JP4168727B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4168727B2
JP4168727B2 JP2002308247A JP2002308247A JP4168727B2 JP 4168727 B2 JP4168727 B2 JP 4168727B2 JP 2002308247 A JP2002308247 A JP 2002308247A JP 2002308247 A JP2002308247 A JP 2002308247A JP 4168727 B2 JP4168727 B2 JP 4168727B2
Authority
JP
Japan
Prior art keywords
refrigerator
compartment
temperature
refrigerator compartment
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308247A
Other languages
Japanese (ja)
Other versions
JP2004144364A (en
Inventor
哲哉 斎藤
宗登 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002308247A priority Critical patent/JP4168727B2/en
Publication of JP2004144364A publication Critical patent/JP2004144364A/en
Application granted granted Critical
Publication of JP4168727B2 publication Critical patent/JP4168727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1つの冷却器で冷蔵室と冷凍室を冷却する冷蔵庫に関するものである。
【0002】
【従来の技術】
図15は従来の冷却サイクル並びに冷蔵庫の概略図である。
【0003】
図において、101は冷蔵庫断熱箱で、内部は仕切壁102により冷凍室103と冷蔵室104とに上下に区分されており、そのうち冷凍室103内には直冷式のプレート状の第1の冷却器105が水平に配置されている。また、前記仕切壁102には空洞部108が形成されており、この空洞部108は冷凍室103および冷蔵室104の背面に形成されたダクト109および110と共に循環路111を構成している。前記循環路111の空洞部108内には第2の冷却器112および庫内冷却用ファン117が配設されている。118は第1の吸気口113を閉鎖する第1のダンパ装置、119は冷凍室103側のダクト109下端部を閉鎖することで第1の吐出口115を閉鎖する第2のダンパ装置であり、これら両ダンパ装置118および119は共に図示しない電磁石を作動源として閉動作するように構成されている。120は第2の吐出口116を閉鎖する第3のダンパ装置で同様に図示しない電磁石により作動するものであり、この電磁石は冷蔵室104内の温度を検知してON/OFFする図示しない冷蔵室温度検知スイッチにより通断電される。
【0004】
121は圧縮機、122は凝縮器、123は凝縮器122とキャピラリ124との間に配設された電磁弁、105は前記第1の冷却器、112は前記第2の冷却器、125は逆止弁であり、それぞれ直列に接続している。上記電磁弁123は通電により開動作する構成のものであり、また第2の冷却器112には除霜用ヒータ126が付設されている。
【0005】
以上のように構成された冷蔵庫において、冷凍室103内が所定の温度以上になると、図示しない冷凍室温度検知スイッチがONするため、圧縮機121、電磁弁123、ファン117が通電され起動する。圧縮機121で圧縮され凝縮器122で液化したされた冷媒は、電磁弁123、キャピラリ124を経て第1の冷却器105および第2の冷却器112に流入し、逆止弁125を介して再び圧縮機121に吸い込まれ圧縮されるというように循環される。
【0006】
また、第1のダンパ装置118、第3のダンパ装置120は共に断電されて開放状態であるために、ファン117の回転により冷凍室103および冷蔵室104内の空気が第1および第2の吸気口113および114から循環路111内に吸入され、第2の冷却器112によって冷却される。
【0007】
圧縮機121の運転積算時間が8時間になると電磁弁125が断電されて閉塞し、この状態で圧縮機121が運転される。この運転により両冷却器105、112は凝縮器122側から冷媒を供給されることなく圧縮機121の吸引作用を受けるため内部の液冷媒が蒸発し且つ低圧状態になる。その後、所定時間(例えば2分)経過したことを検知すると圧縮機121、ファン117を停止すると共に、第1および第2のダンパ装置118および119を閉塞し、ヒータ126が通電される。両冷却器105、112内は液冷媒のない低圧状態にあるために、ヒータ128の発熱により冷却器105、112内のガス冷媒量が増加して高圧になるといったことはなく、第1の冷却器105で凝縮作用が行われて冷凍室103内に放熱されるといった問題も生じない。また第1および第2のダンパ装置118および119は通電され閉状態にあるから、空洞部108内の暖気が冷凍室103内に流入することもない。
【0008】
これらにより、除霜時に伴う冷凍室103内の温度上昇を最小限に抑えることが可能となる(例えば、特許文献1参照。)。
【0009】
【特許文献1】
特開昭59−173674号公報
【0010】
【発明が解決しようとする課題】
しかしながら、吸込口114を通して第2の冷却器112と冷蔵室104が連通しているために除霜時の冷蔵室104の昇温が大きい。また、除霜前に電磁弁123を閉塞し冷却器105および112内の冷媒を吸引するものの完全には冷却器105、112から冷媒を吸引しきれないので、除霜時にサーモサイフォン効果による第1の冷却器105の温度上昇が生じ冷凍室103が昇温する。また、電磁弁123を閉塞して圧縮機121を運転することにより吸い込み圧力が異常低下し、圧縮機121を損傷する恐れがある。また、冷却器を2つ有するためコスト的に高くなるという問題があった。
【0011】
本発明は、従来の課題を解決するもので除霜時の冷蔵室および冷凍室の昇温を最小限に抑え、且つ冷凍サイクルの低コスト化を図ることを目的とする。
【0012】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室のみの内箱とウレタンとの間に配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって冷蔵室および冷凍室を強制冷却するものであり、冷蔵室内箱背面に付着した霜の除霜は圧縮機停止時に冷蔵室庫内温度により自然に行われるので、ヒータによる除霜の必要性がなく除霜による冷蔵室および冷凍室の温度上昇を低減できる。また、ファン運転による熱伝達率の向上により冷却効率を大幅に向上することが可能となり、従来の直冷冷却方式の課題であった庫内温度分布のばらつきも改善できる。
【0013】
請求項2に記載の発明は、内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室庫内背面のみに配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって前記冷蔵室および冷凍室を強制冷却するものであり、冷却器が冷蔵室庫内空気と直接接触するので冷却時においては熱伝導率が向上することにより冷却効率が向上し、圧縮機停止時に伴う冷却器の除霜時には、より確実に付着した霜を融解し除霜することが可能となる。
【0014】
請求項3に記載の発明は、請求項1または2に記載の発明において、冷蔵室庫内吐出風量と冷凍室庫内吐出風量の分配を冷凍室側を大としたものであり、冷蔵室は冷却器による直接冷却と微量風量によるファン冷却により冷却し、冷凍室は多量風量によるファン冷却で冷却することにより、冷却負荷量の大きい冷凍室の冷却量を確保することが可能となる。
【0015】
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室庫内吐出風量を調整する機構を設け、圧縮機のON/OFFは冷蔵室温度検知手段で制御するものであり、冷蔵室庫内吐出風量と冷凍室庫内吐出風量の風量分配を可変することにより冷凍室の庫内温度を自由に設定することが可能となる。
【0016】
請求項5に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室温度検知手段により冷蔵室庫内吐出風量を制御する機構を設け、圧縮機のON/OFFは冷凍室温度検知手段で制御するものであり、低外気温時から高外気温時までどの環境下においてもより確実に冷蔵室および冷凍室の庫内温度を一定に保つことが可能となる。
【0017】
請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、庫内の負荷変動に合わせて、庫内冷却用ファンの回転数を可変制御するものであり、冷蔵室温度検知手段もしくは冷凍室温度検知手段がある温度以上を検知すると冷却用ファンを高回転で運転することにより、速やかに庫内を冷却することが可能となる。
【0018】
請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、冷蔵室側内箱のウレタン内壁面に除霜用ヒータを配設したものであり、ヒータを用いて除霜することにより、さらに確実に冷蔵室壁面に付着した霜の除霜が確実となる。また、ウレタン内にヒータを埋設しているのでヒータの熱影響による庫内の温度上昇を最小限に抑えることが可能となる。
【0019】
請求項8に記載の発明は、請求項7に記載の発明において、除霜用ヒータの通電は、タイマーにより所定時間間隔毎の圧縮機停止時に行うものであり、除霜を周期的に行うことにより除霜に伴う庫内の温度変動を最小限に抑えるとともに省エネルギー化が可能となる。
【0020】
請求項9に記載の発明は、請求項7または8に記載の発明において、冷蔵室側壁面の表面温度検知手段が設定温度以上を検知すると、除霜用ヒータ通電を終了するものであり、過度に除霜用ヒータを通電することを抑えることにより庫内の温度上昇を抑制でき、且つ省エネルギー化が可能となる。
【0021】
請求項10に記載の発明は、請求項1から4または請求項6から請求項9のいずれか一項に記載の発明において、外気温を検知する温度検知手段により、外気温別に設定した通電率で冷蔵室ダクト内に配設した温調用ヒータの通電を行うものであり、温調用ヒータの役割は低外気温時に強制的に冷蔵室庫内に負荷を与えて圧縮機の運転率を上げ、冷凍室の庫内温度を確保することであるが、運転率が高い高外気温時に過度に温調用ヒータを通電することを抑えることにより省エネルギー化が可能となる。
【0022】
請求項11に記載の発明は、請求項1から請求項10のいずれか一項に記載の発明において、冷却器と冷蔵庫外箱の間に真空断熱材を配設するものであり、外気と温度差が一番大きい場所に真空断熱材を配設することにより最もコストパフォーマンスよく冷蔵庫箱体の吸熱量を低減することができる。また、断熱性能向上により圧縮機の運転率が低下し省エネルギー化が可能となる。また、冷蔵庫外箱の壁面温度を上げることができ冷蔵庫外箱の結露を防止することが可能となる。
【0023】
請求項12に記載の発明は、請求項1または請求項3から請求項11のいずれか一項に記載の発明において、冷却器の冷蔵庫外箱側側面に真空断熱材を直接貼り付けるものであり、より確実に外気と温度差の大きい場所に真空断熱材を貼り付けることにより、さらに効率よく吸熱量を低減することができる。また、壁面冷却器に真空断熱材を貼り付けた部品をユニットとして冷蔵庫組み立て行程に入れることができるので工数の削減が可能となる。また、冷却器と真空断熱材を貼り付けた部品をユニットとして外販することもできる。
【0024】
請求項13に記載の発明は、請求項1から請求項12のいずれか一項に記載の発明において、冷媒として炭化水素を用いたものであり、冷却器をウレタン内に埋設しているので炭化水素漏洩時の危険性を小さくすることが可能となる。また、ドアスイッチ、ランプ等庫内の電気的接点も防爆対応しなくてよいので冷媒の炭化水素化によるコストUPを抑制することが可能となる。また、除霜は冷蔵室の庫内空気により自然に行われるので、ガラス管ヒータ等の高温発熱体による除霜の必要性がなく、さらに危険性を小さくすることが可能となる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について図1から図14、および表1を用いて説明する。
【0026】
(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の断面図である。
【0027】
15は冷蔵庫箱体で、内箱15aと外箱15bと、内箱15a、外箱15b間に設けたウレタン15cからなり、冷蔵庫箱体15の上方部に比較的高温の区画である冷蔵室5を、下方部に冷蔵室5と断熱仕切り14で区切られた比較的低温の冷凍室6を配置している。食品等の収納物の出し入れは図示しない断熱ドアを介して行われる。
【0028】
冷凍サイクル16は圧縮機1と凝縮器2とキャピラリ3と冷却器4とを接続して構成され、冷却器4は直冷式とし、冷蔵室5の背面の内箱15aに接するようにウレタン15c側に配設されている。また、冷却器4の前面には一定の空間を有して冷蔵室ダクト7を設け、冷蔵室ダクト7の下部には冷蔵室吐出口10を、上部には冷蔵室吸込口11を設けている。また、冷凍室6奥面近傍には冷蔵室5内へと吐出する冷気と分流した冷気を循環させて庫内の冷却を行う冷凍室ダクト8が設けてあり、冷凍室ダクト8の上部には冷凍室吐出口12を、下部には冷凍室吸込口13を有している。また、冷蔵室5内には庫内の温度を検知する温度検知手段TH1を有している。また、冷蔵室5の背面で冷蔵室ダクト7と内箱15aの空間にはファン9を設けている。
【0029】
また、圧縮機1は例えばインバータによる回転数制御で冷媒循環量を制御し冷凍能力を変化させることができる能力可変型としている。
【0030】
また、冷蔵室5には区画室内温度を検知する、例えばサーミスタである温度検知手段TH1を設けてあり、圧縮機1とファン9とを制御する制御手段C1とを備えている。
【0031】
また、冷媒としては炭化水素(例えばイソブタン)を用いている。
【0032】
