrigerator
JP2017116224A (en) refrigerator
KR102047749B1 (en) Heat pump system for vehicle
JP4872558B2 (en) refrigerator
JPH11173729A (en) Refrigerator
JP2014044025A (en) Refrigerator
KR100753501B1 (en) refrigerator
KR101330936B1 (en) Refrigerator
JP5513920B2 (en) refrigerator
JP2004293820A (en) Refrigerator
JP2018096646A (en) Refrigerator
JP2002071255A (en) Refrigerator and its controlling method
KR100764267B1 (en) Refrigerator, and method for controlling operation of the same
KR100844598B1 (en) Refrigerator
JP4103384B2 (en) refrigerator
JP4168727B2 (en) refrigerator
KR100918444B1 (en) Refrigerator with damper
JP3600009B2 (en) Refrigerator control method
WO2018147113A1 (en) Refrigerator
KR20100085259A (en) Kimchi-refrigerator
JP2008045847A (en) Refrigerator
KR101150931B1 (en) A device and control method for extending the performances of cooling and heating cabinet for vehicle using thermoelectric element
KR101233778B1 (en) Refrigerator having heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113