JP2017002214A - Manufacturing method of thermal storage medium - Google Patents

Manufacturing method of thermal storage medium Download PDF

Info

Publication number
JP2017002214A
JP2017002214A JP2015118926A JP2015118926A JP2017002214A JP 2017002214 A JP2017002214 A JP 2017002214A JP 2015118926 A JP2015118926 A JP 2015118926A JP 2015118926 A JP2015118926 A JP 2015118926A JP 2017002214 A JP2017002214 A JP 2017002214A
Authority
JP
Japan
Prior art keywords
silica gel
gel particles
heat storage
storage material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015118926A
Other languages
Japanese (ja)
Other versions
JP6356637B2 (en
Inventor
真祈 渡辺
Masaki Watanabe
真祈 渡辺
眞 小橋
Makoto Kobashi
眞 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyota Motor Corp
Original Assignee
Nagoya University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyota Motor Corp filed Critical Nagoya University NUC
Priority to JP2015118926A priority Critical patent/JP6356637B2/en
Publication of JP2017002214A publication Critical patent/JP2017002214A/en
Application granted granted Critical
Publication of JP6356637B2 publication Critical patent/JP6356637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a thermal storage medium having enhanced thermal conductivity while maintaining thermal storage property.SOLUTION: There is provided a manufacturing method of a thermal storage medium having the steps of mixing silica gel particles, titanium particles and aluminum particles to prepare a mixture and heat-treating the mixture at 700°C or higher and 800°C or lower, where average particle diameter of the titanium particles is smaller than average particle diameter of the silica gel particles.SELECTED DRAWING: None

Description

本発明は、蓄熱性と熱伝導性とを両立した蓄熱材の製造方法に関する。   The present invention relates to a method for producing a heat storage material that achieves both heat storage and thermal conductivity.

特許文献1に開示されているように、水蒸気の吸着・脱離によって放熱・蓄熱する蓄熱材が知られている。蓄熱材としては例えばシリカゲルを用いることができる。一方、特許文献2には、アルミニウム、チタン、発泡助剤を混合して、固化成形し焼成して製造される高強度多孔質アルミニウム合金が開示されている。また、特許文献3、4には、耐熱性や耐摩耗性等を向上させた複合材料として、チタン粉末、セラミックス粉末、溶融アルミを焼成させてなる複合材料が開示されている。さらに、非特許文献1では、シリカの多孔体を種々の温度で焼成し、焼成温度と比表面積及び細孔容積との関係について検討している。なお、非特許文献1では800℃で焼成した時に細孔容量が60%以上残存することが報告されている。   As disclosed in Patent Document 1, a heat storage material that radiates and stores heat by adsorption / desorption of water vapor is known. For example, silica gel can be used as the heat storage material. On the other hand, Patent Document 2 discloses a high-strength porous aluminum alloy produced by mixing aluminum, titanium, and a foaming aid, solidifying and firing. Patent Documents 3 and 4 disclose composite materials obtained by firing titanium powder, ceramic powder, and molten aluminum as composite materials with improved heat resistance and wear resistance. Further, in Non-Patent Document 1, the porous body of silica is fired at various temperatures, and the relationship between the firing temperature, the specific surface area, and the pore volume is examined. In Non-Patent Document 1, it is reported that the pore volume remains at 60% or more when baked at 800 ° C.

特開2012−163264号公報JP 2012-163264 A 特開2011−047012号公報JP 2011-047012 A 特開2009−167490号公報JP 2009-167490 A 特開2008−075105号公報JP 2008-075105 A

JOURNAL OF MATERIALS SCIENCE 30 (2004) 1037-1040JOURNAL OF MATERIALS SCIENCE 30 (2004) 1037-1040

シリカゲルは熱伝導性が低い。そのため、シリカゲルを用いた蓄熱材は、吸放熱速度が遅いという問題があった。そこで本発明は、蓄熱性を維持しつつ熱伝導性を向上させた蓄熱材の製造方法を提供することを課題とする。   Silica gel has low thermal conductivity. Therefore, the heat storage material using silica gel has a problem that the heat absorption / release rate is slow. Then, this invention makes it a subject to provide the manufacturing method of the heat storage material which improved heat conductivity, maintaining heat storage property.

上記課題を解決するために、本発明は以下の構成を採る。すなわち、
本発明は、シリカゲル粒子とチタン粉末とアルミニウム粉末とを混合して混合物を作製する工程、及び、混合物を700℃以上800℃以下で熱処理する工程を備え、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも小さい、蓄熱材の製造方法である。
In order to solve the above problems, the present invention adopts the following configuration. That is,
The present invention comprises a step of preparing a mixture by mixing silica gel particles, titanium powder and aluminum powder, and a step of heat-treating the mixture at 700 ° C. or higher and 800 ° C. or lower, wherein the average particle size of the titanium powder is that of silica gel particles. This is a method for producing a heat storage material that is smaller than the average particle size.

シリカゲル粒子とチタン粉末とアルミニウム粉末とを700℃以上で熱処理した場合、チタンとアルミニウムとが反応して高融点の合金(特にAlTi)が生成する。ここで、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも小さい場合、当該合金がシリカゲル粒子間に入り込み、シリカゲル粒子間に適切に金属相を形成させつつ固化させることができ、蓄熱材全体として熱伝導性を向上させることができる。一方、熱処理温度を800℃以下とすることで、蓄熱材の細孔の減少を抑制できる。すなわち、蓄熱材全体としての蓄熱性を維持することができる。このように、本発明によれば、蓄熱性を維持しつつ熱伝導性を向上させた蓄熱材の製造方法を提供することができる。 When silica gel particles, titanium powder, and aluminum powder are heat-treated at 700 ° C. or higher, titanium and aluminum react to produce a high melting point alloy (especially Al 3 Ti). Here, when the average particle size of the titanium powder is smaller than the average particle size of the silica gel particles, the alloy enters between the silica gel particles and can be solidified while appropriately forming a metal phase between the silica gel particles. As a whole, the thermal conductivity can be improved. On the other hand, the heat processing temperature shall be 800 degrees C or less, and the reduction | decrease of the pore of a thermal storage material can be suppressed. That is, the heat storage property as the whole heat storage material can be maintained. Thus, according to this invention, the manufacturing method of the heat storage material which improved heat conductivity, maintaining heat storage property can be provided.

実施例2に係る蓄熱材の組織を示すSEM写真図である。It is a SEM photograph figure which shows the structure | tissue of the thermal storage material which concerns on Example 2. FIG. 比較例2に係る蓄熱材の組織を示すSEM写真図である。It is a SEM photograph figure which shows the structure | tissue of the thermal storage material which concerns on the comparative example 2.

本発明は、シリカゲル粒子とチタン粉末とアルミニウム粉末とを混合して混合物を作製する工程(以下、工程S1)、及び、混合物を700℃以上800℃以下で熱処理する工程(以下、工程S2)を備え、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも小さい、蓄熱材の製造方法である。
本明細書において「平均粒子径」とは、一般的なレーザー回折・光散乱法に基づく粒度分布測定装置によって測定した体積基準の粒度分布おいて、微粒子側からの累積50体積%に相当する粒径(D50粒径。メジアン径。)をいう。
The present invention includes a step of preparing a mixture by mixing silica gel particles, titanium powder, and aluminum powder (hereinafter, step S1), and a step of heat-treating the mixture at 700 ° C. to 800 ° C. (hereinafter, step S2). And a method for producing a heat storage material, wherein the average particle size of the titanium powder is smaller than the average particle size of the silica gel particles.
In this specification, the “average particle size” means a particle corresponding to a cumulative volume of 50% by volume from the fine particle side in a volume-based particle size distribution measured by a particle size distribution measuring apparatus based on a general laser diffraction / light scattering method. Diameter (D50 particle size. Median diameter).