上記構成において、圧縮機1の動作により吐出された高温高圧の冷媒は、凝縮器2にて放熱して凝縮液化し、キャピラリ3に至る。その後、キャピラリ3で図示しないサクションラインと熱交換しながら減圧されて、冷蔵室5側背面のウレタン内に配設された冷却器4に至り蒸発気化する。冷蔵室5奥面近傍には冷蔵室5の区画内空気を循環させて庫内の冷却を行うファン9および冷蔵室ダクト7が設けてある。冷却器4の作用で低温になった冷蔵室背面により輻射冷却された冷蔵室ダクト7内の冷気は、ファン9の作動により冷蔵室吐出口10を介して冷蔵室5へ吐出され、庫内と熱交換した後、冷蔵室吸込口11から冷蔵室ダクト7内へ流入する。また、冷凍室6奥面近傍には冷蔵室5内へと吐出する冷気と分流した冷気を循環させて庫内の冷却を行う冷凍室ダクト8が設けてあり、冷気は冷凍室吐出口12を介して冷凍室6へ吐出された後、冷凍室吸込口13から冷凍室ダクト8へ流入する。冷凍室ダクト8の戻り空気は、図示しない戻りダクトを通り、冷蔵室吸込口11からの戻り空気と合流してファン9へと吸い込まれ、再び低温の冷気となって吐出される。そして、冷却器4にて蒸発気化した冷媒は、図示しないサクションラインを経て圧縮機1に吸入される。
【0033】
また、圧縮機1は例えばインバータによる回転数制御で冷媒循環量を制御し冷凍能力を変化させることができる能力可変型としているので、周囲温度に応じた冷凍能力を確保でき、高負荷時の冷却能力確保と低負荷時の省エネが可能となる。
【0034】
そして、冷蔵室5は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。
【0035】
冷凍室6は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低温の温度、例えば−30〜−25℃で設定されることもある。
【0036】
圧縮機1停止中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると制御手段C1はこの信号を受け、圧縮機1とファン9を作動し冷却を開始する。そして、冷蔵室5の温度検知手段TH1が予め設定された所定の温度(例えば0℃)より低いことを検知すると圧縮機1、ファン9を停止する。
【0037】
ここで、圧縮機1運転中に冷蔵室5内箱背面に付着した霜は、圧縮機1停止中に冷蔵室5庫内の空気により融解し、融解した除霜水は図示しない排水口により庫外に排水される。これにより、ヒータによる除霜の必要性がなく冷蔵室5および冷凍室6の温度上昇を低減できる。
【0038】
なお、冷蔵室5の温度検知手段TH1を冷蔵室5内箱背面の表面に密着するように配設すると、さらに確実に付着した霜の除霜検知が確実となる。
【0039】
また、除霜用ヒータを廃止することにより低コスト化が図れる。
【0040】
なお、冷却器4を冷蔵室5側背面のウレタン内に配設するとしたが、冷蔵室5天面のウレタン内、もしくは断熱仕切り14内に配設しても同様の効果が得られる。
【0041】
また、従来の直冷冷却方式では庫内の温度分布が悪いという欠点があったが、ファン冷却と組み合わせることにより庫内の均温化が図れる。
【0042】
また、冷媒として炭化水素(例えばイソブタン)を用いているので、地球温暖化防止に貢献するとともに、冷却器4をウレタン内に埋設しているので炭化水素漏洩時の危険性を小さくすることが可能となる。
【0043】
また、ドアスイッチ、ランプ等、庫内の電気的接点も防爆対応しなくてよいので冷媒の炭化水素化によるコストUPを抑制することが可能となる。
【0044】
また、除霜は冷蔵室5庫内温度により自然に行われるので、ガラス管ヒータ等の高温発熱体による除霜の必要性がなく、さらに危険性を小さくすることが可能となる。
【0045】
なお、冷却器4は2枚の金属板(例えば鉄もしくはアルミニウム)を接着して、その板の片面もしくは両面の一部に高圧のガスを注入して膨らませ、冷媒の流路を設けたロールボンド方式、銅管を冷蔵庫内箱のウレタン側壁面に例えばアルミ箔で貼り付けた方式、いずれの方式でも同様の効果が得られる。
【0046】
(実施の形態2)
図2、図3は本発明の実施の形態2における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0047】
図において、直冷プレート型冷却器4は冷蔵室5庫内背面の内箱15aに接するように配設している。
【0048】
上記構成により、冷却器4が冷蔵室5および冷凍室6の戻り空気と直接接触するので冷却時において熱交換効率が向上することにより、冷却効率が向上する。また、圧縮機1停止時に伴う冷却器4の除霜時には直接冷蔵室5内の空気と接触するので、さらに確実に付着した霜を融解し、除霜することが可能となる。
【0049】
なお、図2においては冷却器4を冷蔵室5庫内内箱の背面に貼り付けた仕様としているが、図3に示すように、冷蔵室ダクト7内に冷却器4の側面両側を空気が通るように配設することにより、冷蔵室5および冷凍室6の戻り空気と直接接触する面積が増加するので冷却時においてさらに熱伝導率が向上することにより、さらに冷却効率があがる。また、圧縮機停止時に伴う冷却器の除霜時にも同様の理由により、さらに確実に付着した霜を融解し、除霜することが可能となる。
【0050】
なお、図3では冷却器4の上方にファン9を配設しているが、冷却器4下方にファン9を配設しても同様の効果が得られる。
【0051】
(実施の形態3)
図4は、本発明の実施の形態3における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0052】
ファン9の働きにより冷蔵室ダクト7内を流れる冷気は、冷蔵室吐出口10より冷蔵室5庫内に吐出される冷気と、冷蔵室吐出口10と比較して開口面積が大きい冷蔵庫5背面内箱と断熱仕切り14により形成される冷凍室ダクト開口部17を通り冷凍室吐出口12より冷凍室6庫内に吐出される冷気とに分流される。また、冷蔵室ダクト7内の冷気の流れに対して垂直方向に冷蔵室吐出口10を、平行方向に冷凍室ダクト開口部17を設けている。
【0053】
上記構成により、冷蔵室5庫内吐出風量より冷凍室6庫内吐出風量を大きくすることができ、冷却負荷量の大きい冷凍室6の冷却量を確保することが可能となり、冷凍室6、冷蔵室5をそれぞれ所定の温度に冷却することができる。
【0054】
(実施の形態4)
図5は、本発明の実施の形態4における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0055】
冷蔵室ダクト7の冷蔵室吐出口10に手動で吐出開口面積を調整できる例えばポリプロピレンで成型された左右、もしくは上下に手動で動かせるスライド式のシャッター18を備えている。
【0056】
上記構成において、例えばシャッター18を開方向に動かし、冷蔵室吐出口10の吐出開口面積を増加させると、冷蔵室吐出口10より冷蔵室5へ吐出される冷気の風量が増加する。また、冷凍室ダクト開口部17を通り冷凍室吐出口12より冷凍室6へ吐出される冷気の風量が減少する。
【0057】
また、実施の形態1同様に、冷蔵室5には区画室内温度を検知する、例えばサーミスタである温度検知手段TH1が予め設定された所定の温度(例えば0℃)より低いことを検知すると圧縮機1、ファン9を停止し、圧縮機1停止中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると制御手段C1はこの信号を受け、圧縮機1とファン9を作動し冷却を開始する。
【0058】
以上に示したように、冷蔵室5の庫内温度で圧縮機1のON/OFFを制御するので、冷蔵室5の庫内温度は一定に保たれた状態で冷凍室6の風量が減少するので冷凍室6の冷却量は減少し、冷凍室6の温度を弱設定(例えばー18℃)にすることが可能となる。
【0059】
また、例えばシャッター18を閉方向に動かし、冷蔵室吐出口10の吐出開口面積を減少させると、冷蔵室吐出口10より冷蔵室5へ吐出される冷気の風量が減少し、冷凍室ダクト開口部17を通り冷凍室吐出口12より冷凍室6へ吐出される冷気の風量が増加する。
【0060】
同様に、冷蔵室5の庫内温調は圧縮機1のON/OFFにより制御されるので、冷蔵室5の庫内温度は一定に保たれた状態で冷凍室6の風量が増加するので冷凍室6の冷却量は増加し、冷凍室6の温度は強設定(例えばー22℃)にすることが可能となる。
【0061】
(実施の形態5)
図6は本発明の実施の形態5における冷蔵庫の庫内風路の概略図、図7は冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0062】
冷蔵室ダクト7内には、例えばステッピングモータにより開閉されるダンパ19が配設されている。また、冷蔵室5には区画室内温度を検知する、例えばサーミスタである温度検知手段TH1を、冷凍室6には区画室内温度を検知する温度検知手段TH2を設けてあり、圧縮機1とファン9とダンパ19を制御する制御手段C2とを備えている。
【0063】
圧縮機1停止中に、冷凍室6の温度検知手段であるTH2が、予め設定された所定の温度(例えば−18℃)以上を検知すると制御手段C2はこの信号を受け、圧縮機1とファン9を作動し冷却を開始する。
【0064】
この時、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると制御手段C2はこの信号を受け、ダンパを開放する。冷蔵室ダクト7内の冷気は、ファン9の作動によりダンパを介して冷蔵室吐出口10から冷蔵室5へ吐出される冷気と、冷凍室吐出口12を介して冷凍室6へ吐出される冷気に分流し冷蔵室5、冷凍室6の冷却を行う。
【0065】
圧縮機1運転中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば0℃)以下を検知すると制御手段C2はこの信号を受け、ダンパ19を閉塞して冷蔵室5への風路を遮断し、冷凍室6のみに冷気を送り込む。
【0066】
冷凍室6のみの冷却中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると、前記同様にダンパを開放し冷蔵室5、冷凍室6の冷却を行う。
【0067】
以上の動作を繰り返し、冷凍室6の温度検知手段であるTH2が、予め設定された所定の温度(例えば−22℃)以下を検知すると制御手段C2はこの信号を受け、圧縮機1とファン9を停止し冷却を終了する。
【0068】
冷蔵室5の庫内温度はダンパ19で制御し、冷凍室6の庫内温度は圧縮機のON/OFFで制御するので、冷蔵室5と冷凍室6の庫内温度を独立して制御することが可能となる。したがって、高外気温から低外気温に至るまで冷蔵室5、冷凍室6のそれぞれの庫内温度を所定の温度に一定に保つことが可能となる。
【0069】
なお、ダンパ19はガス封入式である機械式ダンパを用いても同様の効果が得られる。
【0070】
(実施の形態6)
図8は、本発明の実施の形態6における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0071】
圧縮機1運転中に、冷蔵室5の温度検知手段であるTH1が予め設定された所定の温度(t1H)以下を検知すると、制御手段C1はこの信号を受けファン9の印加電圧を低速側のV1とする(T0)。ドア開閉等により、庫内温度が上昇し温度検知手段TH1が所定の温度(t1H)以上を検知すると、制御手段C1はこの信号を受けファン9の印加電圧を高速側のV2とする(T1)。その後、庫内温度が低下し温度検知手段TH1が所定の温度(t1H)以下を検知すると、制御手段C1はこの信号を受けファン9の印加電圧を低速側のV1とする(T2)。
【0072】
以上により、庫内の温度上昇に対して迅速に冷却能力を上げることにより、ドア開閉時の庫内の温度上昇を最小限に抑えることが可能となる。
【0073】
また、電源投入時も同様に温度検知手段TH1が所定の温度(t1H)以下を検知するまで、ファン9の印加電圧を高速側のV2とすることにより、庫内の冷却スピードを向上でき、例えば電源投入から1回目の製氷完了時間を短縮することが可能となる。
【0074】
なお、実施の形態5においてはファン9の印加電圧の制御を冷凍室6の温度検知手段TH2で行うことにより、さらに効率よく冷蔵室5と冷凍室6の冷却を行うことが可能となる。
【0075】
(実施の形態7)
図9は本発明の実施の形態7における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0076】
20は、冷蔵室5側内箱のウレタン側壁面に接着した例えばアルミ箔ヒータである除霜用ヒータである。除霜用ヒータ20は例えばアルミテープや両面テープにより冷蔵庫内箱に貼り付けられている。
【0077】
冷蔵室5の温度検知手段TH1が予め設定された所定の温度(例えば0℃)より低いことを検知すると制御手段C3はこの信号を受け、圧縮機1、ファン9を停止し、除霜用ヒータ20の通電を開始する。圧縮機1停止中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると制御手段C3はこの信号を受け、除霜用ヒータ20の通電を停止すると共に、圧縮機1とファン9を作動し冷却を開始する。
【0078】
ヒータを用いて除霜することにより、さらに確実に冷蔵室5壁面に付着した霜を融解することができ、除霜性能の向上が可能となる。
【0079】
また、従来のファン冷却用冷却器の除霜は、庫内で熱容量の大きいガラス管ヒータを通電して行っていたため、除霜時の庫内の昇温が大きいという課題があったが、本実施の形態においては、ウレタン内に埋設した比較的低熱容量の除霜用ヒータ20により除霜を行うことができるので、ヒータの熱影響による庫内の温度上昇を最小限に抑えることができ、例えばアイスクリームの融解を防止することが可能となる。
【0080】
(実施の形態8)
図10は、本発明の実施の形態6における冷蔵庫のタイムチャートを示している。なお、実施の形態1、7と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0081】
除霜用ヒータ20の通電は、図示しないタイマーにより前回通電終了時点から所定時間(T3)経過後(例えばT3=12時間)毎の圧縮機1停止時に行う。T3時間経過後が圧縮機1運転中の場合は、次回運転停止時に除霜用ヒータ20の通電を行う(T4)。T3時間経過後が圧縮機1停止時の場合も同様に、次回運転停止時に除霜用ヒータ20の通電を行う。
【0082】
除霜を周期的に行うことにより除霜に伴う食品の温度変動を最小限に抑えるとともに、省エネルギー化が可能となる。
【0083】
なお、タイマーによる除霜間隔T3を圧縮機1の運転の積算時間としても同様の効果が得られる。
【0084】
(実施の形態9)
図11は、本発明の実施の形態9における冷蔵庫の断面図である。なお、実施の形態1、7、8と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0085】
TH3は、冷蔵庫5背面に配設された壁面温度検知手段であり、圧縮機1停止中の除霜用ヒータ20通電中にTH3が設定温度(例えば2℃)以上を検知すると制御手段C4はこの信号を受け、除霜用ヒータ20の通電を終了する。
【0086】
これにより、過度の除霜用ヒータ20の通電を抑えることにより、除霜に伴う食品の温度変動を最小限に抑えるとともに、省エネルギー化が可能となる。
【0087】
(実施の形態10)
図12は、本発明の実施の形態10における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0088】
TH4は、例えば冷蔵室5ドア側面部に配設された例えばサーミスタである外気温度検知手段であり、22は冷蔵室ダクト7を構成する仕切り21内に配設された、例えばアルミ箔ヒータである温調用ヒータである。
【0089】
冷蔵室5の温度検知手段TH1が予め設定された所定の温度(例えば0℃)より低いことを検知すると制御手段C5は、この信号を受け、圧縮機1、ファン9を停止し、温調用ヒータ22の通電を開始する。
【0090】
この時、外気温度検知手段TH4の信号に対して(表1)に示すように温調用ヒータ22の通電率を決定し、その通電率にて通電を行う。
【0091】
【表1】

Figure 0004168727
【0092】
TH4がAT1(例えば15℃)以下であれば通電率D1%(例えば100%)で通電を開始する。圧縮機1停止中に、冷蔵室5の温度検知手段であるTH1が、予め設定された所定の温度(例えば5℃)以上を検知すると制御手段C5この信号を受け、温調ヒータ22の通電を停止すると共に、圧縮機1とファン9を作動し冷却を開始する。
【0093】
また、AT2(例えば25℃)≧AT1(例えば15℃)であり、D1(例えば100%)≧D2(例えば50%)≧D3(例えば0%)である。すなわち外気温が高いほど温調用ヒータ22の通電率を小さくする制御としている。
【0094】
外気温が冷蔵室5の庫内温度に近い例えば5℃の場合、圧縮機1のON/OFFは冷蔵室5の温度検知手段であるTH1で行うために圧縮機1の運転率が極端に低下する。その結果、冷凍室6の冷却負荷量が確保できず冷凍室6の温度維持ができなくなる。この場合、従来の直冷冷却方式の冷蔵庫においては圧縮機1停止時に温調用ヒータ22を通電し、冷蔵室5庫内に強制的に熱負荷を与えることにより圧縮機1の運転率を確保し、冷凍室6の冷却負荷量を維持していた。ところが、運転率が比較的高く冷蔵室5庫内に熱負荷を強制的に与える必要性がない高外気温時にも温調用ヒータ22の通電を行っていたために、無駄に運転率が大きくなり消費電力量が増加するという課題があったが、本実施の形態では、外気温が高いほど温調用ヒータ22の通電率を小さくすることにより過度に温調用ヒータ22を通電することを抑えることができ、省エネルギー化が可能となる。
【0095】
なお、温調用ヒータ22は断熱仕切り14内に配設しても同様の効果が得られる。
【0096】
(実施の形態11)
図13は、本発明の実施の形態11における冷蔵庫の断面図である。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0097】
24は、冷却器4と冷蔵庫外箱23の間に配設された、例えばシート状無機繊維集合体からなる芯材と前記芯材を覆うガスバリア性フィルムで構成される真空断熱材である。
【0098】
冷蔵庫箱体15の製造にあたっては、真空断熱材24をあらかじめ例えば冷蔵庫外箱23に直接的に接着固定したあと、硬質ウレタンフォームの原料を注入して一体発泡を行う。温度差が一番大きい、冷却器4と冷蔵庫外箱23の間に配設することにより最もコストパフォーマンスよく冷蔵庫箱体の吸熱量を低減することが可能となる。また、断熱性能向上により圧縮機1の運転率が低下し省エネルギー化が可能となる。また、冷蔵庫外箱23の壁面温度を上げることができ冷蔵庫外箱23の結露を防止することが可能となる。
【0099】
なお、真空断熱材24を冷蔵庫外箱23に間接的に接着しても同様の効果が得られる。
【0100】
(実施の形態12)
図14は、本発明の実施の形態12における冷蔵庫の断面図である。なお、実施の形態1、11と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0101】
真空断熱材24は、冷却器4の冷蔵庫外箱23側の側面に例えば両面テープにより直接貼り付けられている。
【0102】
確実に、外気と温度差の大きい部位に貼り付けることにより、さらに効率よく吸熱量を低減することができる。また、冷却器4に真空断熱材24を貼り付けた部品をユニットとして冷蔵庫組み立て行程に入れることができるので工数の削減が可能となる。また、冷却器4と真空断熱材24を貼り付けた部品をユニットとして外販することも可能となる。
【0103】
【発明の効果】
以上説明したように請求項1に記載の発明は、内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室のみの内箱とウレタンとの間に配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって冷蔵室および冷凍室を強制冷却するものであり、ヒータによる除霜の必要性がなく除霜による冷蔵室および冷凍室の温度上昇を低減できる。また、従来の直冷冷却方式の課題であった庫内温度分布のばらつきも改善できる。
【0104】
また、請求項2に記載の発明は、内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室庫内背面のみに配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって前記冷蔵室および冷凍室を強制冷却するものであり、さらに冷却効率が向上し、また、圧縮機停止時に伴う冷却器の除霜時には、より確実に付着した霜を融解し除霜することが可能となる。
【0105】
また、請求項3に記載の発明は、請求項1または2に記載の発明において、冷蔵室庫内吐出風量と冷凍室庫内吐出風量の分配を冷凍室側を大としたものであり、冷却負荷量の大きい冷凍室の冷却量を確保することが可能となる。
【0106】
また、請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室庫内吐出風量を調整する機構を設け、圧縮機のON/OFFは冷蔵室温度検知手段で制御するものであり、冷蔵室庫内吐出風量と冷凍室庫内吐出風量の風量分配を可変することにより冷凍室の庫内温度を自由に設定することが可能となる。
【0107】
また、請求項5に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室温度検知手段により冷蔵室庫内吐出風量を制御する機構を設け、圧縮機のON/OFFは冷凍室温度検知手段で制御するものであり、低外気温時から高外気温時までどの環境下においてもより確実に冷蔵室および冷凍室の庫内温度を一定に保つことが可能となる。
【0108】
また、請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、庫内の負荷変動に合わせて、庫内冷却用ファンの回転数を可変制御するものであり、速やかに庫内を冷却することが可能となる。
【0109】
また、請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、冷蔵室側内箱のウレタン内壁面に除霜用ヒータを配設したものであり、ヒータを用いて除霜することにより、さらに確実に冷蔵室壁面に付着した霜の除霜が確実となる。また、ウレタン内にヒータを埋設しているのでヒータの熱影響による庫内の温度上昇を最小限に抑えることが可能となる。
【0110】
また、請求項8に記載の発明は、請求項7に記載の発明において、除霜用ヒータの通電は、タイマーにより所定時間間隔毎の圧縮機停止時に行うものであり、除霜に伴う庫内の温度変動を最小限に抑えるとともに省エネルギー化が可能となる。
【0111】
また、請求項9に記載の発明は、請求項7または8に記載の発明において、冷蔵室側壁面の表面温度検知手段が設定温度以上を検知すると、除霜用ヒータ通電を終了するものであり、過度に除霜用ヒータを通電することを抑えることにより庫内の温度上昇を抑制でき、且つ省エネルギー化が可能となる。
【0112】
また、請求項10に記載の発明は、請求項1から4または請求項6から請求項9のいずれか一項に記載の発明において、外気温を検知する温度検知手段により、外気温別に設定した通電率で冷蔵室ダクト内に配設した温調用ヒータの通電を行うものであり、運転率が高い高外気温時に過度に温調用ヒータを通電することを抑えることにより省エネルギー化が可能となる。
【0113】
また、請求項11に記載の発明は、請求項1から請求項10のいずれか一項に記載の発明において、冷却器と冷蔵庫外箱の間に真空断熱材を配設するものであり、外気と温度差が一番大きい場所に真空断熱材を配設することにより最もコストパフォーマンスよく冷蔵庫箱体の吸熱量を低減することができる。また、断熱性能向上により圧縮機の運転率が低下し省エネルギー化が可能となる。また、冷蔵庫外箱の壁面温度を上げることができ冷蔵庫外箱の結露を防止することが可能となる。
【0114】
また、請求項12に記載の発明は、請求項1または請求項3から請求項11のいずれか一項に記載の発明において、冷却器の冷蔵庫外箱側側面に真空断熱材を直接貼り付けるものであり、より確実に外気と温度差の大きい場所に真空断熱材を貼り付けることにより、さらに効率よく吸熱量を低減することができる。また、壁面冷却器に真空断熱材を貼り付けた部品をユニットとして冷蔵庫組み立て行程に入れることができるので工数の削減が可能となる。また、冷却器と真空断熱材を貼り付けた部品をユニットとして外販することもできる。
【0115】
また、請求項13に記載の発明は、請求項1から請求項12のいずれか一項に記載の発明において、冷媒として炭化水素を用いたものであり、地球温暖化防止に貢献するとともに、冷却器をウレタン内に埋設しているので炭化水素漏洩時の危険性を小さくすることが可能となる。また、ドアスイッチ、ランプ等庫内の電気的接点も防爆対応しなくてよいので冷媒の炭化水素化によるコストUPを抑制することが可能となる。また、除霜は冷蔵室の庫内空気により自然に行われるので、ガラス管ヒータ等の高温発熱体による除霜の必要性がなく、さらに危険性を小さくすることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の冷蔵庫の断面図
【図2】本発明の実施の形態2の冷蔵庫の断面図
【図3】本発明の実施の形態2の冷蔵庫の断面図
【図4】本発明の実施の形態3の冷蔵庫の断面図
【図5】本発明の実施の形態4の冷蔵庫の断面図
【図6】本発明の実施の形態5の冷蔵庫の庫内風路概略図
【図7】本発明の実施の形態5の冷蔵庫の断面図
【図8】本発明の実施の形態6の冷蔵庫のタイムチャート
【図9】本発明の実施の形態7の冷蔵庫の断面図
【図10】本発明の実施の形態8の冷蔵庫のタイムチャート
【図11】本発明の実施の形態9の冷蔵庫の断面図
【図12】本発明の実施の形態10の冷蔵庫の断面図
【図13】本発明の実施の形態11の冷蔵庫の断面図
【図14】本発明の実施の形態12の冷蔵庫の断面図
【図15】従来の冷蔵庫の断面図
【符号の説明】
1 圧縮機
4 冷却器
5 冷蔵室
6 冷凍室
7 冷蔵室ダクト
8 冷凍室ダクト
9 ファン
14 断熱仕切り
15 冷蔵庫箱体
15a 内箱
15b、23 外箱
15c ウレタン
18 シャッター
19 ダンパ
20 除霜用ヒータ
22 温調用ヒータ
24 真空断熱材
C1、C2、C3、C4、C5 制御手段
TH1、TH2、TH3、TH4 温度検知手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator that cools a refrigerator compartment and a freezer compartment with a single cooler.
[0002]
[Prior art]
FIG. 15 is a schematic view of a conventional cooling cycle and refrigerator.
[0003]
In the figure, 101 is a refrigerator heat insulating box, and the inside is divided into a freezer compartment 103 and a refrigerating compartment 104 by a partition wall 102, and in the freezer compartment 103, a direct cooling type plate-like first cooling is provided. A vessel 105 is arranged horizontally. A cavity 108 is formed in the partition wall 102, and the cavity 108 constitutes a circulation path 111 together with ducts 109 and 110 formed on the back surfaces of the freezer compartment 103 and the refrigerator compartment 104. A second cooler 112 and an internal cooling fan 117 are disposed in the cavity 108 of the circulation path 111. 118 is a first damper device that closes the first air inlet 113, 119 is a second damper device that closes the first discharge port 115 by closing the lower end of the duct 109 on the freezer compartment 103 side, Both of these damper devices 118 and 119 are configured to be closed using an electromagnet (not shown) as an operating source. Reference numeral 120 denotes a third damper device for closing the second discharge port 116, which is similarly operated by an electromagnet (not shown). The electromagnet detects the temperature in the refrigerator compartment 104 and turns it on / off. Power is cut off by the temperature detection switch.
[0004]
121 is a compressor, 122 is a condenser, 123 is a solenoid valve disposed between the condenser 122 and the capillary 124, 105 is the first cooler, 112 is the second cooler, and 125 is the reverse These are stop valves, each connected in series. The solenoid valve 123 is configured to open when energized, and a defrosting heater 126 is attached to the second cooler 112.
[0005]
In the refrigerator configured as described above, when the inside of the freezer compartment 103 reaches a predetermined temperature or higher, a freezer compartment temperature detection switch (not shown) is turned on, and the compressor 121, the electromagnetic valve 123, and the fan 117 are energized and activated. The refrigerant compressed by the compressor 121 and liquefied by the condenser 122 flows into the first cooler 105 and the second cooler 112 through the electromagnetic valve 123 and the capillary 124, and again through the check valve 125. It is circulated so that it is sucked into the compressor 121 and compressed.
[0006]
In addition, since the first damper device 118 and the third damper device 120 are both disconnected and open, air in the freezer compartment 103 and the refrigerator compartment 104 is caused to rotate by the rotation of the fan 117. The air is sucked into the circulation path 111 from the intake ports 113 and 114 and is cooled by the second cooler 112.
[0007]
When the accumulated operation time of the compressor 121 reaches 8 hours, the solenoid valve 125 is disconnected and closed, and the compressor 121 is operated in this state. By this operation, both coolers 105 and 112 receive the suction action of the compressor 121 without being supplied with refrigerant from the condenser 122 side, so that the liquid refrigerant inside evaporates and enters a low pressure state. Thereafter, when it is detected that a predetermined time (for example, 2 minutes) has elapsed, the compressor 121 and the fan 117 are stopped, the first and second damper devices 118 and 119 are closed, and the heater 126 is energized. Since both the coolers 105 and 112 are in a low pressure state without liquid refrigerant, the amount of gas refrigerant in the coolers 105 and 112 does not increase due to the heat generated by the heater 128, and the first cooling is not performed. There is no problem that the condenser 105 performs the condensation action and dissipates heat into the freezer compartment 103. Further, since the first and second damper devices 118 and 119 are energized and closed, the warm air in the cavity 108 does not flow into the freezer compartment 103.
[0008]
Thus, it is possible to minimize the temperature rise in the freezer compartment 103 during defrosting (see, for example, Patent Document 1).
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 59-173684
[0010]
[Problems to be solved by the invention]
However, since the second cooler 112 and the refrigerator compartment 104 communicate with each other through the suction port 114, the temperature of the refrigerator compartment 104 during defrosting is large. In addition, although the solenoid valve 123 is closed before the defrosting and the refrigerant in the coolers 105 and 112 is sucked, the refrigerant cannot be completely sucked from the coolers 105 and 112. The temperature of the cooler 105 increases, and the freezer compartment 103 is heated. Further, if the solenoid valve 123 is closed and the compressor 121 is operated, the suction pressure may be abnormally reduced and the compressor 121 may be damaged. In addition, since there are two coolers, there is a problem that the cost increases.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problems and to minimize the temperature increase in a refrigerator compartment and a freezer compartment during defrosting and to reduce the cost of a refrigeration cycle.
[0012]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention includes an inner box and an outer box, and a heat insulating box made of urethane provided between the inner box and the outer box. The upper compartment is divided into a refrigerator compartment and the lower compartment is a freezer compartment. In the refrigerator Above Refrigerated room Only Arranged between the inner box and urethane Cooler And along the refrigerator wall In the refrigerator compartment and the freezer compartment A duct configured to allow cold air to flow, Provided in the duct in the refrigerator compartment With cooling fan And by the internal cooling fan Refrigerator and freezer Forced Since the defrosting of the frost attached to the back of the refrigerator compartment box is naturally performed by the temperature in the refrigerator compartment when the compressor is stopped, there is no need for defrosting by the heater, and the refrigerator compartment and freezing by defrosting are not required. The temperature rise in the room can be reduced. In addition, it is possible to greatly improve the cooling efficiency by improving the heat transfer coefficient by operating the fan, and it is possible to improve the dispersion of the temperature distribution inside the chamber, which has been a problem of the conventional direct cooling cooling method.
[0013]
The invention according to claim 2 is a heat insulating box made of urethane provided between an inner box and an outer box, and an inner box and an outer box. The upper compartment is divided into a refrigerator compartment and the lower compartment is a freezer compartment. In the refrigerator Above The back of the refrigerator compartment only Arranged in Cooler And along the refrigerator wall In the refrigerator compartment and the freezer compartment A duct configured to allow cold air to flow, Provided in the duct in the refrigerator compartment With cooling fan And by the internal cooling fan The refrigerator compartment and freezer compartment Forced Since the cooler is in direct contact with the air in the refrigerator compartment, the cooling efficiency is improved by improving the thermal conductivity at the time of cooling, and at the time of defrosting the cooler when the compressor is stopped. It is possible to melt and defrost the frost that has adhered reliably.
[0014]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the distribution of the discharge air amount in the refrigerator compartment and the discharge air amount in the freezer compartment is increased on the freezer compartment side, Cooling by direct cooling by a cooler and fan cooling by a small amount of air, and cooling the freezer compartment by fan cooling by a large amount of air can secure a cooling amount of the freezer compartment having a large cooling load.
[0015]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein a mechanism for adjusting the amount of discharge air in the refrigerator compartment is provided, and the compressor ON / OFF is the refrigerator compartment temperature. It is controlled by the detection means, and the inside temperature of the freezer compartment can be freely set by varying the air volume distribution between the inside air quantity discharged from the refrigerator compartment and the inside air quantity discharged from the freezer compartment.
[0016]
The invention according to claim 5 is the invention according to any one of claims 1 to 3, wherein a mechanism for controlling the discharge air amount in the refrigerator compartment by the refrigerator compartment temperature detecting means is provided, and the compressor is turned on. / OFF is controlled by the freezer temperature detection means, and it is possible to keep the inside temperature of the refrigerator compartment and the freezer compartment more reliably in any environment from the low outside temperature to the high outside temperature. Become.
[0017]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the number of rotations of the internal cooling fan is variably controlled in accordance with the load fluctuation in the internal storage. In addition, when the temperature in the refrigerator compartment detecting means or the temperature detecting means in the freezer compartment is detected to be higher than a certain temperature, the inside of the refrigerator can be quickly cooled by operating the cooling fan at a high speed.
[0018]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein a defrosting heater is disposed on the urethane inner wall surface of the inner box of the refrigerator compartment. By defrosting using, the defrosting of the frost attached to the wall surface of the refrigerator compartment is further ensured. Further, since the heater is embedded in the urethane, it is possible to minimize the temperature rise in the cabinet due to the heat effect of the heater.
[0019]
The invention according to claim 8 is the invention according to claim 7, wherein energization of the heater for defrosting is performed by a timer when the compressor is stopped every predetermined time interval, and defrosting is periodically performed. As a result, temperature fluctuations in the cabinet accompanying defrosting can be minimized and energy can be saved.
[0020]
The invention according to claim 9 is the invention according to claim 7 or 8, wherein when the surface temperature detecting means on the side wall surface of the refrigerator compartment detects a temperature equal to or higher than the set temperature, the defrosting heater energization is terminated. By suppressing the defrosting heater from being energized, it is possible to suppress the temperature rise in the cabinet and to save energy.
[0021]
A tenth aspect of the present invention is the invention according to any one of the first to fourth or sixth to ninth aspects, wherein the energization rate is set for each outside air temperature by the temperature detecting means for detecting the outside air temperature. The temperature control heater energized in the refrigerator compartment duct is energized, and the role of the temperature control heater is to forcibly apply a load to the refrigerator compartment at low outside temperatures to increase the operating rate of the compressor, It is to secure the temperature inside the freezer compartment, but it is possible to save energy by restraining the temperature control heater from being energized excessively at a high outside temperature with a high operation rate.
[0022]
Invention of Claim 11 arrange | positions a vacuum heat insulating material between a cooler and a refrigerator outer box in the invention as described in any one of Claims 1-10, Outside air and temperature. By disposing the vacuum heat insulating material in the place where the difference is the largest, it is possible to reduce the heat absorption amount of the refrigerator box with the best cost performance. Moreover, the operating rate of a compressor falls by heat insulation performance improvement, and energy saving is attained. In addition, the wall surface temperature of the refrigerator outer box can be raised, and condensation on the refrigerator outer box can be prevented.
[0023]
Invention of Claim 12 sticks a vacuum heat insulating material directly to the refrigerator outer box side side surface of a cooler in the invention of any one of Claim 1 or Claims 3 to 11. By adhering the vacuum heat insulating material to a place with a large temperature difference from the outside air more reliably, the amount of heat absorption can be reduced more efficiently. Moreover, since the component which stuck the vacuum heat insulating material to the wall surface cooler can be put into the refrigerator assembly process as a unit, man-hours can be reduced. In addition, a part to which a cooler and a vacuum heat insulating material are attached can be sold as a unit.
[0024]
The invention according to claim 13 is the invention according to any one of claims 1 to 12, wherein hydrocarbon is used as the refrigerant, and the carbonizer is carbonized because the cooler is embedded in urethane. It is possible to reduce the danger at the time of hydrogen leakage. In addition, since the electrical contacts in the cabinet such as the door switch and the lamp do not need to be explosion-proof, it is possible to suppress the cost increase due to hydrocarbon conversion of the refrigerant. In addition, since defrosting is naturally performed by the air in the refrigerator compartment, there is no need for defrosting by a high-temperature heating element such as a glass tube heater, and the risk can be further reduced.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 14 and Table 1. FIG.
[0026]
(Embodiment 1)
FIG. 1 is a cross-sectional view of the refrigerator according to Embodiment 1 of the present invention.
[0027]
A refrigerator box 15 includes an inner box 15a, an outer box 15b, and urethane 15c provided between the inner box 15a and the outer box 15b. The refrigerator compartment 5 is a relatively high-temperature compartment in the upper part of the refrigerator box 15. The relatively low temperature freezer compartment 6 divided by the refrigerator compartment 5 and the heat insulation partition 14 is arrange | positioned in the lower part. The storage of food and other items is performed through a heat insulating door (not shown).
[0028]
The refrigeration cycle 16 is configured by connecting the compressor 1, the condenser 2, the capillary 3, and the cooler 4. The cooler 4 is a direct cooling type, and the urethane 15 c is in contact with the inner box 15 a on the back of the refrigerator compartment 5. It is arranged on the side. In addition, a refrigerator compartment duct 7 is provided with a certain space in front of the cooler 4, a refrigerator compartment discharge port 10 is provided in the lower part of the refrigerator compartment duct 7, and a refrigerator compartment suction port 11 is provided in the upper part. . A freezer compartment duct 8 is provided in the vicinity of the inner surface of the freezer compartment 6 to cool the inside of the refrigerator by circulating the cool air discharged into the refrigerating compartment 5 and the shunted air. The freezer compartment discharge port 12 has a freezer compartment suction port 13 at the bottom. Further, the refrigerator compartment 5 has temperature detecting means TH1 for detecting the temperature inside the refrigerator. Further, a fan 9 is provided in the space between the refrigerator compartment duct 7 and the inner box 15a on the back side of the refrigerator compartment 5.
[0029]
Further, the compressor 1 is of a variable capacity type that can control the refrigerant circulation amount by the rotation speed control by an inverter and change the refrigeration capacity.
[0030]
The refrigerating room 5 is provided with temperature detecting means TH1 which is a thermistor for detecting the temperature in the compartment, and is provided with a control means C1 for controlling the compressor 1 and the fan 9.
[0031]
Moreover, hydrocarbon (for example, isobutane) is used as the refrigerant.
[0032]
In the above configuration, the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 releases heat in the condenser 2 to be condensed and liquefied, and reaches the capillary 3. Thereafter, the pressure is reduced while exchanging heat with a suction line (not shown) in the capillary 3, and the vapor reaches the cooler 4 disposed in the urethane on the back side of the refrigerator compartment 5 and evaporates. In the vicinity of the inner surface of the refrigerator compartment 5, there are provided a fan 9 and a refrigerator compartment duct 7 for cooling the interior by circulating the air in the compartment of the refrigerator compartment 5. The cold air in the cold room duct 7 radiated and cooled by the back of the cold room due to the action of the cooler 4 is discharged to the cold room 5 through the cold room discharge port 10 by the operation of the fan 9, After heat exchange, it flows into the refrigerator compartment duct 7 from the refrigerator compartment inlet 11. In addition, a freezer compartment duct 8 is provided in the vicinity of the inner surface of the freezer compartment 6 to circulate the cool air discharged into the refrigerator compartment 5 and the separated cool air to cool the inside of the refrigerator, and the cool air passes through the freezer compartment outlet 12. After being discharged to the freezer compartment 6, the refrigerant flows into the freezer compartment duct 8 from the freezer inlet 13. The return air from the freezer compartment duct 8 passes through a return duct (not shown), merges with the return air from the refrigerator compartment suction port 11, is sucked into the fan 9, and is discharged again as low-temperature cold air. The refrigerant evaporated by the cooler 4 is sucked into the compressor 1 through a suction line (not shown).
[0033]
Further, the compressor 1 is of a variable capacity type that can change the refrigeration capacity by controlling the circulation rate of the refrigerant by, for example, controlling the number of revolutions by an inverter. Capability securing and energy saving at low load are possible.
[0034]
The refrigerator compartment 5 is usually set at 1 to 5 ° C. for refrigerated storage, but may be set at a slightly lower temperature, for example, −3 to 0 ° C. for improving the freshness, depending on the stored items. The user can freely switch the temperature setting as described above. In addition, in order to preserve wine, root vegetables, etc., the temperature may be set slightly higher, for example, around 10 ° C.
[0035]
The freezer compartment 6 is usually set at −22 to −18 ° C. for frozen storage, but may be set at a lower temperature, for example −30 to −25 ° C., for improving freshness.
[0036]
While the compressor 1 is stopped, if the temperature detection means TH1 in the refrigerator compartment 5 detects a predetermined temperature (for example, 5 ° C.) or higher, the control means C1 receives this signal, and the compressor 1 and the fan 9 To start cooling. And if it detects that temperature detection means TH1 of the refrigerator compartment 5 is lower than the predetermined temperature (for example, 0 degreeC) set beforehand, the compressor 1 and the fan 9 will be stopped.
[0037]
Here, the frost attached to the back of the inner box of the refrigerator compartment 5 during the operation of the compressor 1 is melted by the air in the refrigerator compartment 5 while the compressor 1 is stopped, and the defrosted water is stored by a drain port (not shown). Drained outside. Thereby, there is no necessity for defrosting by a heater and the temperature rise of the refrigerator compartment 5 and the freezer compartment 6 can be reduced.
[0038]
In addition, if the temperature detection means TH1 of the refrigerator compartment 5 is disposed so as to be in close contact with the surface of the back of the inner box of the refrigerator compartment 5, the defrost detection of the attached frost is more reliably ensured.
[0039]
Further, the cost can be reduced by eliminating the defrosting heater.
[0040]
Although the cooler 4 is disposed in the urethane on the rear side of the refrigerator compartment 5, the same effect can be obtained if it is disposed in the urethane on the top surface of the refrigerator compartment 5 or in the heat insulating partition 14.
[0041]
In addition, the conventional direct cooling cooling system has a disadvantage that the temperature distribution in the cabinet is poor, but the temperature inside the cabinet can be equalized by combining with fan cooling.
[0042]
In addition, since hydrocarbon (for example, isobutane) is used as a refrigerant, it contributes to the prevention of global warming, and the cooler 4 is embedded in urethane, so the risk of hydrocarbon leakage can be reduced. It becomes.
