JP2016537712A5 - - Google Patents

Download PDF

Info

Publication number
JP2016537712A5
JP2016537712A5 JP2016523259A JP2016523259A JP2016537712A5 JP 2016537712 A5 JP2016537712 A5 JP 2016537712A5 JP 2016523259 A JP2016523259 A JP 2016523259A JP 2016523259 A JP2016523259 A JP 2016523259A JP 2016537712 A5 JP2016537712 A5 JP 2016537712A5
Authority
JP
Japan
Prior art keywords
synapses
delay
dynamically
neural network
delay parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016523259A
Other languages
English (en)
Japanese (ja)
Other versions
JP6219509B2 (ja
JP2016537712A (ja
Filing date
Publication date
Priority claimed from US14/056,856 external-priority patent/US9536190B2/en
Application filed filed Critical
Publication of JP2016537712A publication Critical patent/JP2016537712A/ja
Publication of JP2016537712A5 publication Critical patent/JP2016537712A5/ja
Application granted granted Critical
Publication of JP6219509B2 publication Critical patent/JP6219509B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2016523259A 2013-10-17 2014-08-21 シナプス遅延を動的に割り当てることおおよび検査すること Active JP6219509B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/056,856 2013-10-17
US14/056,856 US9536190B2 (en) 2013-10-17 2013-10-17 Dynamically assigning and examining synaptic delay
PCT/US2014/052157 WO2015057305A1 (en) 2013-10-17 2014-08-21 Dynamically assigning and examining synaptic delay

Publications (3)

Publication Number Publication Date
JP2016537712A JP2016537712A (ja) 2016-12-01
JP2016537712A5 true JP2016537712A5 (enExample) 2017-03-23
JP6219509B2 JP6219509B2 (ja) 2017-10-25

Family

ID=51492476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523259A Active JP6219509B2 (ja) 2013-10-17 2014-08-21 シナプス遅延を動的に割り当てることおおよび検査すること

Country Status (7)

Country Link
US (1) US9536190B2 (enExample)
EP (1) EP3058517A1 (enExample)
JP (1) JP6219509B2 (enExample)
KR (1) KR101782760B1 (enExample)
CN (1) CN105659260B (enExample)
CA (1) CA2926034A1 (enExample)
WO (1) WO2015057305A1 (enExample)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084620B1 (en) 2017-03-01 2018-09-25 Intel Corporation Neural network-based systems for high speed data links
CN108256638B (zh) * 2018-01-05 2021-06-22 上海兆芯集成电路有限公司 微处理器电路以及执行神经网络运算的方法
CN109002647B (zh) * 2018-08-17 2019-06-07 郑州轻工业学院 一种具有延时学习功能的忆阻联想记忆神经网络电路
US11461645B2 (en) 2019-12-02 2022-10-04 International Business Machines Corporation Initialization of memory networks
CN111563593B (zh) * 2020-05-08 2023-09-15 北京百度网讯科技有限公司 神经网络模型的训练方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666518A (en) * 1995-06-26 1997-09-09 The United States Of America As Represented By The Secretary Of The Air Force Pattern recognition by simulated neural-like networks
US5877954A (en) 1996-05-03 1999-03-02 Aspen Technology, Inc. Hybrid linear-neural network process control
US8335564B2 (en) 2005-05-27 2012-12-18 Rami Rom Ventricle pacing during atrial fibrillation episodes
US7958071B2 (en) * 2007-04-19 2011-06-07 Hewlett-Packard Development Company, L.P. Computational nodes and computational-node networks that include dynamical-nanodevice connections
US9147156B2 (en) * 2011-09-21 2015-09-29 Qualcomm Technologies Inc. Apparatus and methods for synaptic update in a pulse-coded network
US8725662B2 (en) 2011-09-21 2014-05-13 Brain Corporation Apparatus and method for partial evaluation of synaptic updates based on system events
US9092735B2 (en) 2011-09-21 2015-07-28 Qualcomm Incorporated Method and apparatus for structural delay plasticity in spiking neural networks

Similar Documents

Publication Publication Date Title
Manessi et al. Dynamic graph convolutional networks
US12299582B2 (en) Systems and methods for training an autoencoder neural network using sparse data
JP2016537712A5 (enExample)
Allen et al. Games among relatives revisited
Shinde et al. Extracting classification rules from modified fuzzy min–max neural network for data with mixed attributes
US20170228618A1 (en) Video classification method and apparatus
JP2018129033A5 (enExample)
JP2017509982A5 (enExample)
JP2020512639A5 (enExample)
KR20220057612A (ko) 모델 가중치에 대한 주기적 샘플링을 사용한 신경망 훈련
GB2581728A (en) Facilitating neural network efficiency
JP2020522035A (ja) 畳み込みニューラルネットワークのためのニューラルアーキテクチャ検索
EP4235509A3 (en) Neural network instruction set architecture
JP2017509951A5 (enExample)
CN108021983A (zh) 神经架构搜索
JP2018526733A5 (enExample)
MY179856A (en) Information providing device and non-transitory computer readable medium storing information providing program
JP6570155B2 (ja) 圧縮センシングによる映像再構成方法、システム、電子装置及び記憶媒体
Buzbas et al. AABC: approximate approximate Bayesian computation for inference in population-genetic models
JP2016538633A5 (enExample)
JP2016158645A5 (enExample)
JP2016151932A5 (enExample)
CN111078891B (zh) 一种基于粒子群算法的医学特征识别方法及装置
US20200320393A1 (en) Data processing method and data processing device
CN107743071A (zh) 一种网络节点的增强表示方法及装置