1.工程S1
1.1.シリカゲル粒子
工程S1において用いられるシリカゲル粒子は、水蒸気の吸着・脱離によって放熱・蓄熱する性能を有するものであればよく、蓄熱材として使用され得る公知のシリカゲル粒子のいずれを用いてもよい。シリカゲル粒子はその比表面積が大きいものを用いることが好ましい。具体的にはBET法による比表面積が好ましくは100m/g以上1500m/g以下、より好ましくは300m/g以上1000m/g以下のものを用いる。シリカゲル粒子は粒子状であればよく、粒子径については蓄熱材として確保すべき性能等に合わせて好適なものを選択すればよい。例えば、平均粒子径が1μm以上1000μm以下、好ましくは1μm以上100μm以下、より好ましくは5μm以上10μm以下のものを用いることができる。シリカゲル粒子の形状は特に限定されるものではないが、球状であることが好ましい。
1. Process S1
1.1. Silica Gel Particles The silica gel particles used in the step S1 may be any silica gel particles that can be used as a heat storage material as long as they have the ability to dissipate and store heat by adsorption / desorption of water vapor. The silica gel particles preferably have a large specific surface area. Specifically, a specific surface area by the BET method is preferably 100 m 2 / g or more and 1500 m 2 / g or less, more preferably 300 m 2 / g or more and 1000 m 2 / g or less. The silica gel particles may be in the form of particles, and the particle diameter may be selected in accordance with the performance to be secured as a heat storage material. For example, those having an average particle diameter of 1 μm to 1000 μm, preferably 1 μm to 100 μm, more preferably 5 μm to 10 μm can be used. The shape of the silica gel particles is not particularly limited, but is preferably spherical.

1.2.チタン粉末
工程S1において用いられるチタン粉末は、後述する工程S2における熱処理によって、後述するアルミニウム粉末と反応し、高融点の合金(特にAlTi合金)を形成し得るものである。本発明においては、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも小さいことが重要である。熱処理によって上述の合金を形成する場合、当該合金の結晶粒子径はチタン粉末の粒子径よりも大きくなる。チタンとアルミニウムとの反応が、チタンの融点以下、且つ、アルミニウムの融点以上で、固‐液反応によって進行し、高融点の合金が固相のまま成長するためである。よって、仮に原料であるチタン粉末の平均粒子径が大きい場合、蓄熱材の組織中に粗大な合金粒子が分散することになり、熱伝導性を十分に向上させることができない虞がある。この点、本発明においては平均粒子径の小さなチタン粉末を用いることで、合金が生成された際に当該合金がシリカゲル粒子間に入り込み、シリカゲル粒子間に適切に金属相を形成させつつ固化させることができる。シリカゲル粒子間において金属相はある程度連続的に存在し、シリカゲル粒子間の熱伝導性の向上に大きく寄与する。また、合金とならなかったチタン及びアルミニウムについても熱伝導性の向上に寄与する。すなわち、平均粒子径の小さなチタン粉末を用いて蓄熱材を製造することにより、蓄熱材を適切に固化させつつ、蓄熱材全体として熱伝導性を向上させることができる。チタン粉末の具体的な平均粒子径についてはシリカゲル粒子の平均粒子径に合わせて選択すればよい。例えば、平均粒子径が0.01μm以上10μm以下のものを用いることができる。
1.2. Titanium powder The titanium powder used in step S1 can react with an aluminum powder described later by a heat treatment in step S2 described later to form a high melting point alloy (particularly an Al 3 Ti alloy). In the present invention, it is important that the average particle size of the titanium powder is smaller than the average particle size of the silica gel particles. When the above alloy is formed by heat treatment, the crystal particle size of the alloy is larger than the particle size of the titanium powder. This is because the reaction between titanium and aluminum proceeds by a solid-liquid reaction below the melting point of titanium and above the melting point of aluminum, and a high melting point alloy grows in a solid phase. Therefore, if the average particle diameter of the titanium powder as a raw material is large, coarse alloy particles are dispersed in the structure of the heat storage material, and there is a possibility that the thermal conductivity cannot be sufficiently improved. In this regard, in the present invention, by using titanium powder having a small average particle diameter, when the alloy is produced, the alloy enters between the silica gel particles, and solidifies while appropriately forming a metal phase between the silica gel particles. Can do. The metal phase is continuously present to some extent between the silica gel particles, which greatly contributes to the improvement of the thermal conductivity between the silica gel particles. Further, titanium and aluminum that have not become alloys also contribute to the improvement of thermal conductivity. That is, by producing a heat storage material using a titanium powder having a small average particle diameter, it is possible to improve the thermal conductivity of the heat storage material as a whole while appropriately solidifying the heat storage material. What is necessary is just to select according to the average particle diameter of a silica gel particle about the specific average particle diameter of titanium powder. For example, those having an average particle diameter of 0.01 μm or more and 10 μm or less can be used.

1.3.アルミニウム粉末
工程S1において用いられるアルミニウム粉末は、上述したチタン粉末と反応し、高融点の合金(特にAlTi)を形成し得るものであればよく、その形態は特に限定されるものではない。例えば、平均粒子径が1μm以上1000μm以下、好ましくは1μm以上100μm以下のものを用いることができる。
1.3. Aluminum powder The aluminum powder used in step S1 is not particularly limited as long as it can react with the titanium powder described above to form a high melting point alloy (particularly Al 3 Ti). For example, those having an average particle diameter of 1 μm or more and 1000 μm or less, preferably 1 μm or more and 100 μm or less can be used.

1.4.混合物
工程S1においては、上述したシリカゲル粒子とチタン粉末とアルミニウム粉末とを混合して混合物を作製する。混合手段については特に限定されるものではない。公知の機械的混合手段を用いて混合してもよいし、乳鉢等によって手動で混合してもよい。混合は乾式混合、湿式混合のいずれであってもよい。
1.4. Mixture In step S1, the above-described silica gel particles, titanium powder, and aluminum powder are mixed to produce a mixture. The mixing means is not particularly limited. You may mix using a well-known mechanical mixing means, and may mix manually with a mortar. Mixing may be either dry mixing or wet mixing.

シリカゲル粒子に対する、チタン粉末及びアルミニウム粉末の混合比については、後述する工程S2を経て、シリカゲル粒子の間に金属相(上述の合金を含む相)が適切に形成されるような比率であればよい。特に、蓄熱材全体(空隙を含む)における金属相の体積比が50%以下となるような比率で、シリカゲル粒子とチタン粉末とアルミニウム粉末とを混合することが好ましい。蓄熱材における金属相の体積比を小さくすることで、蓄熱材全体としての蓄熱性能を良好なものとすることができる。一方、本発明では、上述した通り、シリカゲル粒子の間に合金を適切に入り込ませることができ、金属相の繋がりが良好であるため、金属相の体積比が小さくとも十分な熱伝導性を確保できる。当該金属相の体積比の下限は特に限定されるものではないが、例えば30%以上が好ましい。   The mixing ratio of the titanium powder and the aluminum powder with respect to the silica gel particles may be a ratio such that a metal phase (a phase including the above-described alloy) is appropriately formed between the silica gel particles through step S2 described later. . In particular, it is preferable to mix the silica gel particles, the titanium powder, and the aluminum powder at such a ratio that the volume ratio of the metal phase in the entire heat storage material (including voids) is 50% or less. By reducing the volume ratio of the metal phase in the heat storage material, the heat storage performance of the heat storage material as a whole can be improved. On the other hand, in the present invention, as described above, the alloy can be appropriately inserted between the silica gel particles, and since the connection of the metal phase is good, sufficient thermal conductivity is ensured even if the volume ratio of the metal phase is small. it can. Although the minimum of the volume ratio of the said metal phase is not specifically limited, For example, 30% or more is preferable.

また、チタン粉末に対するアルミニウム粉末の混合比については、これらが互いに反応して合金(特にAlTi)を形成し得るような比率であればよい。ただし、アルミニウムとチタンとのモル比は3:1に限定されるものではない。例えば、上述の金属相において、アルミニウムが60mol%以上、チタンが25mol%以上含まれるように混合することができる。或いは、アルミニウムとチタンとのモル比(Al/Ti)が3以上9以下となるように混合してもよい。3以上4以下がさらに好ましい。 Further, the mixing ratio of the aluminum powder to the titanium powder may be such a ratio that they can react with each other to form an alloy (particularly Al 3 Ti). However, the molar ratio of aluminum to titanium is not limited to 3: 1. For example, in the above-described metal phase, mixing can be performed so that aluminum is contained in an amount of 60 mol% or more and titanium is contained in an amount of 25 mol% or more. Or you may mix so that the molar ratio (Al / Ti) of aluminum and titanium may be 3-9. 3 or more and 4 or less are more preferable.

2.工程S2
工程S2においては、上述のようにして得られた混合物を700℃以上800℃以下で熱処理する。工程S2においては、混合物を粒子状・粉体状のまま熱処理してもよいし、混合物をペレット等に成形したうえで熱処理してもよい。工程S2において熱処理温度が低過ぎる場合、上述した金属相を適切に生成できず、シリカゲル粒子同士を接着させることも困難となる。一方、熱処理温度が高過ぎる場合、シリカゲル粒子が軟化・溶融し、細孔が過度に減少して蓄熱機能が失われる虞がある。なお、800℃であれば細孔容量が60%以上残存すると考えられる。工程S2において用いられる熱処理手段(加熱手段)については特に限定されるものではなく、公知の熱処理手段を用いればよい。例えば、高周波加熱装置を用いて熱処理が可能である。熱処理の際の雰囲気については、蓄熱材に不要な変質が生じないような雰囲気であればよく、特に限定されるものではない。
2. Process S2
In step S2, the mixture obtained as described above is heat-treated at 700 ° C. or higher and 800 ° C. or lower. In step S2, the mixture may be heat-treated in the form of particles or powder, or may be heat-treated after the mixture is formed into pellets or the like. When the heat treatment temperature is too low in step S2, the above-described metal phase cannot be properly generated, and it is difficult to bond the silica gel particles. On the other hand, when the heat treatment temperature is too high, the silica gel particles are softened and melted, the pores are excessively reduced, and the heat storage function may be lost. In addition, it is thought that a pore volume will remain 60% or more at 800 ° C. The heat treatment means (heating means) used in step S2 is not particularly limited, and a known heat treatment means may be used. For example, heat treatment can be performed using a high-frequency heating device. The atmosphere at the time of the heat treatment is not particularly limited as long as it is an atmosphere that does not cause unnecessary alteration of the heat storage material.

工程S2による熱処理により、シリカゲル粒子間に上述の金属相が形成され、所望の蓄熱材を製造できる。ここで、本発明では、金属相に含まれる合金の一次粒子の粒子径が、シリカゲル粒子の粒子径よりも小さいことが好ましい。これについては、上述の通りチタン粉末の粒子径を小さくすることによって達成可能である。   By the heat treatment in step S2, the above-described metal phase is formed between the silica gel particles, and a desired heat storage material can be manufactured. Here, in this invention, it is preferable that the particle diameter of the primary particle of the alloy contained in a metal phase is smaller than the particle diameter of a silica gel particle. This can be achieved by reducing the particle size of the titanium powder as described above.

尚、工程S2において、上述の合金の生成の際、化学反応熱が発生する。その反応熱によりシリカゲル粒子の表面のみが軟化し、当該合金とシリカゲル粒子とがより強固に接着すると考えられる。この場合、シリカゲル粒子の内部が軟化するほどの熱は発生しないため、細孔は維持される。   In step S2, heat of chemical reaction is generated when the above-described alloy is produced. It is considered that only the surface of the silica gel particles is softened by the reaction heat, and the alloy and the silica gel particles are more firmly bonded. In this case, the heat is not generated to soften the inside of the silica gel particles, so that the pores are maintained.

以上の通り、本発明によれば、蓄熱性を維持しつつ熱伝導性を向上させた蓄熱材を製造することができる。   As described above, according to the present invention, it is possible to manufacture a heat storage material having improved thermal conductivity while maintaining heat storage.

下記表1に示す割合にて、球状シリカゲル粒子、チタン粉末、及び、アルミニウム粉末を混合して混合物とし、当該混合物をアルミ製容器に投入した後、圧粉成形してペレットを作成した。当該ペレットを高周波加熱装置にて、表1に示す温度及び時間にて加熱保持して実施例・比較例に係る蓄熱材を得た。固化した蓄熱材について熱伝導率を測定し、窒素吸着により細孔容量及び比表面積を測定し、さらにSEMにて組織観察を行った。結果を表1及び図1、2に示す。   Spherical silica gel particles, titanium powder, and aluminum powder were mixed at a ratio shown in Table 1 to make a mixture, and the mixture was put into an aluminum container, and then compacted to create a pellet. The pellet was heated and held at a temperature and time shown in Table 1 with a high-frequency heating device to obtain a heat storage material according to Examples and Comparative Examples. The thermal conductivity of the solidified heat storage material was measured, the pore volume and specific surface area were measured by nitrogen adsorption, and the structure was observed with an SEM. The results are shown in Table 1 and FIGS.

表1に示す結果から明らかなように、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも大きい場合(比較例1〜4)は、熱処理温度を過度に上昇させた場合(比較例4)を除いて、蓄熱材を適切に固化させることができない。熱処理によりアルミニウムの融解が始まった直後にチタンとアルミニウムとが反応し、高融点のAlTiの大きな粒子が形成されるため、球状シリカゲル粒子の間に金属相が適切に形成されなかったためと考えられる。一方で、熱処理温度を過度に上昇させた場合(比較例4)は、高温で軟化したシリカゲル粒子の融着と相まって、蓄熱材を固化させることが可能ではあるものの、シリカゲル粒子の細孔が失われてしまい、蓄熱材としての性能が確保できない。なお、比較例2、3は固化させることが出来なかったため、細孔容量残存率および熱伝導率は測定していない。 As is clear from the results shown in Table 1, when the average particle size of the titanium powder is larger than the average particle size of the silica gel particles (Comparative Examples 1 to 4), the heat treatment temperature is excessively increased (Comparative Example 4). Except for), the heat storage material cannot be solidified properly. Immediately after the heat treatment starts melting aluminum, titanium and aluminum react to form large particles of high melting point Al 3 Ti, so the metal phase was not properly formed between the spherical silica gel particles. It is done. On the other hand, when the heat treatment temperature is excessively increased (Comparative Example 4), although the heat storage material can be solidified in combination with the fusion of the silica gel particles softened at a high temperature, the pores of the silica gel particles are lost. The performance as a heat storage material cannot be secured. Since Comparative Examples 2 and 3 could not be solidified, the pore volume residual rate and the thermal conductivity were not measured.

一方、チタン粉末の平均粒子径がシリカゲル粒子の平均粒子径よりも小さい場合(実施例1〜4)は、比較例よりも低温にて蓄熱材を固化させることができる。また、金属相の体積率が30%と小さい場合であっても、固化が可能である。高融点のAlTiを含む金属相が、球状シリカゲル粒子の間に適切に形成されたためと考えられる。すなわち、シリカゲルの細孔容量を維持しつつ、金属相によって蓄熱材を固化させることができ、熱伝導性を向上させることができる。 On the other hand, when the average particle diameter of the titanium powder is smaller than the average particle diameter of the silica gel particles (Examples 1 to 4), the heat storage material can be solidified at a temperature lower than that of the comparative example. Even if the volume fraction of the metal phase is as small as 30%, solidification is possible. This is probably because the metal phase containing Al 3 Ti having a high melting point was appropriately formed between the spherical silica gel particles. That is, the heat storage material can be solidified by the metal phase while maintaining the pore volume of the silica gel, and the thermal conductivity can be improved.

図1に実施例2に係る蓄熱材のSEM写真を、図2に比較例2に係る蓄熱材のSEM写真をそれぞれ示す。図1から明らかなように、実施例に係る蓄熱材においては、シリカゲル粒子の間に、金属相が適切に形成されていることが分かる。一方、図2から明らかなように、比較例に係る蓄熱材においては、粗大なAlTi粒子が数多く存在しており、シリカゲル粒子の間に金属相が適切に形成されず、シリカゲル粒子同士をうまく接着することもできていない。 FIG. 1 shows an SEM photograph of the heat storage material according to Example 2, and FIG. 2 shows an SEM photograph of the heat storage material according to Comparative Example 2, respectively. As is clear from FIG. 1, in the heat storage material according to the example, it can be seen that a metal phase is appropriately formed between the silica gel particles. On the other hand, as is clear from FIG. 2, in the heat storage material according to the comparative example, there are many coarse Al 3 Ti particles, and a metal phase is not properly formed between the silica gel particles, and the silica gel particles are It cannot be bonded well.

本発明により製造される蓄熱材は、水蒸気の吸着・脱離によって放熱・蓄熱が可能であり、且つ、金属相によって熱伝導性が高められているため熱応答性に優れる。このような蓄熱材は、産業排熱等を有効利用するための蓄熱装置用の蓄熱材料として広く利用可能である。   The heat storage material produced according to the present invention can dissipate heat and store heat by adsorption / desorption of water vapor, and has excellent thermal responsiveness because the thermal conductivity is enhanced by the metal phase. Such a heat storage material can be widely used as a heat storage material for a heat storage device for effectively using industrial waste heat or the like.

Claims (1)

シリカゲル粒子とチタン粉末とアルミニウム粉末とを混合して混合物を作製する工程、及び、
前記混合物を700℃以上800℃以下で熱処理する工程
を備え、
前記チタン粉末の平均粒子径が前記シリカゲル粒子の平均粒子径よりも小さい、
蓄熱材の製造方法。
Mixing silica gel particles, titanium powder and aluminum powder to produce a mixture; and
Heat treating the mixture at 700 ° C. or higher and 800 ° C. or lower,
The average particle size of the titanium powder is smaller than the average particle size of the silica gel particles,
Manufacturing method of heat storage material.
JP2015118926A 2015-06-12 2015-06-12 Manufacturing method of heat storage material Active JP6356637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118926A JP6356637B2 (en) 2015-06-12 2015-06-12 Manufacturing method of heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118926A JP6356637B2 (en) 2015-06-12 2015-06-12 Manufacturing method of heat storage material

Publications (2)

Publication Number Publication Date
JP2017002214A true JP2017002214A (en) 2017-01-05
JP6356637B2 JP6356637B2 (en) 2018-07-11

Family

ID=57751410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118926A Active JP6356637B2 (en) 2015-06-12 2015-06-12 Manufacturing method of heat storage material

Country Status (1)

Country Link
JP (1) JP6356637B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047519A (en) * 2000-05-25 2002-02-15 Ngk Insulators Ltd Method for producing intermetallic compound matrix composite material
JP2005024231A (en) * 2003-06-09 2005-01-27 Matsushita Electric Ind Co Ltd Heat storage type heat pump system
JP2008075105A (en) * 2006-09-19 2008-04-03 Naoyuki Kanetake Composite material and its production method
JP2012163264A (en) * 2011-02-07 2012-08-30 Toyota Central R&D Labs Inc Heat storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047519A (en) * 2000-05-25 2002-02-15 Ngk Insulators Ltd Method for producing intermetallic compound matrix composite material
JP2005024231A (en) * 2003-06-09 2005-01-27 Matsushita Electric Ind Co Ltd Heat storage type heat pump system
JP2008075105A (en) * 2006-09-19 2008-04-03 Naoyuki Kanetake Composite material and its production method
JP2012163264A (en) * 2011-02-07 2012-08-30 Toyota Central R&D Labs Inc Heat storage device

Also Published As

Publication number Publication date
JP6356637B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5469465B2 (en) Porous metal product and method for producing porous metal product
WO2017045273A1 (en) Aerogel-metal composite material, preparation method therefor and application thereof
JPWO2018186308A1 (en) Spherical crystalline silica particles and method for producing the same
CN103789590B (en) The preparation method of particle reinforced magnesium base compound material
RU2017144428A (en) METHOD OF MAKING POROUS BODIES WITH IMPROVED PROPERTIES
WO2018041032A1 (en) Copper foam powder and manufacturing method thereof
US20090096121A1 (en) Method of producing open-cell inorganic foam
Darghouth et al. High purity porous silicon powder synthesis by magnesiothermic reduction of Tunisian silica sand
CN104263988B (en) A kind of TiB2the preparation method of particle reinforced aluminum foam/aluminium alloy
JP2019531443A (en) Method for producing hydrophobic heat insulating material
Zhou et al. Fabrication and characterization of pure porous Ti3SiC2 with controlled porosity and pore features
CN105732042A (en) Method for preparing ultrafine tantalum carbide powder by using fused salt under assistance of low temperature
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN107010990B (en) Preparation method of low-thermal-conductivity cordierite porous ceramic
CN104117675A (en) Preparation method for composite material based on porous aluminum or aluminum alloy
JP6693575B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JP6356637B2 (en) Manufacturing method of heat storage material
JPS5983978A (en) Novel material comprising silicon and manufacture
CN104694777A (en) Porous aluminum-magnesium alloy preparation method
CA2891260C (en) Catalytically active porous element and method of manufacturing same
CN105315005A (en) Heat insulating material
JPWO2018110567A1 (en) Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
KR101137951B1 (en) Method of manufacturing amorphous metal foams by selective solvent extrusion using amorphous powder and amorphous metal foams manufactured the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180614

R151 Written notification of patent or utility model registration

Ref document number: 6356637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250