[0043]
In addition, since the electrical contacts in the cabinet such as door switches and lamps do not need to be explosion-proof, it is possible to suppress the cost increase due to hydrocarbon conversion of the refrigerant.
[0044]
Moreover, since defrosting is naturally performed by the temperature in the refrigerator compartment 5, there is no need for defrosting by a high-temperature heating element such as a glass tube heater, and the risk can be further reduced.
[0045]
The cooler 4 is a roll bond in which two metal plates (for example, iron or aluminum) are bonded, and a high pressure gas is injected into one side of the plate or a part of both sides to inflate, thereby providing a refrigerant flow path. The same effect can be obtained by any method, for example, a method in which a copper tube is attached to the urethane side wall surface of the refrigerator inner box with an aluminum foil.
[0046]
(Embodiment 2)
2 and 3 are cross-sectional views of the refrigerator according to Embodiment 2 of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0047]
In the figure, the direct cooling plate type cooler 4 is disposed so as to be in contact with the inner box 15a on the back of the refrigerator compartment 5 inside.
[0048]
With the above configuration, since the cooler 4 is in direct contact with the return air of the refrigerator compartment 5 and the freezer compartment 6, the heat exchange efficiency is improved during cooling, thereby improving the cooling efficiency. In addition, since the cooler 4 is defrosted when the compressor 1 is stopped, it directly comes into contact with the air in the refrigerator compartment 5, so that the attached frost can be more reliably melted and defrosted.
[0049]
In FIG. 2, the cooler 4 is attached to the back of the inner box of the refrigerator compartment 5. However, as shown in FIG. 3, as shown in FIG. By arranging it to pass through, the area directly in contact with the return air of the refrigerator compartment 5 and the freezer compartment 6 is increased, so that the thermal conductivity is further improved during cooling, thereby further improving the cooling efficiency. Further, even when the cooler is defrosted when the compressor is stopped, for the same reason, the attached frost can be more reliably melted and defrosted.
[0050]
In FIG. 3, the fan 9 is disposed above the cooler 4. However, the same effect can be obtained even if the fan 9 is disposed below the cooler 4.
[0051]
(Embodiment 3)
FIG. 4 is a cross-sectional view of the refrigerator in the third embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0052]
The cold air flowing through the refrigerator compartment duct 7 by the function of the fan 9 is discharged from the refrigerator compartment outlet 10 into the refrigerator compartment 5 and inside the refrigerator 5 having a larger opening area than the refrigerator compartment outlet 10. The refrigerant is divided into cold air discharged from the freezer compartment discharge port 12 into the freezer compartment 6 through the freezer compartment duct opening 17 formed by the box and the heat insulating partition 14. Moreover, the refrigerator compartment discharge port 10 is provided in the perpendicular direction with respect to the flow of the cold air in the refrigerator compartment duct 7, and the freezer compartment duct opening part 17 is provided in the parallel direction.
[0053]
With the above configuration, the discharge air amount in the freezer compartment 6 can be made larger than the discharge air amount in the refrigerator compartment 5, and the cooling amount of the freezer compartment 6 having a large cooling load can be secured. Each of the chambers 5 can be cooled to a predetermined temperature.
[0054]
(Embodiment 4)
FIG. 5 is a cross-sectional view of the refrigerator in the fourth embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0055]
The refrigerating chamber discharge port 10 of the refrigerating chamber duct 7 is provided with a slide type shutter 18 that can be manually moved up and down or up and down, which is molded of polypropylene, for example, which can manually adjust the discharge opening area.
[0056]
In the above configuration, for example, when the shutter 18 is moved in the opening direction to increase the discharge opening area of the refrigerating chamber discharge port 10, the amount of cold air discharged from the refrigerating chamber discharge port 10 to the refrigerating chamber 5 increases. Further, the amount of cool air discharged from the freezer discharge port 12 to the freezer 6 through the freezer duct opening 17 is reduced.
[0057]
Similarly to the first embodiment, the refrigerator 5 detects the temperature in the compartment, for example, when the temperature detecting means TH1 which is a thermistor detects that the temperature is lower than a predetermined temperature (for example, 0 ° C.). 1. When the fan 9 is stopped and the compressor 1 is stopped, the control means C1 outputs this signal when TH1, which is the temperature detection means of the refrigerator compartment 5, detects a predetermined temperature (for example, 5 ° C.) or higher. Then, the compressor 1 and the fan 9 are operated to start cooling.
[0058]
As described above, since ON / OFF of the compressor 1 is controlled by the internal temperature of the refrigerator compartment 5, the air volume in the freezer compartment 6 decreases while the internal temperature of the refrigerator compartment 5 is kept constant. Therefore, the cooling amount of the freezer compartment 6 decreases, and the temperature of the freezer compartment 6 can be set to a weak setting (for example, −18 ° C.).
[0059]
Further, for example, when the shutter 18 is moved in the closing direction to reduce the discharge opening area of the refrigerating room discharge port 10, the amount of cold air discharged from the refrigerating room discharge port 10 to the refrigerating room 5 decreases, and the freezer compartment duct opening The amount of cool air discharged through the freezer compartment discharge port 12 to the freezer compartment 6 through 17 is increased.
[0060]
Similarly, since the internal temperature control of the refrigerator compartment 5 is controlled by turning the compressor 1 ON / OFF, the amount of air in the freezer compartment 6 increases while the internal temperature of the refrigerator compartment 5 is kept constant. The amount of cooling of the chamber 6 increases, and the temperature of the freezing chamber 6 can be set to a strong setting (for example, −22 ° C.).
[0061]
(Embodiment 5)
FIG. 6 is a schematic view of an internal air passage of the refrigerator according to Embodiment 5 of the present invention, and FIG. 7 is a sectional view of the refrigerator. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0062]
A damper 19 that is opened and closed by, for example, a stepping motor is disposed in the refrigerator compartment duct 7. Further, the refrigerator compartment 5 is provided with temperature detecting means TH1 which detects, for example, a thermistor, and the freezer compartment 6 is provided with temperature detecting means TH2 which detects the compartment temperature, and the compressor 1 and the fan 9 are provided. And control means C <b> 2 for controlling the damper 19.
[0063]
While the compressor 1 is stopped, the control means C2 receives this signal when TH2, which is the temperature detection means of the freezer compartment 6, detects a temperature higher than a predetermined temperature (for example, −18 ° C.), and the compressor 1 and the fan 9 is started and cooling is started.
[0064]
At this time, when TH1, which is the temperature detection means of the refrigerator compartment 5, detects a predetermined temperature (for example, 5 ° C.) or higher, the control means C2 receives this signal and opens the damper. The cold air in the refrigerating chamber duct 7 includes cold air discharged from the refrigerating chamber discharge port 10 to the refrigerating chamber 5 through the damper by the operation of the fan 9 and cold air discharged to the freezing chamber 6 through the freezing chamber discharge port 12. Then, the refrigerator compartment 5 and the freezer compartment 6 are cooled.
[0065]
During operation of the compressor 1, when the temperature detection means TH1 in the refrigerator compartment 5 detects a predetermined temperature (for example, 0 ° C.) or lower, the control means C2 receives this signal and closes the damper 19. The air path to the refrigerator compartment 5 is shut off, and the cold air is fed only to the freezer compartment 6.
[0066]
During the cooling of only the freezer compartment 6, when the temperature detection means TH1 of the refrigerator compartment 5 detects a predetermined temperature (for example, 5 ° C.) or higher, the damper is opened in the same manner as described above to open the refrigerator compartment 5 and the freezer. The chamber 6 is cooled.
[0067]
When the above operation is repeated and TH2 which is the temperature detection means of the freezer compartment 6 detects a predetermined temperature (for example, −22 ° C.) or lower, the control means C2 receives this signal, and the compressor 1 and the fan 9 To stop cooling.
[0068]
Since the internal temperature of the refrigerator compartment 5 is controlled by the damper 19 and the internal temperature of the freezer compartment 6 is controlled by ON / OFF of the compressor, the internal temperatures of the refrigerator compartment 5 and the freezer compartment 6 are controlled independently. It becomes possible. Therefore, it becomes possible to keep the internal temperature of each of the refrigerator compartment 5 and the freezer compartment 6 at a predetermined temperature from the high outside temperature to the low outside temperature.
[0069]
In addition, the same effect is acquired even if the damper 19 uses the mechanical damper which is a gas enclosure type.
[0070]
(Embodiment 6)
FIG. 8 shows a time chart of the refrigerator in the sixth embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0071]
During operation of the compressor 1, when TH1, which is the temperature detection means of the refrigerator compartment 5, detects a predetermined temperature (t1H) or less, the control means C1 receives this signal and changes the applied voltage of the fan 9 to the low speed side. V1 is set (T0). When the inside temperature rises due to opening and closing of the door and the temperature detection means TH1 detects a predetermined temperature (t1H) or higher, the control means C1 receives this signal and sets the applied voltage of the fan 9 to V2 on the high speed side (T1). . Thereafter, when the internal temperature decreases and the temperature detection means TH1 detects a predetermined temperature (t1H) or less, the control means C1 receives this signal and sets the applied voltage of the fan 9 to V1 on the low speed side (T2).
[0072]
As described above, by rapidly increasing the cooling capacity with respect to the temperature rise in the cabinet, it is possible to minimize the temperature rise in the cabinet when the door is opened and closed.
[0073]
Similarly, when the power is turned on, the cooling speed in the cabinet can be improved by setting the applied voltage of the fan 9 to V2 on the high speed side until the temperature detecting means TH1 detects a predetermined temperature (t1H) or less, for example, It is possible to shorten the first ice making completion time from power-on.
[0074]
In the fifth embodiment, by controlling the applied voltage of the fan 9 by the temperature detection means TH2 of the freezer compartment 6, it is possible to cool the refrigerator compartment 5 and the freezer compartment 6 more efficiently.
[0075]
(Embodiment 7)
FIG. 9 is a cross-sectional view of the refrigerator in the seventh embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0076]
Reference numeral 20 denotes a defrosting heater which is, for example, an aluminum foil heater bonded to the urethane side wall surface of the inner box on the refrigerator compartment 5 side. The defrosting heater 20 is attached to the refrigerator inner box with, for example, aluminum tape or double-sided tape.
[0077]
When it is detected that the temperature detection means TH1 of the refrigerator compartment 5 is lower than a predetermined temperature (for example, 0 ° C.), the control means C3 receives this signal, stops the compressor 1 and the fan 9, and defrosts the heater. 20 energization is started. While the compressor 1 is stopped, if the temperature detection means TH1 of the refrigerator compartment 5 detects a predetermined temperature (for example, 5 ° C.) or higher, the control means C3 receives this signal and the defrosting heater 20 While stopping energization, the compressor 1 and the fan 9 are actuated to start cooling.
[0078]
By defrosting using a heater, the frost adhering to the wall surface of the refrigerator compartment 5 can be more reliably melted, and the defrosting performance can be improved.
[0079]
In addition, since the conventional fan cooling cooler defrosting was performed by energizing a glass tube heater with a large heat capacity in the chamber, there was a problem that the temperature rise in the chamber during defrosting was large. In the embodiment, since the defrosting can be performed by the relatively low heat capacity defrosting heater 20 embedded in the urethane, the temperature rise in the cabinet due to the heat effect of the heater can be minimized. For example, it becomes possible to prevent melting of ice cream.
[0080]
(Embodiment 8)
FIG. 10 shows a time chart of the refrigerator in the sixth embodiment of the present invention. Detailed description of the same configurations as those of the first and seventh embodiments will be omitted, and only different portions will be described.
[0081]
Energization of the defrosting heater 20 is performed by a timer (not shown) when the compressor 1 is stopped every predetermined time (T3) from the end of previous energization (eg, T3 = 12 hours). When the compressor 1 is operating after the elapse of T3, the defrosting heater 20 is energized when the operation is stopped next time (T4). Similarly, when the compressor 1 is stopped after the elapse of T3, the defrosting heater 20 is energized when the operation is stopped next time.
[0082]
By periodically performing the defrosting, it is possible to minimize the temperature fluctuation of the food accompanying the defrosting and to save energy.
[0083]
It should be noted that the same effect can be obtained when the defrosting interval T3 by the timer is used as the accumulated time of operation of the compressor 1.
[0084]
(Embodiment 9)
FIG. 11 is a cross-sectional view of the refrigerator in the ninth embodiment of the present invention. Detailed description of the same configurations as those of the first, seventh, and eighth embodiments will be omitted, and only different portions will be described.
[0085]
TH3 is a wall surface temperature detecting means disposed on the back of the refrigerator 5, and when the TH3 detects a set temperature (for example, 2 ° C.) or more while the defrosting heater 20 is energized while the compressor 1 is stopped, the control means C4 Upon receipt of the signal, energization of the defrosting heater 20 is terminated.
[0086]
Thereby, by suppressing the energization of the excessive heater 20 for defrosting, the temperature fluctuation of the food accompanying defrosting can be minimized and energy saving can be achieved.
[0087]
(Embodiment 10)
FIG. 12 is a cross-sectional view of the refrigerator in the tenth embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0088]
TH4 is, for example, an outside air temperature detecting means, which is a thermistor, for example, disposed on the side surface of the refrigerator compartment 5 door, and 22 is, for example, an aluminum foil heater disposed in the partition 21 constituting the refrigerator compartment duct 7. It is a heater for temperature control.
[0089]
When it is detected that the temperature detection means TH1 of the refrigerator compartment 5 is lower than a predetermined temperature (for example, 0 ° C.), the control means C5 receives this signal, stops the compressor 1 and the fan 9, and the temperature adjustment heater 22 energization is started.
[0090]
At this time, the energization rate of the temperature adjustment heater 22 is determined as shown in (Table 1) with respect to the signal of the outside air temperature detection means TH4, and energization is performed at the energization rate.
[0091]
[Table 1]
Figure 0004168727
[0092]
If TH4 is equal to or lower than AT1 (for example, 15 ° C.), energization is started at an energization rate D1% (for example, 100%). While the compressor 1 is stopped, if the temperature detection means TH1 in the refrigerator compartment 5 detects a predetermined temperature (for example, 5 ° C.) or higher, the control means C5 receives this signal and energizes the temperature adjustment heater 22. At the same time, the compressor 1 and the fan 9 are operated to start cooling.
[0093]
Further, AT2 (for example, 25 ° C.) ≧ AT1 (for example, 15 ° C.), and D1 (for example, 100%) ≧ D2 (for example, 50%) ≧ D3 (for example, 0%). That is, control is performed such that the energization rate of the temperature adjustment heater 22 decreases as the outside air temperature increases.
[0094]
When the outside air temperature is close to the internal temperature of the refrigerator compartment 5, for example, 5 ° C., the compressor 1 is turned on / off by TH 1 which is a temperature detecting means of the refrigerator compartment 5, so the operating rate of the compressor 1 is extremely reduced. To do. As a result, the cooling load amount of the freezer compartment 6 cannot be secured and the temperature of the freezer compartment 6 cannot be maintained. In this case, in a conventional direct cooling type refrigerator, the temperature control heater 22 is energized when the compressor 1 is stopped, and the operating rate of the compressor 1 is ensured by forcibly applying a heat load to the refrigerator compartment 5. The cooling load of the freezer compartment 6 was maintained. However, since the temperature control heater 22 is energized even at high outside temperatures where the operating rate is relatively high and there is no need to forcibly apply a heat load to the 5 refrigerator compartments, the operating rate is unnecessarily increased and consumed. Although there has been a problem that the amount of electric power increases, in the present embodiment, it is possible to suppress excessively energizing the temperature adjustment heater 22 by decreasing the energization rate of the temperature adjustment heater 22 as the outside air temperature is higher. Energy saving is possible.
[0095]
The same effect can be obtained even if the temperature adjusting heater 22 is disposed in the heat insulating partition 14.
[0096]
(Embodiment 11)
FIG. 13 is a cross-sectional view of the refrigerator in the eleventh embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0097]
Reference numeral 24 denotes a vacuum heat insulating material which is disposed between the cooler 4 and the refrigerator outer box 23 and is composed of a core material made of, for example, a sheet-like inorganic fiber aggregate and a gas barrier film covering the core material.
[0098]
In manufacturing the refrigerator box 15, the vacuum heat insulating material 24 is directly bonded and fixed to, for example, the refrigerator outer box 23 in advance, and then a raw material of rigid urethane foam is injected to perform integral foaming. By disposing the cooler 4 between the cooler 4 and the refrigerator outer box 23 having the largest temperature difference, it is possible to reduce the heat absorption amount of the refrigerator box with the best cost performance. Moreover, the operation rate of the compressor 1 falls by heat insulation performance improvement, and energy saving is attained. In addition, the wall surface temperature of the refrigerator outer box 23 can be increased, and condensation of the refrigerator outer box 23 can be prevented.
[0099]
The same effect can be obtained by indirectly bonding the vacuum heat insulating material 24 to the refrigerator outer box 23.
[0100]
(Embodiment 12)
FIG. 14 is a cross-sectional view of the refrigerator in the twelfth embodiment of the present invention. Detailed description of the same configurations as those of the first and eleventh embodiments will be omitted, and only different portions will be described.
[0101]
The vacuum heat insulating material 24 is directly attached to the side surface of the cooler 4 on the refrigerator outer box 23 side, for example, with a double-sided tape.
[0102]
The heat absorption amount can be reduced more efficiently by reliably sticking to a part having a large temperature difference from the outside air. Moreover, since the component which stuck the vacuum heat insulating material 24 to the cooler 4 can be put into a refrigerator assembly process as a unit, it becomes possible to reduce a man-hour. In addition, it is possible to sell the component with the cooler 4 and the vacuum heat insulating material 24 attached as a unit.
[0103]
【The invention's effect】
As described above, the invention according to claim 1 includes an inner box and an outer box, and a heat insulating box made of urethane provided between the inner box and the outer box. The upper compartment is divided into a refrigerator compartment and the lower compartment is a freezer compartment. In the refrigerator Above Refrigerated room Only Arranged between the inner box and urethane Cooler And along the refrigerator wall In the refrigerator compartment and the freezer compartment A duct configured to allow cold air to flow, Provided in the duct in the refrigerator compartment With cooling fan And by the internal cooling fan Refrigerator and freezer Forced It cools and there is no need for defrosting by a heater, and the temperature rise of the refrigerator compartment and freezer compartment due to defrosting can be reduced. Moreover, the dispersion | variation in the chamber temperature distribution which was the subject of the conventional direct cooling cooling system can also be improved.
[0104]
The invention according to claim 2 is a heat insulating box made of urethane provided between an inner box, an outer box, and an inner box and an outer box. The upper compartment is divided into a refrigerator compartment and the lower compartment is a freezer compartment. In the refrigerator Above The back of the refrigerator compartment only Arranged in Cooler And along the refrigerator wall In the refrigerator compartment and the freezer compartment A duct configured to allow cold air to flow, Provided in the duct in the refrigerator compartment With cooling fan And by the internal cooling fan The refrigerator compartment and freezer compartment Forced The cooling efficiency is further improved, and the cooling efficiency is further improved. At the time of defrosting the cooler when the compressor is stopped, the attached frost can be more reliably melted and defrosted.
[0105]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the distribution of the discharge air amount in the refrigerator compartment and the discharge air amount in the freezer compartment is increased on the freezer compartment side, and cooling is performed. It becomes possible to ensure the cooling amount of the freezer compartment with a large load.
[0106]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein a mechanism for adjusting the amount of discharge air in the refrigerator compartment is provided, and the compressor is turned on and off in the refrigerator. It is controlled by the room temperature detection means, and the inside temperature of the freezer compartment can be freely set by varying the air volume distribution between the inside air quantity discharged from the refrigerating compartment and the amount discharged from the freezer compartment.
[0107]
According to a fifth aspect of the present invention, there is provided the compressor according to any one of the first to third aspects, further comprising a mechanism for controlling the discharge air amount in the refrigerator compartment by the refrigerator compartment temperature detecting means. ON / OFF of the refrigerator is controlled by the freezer temperature detection means, and it is possible to keep the inside temperature of the refrigerator compartment and the freezer compartment more reliably in any environment from the low outside temperature to the high outside temperature. It becomes possible.
[0108]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the number of rotations of the internal cooling fan is variably controlled in accordance with the load fluctuation in the internal storage. It is possible to cool the interior quickly.
[0109]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein a defrosting heater is disposed on the urethane inner wall surface of the inner box of the refrigerator compartment. By defrosting using a heater, the defrosting of the frost attached to the wall of the refrigerator compartment is more reliably ensured. Further, since the heater is embedded in the urethane, it is possible to minimize the temperature rise in the cabinet due to the heat effect of the heater.
[0110]
The invention according to claim 8 is the invention according to claim 7, wherein energization of the heater for defrosting is performed when the compressor is stopped at predetermined time intervals by a timer, This makes it possible to minimize energy fluctuations and to save energy.
[0111]
The invention according to claim 9 terminates energization of the heater for defrosting in the invention according to claim 7 or 8 when the surface temperature detecting means on the side wall surface of the refrigerator compartment detects a set temperature or higher. By suppressing the defrosting heater from being energized excessively, it is possible to suppress the temperature rise in the cabinet and to save energy.
[0112]
The invention according to claim 10 is set according to the outside air temperature by the temperature detecting means for detecting the outside air temperature in the invention according to any one of claims 1 to 4 or claim 6 to claim 9. The temperature adjustment heater disposed in the refrigerator compartment duct is energized at an energization rate, and energy saving can be achieved by suppressing the temperature adjustment heater from being energized excessively at a high outside temperature with a high operation rate.
[0113]
The invention according to claim 11 is the invention according to any one of claims 1 to 10, wherein a vacuum heat insulating material is disposed between the cooler and the refrigerator outer box. By disposing the vacuum heat insulating material in the place where the temperature difference is the largest, the heat absorption amount of the refrigerator box can be reduced with the best cost performance. Moreover, the operating rate of a compressor falls by heat insulation performance improvement, and energy saving is attained. In addition, the wall surface temperature of the refrigerator outer box can be raised, and condensation on the refrigerator outer box can be prevented.
[0114]
The invention according to claim 12 is the invention according to claim 1 or any one of claims 3 to 11, wherein the vacuum heat insulating material is directly attached to the side surface of the refrigerator outer box side of the cooler. The heat absorption amount can be more efficiently reduced by attaching the vacuum heat insulating material to a place where the temperature difference from the outside air is large. Moreover, since the component which stuck the vacuum heat insulating material to the wall surface cooler can be put into the refrigerator assembly process as a unit, man-hours can be reduced. In addition, a part to which a cooler and a vacuum heat insulating material are attached can be sold as a unit.
[0115]
The invention according to claim 13 is the invention according to any one of claims 1 to 12, wherein hydrocarbon is used as a refrigerant, contributing to prevention of global warming and cooling. Since the vessel is embedded in urethane, it is possible to reduce the risk of hydrocarbon leakage. In addition, since the electrical contacts in the cabinet such as the door switch and the lamp do not need to be explosion-proof, it is possible to suppress the cost increase due to hydrocarbon conversion of the refrigerant. In addition, since defrosting is naturally performed by the air in the refrigerator compartment, there is no need for defrosting by a high-temperature heating element such as a glass tube heater, and the risk can be further reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a refrigerator according to a second embodiment of the present invention.
FIG. 3 is a sectional view of a refrigerator according to a second embodiment of the present invention.
FIG. 4 is a sectional view of a refrigerator according to a third embodiment of the present invention.
FIG. 5 is a sectional view of a refrigerator according to a fourth embodiment of the present invention.
FIG. 6 is a schematic diagram of an internal air passage of the refrigerator according to the fifth embodiment of the present invention.
FIG. 7 is a sectional view of a refrigerator according to a fifth embodiment of the present invention.
FIG. 8 is a time chart of the refrigerator according to the sixth embodiment of the present invention.
FIG. 9 is a sectional view of a refrigerator according to a seventh embodiment of the present invention.
FIG. 10 is a time chart of the refrigerator according to the eighth embodiment of the present invention.
FIG. 11 is a sectional view of a refrigerator according to a ninth embodiment of the present invention.
FIG. 12 is a sectional view of a refrigerator according to a tenth embodiment of the present invention.
FIG. 13 is a sectional view of a refrigerator according to an eleventh embodiment of the present invention.
FIG. 14 is a sectional view of a refrigerator according to a twelfth embodiment of the present invention.
FIG. 15 is a cross-sectional view of a conventional refrigerator
[Explanation of symbols]
1 Compressor
4 Cooler
5 Cold room
6 Freezer room
7 Cold room duct
8 Freezer compartment duct
9 fans
14 Insulation partition
15 Refrigerator box
15a inner box
15b, 23 outer box
15c Urethane
18 Shutter
19 Damper
20 Defroster heater
22 Heater for temperature control
24 Vacuum insulation
C1, C2, C3, C4, C5 control means
TH1, TH2, TH3, TH4 Temperature detection means

Claims (13)

内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室のみの内箱とウレタンとの間に配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって冷蔵室および冷凍室を強制冷却することを特徴とする冷蔵庫。The inner box and the outer box, the inner box, the insulation box refrigerating chamber body upper made of urethane provided between the outer box, the refrigerator is partitioned into a freezing compartment at the bottom, the inner box and the urethane of the cooling chamber only A cooler disposed between the refrigerator and a duct configured to flow cold air into the refrigerator compartment and the freezer compartment along the wall surface of the refrigerator, and an internal cooling fan provided in the duct in the refrigerator compartment , A refrigerator characterized in that the refrigerator compartment and the freezer compartment are forcibly cooled by an internal cooling fan . 内箱と外箱と、内箱、外箱間に設けたウレタンからなる断熱箱体を上部に冷蔵室、下部に冷凍室とに区画した冷蔵庫において、前記冷蔵室庫内背面のみに配設した冷却器と冷蔵庫壁面部に沿って前記冷蔵室内および前記冷凍室内に冷気が流れるように構成したダクトと冷蔵室内の前記ダクト内に設けた庫内冷却用ファンとを備え、前記庫内冷却用ファンによって前記冷蔵室および冷凍室を強制冷却することを特徴とする冷蔵庫。The inner box and the outer box, the inner box, the refrigerating compartment the insulating box body on top made of urethane provided between the outer box, the refrigerator is partitioned into a freezing compartment at the bottom, is disposed only in said refrigeration compartment chamber back A cooler and a refrigerator configured to cool air flow along the wall surface of the refrigerator and the freezer compartment, and an internal cooling fan provided in the duct in the freezer compartment, the internal cooling fan Refrigerator, characterized in that forced cooling of the refrigerating chamber and the freezing chamber by. 冷蔵室庫内吐出風量と冷凍室庫内吐出風量の分配を冷凍室側を大としたことを特徴とする請求項1または2に記載の冷蔵庫。  The refrigerator according to claim 1 or 2, wherein the distribution of the discharge air amount in the refrigerator compartment and the discharge air amount in the freezer compartment is increased on the freezer compartment side. 冷蔵室庫内吐出風量を調整する機構を設け、圧縮機のON/OFFは冷蔵室温度検知手段で制御することを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 3, wherein a mechanism for adjusting the amount of discharge air in the refrigerator compartment is provided, and ON / OFF of the compressor is controlled by a refrigerator compartment temperature detection means. 冷蔵室温度検知手段により冷蔵室庫内吐出風量を制御する機構を設け、圧縮機のON/OFFは冷凍室温度検知手段で制御することを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。  4. A mechanism for controlling the discharge air volume in the refrigerator compartment by means of the refrigerator compartment temperature detecting means, and ON / OFF of the compressor is controlled by the refrigerator compartment temperature detecting means. The refrigerator according to item. 庫内の負荷変動に合わせて、庫内冷却用ファンの回転数を可変制御することを特徴とする請求項1から請求項5のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 5, wherein the number of rotations of the internal cooling fan is variably controlled in accordance with the load fluctuation in the internal storage. 冷蔵室側内箱のウレタン内壁面に除霜用ヒータを配設したことを特徴とする請求項1から請求項6のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 6, wherein a defrosting heater is disposed on a urethane inner wall surface of the refrigerator compartment inner box. 除霜用ヒータの通電は、タイマーにより所定時間間隔毎の圧縮機停止時に行うことを特徴とする請求項7に記載の冷蔵庫。  The refrigerator according to claim 7, wherein energization of the defrosting heater is performed when the compressor is stopped at predetermined time intervals by a timer. 冷蔵室側壁面の表面温度検知手段が設定温度以上を検知すると、除霜用ヒータ通電を終了することを特徴とする請求項7または8に記載の冷蔵庫。  The refrigerator according to claim 7 or 8, wherein when the surface temperature detecting means on the side wall surface of the refrigerator compartment detects a temperature equal to or higher than a set temperature, the defrosting heater energization is terminated. 外気温を検知する温度検知手段により、外気温別に設定した通電率で冷蔵室ダクト内に配設した温調用ヒータの通電を行うことを特徴とする請求項1から4ま
たは請求項6から請求項9のいずれか一項に記載の冷蔵庫。
The temperature detecting means for detecting the outside air temperature is used to energize the temperature control heater disposed in the refrigerator compartment duct at an energization rate set for each outside air temperature. The refrigerator according to any one of 9.
冷却器と冷蔵庫外箱の間に真空断熱材を配設することを特徴とする請求項1から請求項10のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 to 10, wherein a vacuum heat insulating material is disposed between the cooler and the refrigerator outer box. 冷却器の冷蔵庫外箱側側面に真空断熱材を直接貼り付けることを特徴とする請求項1または請求項3から請求項11のいずれか一項に記載の冷蔵庫。  The refrigerator according to any one of claims 1 or 3 to 11, wherein a vacuum heat insulating material is directly attached to a side surface of the refrigerator outer box side of the cooler. 冷媒として炭化水素を用いたことを特徴とする請求項1から12のいずれか一項に記載の冷蔵庫。  The hydrocarbon according to any one of claims 1 to 12, wherein a hydrocarbon is used as the refrigerant.
JP2002308247A 2002-10-23 2002-10-23 refrigerator Expired - Fee Related JP4168727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308247A JP4168727B2 (en) 2002-10-23 2002-10-23 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308247A JP4168727B2 (en) 2002-10-23 2002-10-23 refrigerator

Publications (2)

Publication Number Publication Date
JP2004144364A JP2004144364A (en) 2004-05-20
JP4168727B2 true JP4168727B2 (en) 2008-10-22

Family

ID=32454440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308247A Expired - Fee Related JP4168727B2 (en) 2002-10-23 2002-10-23 refrigerator

Country Status (1)

Country Link
JP (1) JP4168727B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824404B1 (en) * 2012-03-07 2018-10-31 PHC Holdings Corporation Drug refrigerator
JPWO2018038023A1 (en) * 2016-08-25 2019-06-20 日本電産株式会社 Control device, program, control method of refrigerator, and refrigerator
JP6752107B2 (en) * 2016-10-28 2020-09-09 日立グローバルライフソリューションズ株式会社 refrigerator
CN111417827B (en) * 2017-12-06 2021-09-28 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and recording medium
CN109850419B (en) * 2018-12-25 2024-03-29 广州好高冷科技有限公司 Multi-cycle variable air volume cold accumulation insulation box ventilation device based on mixed cooling

Also Published As

Publication number Publication date
JP2004144364A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
EP2833089B1 (en) Refrigerator and working method thereof
US5941085A (en) Refrigerator having an apparatus for defrosting
US20220042739A1 (en) Refrigerator control method
CN106196843A (en) Wind cooling refrigerator and dehumanization method thereof
KR100711653B1 (en) Refrigerator
US20140174100A1 (en) Refrigerator with no-frost freezer
CN113508274B (en) Control method of refrigerator
JP5178771B2 (en) Freezer refrigerator
JP2017003176A (en) Refrigeration device and refrigerator including the same
KR20180120975A (en) Refrigerator and Controlling method for the same
WO2018076583A1 (en) Refrigerator
KR20180120976A (en) Refrigerator and Controlling method for the same
US20220236000A1 (en) Method for controlling refrigerator
JP4872558B2 (en) refrigerator
JP4168727B2 (en) refrigerator
KR101330936B1 (en) Refrigerator
JP2012042140A (en) Refrigerator
US20220235977A1 (en) Method for controlling refrigerator
JP4103384B2 (en) refrigerator
JP3920653B2 (en) refrigerator
JP3600009B2 (en) Refrigerator control method
US12038219B2 (en) Refrigerator control method
JP2005024203A (en) Refrigerator
US20220146154A1 (en) Refrigerator control method
JP2008045847A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees