CN105659260B - 动态地指派和检查突触延迟 - Google Patents
动态地指派和检查突触延迟 Download PDFInfo
- Publication number
- CN105659260B CN105659260B CN201480056520.2A CN201480056520A CN105659260B CN 105659260 B CN105659260 B CN 105659260B CN 201480056520 A CN201480056520 A CN 201480056520A CN 105659260 B CN105659260 B CN 105659260B
- Authority
- CN
- China
- Prior art keywords
- delay parameter
- delay
- dynamically
- synaptic
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/056,856 | 2013-10-17 | ||
| US14/056,856 US9536190B2 (en) | 2013-10-17 | 2013-10-17 | Dynamically assigning and examining synaptic delay |
| PCT/US2014/052157 WO2015057305A1 (en) | 2013-10-17 | 2014-08-21 | Dynamically assigning and examining synaptic delay |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN105659260A CN105659260A (zh) | 2016-06-08 |
| CN105659260B true CN105659260B (zh) | 2018-06-29 |
Family
ID=51492476
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201480056520.2A Active CN105659260B (zh) | 2013-10-17 | 2014-08-21 | 动态地指派和检查突触延迟 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9536190B2 (enExample) |
| EP (1) | EP3058517A1 (enExample) |
| JP (1) | JP6219509B2 (enExample) |
| KR (1) | KR101782760B1 (enExample) |
| CN (1) | CN105659260B (enExample) |
| CA (1) | CA2926034A1 (enExample) |
| WO (1) | WO2015057305A1 (enExample) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10084620B1 (en) | 2017-03-01 | 2018-09-25 | Intel Corporation | Neural network-based systems for high speed data links |
| CN108256638B (zh) * | 2018-01-05 | 2021-06-22 | 上海兆芯集成电路有限公司 | 微处理器电路以及执行神经网络运算的方法 |
| CN109002647B (zh) * | 2018-08-17 | 2019-06-07 | 郑州轻工业学院 | 一种具有延时学习功能的忆阻联想记忆神经网络电路 |
| US11461645B2 (en) | 2019-12-02 | 2022-10-04 | International Business Machines Corporation | Initialization of memory networks |
| CN111563593B (zh) * | 2020-05-08 | 2023-09-15 | 北京百度网讯科技有限公司 | 神经网络模型的训练方法和装置 |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5666518A (en) * | 1995-06-26 | 1997-09-09 | The United States Of America As Represented By The Secretary Of The Air Force | Pattern recognition by simulated neural-like networks |
| US5877954A (en) | 1996-05-03 | 1999-03-02 | Aspen Technology, Inc. | Hybrid linear-neural network process control |
| US8335564B2 (en) | 2005-05-27 | 2012-12-18 | Rami Rom | Ventricle pacing during atrial fibrillation episodes |
| US7958071B2 (en) * | 2007-04-19 | 2011-06-07 | Hewlett-Packard Development Company, L.P. | Computational nodes and computational-node networks that include dynamical-nanodevice connections |
| US9147156B2 (en) * | 2011-09-21 | 2015-09-29 | Qualcomm Technologies Inc. | Apparatus and methods for synaptic update in a pulse-coded network |
| US8725662B2 (en) | 2011-09-21 | 2014-05-13 | Brain Corporation | Apparatus and method for partial evaluation of synaptic updates based on system events |
| US9092735B2 (en) | 2011-09-21 | 2015-07-28 | Qualcomm Incorporated | Method and apparatus for structural delay plasticity in spiking neural networks |
-
2013
- 2013-10-17 US US14/056,856 patent/US9536190B2/en not_active Expired - Fee Related
-
2014
- 2014-08-21 CN CN201480056520.2A patent/CN105659260B/zh active Active
- 2014-08-21 EP EP14759414.7A patent/EP3058517A1/en not_active Ceased
- 2014-08-21 WO PCT/US2014/052157 patent/WO2015057305A1/en not_active Ceased
- 2014-08-21 KR KR1020167012560A patent/KR101782760B1/ko not_active Expired - Fee Related
- 2014-08-21 CA CA2926034A patent/CA2926034A1/en not_active Abandoned
- 2014-08-21 JP JP2016523259A patent/JP6219509B2/ja active Active
Non-Patent Citations (1)
| Title |
|---|
| Extending SpikeProp;Benjamin Schrauwen etal.;《IEEE》;20041231;第471-475页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN105659260A (zh) | 2016-06-08 |
| CA2926034A1 (en) | 2015-04-23 |
| US9536190B2 (en) | 2017-01-03 |
| EP3058517A1 (en) | 2016-08-24 |
| JP6219509B2 (ja) | 2017-10-25 |
| WO2015057305A1 (en) | 2015-04-23 |
| KR20160071437A (ko) | 2016-06-21 |
| KR101782760B1 (ko) | 2017-09-27 |
| US20150112908A1 (en) | 2015-04-23 |
| JP2016537712A (ja) | 2016-12-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106030622B (zh) | 原位神经网络协同处理 | |
| CN105229675B (zh) | 尖峰网络的高效硬件实现 | |
| US10339041B2 (en) | Shared memory architecture for a neural simulator | |
| CN105934766B (zh) | 用阴影网络来监视神经网络 | |
| CN105580031B (zh) | 在多维范围上对包括可分离子系统的系统的评估 | |
| CN105874477A (zh) | 配置稀疏神经网络 | |
| CN106663222A (zh) | 神经网络中的分解卷积操作 | |
| CN106164939A (zh) | 尖峰发放深度置信网络(dbn)中的训练、识别、以及生成 | |
| WO2015142503A2 (en) | Implementing a neural-network processor | |
| CN105659262A (zh) | 在尖峰神经网络中使用重放来实现突触学习 | |
| US9959499B2 (en) | Methods and apparatus for implementation of group tags for neural models | |
| CN106164940A (zh) | 在尖峰神经网络中通过全局标量值来调制可塑性 | |
| US9672464B2 (en) | Method and apparatus for efficient implementation of common neuron models | |
| US20150278685A1 (en) | Probabilistic representation of large sequences using spiking neural network | |
| CN106133763B (zh) | 可塑性突触管理 | |
| CN105659260B (zh) | 动态地指派和检查突触延迟 | |
| CN105981054A (zh) | 用于将值转换成尖峰的方法 | |
| CN105659261A (zh) | 尖峰神经元网络中的拥塞避免 | |
| US20140365413A1 (en) | Efficient implementation of neural population diversity in neural system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |