JP2016538002A - 磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置 - Google Patents

磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置 Download PDF

Info

Publication number
JP2016538002A
JP2016538002A JP2016516072A JP2016516072A JP2016538002A JP 2016538002 A JP2016538002 A JP 2016538002A JP 2016516072 A JP2016516072 A JP 2016516072A JP 2016516072 A JP2016516072 A JP 2016516072A JP 2016538002 A JP2016538002 A JP 2016538002A
Authority
JP
Japan
Prior art keywords
valve
magnetic field
conductive coil
cooling loop
sealing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016516072A
Other languages
English (en)
Other versions
JP6139784B2 (ja
Inventor
アレクサンデル ヨナス,フィリップ
アレクサンデル ヨナス,フィリップ
アドルフ アッカーマン,ロベルト
アドルフ アッカーマン,ロベルト
アベル メントゥール,フィリッペ
アベル メントゥール,フィリッペ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016538002A publication Critical patent/JP2016538002A/ja
Application granted granted Critical
Publication of JP6139784B2 publication Critical patent/JP6139784B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

バルブは、対流冷却ループ内に配置された気体の流れを制御するよう構成される。バルブは、クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して、開放位置と閉成位置との間で作動することができる。

Description

本発明は、概して、極低温環境において超電導永久磁石とともに使用される対流冷却ループに関する。
超電導磁石は、核磁気共鳴(NMR;Nuclear Magnetic Resonance)解析及び磁気共鳴撮像(MRI;Magnetic Resonance Imaging)を含む様々な場面で使用されている。超電導を実現するよう、磁石は、絶対零度に近い温度にある極低温環境に保たれる。通常、磁石は、クライオスタット内に配置されている1つ以上の導電コイルを含む。導電コイルを通って電流が巡回し、磁場が生成される。
導電コイルが通常運転中に超電導であるようにそれらを低温に保つための多数の方法が存在する。
1つの方法は、導電コイル及びコールドステーションから熱を移動させるように導電コイルとコールドステーションとの間で気体を循環させるよう、冷却ループにおいて1つ以上の冷却管を用いることである。コールドステーションは、通常、比較的大きいサーマルマスを持った何らかの構造体であり、冷却システムがオフされるか又は動作不能である場合に、短期間、導電コイルを冷やし続けるために使用され得る。かかる冷却管は、コールドステーションが導電コイルよりも低い温度にあるときはいつでも、熱を導電コイルからコールドステーションへ有効に移してよい。
しかし、いくつかの状況では、クライオスタット内の条件が悪化することがあり、磁石(すなわち、導電コイル)の温度は上昇し始め得る。これは、例えば、極低温環境のための冷却機能が、例えば、コンプレッサのための電力の喪失(すなわち、停電)に起因して、失われる場合に、起こり得る。ある時点で、クライオスタット内の磁石の環境の冷却が回復されない場合は、磁石の温度は、磁場が“クエンチ”して、磁石がその磁場を熱エネルギに変換する、いわゆる臨界温度に達するまで上昇する。その場合に、導電コイルの温度は、コールドステーションの温度を軽く超えて上昇し、コールドステーションのヒートシンク機能は消耗され得る。更には、コールドステーションが導電コイルによって加熱される場合は、それは、超電導磁石システムを通常運転に戻すために、クライオスタットの冷却システムによって冷却され直す必要があり得る。これは、クエンチから回復するための時間を引き延ばし得る。
加えて、いくつかの超電導磁石システム(例えば、いわゆる“クライオフリーシステム”)において、磁石は真空環境に保たれ、冷却液(例えば、液体ヘリウム)で満たされたシールドシステム(例えば、コールドプレート)によって冷却される。かかるシステムでは、漂遊分子が熱移動のためのメカニズムになり得るので、真空に放出され得る漂遊分子を吸収するように、真空環境内でコールドステーションにおいて又はその近くにゲッターを設けることが有利である。その場合に、コールドステーションが温まることを許される場合は、ゲッターによって捕捉されている漂遊分子はチェンバーに放出され得る。それが起こる場合には、クライオスタットの高価な且つ時間がかかる真空ポンプダウンが、放出された分子を除去するために必要とされ得る。
従って、磁場がクエンチされることで導電コイルの温度が上昇する場合に、導電コイルからの熱がコールドステーションを加熱しないように、導電コイルをコールドステーションから熱的に切り離す又は分離することが望ましい。より具体的に、磁場がクエンチされ、導電コイルの温度が上昇する場合に、冷却ループを開放することが望ましい。さもなければ、冷却コイルは、熱を導電コイルからコールドステーションへ移動させる。
しかし、冷却ループは、通常、ハイガス(例えば、ヘリウムガス)を内包し、高真空環境において配置され、極低温で動作するので、手動バルブ又はソレノイド作動式バルブ(やはり熱放散が大きい。)は、例えば、導電コイルがクエンチにより加熱される場合に冷却ループ内の循環を妨げるように、冷却ループ内のフローを制御するのに、全く適さない。
然るに、外部制御なしで、導電コイルがクエンチにより加熱される場合に、冷却ループ内の循環を自動的に妨げるための方法及びデバイスを提供することが望ましい。
本発明の一態様は、クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して、閉成位置と開放位置との間の対流冷却ループのバルブを作動させるステップを有し、前記バルブの作動は、前記対流冷却ループ内にある気体の流れを制御する、方法を提供することができる。
いくつかの実施形態では、当該方法は、液体ヘリウムを内包するシールドシステムを介して前記少なくとも1つの導電コイルを冷やすステップを更に有することができる。
いくつかの実施形態では、前記対流冷却ループにおける前記バルブを開くことは、前記磁場が少なくとも閾磁場傾斜を有することに応答して、前記バルブの密封面に対して前記バルブの磁気反応性封止要素を動かして、それにより前記バルブを開くことを含むことができる。
いくつかの実施形態では、前記対流冷却ループにおける前記バルブを作動させるステップは、前記磁場が少なくとも閾磁場傾斜を有することに応答して、前記バルブの磁気反応性要素を動かすことを含むことができ、前記磁気反応性要素を動かすことは、前記バルブを開くよう、前記バルブの非磁性の封止要素が前記バルブの密封面に対して動かされるようにする。
いくつかの実施形態では、前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを閉じるよう、前記気体の圧力によって生じる力及び重力のうちの少なくとも1つを用いて、前記バルブの封止要素が前記バルブの密封面に対して動かされるようにすることを含むことができる。
いくつかの実施形態では、前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを閉じるよう、前記バルブにおけるバネによって生じる力を用いて、前記バルブの封止要素が前記バルブの密封面に対して動かされるようにすることを含むことができる。
いくつかの実施形態では、前記磁場に応答して前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを開くよう、前記バルブの入口から前記バルブの出口への前記気体の流れの方向に垂直な方向において方向付けられた前記磁場を印加することを含むことができる。
いくつかの実施形態では、前記磁場に応答して前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを開くよう、前記バルブの入口から前記バルブの出口への前記気体の流れの方向に平行な方向において方向付けられた前記磁場を印加することを含むことができる。
本発明の他の態様は、対流冷却ループと、該対流冷却ループ内に配置された気体の流れを制御するよう構成されるバルブとを有し、前記バルブは、クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して開放位置と閉成位置との間で作動するよう構成される、装置を提供することができる。
いくつかの実施形態では、前記バルブは、封止要素及び密封面と、磁気反応性要素とを有することができ、前記封止要素及び前記密封面は、前記導電コイルが励磁されないときに、前記封止要素が前記密封面と結合されて、前記バルブが前記対流冷却ループ内の前記気体の流れを妨げるよう閉じられるように構成され、前記導電コイルの前記磁場に応答して、前記磁気反応性要素は、前記バルブが開かれ、前記対流冷却ループ内の前記気体の流れが可能にされるように、前記封止要素が前記密封面に対して動かされるようにするよう構成される。
いくつかの実施形態では、前記磁気反応性要素は、強磁性体を有することができる。
いくつかの実施形態では、前記封止要素は、前記磁気反応性要素を有することができる。
いくつかの実施形態では、前記封止要素は、非磁性であることができ、前記磁気反応性要素は、該磁気反応性要素が前記導電コイルの前記磁場によって動かされるときに、前記バルブが開かれるように、前記磁気反応性要素が前記封止要素を前記密封面に対して動かすように、前記封止要素に取り付けられ得る。
いくつかの実施形態では、前記導電コイルが励磁されないときに、前記封止要素は、前記バルブを閉じるよう、重力によって少なくとも部分的に前記密封面に対して保持され得る。
いくつかの実施形態では、前記バルブは、バネを更に含むことができ、前記導電コイルが励磁されないときに、前記封止要素は、前記バルブを閉じるよう、前記バネによって生じる力によって少なくとも部分的に前記密封面に対して保持され得る。
いくつかの実施形態では、前記バルブは、さお及び支点を備えるてこを更に含み、前記磁気反応性要素は、前記支点の第1の側にある前記てこの第1の端部に配置され得、前記封止要素は、前記支点の第2の側にある前記てこの第2の端部に配置され得、前記磁気反応性要素が前記導電コイルの前記磁場によって動かされるときに、前記磁気反応性要素は、前記バルブが開かれるように、前記封止要素を前記密封面に対して動かすように前記てこを動かすことができる。
本発明の更なる態様は、熱エネルギが第1のデバイスから第2のデバイスへ移動されることを可能にするよう気体が循環するよう構成される冷却管と、該冷却管の気体流経路において配置されるバルブとを有する装置を提供することができる。前記バルブは、入口及び出口を備えるバルブ筐体と、該バルブ筐体内に配置された封止要素及び密封面とを有することができ、前記封止要素は、磁場を介して前記バルブを開放位置と閉成位置との間で切り替えるように、前記密封面に対して動かされるよう構成され得る。
いくつかの実施形態では、前記封止要素は、前記磁場がないときに、前記バルブを閉じて、前記入口と前記出口との間の気体の流れを妨げるように、前記密封面に結合されるよう構成され得、且つ、前記磁場の存在下で、前記バルブを開いて、前記入口と前記出口との間の前記気体の流れを可能にするように、前記密封面に対して動かされるよう更に構成される。
いくつかの実施形態では、前記封止要素は、磁気反応性材料を有することができる。
本発明は、添付の図面に関連して以下で提示され検討される、例となる実施形態の詳細な説明からより容易に理解されるであろう。
磁気共鳴撮像(MRI)装置の例となる実施形態を表す。 MRI装置において用いられ得る超電導磁石システムの例となる実施形態を表す。 超電導磁石システムのための重力送りの対流冷却配置の概念図である。 冷却ループを動かす方法の例となる実施形態を表すフローチャートである。 冷却ループを動かす方法の例となる実施形態を表す他のフローチャートである。 超電導磁石システムの冷却ループのための磁気作動式バルブの第1の例となる実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第2の実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第3の実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第4の実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第5の実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第6の実施形態の概念図である。 超電導磁石システムの冷却ループのための磁気作動式バルブの第7の実施形態の概念図である。
これより、本発明は、本発明の実施形態が示されている添付の図面を参照して以降でより完全に記載される。なお、本発明は、種々の形態で具現されてよく、ここで記載されている実施形態に制限されるものとして解釈されるべきではない。むしろ、それらの実施形態は、本発明の例を教示するものとして与えられている。本開示及び特許請求の範囲の中で、何かがほぼ(approximately)ある値を有すると言われる場合に、それは、その値の10%内にあることを意味し、何かがおおよそ(about)ある値を有すると言われる場合に、それは、その値の25%内にあることを意味する。
図1は、磁気共鳴撮像(MRI)装置100の例となる実施形態を表す。MRI装置100は、磁石102と、患者10を保持するよう構成される患者台104と、MRI装置100が画像を生成する患者10の少なくとも一部分を少なくとも部分的に囲むよう構成される傾斜コイル106と、撮像されている患者10の少なくとも前記部分へ無線周波数信号を印加し、磁場のアライメントを変更するよう構成される無線周波数コイル108と、無線周波数信号によって生じる磁場の変化を検出するよう構成されるスキャナ110とを有してよい。
MRI装置の一般的な動作はよく知られており、従って、ここでは繰り返されない。
図2は、超電導磁石システム200の例となる実施形態を表す。超電導磁石システム200は、例えばMRI装置100のようなMRI装置において用いられてよい。
超電導磁石システム200は、囲い、すなわち、外側の真空容器216と、囲い216内に配置された熱遮へい体215とを備えるクライオスタット201を有してよい。熱遮へい体215は、囲い216内の内側領域214aを、熱遮へい体215と囲い216との間に配置された熱絶縁領域214bから少なくとも部分的に熱的に分離する。ここで、一般に、熱遮へい体215は、内側領域214aを完全には囲まなくてよい点が理解されるべきである。例えば、熱遮へい体215は、例えばコールドヘッド251の一部分、電気配線又はプローブなどの様々な構造体が内側領域214aと熱絶縁領域214bとの間を通ることを可能にする開口又は穴を有してよい。いくつかの実施形態では、熱遮へい体215は、例えば、閉じられた構造体ではないが、それでもなお大体においてその中で領域を画定する開放端式円筒のような構造体を有してよい。他の形状及び構成が可能である。
超電導磁石システム200は、永久電流スイッチ207と、永久電流スイッチヒータ208と、1つ以上の導電コイル213と、第1ステージ要素252及び第2ステージ要素253が付随するコールドヘッド251と、コールドプレート220と、コールドステーション205と、冷却ループ210と、ゲッター230と、コンプレッサ206と、磁石コントローラ280とを更に有してよい。
一般に、超電導磁石システム200は、例えば、システム起動中に電力を導電コイル213へ供給する電源や、超電導磁石システム200の動作をモニタする、磁石コントローラ280へ接続された1つ以上のセンサ、等を含む、図2に示された以外の多数の他の要素を備えてよい。
一実施形態において、永久電流スイッチ207、永久電流スイッチヒータ208、導電コイル213、第2ステージ要素253、コールドプレート220、コールドステーション205、冷却ループ210、及びゲッター230は、内側領域214a内に配置されてよい。コールドヘッド251の第1ステージ要素252は、熱絶縁領域214b内に配置されてよい。コンプレッサ206及びコントローラ280は、クライオスタット201の外に配置されてよい。
有利なことには、囲い216の内部の内側領域214a及び熱絶縁領域214bは、如何なる気体、液体、等も除去されており、定義された構造(例えば、永久電流スイッチ207、永久電流スイッチヒータ208、導電コイル213、第2ステージ要素253、コールドプレート220、コールドステーション205、冷却ループ210、及びゲッター230、など)によって占有される範囲を除いて第1の真空を有する真空空間を有してよい。
いくつかの実施形態では、熱遮へい体215は、コールドヘッド251の第1ステージ要素252へ熱的に結合又は接続されてよい。
導電コイル213は、例えば銅、真ちゅう、又はアルミニウムのような高導電性材料から成り、有利なことには低い抵抗を有してよい。
コールドステーション205は、サーマルマス(蓄熱要素)又はヒートシンクであってよく、低温(例えば、おおよそ4ケルビンといった、極低温)に動作上保たれ、サーマルマスが“大きい”。すなわち、そのサーマルマスは、導電コイル213のサーマルマスよりもずっと大きく、有利なことには、導電コイル213のサーマルマスの数倍であってよい。然るに、コールドステーション205は、熱が導電コイル213から移動されなかった場合に導電コイル213に起こるであろう温度上昇よりもずっと小さい温度上昇もなしで、冷却ループ210を介して導電コイル213からの熱を吸収してよい。いくつかの実施形態では、コールドステーション205は、コールドステーション205を冷やすよう、冷却ループ210を通じてコールドヘッド251の部分(例えば、第2ステージ要素253)に取り付けられてよく、あるいは、その部分である。
冷却ループ210は、冷却ガス(例えば、ヘリウムガス)が供与されている閉ループにおいて配置された閉管(例えば、銅管)を有してよい。いくつかの実施形態では、冷却ガスは、大気圧よりも大きい圧力下にあってよい。
いくつかの実施形態では、冷却ループ210は、重力送りの対流冷却ループであってよく、導電コイル213からの熱をコールドステーション205へ移動させるように冷却ガス(例えば、ヘリウムガス)を循環させる管を有してよい。その場合に、コールドステーション205は、導電コイル213よりも地面に対して高い高さ又は位置に配置され、それにより、重力は、コールドステーション205から導電コイル213への方向における流れを引き起こす。重力送りの対流冷却動作により、冷却ループ210は、コールドステーション205が導電コイル213よりも低い温度にある(つまり、導電コイル213よりも冷たい)ときはいつでも、対流を介して導電コイル213からコールドステーション205へ熱を有効に移動させるが、コールドステーション205が導電コイル213よりも高い温度にある(つまり、導電コイル213よりも温かい)ときはいつでも“遮断”してよい。
ゲッター230は、クライオスタット201の真空環境において存在するようになる漂遊分子を吸収するよう動作してよい。いくつかの実施形態では、ゲッター230(例えば、炭素活性デバイス)は、漂遊分子を吸収し留めるために、低温(例えば、おおよそ20ケルビン未満)に保たれる必要があり得る。さもなければ、ゲッター230は、漂遊分子を真空環境に再放出してよい。その場合に、コールドステーション205に又はその近くにゲッター230を位置付けることが有利であり得る。
いくつかの実施形態では、磁石コントローラ280は、メモリ(例えば、揮発性及び/又は不揮発性メモリ)及びプロセッサ(例えば、マイクロプロセッサ)を有してよい。プロセッサは、磁石システム200にここで記載される1つ以上の動作及び/又はプロセスを実行させるように、メモリに記憶されているコンピュータプログラム命令を実行するよう構成されてよい。
超電導磁石システム100の例となる動作の説明は、これより、図2に関して記載される。
動作において、コールドプレート220は、低温流体(例えば、液体又は気体ヘリウム)を内包するシールドシステムであることができる。コールドヘッド251は、コールドプレート220における低温流体を冷やすよう、コンプレッサ206によって駆動される。次いで、コールドプレート220は、導電コイル213が超電導である超電導温度(例えば、おおよそ4ケルビン)まで導電コイル213を冷やす。
起動又は磁石の励磁の間、導電コイル213は、所望の磁場傾斜を伴う磁場を生成するよう充電される。これを達成するよう、永久電流スイッチヒータ208は、永久電流スイッチ207を、その超電導温度よりも高い抵抗モード温度まで加熱するように、(例えば、磁石コントローラ280の制御下で)作動又はオンされる。永久電流スイッチ207が抵抗モード温度まで加熱される場合に、それは、望ましくは数オーム又は数十オームの範囲にあるインピーダンスを有する抵抗状態にある。抵抗状態にある永久電流スイッチ207によれば、導電コイル213は、電源(クライオスタット201の外部にあり、図2では図示せず。)から電力を印加することによって、励磁される。これは、導電性充電リンク(図2に図示せず。)によって実行されて、導電コイル213に磁場を生成させることができる。導電コイル213によって生成された磁場は、電源から電力を供給し続けることによって、所望の又は目標の磁場傾斜まで増大され得る。
導電コイル213が所望の磁場傾斜の磁場を生成するよう励磁された後、永久電流スイッチヒータ208は(例えば、磁石コントローラ280の制御下で)非作動又はオフされ、電源は、磁石システム200が通常動作状態に移り、そして、その電流及び磁場を“永久モード”に保つと、導電コイル213から切り離される。
図2に表される配置は、導電コイル213からの熱を放散し且つ導電コイル213を冷やすための2つの冷却メカニズム又は手段を提供する。なお、たとえ、熱を放散するための2つの冷却メカニズム又は手段しか示されていないとしても、本発明の他の実施形態は、導電コイルのための熱交換段/要素及び放熱経路を幾つでも有することができる。
導電コイル213からの熱を放散するための、図2に表されている一次メカニズムは、コールドプレート220を介する。コールドプレート220は、通常動作の間、コールドヘッド251を介してコンプレッサ206によって絶えず冷却される。コールドプレート220は、内側領域214aの内部真空空間にある導電コイル213を極低温(例えば、おおよそ4ケルビン)に保つことができ、それにより、導電コイル213は、超電導であり、その磁場を発生させるよう永久モードにおいて動作する。
なお、一次冷却メカニズムは、例えば、コンプレッサ206の故障により、又はコンプレッサ206を動かすAC電源電力の喪失により、動作不能になり得ることが起こり得る。
その場合に、コンプレッサ206及びコールドヘッド251を介する一次冷却メカニズムが動作不能であるときは、冷却ループ210及びコールドステーション205を含む二次又はバックアップ冷却メカニズムが、導電コイル213からの熱を放散するよう動作してよい。バックアップメカニズムは、導電コイル213によって生成された磁場のクエンチを遅延させるか又は阻止するよう、ある期間、例えば、一次冷却メカニズムが(例えば、コンプレッサ206を修理又は交換すること、コンプレッサ206への電力を回復すること、などによって)回復されることを可能にし得る期間、動作してよい。
特に、冷却ループ210が重力送り対流冷却ループである場合に、導電コイル213がコールドステーション205よりも低い温度にある(冷たい)限りは、例えば、超電導磁石システム200の通常動作の間は、コールドステーション205が導電コイル213よりも地面に対して高い高さ又は位置にあることで冷却ループ210内で対流が起こらないので、有利なことには、ほとんどの熱はコールドステーション205から導電コイル213へ移動されない。他方で、一次冷却メカニズムが動作することができず、導電コイル213の温度がコールドステーション205の温度よりも高くなる場合は、冷却ループ210の対流動作は、熱を導電コイル213からコールドステーション205へ移動させることができる。
なお、一次冷却メカニズムが長期間動作不能のままである場合は、導電コイル213の温度は上昇し続け、導電コイル213が超電導である最大温度を最終的に超えうる。その時点で、導電コイル213における抵抗損失は相当になり、磁場はクエンチされ、導電コイル213は、磁場エネルギが導電コイル213において熱エネルギに変換されるにつれて、より急速に温まる。
先に説明されたように、これが起こるべき場合は、導電コイル213の温度はコールドステーション205の温度を軽く超えて上昇し、コールドステーション205のヒートシンク機能は消耗され得る。更には、コールドステーション205が導電コイル213によって加熱される場合は、それは、超電導磁石システム200を通常動作に戻すために、クライオスタットの冷却システム(例えば、コンプレッサ206、コールドヘッド251、及びコールドプレート220)によって再冷却される必要があり得る。これは、クエンチから回復するための時間を引き延ばし得る。
加えて、コールドステーション205の温度が導電コイル213によって急速に加熱される場合は、これは、転じて、ゲッター230をその最大動作温度(例えば、おおよそ20ケルビンより高い)を超える温度にまで加熱して、ゲッター230によって捕捉されている漂遊分子がチェンバー216に放出され得るようにする。それが起こる場合には、クライオスタット201の高価な且つ時間がかかる真空ポンプダウンが、放出された分子を除去するために必要とされ得る。
然るに、超電導磁石システム200は、冷却ループ210の気体流経路において磁気制御式又は磁気作動式バルブ209を更に有する。磁気作動式バルブ209は、導電コイル213が少なくとも閾磁場傾斜を有する磁場を生成するよう励磁される場合に、磁場が(例えば、直接に)磁気作動式バルブ209を開かせて、バルブを通る冷却ループ210内の気体の流れを可能にするように、動作してよい。他方で、導電コイル213が少なくとも閾磁場傾斜を有する磁場を生成しない場合は、磁気作動式バルブ209は、磁気作動式バルブ209を越える又はそれを通る冷却ループ210内の気体の流れを妨げるように、自動的に閉じられる。
磁気作動式バルブ及び冷却ループの例となる動作の更なる説明は、図3に関して与えられる。図3は、超電導磁石システム(例えば、超電導磁石システム200)のための重力送り対流冷却配置300の概念図である。
重力送り対流冷却配置300において、コールドステーション205は、導電コイル213よりも地面に対して高い高さ又は位置に配置される。
導電コイル213が、閾磁場傾斜を少なくとも有する磁場を生成するよう励磁される場合に、磁気作動式バルブ209は、磁場によって又は該磁場に応答して開かれて、磁気作動式バルブ209を通る気体の流れを可能にする。
磁気作動式バルブ209が開いている限り、コールドステーション205が導電コイル213よりも低い温度にある(冷たい)場合に、冷却ループ210内の気体(例えば、冷やされたヘリウム)は、熱エネルギ(熱)を導電コイル213からコールドステーション205へ運ぶ又は移動させるよう、対流及び重力によって循環してよい。すなわち、磁気作動式バルブ209が、導電コイル213によって生成された磁場によって開かれる場合、且つ、コールドステーション205が導電コイル213よりも低い温度にある(冷たい)場合に、コールドステーション205によって冷やされた気体は、重力によってコールドステーション205から導電コイル213へと冷却ループ210を通って搬送される。導電コイル213では、気体は熱エネルギを吸収し、温められる。この温められた気体は、次いで、対流によって導電コイル213から冷却ループ210を通って上方へと運ばれる。なお、たとえ、磁気作動式バルブ209が、導電コイル213によって生成された磁場によって開かれるとしても、コールドステーション205が導電コイル213よりも高い温度にある(温かい)場合には、温められた気体は、コールドステーション205が導電コイル213よりも地面に対して高い高さ又は位置に配置されているという事実上の配置に起因して、導電コイル213とコールドステーション205との間を流れない。
他方で、導電コイル213が、閾磁場傾斜を少なくとも有する磁場を生成しない場合には、磁気作動式バルブ209は、磁気作動式バルブ209を通る気体の流れを妨げて、冷却ループ210内の気体の循環を阻止するように、自動的に閉じられる。これは、冷却ループ210内の気体を介した導電コイル213からコールドステーション205への熱の移動を阻止又は抑制する。
磁気作動式バルブ209の開放及び閉成のための閾値又はスイッチングポイントとなる閾磁場傾斜は、磁気作動式バルブ209の設計と、導電コイル213に対するその位置とによって選択されてよい。それにより、磁気作動式バルブ209は、超電導磁石システム200の通常動作中に導電コイル213によって生成される磁場に応答して開いたままであるが、導電コイル213によって生成される磁場のクエンチが起こる場合、又はそのようなクエンチが今にも起ころうとしている場合に閉じる。
図4は、冷却ループを開く方法400の例となる実施形態を表すフローチャートである。
動作410において、少なくとも1つの導電コイルは、クライオスタット、例えば、上記の超電導磁石システム200のような超電導磁石システムのクライオスタット内に設けられる。
動作420において、対流冷却ループは、クライオスタット内に設けられる。対流冷却ループは、その中に配置された気体、例えば、冷やされたヘリウムを有する。
動作430において、対流冷却ループのバルブは、クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して、閉成位置と開放位置との間で作動する。
動作440において、バルブの作動は、対流冷却ループ内に配置される気体の流れを制御する。
図5は、冷却ループの作動方法500の例となる実施形態を表す他のフローチャートである。特に、方法500は、磁気作動式バルブ209のような磁気作動式バルブ209を設けられた、上記の冷却ループ210のような冷却ループの作動方法である。
動作510において、少なくとも1つの導電コイルは、クライオスタット、例えば、上記の超電導磁石システム200のような超電導磁石システムのクライオスタット内に設けられる。
動作520において、対流冷却ループは、クライオスタット内に設けられる。対流冷却ループは、その中に配置された気体、例えば、冷やされたヘリウムを有する。
動作530において、分岐が起こる。これによって、方法500は、導電コイルが、閾磁場傾斜を少なくとも有する磁場を生成するよう励磁されるか否かに応じて、2つの経路のうちの一方へ進む。
導電コイルが、閾磁場傾斜を少なくとも有する磁場を生成するよう励磁される場合は、方法500は動作540へ分岐する。動作540において、対流冷却ループの気体流経路における磁気作動式バルブは、磁場が少なくとも閾磁場傾斜を有することに応答して、開かれる。すなわち、導電コイルによって生成される磁場は、磁気作動式バルブを開かせる。これは、気体が対流冷却ループ内で磁気作動式バルブを横断して流れることを可能にする。その場合に、動作545において、クライオスタット内のコールドステーションが導電コイルよりも低い温度にある(冷たい)場合に、熱エネルギ(熱)は、気体の流れを介して対流冷却ループ内で導電コイルからコールドステーションへ移動され得る。
他方で、導電コイルが、閾磁場傾斜を少なくとも有する磁場を生成するよう励磁されない場合は、方法500は動作550へ分岐する。動作550において、対流冷却ループの気体流経路における磁気作動式バルブは、自動的に閉じられる。これは、気体が対流冷却ループ内で磁気作動式バルブを横断して流れないようにする。その場合に、動作555において、気体の流れを介した対流冷却ループ内での導電コイルからコールドステーションへの熱エネルギ(熱)の移動は、阻止又は抑制される。
図6は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ600の第1実施形態の概念図である。図6乃至12は、磁気作動式バルブの様々な実施形態のいくつかの主たる要素及び動作の原理を表すことを目的としており、何らかの実際の1つ以上のデバイスの製品図面であるよう意図されない。図6乃至12で概念的に表されている磁気作動式バルブは、図2及び3の磁気作動式バルブ209、並びに図4の方法400及び図5の方法500において上述された磁気作動式バルブの様々な実施形態であってよい。
磁気作動式バルブ600は、入口602、出口604、筐体610、封止要素620、及び密封面630を有する。磁気作動式バルブ600は、磁場傾斜によって動かされることを前提とする要素である磁気反応性要素を更に有する。いくつかの実施形態では、磁気反応性要素は磁石を有してよい。他の実施形態では、磁気反応性要素は、例えば鉄、ニッケル、コバルト、パーマロイ、イットリウム鉄ガーネット(YIG)、などのような強磁性体を有してよい。磁気作動式バルブ600において、封止要素620は、磁気反応性要素であるか、又はそれを有する。
磁気作動式バルブ600は、冷却ループ、例えば、図3に表されている重力送り対流冷却ループに含まれるか、又はそれと一体化されてよい。その場合に、入口602は、出口604の“上流”に位置付けられてよい。それにより、気体(例えば、冷やされたヘリウム)は、冷却ループの上流部分から筐体610によって受容されて入ってよく、磁気作動式バルブ600が開いている場合には、出口から604から冷却ループの下流部分に出てよい。
いくつかの実施形態では、筐体610は、管状に成形されてよい。筐体610は、入口602及び出口604を除いて、密閉されてよい。有利なことには、筐体610は、超電導磁石(例えば、導電コイル)によって磁気作動式バルブ600の外部に生成される磁場20が貫通することができる1つ以上の材料から構成される。
磁気作動式バルブ600は、封止要素620が密封面630に対して押しつけられるか、又はそれと結合されることによって、閉じられてよく、磁気作動式バルブ600を通る気体の流れを妨げて、更には、冷却ループ内の気体の循環も妨げる。磁気作動式バルブ600において、封止要素620は、2つの力、すなわち、(1)重力、及び(2)筐体610、磁気作動式バルブ600、及び冷却ループにおける気体の圧力、のうちの一方又は両方によって、密封面630に対して押しつけられるか、又はそれと結合されてよい。
図6の左側は、磁気作動式バルブ600及びバルブ筐体610の外で超電導磁石(例えば、導電コイル)によって生成される閾量を超える磁場がない場合に、磁気作動式バルブ600が上記の力の一方又は両方によって自動的に閉じられる状況を表す。よって、例えば、そのような超電導磁石の磁場がクエンチされ、磁気エネルギが、導電コイルを加熱する熱エネルギに変換される場合は、磁気作動式バルブ600は、上述されたように、導電コイルからコールドステーションへの熱エネルギ(熱)の移動を阻止するように、磁場がない場合に閉じられてよい。
他方で、図6の右側は、磁場20が磁気作動式バルブ600の外で超電導磁石(例えば、導電コイル)によって生成される状況を表す。磁場20が十分な磁場傾斜を有する場合は、磁場は、上述されたように磁気反応性要素であるか又はそれを有する封止要素620を、磁気作動式バルブ600を開くように密封面630に対して動かし又は移動させて、磁気作動式バルブ600を通る気体の流れを可能にし、それによって、冷却ループ内の気体の循環も可能にする。
磁気作動式バルブ600において、外部の導電コイルからの磁場20は、磁気作動式バルブ600の入口602から出口604への気体の流れの方向に垂直であり、更には重力とも垂直である方向に向けられる。
図7は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ700の第2実施形態の概念図である。
磁気作動式バルブ700は、磁気作動式バルブ600と同様に構成され動作するので、それらの2つのバルブの間の相違点のみが論じられる。
磁気作動式バルブ600とは違って、磁気作動式バルブ700は、磁場20がないときに封止要素620を密封面630に対して押しつけるか、又は封止要素620を密封面630と結合するように、力を封止要素620に加えるバネ710を有する。
図7の左側は、磁気作動式バルブ700及びバルブ筐体610の外で超電導磁石(例えば、導電コイル)によって生成される閾量を超える磁場がない場合に、磁気作動式バルブ700が、(1)重力及び(2)筐体610における気体の圧力に加えて、バネ710の力によって、自動的に閉じられる状況を表す。よって、例えば、そのような超電導磁石の磁場がクエンチされ、磁気エネルギが、導電コイルを加熱する熱エネルギに変換される場合は、磁気作動式バルブ700は、上述されたように、導電コイルからコールドステーションへの熱エネルギ(熱)の移動を阻止するように、磁場がない場合に閉じられてよい。
他方で、図7の右側は、磁場20が磁気作動式バルブ700の外で超電導磁石(例えば、導電コイル)によって生成される状況を表す。磁場20が、(1)重力及び(2)筐体610における気体の圧力に加えて、バネ710の力に打ち勝つほど十分な磁場傾斜を有する場合は、磁場は、上述されたように磁気反応性要素であるか又はそれを有する封止要素620を、磁気作動式バルブ700を開くように密封面630に対して動かし又は移動させて、磁気作動式バルブ700を通る気体の流れを可能にし、それによって、冷却ループ内の気体の循環も可能にする。
磁気作動式バルブ700において、外部の導電コイルからの磁場20は、磁気作動式バルブ700の入口602から出口604への気体の流れの方向に平行であり、更には重力とも平行である方向に向けられる。
図8は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ800の第3実施形態の概念図である。
磁気作動式バルブ800は、磁気作動式バルブ700と同様に構成され動作するので、それらの2つのバルブの間の相違点のみが論じられる。磁気作動式バルブ700と磁気作動式バルブ800との間の主たる相違点は、次のとおりである。磁気作動式バルブ700では、密封面630は出口604に配置され、磁気作動式バルブ700は出口604において閉じられる。対照的に、磁気作動式バルブ800では、密封面630は入口602に配置され、磁気作動式バルブ800は入口602において閉じられる。図示されるように縦に置かれた磁気作動式バルブ800によれば、バネ710の力は、重力とは逆方向に密封面630に対して作用する。
図9は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ900の第4実施形態の概念図である。
磁気作動式バルブ900は、磁気作動式バルブ800と同様に構成され動作するので、それらの2つのバルブの間の相違点のみが論じられる。
磁気作動式バルブ900は、筐体610の外部で磁石910を有するか、又は該磁石910と連関される。いくつかの実施形態では、磁石910は、外部配線912を通じて供給される電流によって駆動される1つ以上の導電コイルを有してよい。外付け磁石910は、磁気作動式バルブ900の試験のために、及び/又は磁気作動式バルブ900の緊急バックアップのために、用いられてよい。そのような場合において、外部の導電コイルからの磁場20はそうすることができない。
磁気作動式バルブ900は入口602に配置された磁石910を備えるが、他の実施形態では、磁気作動式バルブ900は出口604に、又は磁石910が励磁される場合に、磁石910によって生成される磁場が封止要素620を密封面630に対して動かし又は移動させて、磁気作動式バルブ900を開くことができるような他の適切な位置に、配置された磁石910を備えてよい。様々な実施形態において、磁石910は、図6乃至8及び10乃至12に表されている磁気作動式バルブに付加されるか、又は付随してよい点も理解されるべきである。
図10は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ1000の第5実施形態の概念図である。
磁気作動式バルブ1000は、地面に対して磁気作動式バルブ700が縦に置かれる一方で、磁気作動式バルブ1000が横に置かれる点を除いて、磁気作動式バルブ700と同様に構成され動作する。然るに、磁気作動式バルブ700による場合と違って、磁気作動式バルブ1000によれば、重力は、バルブを閉じない、すなわち、バルブを閉じるのを助けない。他の実施形態では、その他の点で磁気作動式バルブ800及び磁気作動式バルブ900と同じであるバルブが横に置かれてよい。
図11は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ1100の第6実施形態の概念図である。
磁気作動式バルブ1100は、磁気作動式バルブ1000と同様に構成され動作するので、それらの2つのバルブの間の相違点のみが論じられる。
磁気作動式バルブ1100は、封止要素1120とは別個であるがそれに接続される磁気反応性要素1110を有する。ここで、封止要素1120は非磁性であってよい。例えば、封止要素1120は、如何なるゴム、プラスティック、非磁性体、又はそれらのあらゆる組み合わせからも成ってよい。磁気作動式バルブ1100において、磁気反応性要素1110は、接続要素1125によって封止要素1120に接続されるか又は取り付けられる。いくつかの実施形態では、接続要素1125は非磁性であってよい。いくつかの実施形態では、接続要素1125は、例えばゴムのような可塑性又は圧縮性の材料を有してよい。いくつかの実施形態では、接続要素1125はバネを有してよい。いくつかの実施形態では、接続要素1125は省略されてよく、磁気反応性要素1110は封止要素1120へ直接接続されてよい。
図11の左側は、磁気作動式バルブ1100及びバルブ筐体610の外で超電導磁石(例えば、導電コイル)によって生成される閾量を超える磁場がない場合に、磁気反応性要素1110に対するバネ710の力によって、そして、それにより封止要素1120において、磁気作動式バルブ1100が自動的に閉じられる状況を表す。よって、例えば、そのような超電導磁石の磁場がクエンチされ、磁気エネルギが、導電コイルを加熱する熱エネルギに変換される場合は、磁気作動式バルブ1100は、上述されたように、導電コイルからコールドステーションへの熱エネルギ(熱)の移動を阻止するように、磁場がない場合に閉じられてよい。
他方で、図11の右側は、磁場20が磁気作動式バルブ1100の外で超電導磁石(例えば、導電コイル)によって生成される状況を表す。磁場20がバネ710の力に打ち勝つほど十分な磁場傾斜を有する場合は、磁場は、磁気作動式バルブ1100を開くように、磁気反応性要素1110を密封面630に対して動かし又は移動させ、磁気反応性要素1110が封止要素1120を密封面630に対して動かす又は移動させるようにして、磁気作動式バルブ1100を通る気体の流れを可能にし、それによって、冷却ループ内の気体の循環も可能にする。
磁気反応性要素を封止要素から分離する原理は、磁気作動式バルブの他の実施形態、例えば、磁気作動式バルブ700、800、900などに適用されてよい点が理解されるべきである。
図12は、超電導磁石システムの対流冷却ループのための磁気作動式バルブ1200の第7実施形態の概念図である。
磁気作動式バルブ1200は、てこの効果を用いる。この効果は、磁気作動式バルブ1200を開くために必要とされ得る磁力の量を減らすために使用されてよい。磁気作動式バルブ1200は、さお1215及び支点1225を備えるてこを有する。磁気反応性要素1110は、支点1225の第1の側にあるてこの第1の端部に配置され、封止要素1220は、支点1225の第2の側にあるてこの第2の端部に配置される。磁気反応性要素1110は、さお1215の第1の端部に取り付けられるか、又はそれと一体にされてよく、封止要素1220は、さお1215の第2の端部に取り付けられるか、又はそれと一体にされてよい。
図12の左側は、磁気作動式バルブ1200及びバルブ筐体610の外で超電導磁石(例えば、導電コイル)によって生成される閾量を超える磁場がない場合に、磁気反応性要素1110に対するバネ710の力によって、そして、それにより封止要素1220に対するさお1215及び支点1225のてこの効果を介して、磁気作動式バルブ1200が自動的に閉じられる状況を表す。よって、例えば、そのような超電導磁石の磁場がクエンチされ、磁気エネルギが、導電コイルを加熱する熱エネルギに変換される場合は、磁気作動式バルブ1200は、上述されたように、導電コイルからコールドステーションへの熱エネルギ(熱)の移動を阻止するように、磁場がない場合に閉じられてよい。
他方で、図12の右側は、磁場20が磁気作動式バルブ1200の外で超電導磁石(例えば、導電コイル)によって生成される状況を表す。磁場20がバネ710の力に打ち勝つほど十分な磁場傾斜又はトルクを有する場合は、磁場は、磁気作動式バルブ1200を開くように、磁気反応性要素1110を動かし又は移動させ、磁気反応性要素1110が封止要素1220を密封面630に対して動かす又は移動させるようにして、磁気作動式バルブ1200を通る気体の流れを可能にし、それによって、冷却ループ内の気体の循環も可能にする。てこの効果により、いくつかの実施形態では、磁場20による磁気反応性要素1110の比較的小さい運動又は移動は、密封面630に対する封止要素1220のより大きい移動又は運動を生じさせ得る。
バルブの実施形態は、磁場がないときに正常に閉じられ、超電導磁石(例えば、導電コイル)によって生成される磁場20を介して開かれるよう構成されるものとして、先に記載されてきたが、他の実施形態では、バルブは、磁場がないときに正常に開かれ、磁場20を介して閉じられるよう再構成されてよい。簡単な例として、図8を考えると、磁場がないときの封止要素620の正常位置が、図8の右側に示されるように、密封面630から分けられて離されている場合、且つ、磁場20の方向が逆にされている場合には、バルブは、磁場がないときに正常に開かれてよく、図8の左側に示されるように、磁場20を介して閉じられてよい。そのようなバルブの他の構成が考えられている。
好適な実施形態がここで開示されているが、本発明の概念及び適用範囲を越えない多数の変形例が可能である。そのような変形例は、本願の明細書、図面及び特許請求の範囲の考察の後に当業者に明らかになるであろう。従って、本発明は、添付の特許請求の範囲の適用範囲内を除いて制限されるべきでない。
[関連出願の相互参照]
本願は、2013年7月26日付けで出願された米国特許仮出願第61/858785号に基づく優先権を主張するものである。なお、これをもって、上記の米国特許仮出願は、参照により本願に援用される。

Claims (20)

  1. クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して、閉成位置と開放位置との間の対流冷却ループのバルブを作動させるステップを有し、
    前記バルブの作動は、前記対流冷却ループ内にある気体の流れを制御する、
    方法。
  2. 液体ヘリウムを内包するシールドシステムを介して前記少なくとも1つの導電コイルを冷やすステップを更に有する
    請求項1に記載の方法。
  3. 前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを開くよう、前記磁場が少なくとも閾磁場傾斜を有することに応答して、前記バルブの密封面に対して前記バルブの磁気反応性封止要素を動かすことを含む、
    請求項1に記載の方法。
  4. 前記対流冷却ループにおける前記バルブを作動させるステップは、前記磁場が少なくとも閾磁場傾斜を有することに応答して、前記バルブの磁気反応性要素を動かすことを含み、
    前記磁気反応性要素を動かすことは、前記バルブを開くよう、前記バルブの非磁性の封止要素が前記バルブの密封面に対して動かされるようにする、
    請求項1に記載の方法。
  5. 前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを閉じるよう、前記気体の圧力によって生じる力及び重力のうちの少なくとも1つを用いて、前記バルブの封止要素が前記バルブの密封面に対して動かされるようにすることを含む、
    請求項1に記載の方法。
  6. 前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを閉じるよう、前記バルブにおけるバネによって生じる力を用いて、前記バルブの封止要素が前記バルブの密封面に対して動かされるようにすることを含む、
    請求項1に記載の方法。
  7. 前記磁場に応答して前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを開くよう、前記バルブの入口から前記バルブの出口への前記気体の流れの方向に垂直な方向において方向付けられた前記磁場を印加することを含む、
    請求項1に記載の方法。
  8. 前記磁場に応答して前記対流冷却ループにおける前記バルブを作動させるステップは、前記バルブを開くよう、前記バルブの入口から前記バルブの出口への前記気体の流れの方向に平行な方向において方向付けられた前記磁場を印加することを含む、
    請求項1に記載の方法。
  9. 対流冷却ループと、
    クライオスタット内に配置された少なくとも1つの導電コイルによって生成される磁場を介して開放位置と閉成位置との間で作動するよう構成されるバルブと
    を有し、
    前記バルブは、前記対流冷却ループ内に配置された気体の流れを制御する、
    装置。
  10. 前記バルブは、封止要素及び密封面と、磁気反応性要素とを有し、
    前記封止要素及び前記密封面は、前記導電コイルが励磁されないときに、前記封止要素が前記密封面と結合されて、前記バルブが前記対流冷却ループ内の前記気体の流れを妨げるよう閉じられるように構成され、
    前記導電コイルの前記磁場に応答して、前記磁気反応性要素は、前記バルブが開かれ、前記対流冷却ループ内の前記気体の流れが可能にされるように、前記封止要素が前記密封面に対して動かされるようにするよう構成される、
    請求項9に記載の装置。
  11. 前記磁気反応性要素は、強磁性体を有する、
    請求項10に記載の装置。
  12. 前記封止要素は、前記磁気反応性要素を有する、
    請求項10に記載の装置。
  13. 前記封止要素は、非磁性であり、
    前記磁気反応性要素は、該磁気反応性要素が前記導電コイルの前記磁場によって動かされるときに、前記バルブが開かれるように、前記磁気反応性要素が前記封止要素を前記密封面に対して動かすように、前記封止要素に取り付けられる、
    請求項10に記載の装置。
  14. 前記導電コイルが励磁されないときに、前記封止要素は、前記バルブを閉じるよう、重力によって少なくとも部分的に前記密封面に対して保持される、
    請求項10に記載の装置。
  15. 前記バルブは、バネを更に含み、
    前記導電コイルが励磁されないときに、前記封止要素は、前記バルブを閉じるよう、前記バネによって生じる力によって少なくとも部分的に前記密封面に対して保持される、
    請求項10に記載の装置。
  16. 前記バルブは、さお及び支点を備えるてこを更に含み、
    前記磁気反応性要素は、前記支点の第1の側にある前記てこの第1の端部に配置され、前記封止要素は、前記支点の第2の側にある前記てこの第2の端部に配置され、
    前記磁気反応性要素が前記導電コイルの前記磁場によって動かされるときに、前記磁気反応性要素は、前記バルブが開かれるように、前記封止要素を前記密封面に対して動かすように前記てこを動かす、
    請求項10に記載の装置。
  17. 前記導電コイルとは別個であり離れている磁石を更に有し、
    前記磁石は、前記バルブに付随し、前記磁石が励磁されるときに前記バルブが開かれるように構成される、
    請求項9に記載の装置。
  18. 熱エネルギが第1のデバイスから第2のデバイスへ移動されることを可能にするよう気体が循環するよう構成される冷却管と、
    前記冷却管の気体流経路において配置されるバルブと
    を有し、
    前記バルブは、
    入口及び出口を備えるバルブ筐体と、
    前記バルブ筐体内に配置された封止要素及び密封面と
    を有し、
    前記封止要素は、磁場を介して前記バルブを開放位置と閉成位置との間で切り替えるように、前記密封面に対して動かされるよう構成される、
    装置。
  19. 前記封止要素は、
    前記磁場がないときに、前記バルブを閉じて、前記入口と前記出口との間の気体の流れを妨げるように、前記密封面に結合されるよう構成され、且つ、
    前記磁場の存在下で、前記バルブを開いて、前記入口と前記出口との間の前記気体の流れを可能にするように、前記密封面に対して動かされるよう更に構成される、
    請求項18に記載の装置。
  20. 前記封止要素は、磁気反応性材料を有する、
    請求項18に記載の装置。
JP2016516072A 2013-07-26 2014-07-25 磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置 Expired - Fee Related JP6139784B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361858785P 2013-07-26 2013-07-26
PCT/IB2014/063416 WO2015011679A1 (en) 2013-07-26 2014-07-25 Method and device for controlling cooling loop for superconducting magnet system in response to magnetic field

Publications (2)

Publication Number Publication Date
JP2016538002A true JP2016538002A (ja) 2016-12-08
JP6139784B2 JP6139784B2 (ja) 2017-05-31

Family

ID=51655783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016516072A Expired - Fee Related JP6139784B2 (ja) 2013-07-26 2014-07-25 磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置

Country Status (5)

Country Link
US (1) US10748690B2 (ja)
EP (1) EP3025357B1 (ja)
JP (1) JP6139784B2 (ja)
CN (1) CN105453197B (ja)
WO (1) WO2015011679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525524A (ja) * 2019-03-22 2022-05-17 コーニンクレッカ フィリップス エヌ ヴェ 持続電流スイッチの温度を制御するためのシステム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393133B (zh) * 2013-06-21 2019-06-04 皇家飞利浦有限公司 用于结合的磁共振成像和辐射治疗的低温恒温器和系统
CN105453197B (zh) 2013-07-26 2018-06-08 皇家飞利浦有限公司 用于响应于磁场控制超导磁体系统的冷却回路的方法和设备
CN107110927B (zh) * 2014-12-12 2020-03-03 皇家飞利浦有限公司 用于在失冷情况下保持超导磁体系统中的真空的系统和方法
WO2017021765A1 (en) 2015-08-06 2017-02-09 Synaptive Medical (Barbados) Inc. Local active gradient shielding
US10960688B2 (en) * 2015-08-31 2021-03-30 Novus Printing Equipment, Llc Printer vacuum control system
WO2020143231A1 (zh) * 2019-01-10 2020-07-16 上海交通大学 一种具有低温线圈的能量馈送变换装置
US11309110B2 (en) * 2019-02-28 2022-04-19 General Electric Company Systems and methods for cooling a superconducting switch using dual cooling paths
WO2020234178A1 (en) 2019-05-21 2020-11-26 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154594A (en) * 1981-03-20 1982-09-24 Toshiba Corp Ultra low temperature vessel
JPH01135981A (ja) * 1987-11-20 1989-05-29 Toshiba Corp 流量制御弁
JPH0323272U (ja) * 1989-07-18 1991-03-11
US20060236709A1 (en) * 2004-12-22 2006-10-26 Florian Steinmeyer Spacing-saving superconducting device
JP2009246231A (ja) * 2008-03-31 2009-10-22 Toshiba Corp 極低温冷却制御装置およびその制御方法
JP2009278093A (ja) * 2008-05-12 2009-11-26 Siemens Magnet Technology Ltd クライオジェン容器のための受動的過大圧力および過小圧力防護
WO2014096995A1 (en) * 2012-12-17 2014-06-26 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375656B1 (en) * 1985-01-17 1993-11-24 Mitsubishi Denki Kabushiki Kaisha Cryogenic vessel for a superconducting apparatus
US4841268A (en) * 1987-09-28 1989-06-20 General Atomics MRI Magnet system with permanently installed power leads
JP2758774B2 (ja) * 1992-03-27 1998-05-28 三菱電機株式会社 超電導マグネットおよびその組み立て方法
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
US5385010A (en) * 1993-12-14 1995-01-31 The United States Of America As Represented By The Secretary Of The Army Cryogenic cooler system
US5410286A (en) 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet
US5463872A (en) * 1994-09-08 1995-11-07 International Business Machines Corporation High performance thermal interface for low temperature electronic modules
US5724820A (en) * 1996-02-09 1998-03-10 Massachusetts Institute Of Technology Permanent magnet system based on high-temperature superconductors with recooling and recharging capabilities
US5917393A (en) 1997-05-08 1999-06-29 Northrop Grumman Corporation Superconducting coil apparatus and method of making
GB0014715D0 (en) 2000-06-15 2000-08-09 Cryogenic Ltd Method and apparatus for providing a variable temperature sample space
DE102004053972B3 (de) 2004-11-09 2006-07-20 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
US7053740B1 (en) 2005-07-15 2006-05-30 General Electric Company Low field loss cold mass structure for superconducting magnets
WO2007041532A2 (en) * 2005-10-03 2007-04-12 Massachusetts Institute Of Technology Magnet system for magnetic resonance spectroscopy comprising superconducting annuli
US20070101742A1 (en) 2005-11-10 2007-05-10 Laskaris Evangelos T A cooling system for superconducting magnets
US7319329B2 (en) 2005-11-28 2008-01-15 General Electric Company Cold mass with discrete path substantially conductive coupler for superconducting magnet and cryogenic cooling circuit
JP4789685B2 (ja) 2006-04-05 2011-10-12 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
US20080242974A1 (en) 2007-04-02 2008-10-02 Urbahn John A Method and apparatus to hyperpolarize materials for enhanced mr techniques
DE102008033467B4 (de) * 2008-07-16 2010-04-08 Siemens Aktiengesellschaft Kryostat für supraleitende MR-Magnete
US20110179667A1 (en) * 2009-09-17 2011-07-28 Lee Ron C Freeze drying system
DE102012212063B4 (de) * 2012-07-11 2015-10-22 Siemens Aktiengesellschaft Magnetfelderzeugungsvorrichtung mit alternativer Quenchvorrichtung
CN105378861B (zh) * 2013-07-11 2017-09-29 三菱电机株式会社 超导磁体
CN105453197B (zh) 2013-07-26 2018-06-08 皇家飞利浦有限公司 用于响应于磁场控制超导磁体系统的冷却回路的方法和设备
KR101630616B1 (ko) * 2014-10-14 2016-06-15 삼성전자 주식회사 자기공명영상장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154594A (en) * 1981-03-20 1982-09-24 Toshiba Corp Ultra low temperature vessel
JPH01135981A (ja) * 1987-11-20 1989-05-29 Toshiba Corp 流量制御弁
JPH0323272U (ja) * 1989-07-18 1991-03-11
US20060236709A1 (en) * 2004-12-22 2006-10-26 Florian Steinmeyer Spacing-saving superconducting device
JP2009246231A (ja) * 2008-03-31 2009-10-22 Toshiba Corp 極低温冷却制御装置およびその制御方法
JP2009278093A (ja) * 2008-05-12 2009-11-26 Siemens Magnet Technology Ltd クライオジェン容器のための受動的過大圧力および過小圧力防護
WO2014096995A1 (en) * 2012-12-17 2014-06-26 Koninklijke Philips N.V. Low-loss persistent current switch with heat transfer arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022525524A (ja) * 2019-03-22 2022-05-17 コーニンクレッカ フィリップス エヌ ヴェ 持続電流スイッチの温度を制御するためのシステム
JP7171943B2 (ja) 2019-03-22 2022-11-15 コーニンクレッカ フィリップス エヌ ヴェ 持続電流スイッチの温度を制御するためのシステム

Also Published As

Publication number Publication date
US20160189842A1 (en) 2016-06-30
JP6139784B2 (ja) 2017-05-31
CN105453197B (zh) 2018-06-08
US10748690B2 (en) 2020-08-18
EP3025357B1 (en) 2017-06-14
CN105453197A (zh) 2016-03-30
WO2015011679A1 (en) 2015-01-29
EP3025357A1 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6139784B2 (ja) 磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置
US10107879B2 (en) Low-loss persistent current switch with heat transfer arrangement
JP6457941B2 (ja) 超電導永久磁石を自動的に停止させるシステム及び方法
EP3069159B1 (en) Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
US10698049B2 (en) System and method for maintaining vacuum in superconducting magnet system in event of loss of cooling
US9230724B2 (en) Cooling system and superconducting magnet apparatus employing the same
US7509815B2 (en) Superconducting device having cryosystem and superconducting switch
US8035379B2 (en) Coil energization apparatus and method of energizing a superconductive coil
US10473740B2 (en) Redundant cooling system for a magnetic resonance tomography system
JP6644889B2 (ja) 磁気共鳴撮像(mri)装置及びmri装置用のクライオスタット
CN106618574B (zh) 冷却系统及磁共振设备
EP4102520A1 (en) System for controlling a superconducting coil with a magnetic persistent current switch
JP2024523209A (ja) 磁気永久電流スイッチを用いて超電導コイルを制御するためのシステム

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees