JP2016537651A - 流動学的に複雑な流体をモニタするためのセンサ - Google Patents

流動学的に複雑な流体をモニタするためのセンサ Download PDF

Info

Publication number
JP2016537651A
JP2016537651A JP2016552488A JP2016552488A JP2016537651A JP 2016537651 A JP2016537651 A JP 2016537651A JP 2016552488 A JP2016552488 A JP 2016552488A JP 2016552488 A JP2016552488 A JP 2016552488A JP 2016537651 A JP2016537651 A JP 2016537651A
Authority
JP
Japan
Prior art keywords
fluid flow
surface portion
deformation
sensor
body member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016552488A
Other languages
English (en)
Other versions
JP6328782B2 (ja
Inventor
バレリー、シェバレブ
バディム、ステパニウク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenterra Inc
Original Assignee
Lenterra Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenterra Inc filed Critical Lenterra Inc
Publication of JP2016537651A publication Critical patent/JP2016537651A/ja
Application granted granted Critical
Publication of JP6328782B2 publication Critical patent/JP6328782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
    • G01F1/30Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter for fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

容器内における、例えば粒子状で多相の媒体のような流動学的に複雑な流体流を継続的にインサイチュでモニタして特定の流量パラメータ、例えば流率、動粘性係数、流体密度、流体温度、粒子密度および粒子量などを流量センサの測定値から確定するための流量センサ、システム、および方法。システムは、本体部材の所定の部分の変形を測定するように構成された歪ゲージが内蔵された本体部材を有する流量センサを含む。変形測定値の少なくとも一部に基づいてシステムが流量パラメータの計算に使用される。

Description

[関連出願の表明]
本特許出願は、2013年11月8日の出願日を有する米国仮特許出願第61/901,738号に基づく優先権および当該出願の利益を主張するものである。
本発明は、広く流量センサの分野に関し、特に、(例えば粒子状で多相の媒体のような)容器内における流動学的に複雑な流体流の継続的インサイチュモニタリングのための装置、システム、および方法に関する。本発明は、一定の流体流パラメータ、例えば流率、動粘性係数、流体密度、流体温度、粒子密度および粒子量などを流量センサの測定値から確定するように機能する。
流体流を扱う多くの工学応用においては、センサ計測値から一定の流体流パラメータを確定することが基本となる。流体流を扱う応用の例には、化学処理および配管のシステム、食品加工システム並びに油送管が含まれる。こ のような応用における流体流は、通常、流動学的に複雑であり(例えば多相であり、弾力性があり、剪断減粘性であり、繊維性であり、粒子状であり、非常に粘稠であり)、かつ/または化学的にアグレッシブである。
例えば、製薬業界で広く使用される高剪断湿式造粒法は、流動学的に複雑な流体流を含む。粒子流の性質をインラインで制御することは、特定の望ましい特性を有する湿塊を製造するためには極めて重要であり、湿式造粒法は、一定の粒子状の流体流パラメータの正確かつ緻密な計算に依存している。
他の一例は、バイオ産業に関連している。あるバイオプロセスでは、細胞培養技術が治療用タンパク質および抗体を製作/製造するために利用されている。効率的かつ効果的なプロセス分析技術(PAT)は、信頼できる流量センサ計測値に基づくものであり、生物反応器におけるモニタセルの成長に助力し、タンパク質産出のスループットを高め、従って、薬品のコストを低減する。
他の一例は、潤滑油、塗料、インキ、または、最終製品の粘度が製品品質に影響する食料生産に関連する。これらの流体の殆どは、非ニュートン性であり、流体流の粘度で変化する粘性を有するため、流体粘度をインラインで動的に制御することが基本となる。信頼できる流体流センサの測定値に基づき、動的なインライン制御は、正しい特性を有する最終製品の製造に役立つだけで無く、処理装置の寿命をも伸ばす。例えば、インク流の粘度が許容可能な範囲を逸脱すると、動的インライン制御は、処理装置内でバルブおよびプレスをブロックすることができる。石油輸送産業では、粘性が高い局面(すなわち、スラッグ)の存在が建設部品の寿命に影響を及ぼすことがある。
一定の流体流パラメータをインラインセンサの計測値から確定するための既存の装置、システムおよび方法は、一般的に2つのカテゴリ、すなわち非浸入型および浸入型に分類されることができる。非浸入型のカテゴリは、電磁波または音波で流体流の質問を伴う場合がある。浸入型のカテゴリは、流体流の装置/センサへの物理的影響が一定の流体流パラメータを確定するために利用されるように、流体流に直接接触する測定装置/センサを含む場合がある。
例えば、先行技術による非浸入型の光学装置、システムおよび方法は、水やクリアオイルなどの透明の流体から一定の流体流パラメータを確定することができる。これらは、通常、流体流の容器の窓を介してその光学信号を伝送することにより機能するが、粒子状で複雑な流れの中で、光学信号は、通常当該窓の表面に堆積した固体物の薄膜によって散乱されるかまたは吸収される。工程を中断すること無く窓を清掃することは、この技術を著しく複雑にし、流体を汚染するリスクが生じる。
先行技術による非浸入型の音響装置、システムおよび方法は、一般的に複雑な流体流により適合しているものと考えられているが、これらにはまた、ある重大な欠点がある。音波は粒子によって拡散され、かつ/または音波が流体流の容器および/またはセンサの構造要素によって反射するため、複雑な粒子状流体流について望ましい測定感度を提供しないものが多い。
先行技術による浸入型の装置、システムおよび方法は、通常、流体流に直接接触し、かつ、可動部、例えば、回転するメータ、タービン/プロペラ、可動翼、機械的振動子、または変形可能なダイヤフラムを備えるセンサ素子を採用する。これらもまた、特に粒子状で複雑な流体流において著しい欠点を抱えており、それは、可動部/ジョイントへ固形物が堆積してこれらを動作不能の状態にするためである。可動部を洗浄することは、困難でかつ時間がかかることであり、流体の汚染の危険も冒す。このようなメンテナンス手順はプロセスの中断をも必要とすることがあり、このことは、特定の工学応用にとって容認できない/現実的でないことがある。さらに、可動部は、機械的故障のリスクを導入する。
振動粘度計は浸入型のカテゴリで人気のある従来技術の一例である。振動粘度計は、振動プローブを取り囲む流体の薄い層に応答する 、表面装着されたシステムである。振動粘度計による測定値は、流体の粘度と密度に比例してプローブの振動を減衰させる周囲の流体に依存する。振動粘度計は、多くの流体中で敏感な測定を提供するが、プローブ表面への材料の堆積がプローブの機械的特性を変化させるような、粒子状で多相の流れの中ではしばしば失敗する。振動粘度計はまた、比較的遅い応答時間(例えば、数秒)を持っており、測定値を歪曲し得る外部振動に非常に敏感である。
ターゲット式流量計は、浸入型のカテゴリで人気のある従来技術の他の一例である。これは、ターゲット(通常はディスク)を通過する時に流体流によって生じる力の量が流体流の速さ、密度および粘度に関連するという原理に基づいて動作する。従って、最も一般的なターゲット式流量計は、その表面が流体流の方向に垂直に方向付けられたターゲットを採用する。このターゲットは、通常、ストーク(stalk)に取り付けられ、このストークは、一般的に、流体流の影響の下で偏向する/曲がるように構成された、曲げることが可能なバランスビームに固定される。バランスビームに固定された歪ゲージは、流体に露出され、かつ/またはチャンバ内に凹設されてバランスビームの偏向/屈曲の程度を測定する。ターゲット式流量計には可動部が無く、曲がるビームだけを有し、最小のメンテナンスを必要とする。
しかしながら、従来技術のターゲット式流量計は、重大な欠点を抱えている。まず、ターゲット式流量計は、その固有のデザインのために感度が非常に低く、このために、十分な面積を有するターゲットへの要求と、流体流を妨げないターゲット式流量計への要求との間でバランスを取らなければならない。第二として、流体流が複雑で粘度があり、および/または粒子状である場合、流体流内の粒子がターゲットに堆積し、測定値を歪める。第三として、歪ゲージおよび/またはその保護手段は、複雑な流体流中の粒子および高粘度部分にとってトラップとして機能し、このことが、バランスビームの偏向/屈曲を変え、測定値を歪める。
例えば、2001年7月3日にサミュエルソンら(Samuelson et al.)に発行された米国特許第6,253,625号は、曲げることが可能なストークを有し、このストークの外表面に歪ゲージが取り付けられたターゲット式流量計を記述する。従って、歪ゲージは、流体流中に浸される。歪ゲージを部分的に保護するために、歪ゲージがカバーで覆われる。残念ながら、このカバーは、複雑な流体流中の流体流粒子および高粘度部分にとってトラップを形成する。
C.Ruppelらによる「The Design of a New Flow Meter for Pipes Based on the Drag Force Exerted on a Cylinder in Cross Flow」(Transactions of the ASME,Vol.126,July 2004,pp.658−664)は、パイプを間に挟んで放射状に取り付けられた可撓性の円筒形ビームからなる装置を記述する。この参考文献は、パイプの壁の中の凹部に設置されたロードセルがパイプ内の流体流によって円筒形ビームの曲がりを測定することを開示する。このアプローチは、ターゲットを可撓性円筒形ビームに取り替えることによってターゲットを取り除き、この円筒形ビームがパイプを横切ることを要求する。上述した例と同様に、円筒形ビームとパイプとの間の接合点は、複雑な流体流中で粒子および高粘度部分にとってトラップとして機能する。さらに、力検出素子と電気的接続とを流体流の影響から封止するに当たって重大な問題が存在するため、これらの機器の寿命は短い。この点は、化学的にアグレッシブで複雑な流体流に特に当てはまる。
2006年10月31にヨウェル(Yowell et al.)に発行された米国特許第7,127,953B1号は、可撓性の(従って膜を構成する)支持基部に取り付けられた硬性のストークを有するターゲット式流量計を記述する。歪ゲージは、流体流に晒されていない膜の表面に取り付けられる。硬性ストークの動きは、膜に転化され、膜の変形が歪ゲージによって測定される。この設計は、流体流の影響を直接受ける歪ゲージの不利益を除去し得るが、新たな不利益を導入する。ストーク上の流体流の牽引力と流体流の圧力との両方により膜の変形が引き起こされる。
米国特許第6,253,625号明細書 米国特許第7,127,953B1号明細書
C.Ruppel et al.「The Design of a New Flow Meter for Pipes Based on the Drag Force Exerted on a Cylinder in Cross Flow」(Transactions of the ASME,Vol.126,July 2004,pp.658−664)
従って、容器内における流動学的に複雑な流体流の継続的インサイチュモニタリングのための改良された装置、システム、および方法への要求がある。上述した欠点の影響を受けない堅牢で信頼できる流体流センサにより、メンテナンスのコストが低減し、部品の耐用年数が延び、操作がより安全になる。本発明は、とりわけ、これらの要求に向けられている。
簡潔に述べると、本発明は、容器内流体流の継続的インサイチュモニタリングのためのシステムである。システムは、センサパッケージを含む。センサパッケージは、センサを含む。センサは、本体部材と第1歪ゲージとを含む。本体部材は、第1外表面部分と第1内表面部分とを本体部材が含むように内部空洞を有する。本体部材は、内部空洞が流体流から隔絶され、かつ、第1外表面部分が流体流と接するように、流体流中へ延在するように構成される。第1外表面部分および第1内表面部分は、それぞれ、流体流の牽引力の少なくとも一部に基づいて変形するように構成される。システムは、第1内表面部分が第1外表面部分の変形を転化する。第1歪ゲージは、本体部材の空洞内に配置されて第1内表面部分の変形を測定するように構成される。第1歪ゲージはまた、第1内表面部分の変形測定値を伝送するように構成される。
本発明はまた、第1内表面部分が、本体部材のうちで流体流の牽引力が本体部材内での最大の変形を発生させる部分を規定するような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、センサパッケージが、第1内表面部分の変形測定値を分析し、第1内表面部分の変形測定値の少なくとも一部に基づいて流体流パラメータを計算するように構成されるような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、計算可能な流体流パラメータが、流体流の力、温度、速度、流率、粘度および/または密度であるような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、流体流が粒子状の流体であれば、計算可能な流体流パラメータが流体流中の粒子の質量および密度からなるグループからの少なくとも一つであるような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、第1歪ゲージが、光学歪ゲージ、電気抵抗式歪ゲージおよび/または半導体歪ゲージであるような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、本体部材が球形および/または円筒形であるような、容器内流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、容器内流体流の継続的インサイチュモニタリングのためのシステムである。システムは、センサと質問器とを含む。センサは、本体部材と第1光学式歪ゲージとを含む。本体部材は、第1外表面部分と第1内表面部分とを本体部材が含むように内部空洞を有する。本体部材は、内部空洞が流体流から隔絶され、かつ、第1外表面部分が流体流と接するように、流体流中へ延在するように構成される。第1外表面部分および第1内表面部分は、それぞれ、流体流の牽引力の少なくとも一部に基づいて変形するように構成される。本体部材は、第1内表面部分が第1外表面部分の変形を転化する。第1光学式歪みゲージは、本体部材の空洞内に配置される。第1光学式歪みゲージは、第1内表面部分の変形を測定するように構成される。第1光学式歪みゲージはまた、光学信号を介して第1内表面部分の変形測定値を伝送するように構成される。質問器は、第1光学式歪ゲージと通信可能に結合される。質問器は、光学式歪ゲージにより伝送された光信号を受け取り、第1内表面部分の変形測定値を伝送するように構成される。
本発明はまた、質問器に通信可能に結合されたコントローラをさらに含む、容器内流体流の継続的インサイチュモニタリングのためのシステムである。コントローラは、質問器から第1内表面部分の変形測定値を受け取るように構成される。コントローラはまた、第1内表面部分の変形測定値を分析するように構成される。コントローラは、第1内表面部分の変形測定値の少なくとも一部に基づいて流体流パラメータを計算するように構成される。
本発明はまた、本体部材が、第2外表面部分、第2内表面部分および第2歪ゲージをさらに含むような、流体流の継続的インサイチュモニタリングのためのシステムである。第2外表面部分および第2内表面部分は、それぞれ、流体流の牽引力の少なくとも一部に基づいて変形するように構成される。第2内表面部分は、第2外表面部分の変形を転化する。第2および第1内表面部分は第1面によって位置揃えされる。第2歪ゲージは、第2内表面部分の変形を測定するように構成される。
本発明はまた、本体部材が、第3および第4外表面部分、第3および第4内表面部分、並びに第3および第4歪みゲージをさらに含むような、流体流の継続的インサイチュモニタリングのためのシステムである。第3および第4外表面部分並びに第3および第4内表面部分は、それぞれ、流体流の牽引力の少なくとも一部に基づいて変形するように構成される。第3内表面部分は、第3外表面部分の変形を転化する。第4内表面部分は、第4外表面部分の変形を転化する。第3および第4内表面部分は第2面によって位置揃えされる。第1および第2面は交差して角度を規定する。第3歪ゲージは、第3内表面部分の変形を測定して第3内表面部分の変形測定値を伝送するように構成される。第4歪ゲージは、第4内表面部分の変形を測定して第4内表面部分の変形測定値を伝送するように構成される。
本発明はまた、センサパッケージが第1、第2、第3および第4内表面部分の変形測定値を分析するように構成されるような、流体流の継続的インサイチュモニタリングのためのシステムである。システムはまた、第1、第2、第3および第4内表面部分の変形測定値と、第1面および第2面によって規定される角度と、の少なくとも一部に基づいて流体流パラメータを計算するように構成される。
本発明はまた、第1および第2面によって規定される角度が90.0°であるような、流体流の継続的インサイチュモニタリングのためのシステムである。
本発明はまた、容器内流体流中に少なくとも部分的にセンサを延設することを含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、第1歪ゲージにより第1内表面部分の変形を検出することを含む。方法はまた、第1歪ゲージにより第1内表面部分の変形の測定値を伝送することを含む。方法はまた、第1内表面部分の変形測定値を分析することを含む。方法はまた、第1内表面部分の変形測定値の少なくとも一部に基づいて流体流パラメータを計算することを含む。
本発明はまた、流体流を変えることをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。
本発明はまた、第2歪ゲージにより第2内表面部分の変形を検出することをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、第3歪ゲージにより第3内表面部分の変形を検出することを含む。方法はまた、第4歪ゲージにより第4内表面部分の変形を検出することを含む。方法はまた、第1、第2、第3および第4内表面部分の変形測定値を伝送することを含む。方法はまた、第2、第3および第4内表面部分の変形測定値を分析することを含む。方法はまた、第1および第2内表面部分の変形測定値を比較することを含む。方法はまた、第3および第4内表面部分の変形測定値を比較することを含む。
本発明はまた、第1および第2内表面部分の変形測定値間の差を計算することをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、第3および第4内表面部分の変形測定値間の差を計算することを含む。方法はまた、第1および第2内表面部分の変形測定値間の差と、第3および第4内表面部分の変形測定値間の差と、の少なくとも一部に基づいて流体流パラメータを計算することを含む。
本発明はまた、第1および第2面により規定される角度と、第1および第2内表面部分の変形測定値と、の少なくとも一部に基づいて流体流パラメータの第1ベクトル成分を計算することをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、第1および第2面により規定される角度と、第3および第4内表面部分の変形測定値と、の少なくとも一部に基づいて流体流パラメータの第2ベクトル成分を計算することを含む。
本発明はまた、第1および第2内表面部分の変形測定値間の差の少なくとも一部に基づいて第1および第2歪ゲージから差信号を計算することをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、第1および第2内表面部分の変形測定値間の差の少なくとも一部に基づいて第1および第2歪ゲージから平均値信号を計算することを含む。方法はまた、第1内表面部分の熱膨張に対する流体流の牽引力に起因する第1表面部分の変形を計算することを含む。
本発明はまた、参照センサにより流体流の温度を検出することをさらに含む、流体流の継続的インサイチュモニタリングのための方法である。方法はまた、参照センサにより流体流の温度測定値を伝送することを含む。方法はまた、流体流の牽引力に対する流体流の温度に起因する第1内表面部分の熱膨張を計算することをさらに含む。
本発明の上記特徴および他の特徴、並びに利点は、以下のより好適な実施形態の詳細な説明が添付図面と共に読まれれば、当業者により明らかになるであろう。添付図面において同一の参照番号は複数の図面を通して同一の部分を表す。
流体流の継続的インサイチュモニタリングのためのシステムの典型的な構造を示すハイレベルの機能ブロック図である。 球状の流体流センサ、特に、変形されていない流体流センサの一実施形態の断面図である。 球状の流体流センサ、特に、変形された流体流センサの一実施形態の断面図である。 円筒形の流体流センサ、特に、変形されていない流体流センサの一実施形態の断面図である。 円筒形の流体流センサ、特に、変形された流体流センサの一実施形態の断面図である。 流体流中の円筒形流体流センサ用のレイノルズ数への抗力係数の依存のグラフ表示である。 流体流センサ、特に、変形された流体流センサの本体部材の一実施形態の断面図である。 流体流センサからの変形測定信号の少なくとも一部に基づいてシステムにより計算された流体流の力を時間経過と共に示すグラフ表示である。 図3A−図3Bの線7’−7’に沿った本体部材の水平断面図である。 変形された複数の円筒状流体流センサの一実施形態の垂直断面図である。 産業プロセスをモニタし制御するための流体流力測定システムのハイレベル機能ブロック図である。 容器内流体流の継続的インサイチュモニタリングの方法を説明する論理フローチャートである。 容器内流体流の継続的インサイチュモニタリングの方法を説明する論理フローチャートである。 容器内流体流の継続的インサイチュモニタリングの方法を説明する論理フローチャートである。 容器内流体流の継続的インサイチュモニタリングの装置、システムおよび方法のための例となるソフトウェアアーキテクチャ1000を示す概略図である。
容器内流体流の継続的インサイチュモニタリングのためのシステムおよび方法のいくつかの実施形態の側面、特徴および利点を述べる。添付図面に関連した以下の説明に関し、このシステムおよび方法がより良く理解される。ここに提供され記述された実施形態は、例に過ぎず、制限的なものではなく、例としてのみ示されたものであることは当業者において明らかである。
この説明で使用されるとおり、用語「コンポーネント」、「データベース」、「モジュール」、「システム」などは、コンピュータに関連した実体に言及することを意図したものであり、ハードウェア、ファームウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェアまたは実行中のソフトウェアである。例えば、モジュールは、センサ、プロセッサ上で動作するプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラム、および/またはコンピュータであってもよいがこれに限るものではない。一例として、センサパッケージ上で動作するアプリケーションおよびセンサパッケージのいずれもシステムであってよい。
容器内流体流の継続的インサイチュモニタリングのためのシステムおよび方法のいくつかの実施形態はセンサを含む。センサの実施形態は、構造要素(例えば容器の内壁)に固定するために好適な基台要素と、可撓性中空本体部材とを提供してもよい。中空本体部材は、ストークを介して基台要素と直接または間接的に結合される。中空可撓性部材の外表面は、延在して流体流と接触するように構成される。中空本体部材の内壁面に付着された複数の歪ゲージは、中空本体部材の内壁部分の変形(例えば、曲がり、伸び、圧縮など)を測定/モニタする。
変形していない中空本体部材の幾何学的形状/外形/構造は、中空球体、中空円筒、および/または、流体流に関連して流線形状を有する様々な3D形状の組み合わせである。中空本体部材の内表面は、流体流から隔絶される。中空本体部材の外表面は、流体流に晒され、流れの化学効果に耐えるよう組み立てられ構成され、流れを汚染しない。外表面の材料は、ステンレス鋼であるが、例えばテフロン(登録商標)ブランドの合成高分子、プラスチック、ポリマー、有機化合物、および/または疎水性/親水性の層など、当業者に既知の様々な材料および/または表面ライニング/処理が採用され、または採用され得る。
センサは、計算モジュールとともに機能して(中空本体部材の形態の変化に関連した)変形測定を処理し、(中空本体部材の形態を変化させる流体流の牽引力に関連する)流体流パラメータを計算する。流体流の例示的なパラメータは、流率、速度、粘度、密度および温度である。
中空本体部材上の流れによって行使される牽引力により、中空本体部材の幾何学的形状/外形/構造に変形が引き起こされる。一例として、球状の中空本体部材は、その形態を下流へ引き延ばされた液滴形状に変化させる。他の一例として、流体流を横切って延在する円筒形の中空円筒は、円筒の下流側の壁が圧縮(その長さの減少)を受けるように、かつ、上流側の壁が伸びる(長さを増大させる)ように曲がる。
中空本体部材の壁の変形は、例えば、光学式、電気抵抗式、または半導体式の歪ゲージ技術など、従来のどのような検知技術によってもモニタされる。中空本体部材の内表面部分は、変形用の、ファイバ・ブラッグ・グレーティング(FBG)歪ゲージおよび/またはウィスパリングギャラリーモード(WGM)歪ゲージのような、光ファイバをベースにした浸入型の光学共鳴技術によってモニタされる。センサは、2つの分離した、しかしながら、内表面部分に関連したモニタリングの目的のために、中空本体部材の内表面に付着された、少なくとも1対のFBG歪ゲージを有する。
センサは、化学およびバイオの処理システム、水パイプラインシステム、タンクおよび原子炉容器、広範囲の配管および導管システム(水、燃料、石油など)、粒子(粉末)および(液体、基体および固相の混合である)多相流体流などのプロセスシステムを含む、開かれた、閉鎖的な様々なシステムにおいて適用可能である。センサは、多くのプロセス、例えば、工業化学、水、発電、紙パルプ、熱交換、焼却炉、および化石燃料アプリケーションに適用可能である。
流体流中へ延設されない場合、センサはその非変形状態にあり、歪ゲージは、特定の内表面部分における、中空本体部材の第1の機械的状態の変形測定を記録する。流体流中へ延設される場合、センサは変形状態にあり、歪ゲージは、特定の内表面部分における、中空本体部材の第2の機械的状態の変形測定を記録する。従って、変形測定値間の差は、流体流の牽引による中空部材への物理的影響を示す。
流体流の牽引力に対するセンサの測定範囲および感度は、中空本体部材の変形されていない形状、中空本体部材の材料の組成および物理的特性、並びに、中空本体部材の外表面の表面特性/パターン/構造の少なくとも一部に基づいてカスタマイズ可能である。球状の中空本体部材にとって、カスタマイゼーションは、外表面および内表面の外径および内径の変化の少なくとも一部に基づく。円筒状の中空本体部材にとって、カスタマイゼーションは、中空本体部材の長さの変化、並びに、外表面および内表面の外径および内径における変化の少なくとも一部に基づく。カスタマイゼーションはまた、中空本体部材の材料の密度およびヤング率の変化、並びに、中空本体部材の外表面の表面特性/パターン/構造における変化にも基づく。さらに、カスタマイゼーションはまた、例えば、センサが気体、液体、プラズマ、シリコンまたは油で充填されるなど、可撓性中空部材の弾性特性の動的制御にも基づく。
センサは、流体流に対して最小限の浸入をもたらす。センサはまた、中空本体部材の外表面に沿った、流体流の粒子および粘着性成分が蓄積するであろう可動部や空洞を持たない。さらに、センサの歪ゲージ、および他の通信結合の電気回路/配線/手段は、中空本体部材の内部の空洞内に配置されることにより、流体流に対して直接晒されることから隔絶され/保護される。
容器内流体流の継続的インサイチュモニタリングのためのシステムおよび方法のいくつかの実施形態は、上述した、および以下でさらに述べる、システム中のセンサ(流体流センサとしても知られる)に関するものである。流体流センサは、本体部材内の空洞の内表面に沿った内表面部分の変形測定を少なくとも行うように構成される。
システムの一部分は、流体流を有する容器に近接して配置され、この部分からセンサが少なくとも部分的に流体流中へ延設される。この部分はまた、容器に近接した範囲内にあるが流体流から分離し隔絶された計算モジュールおよびモニタリングモジュールを含んでもよい。システムのこの部分は、容器に近接したどのようなコンポーネントに対しても耐久性のある包装を有するが、この包装により、センサは、妨害されること無く流体流中へ延在することができる。
システムは、流体流センサと同様の、またはこれと全く異なる、流体流または他の環境の特性をモニタするコンポーネントを含む。システムは、非浸入型の音響センサ、非浸入型光学センサ、回転計、タービン/プロペラ、可動羽根、機械的振動子、変形可能なダイヤフラム、振動式粘度計、ターゲット式流量計、振動センサ、加速度計、変位センサ、バロメータおよび/または流体流温度プローブを含む。システムは、様々なセンサ入力を処理し利用して流体流パラメータを解明するように構成される。センサの読み取りは全てリアルタイムで取り込まれ、必要に応じて様々なシステムコンポーネントに伝送される。
システムは、継続的な情報をユーザに提供するよう構成されたモニタ/画面を含むユーザインタフェイスを含む。システムには、事前にセットされた値/範囲を何らかの知覚入力が逸脱すると、画面の少なくとも一部を利用するプログラム可能なアラーム/信号が装備されている。このアラーム/信号はまた、無音であり、システムのコンポーネントを介して伝送される。特に、システムは、2以上のセンサと通信する計算装置、またはハブ装置を含み、これにより、別々の様々なシステムコンポーネントをモニタする単一のコマンドステーションを提供する。
システムのハブ装置は、一つまたは複数のセンサおよび他のシステムコンポーネントに通信可能に結合される。通信は、Bluetooth(登録商標)ブランドの遠隔通信または他のどのような短波無線信号または光通信技術を介しても確立される。システムのハブ装置は、知覚入力を記憶し、知覚測定値(およびそのためのプロセッシング産物)を出力し、ユーザにリアルタイムでデータを出力し、集められたデータを、サーバやその組み合わせのような遠隔の装置へ送信する。システムの主なコンポーネントは、リアルタイムの出力データを記憶し、かつ/または送るため、有線、無線、および/または光学上の送信器の他にオンボードのメモリ記憶装置を含む。
容器内流体流の継続的インサイチュモニタリングのためのシステムおよび方法のいくつかの実施形態は、時間tで始まるアルゴリズムを含む。流体流センサが流体流中へ延設され、この流体流センサが所定の間隔または外部/内部の条件に依存する間隔で読み出しを行う。流体流センサの歪ゲージの対/グループは、それぞれの内表面部分の変形測定を行う。
次に、本開示の様々な形態の説明のみを目的として本開示の限定を目的とするものではない図面を参照すると、図1は、容器内流体流の継続的インサイチュモニタリングのためのシステム10の例示的な構造の高レベル機能ブロック図を示す。容器近接195は、計算装置の態様のハブコンポーネント99と、センサパッケージ125とを含む。容器近接195は、流体流を有する容器に近接するハブコンポーネント99と、リンク190Aを介して、無線で通信するセンサパッケージ125を描いている。例えば、容器は、センサパッケージのセンサ159が容器の壁を横切って少なくとも部分的に流体流中へ延在するように取り付けられたセンサパッケージ125を有していてもよい。計算装置99は、容器に近接して配置されるがセンサパッケージ125のほかに複数の他のセンサパッケージに通信可能に結合されたハブコンポーネントの一例である。複数のセンサパッケージは、容器の長さに沿って、従って容器近接195内で様々な位置で容器に係合する。容器近接195内にあるハブコンポーネント99およびセンサパッケージ125の他の例は、容器に係合されているセンサパッケージ125と近くのユーザによってモニタされているハブコンポーネント99とを含む。
特に、図1は、共通の容器近接195内にあるセンサパッケージ125およびハブコンポーネント99を描写するが、必ずしもシステムの実施形態の全てによってハブコンポーネント99が容器近接内にあることが要求されるわけではないことが理解される。すなわち、システムの一定の機能は、例えば計算サーバ118のような遠隔の計算装置を介して実行されることが想定される。このような実施形態では、センサパッケージ125は、ハブコンポーネント99を必要とすること無く通信ネットワーク191を介して計算サーバ118と通信する。他の実施形態では、センサパッケージ125は、計算サーバ118およびハブコンポーネント99のいずれかまたは両方と通信する。同様に、いくつかの実施形態では、ハブコンポーネント99は、通信ネットワーク191に亘って実行されるリンク190Bを介して計算サーバ118へ、かつ/または計算サーバ118からデータを伝送する。
図1の実施形態において、センサパッケージ125は、電源188B、(通信ネットワーク191を介してハブコンポーネント99および計算サーバ118のいずれかまたは両方との通信を確立するための)通信モジュール116B、プロセッサ110B、およびメモリ112Bを含むように示されている。センサパッケージ125はまた、(それ自身が、流体流センサ、非浸入型の音響センサ、非浸入型光学センサ、回転計、タービン/プロペラ、可動羽根、機械的振動子、変形可能なダイヤフラム、振動式粘度計、ターゲット式流量計、振動センサ、加速度計、変位センサ、バロメータおよび/または流体流温度プローブなどの何らかの組み合わせを含む)複数のセンサ159と、(センサ159をモニタするための)モニタモジュール114と、(センサ159からの知覚データを処理するための)計算モジュール113Bを含む。
センサパッケージ125と同様に、ハブコンポーネント99は、(ネットワーク191に亘って計算サーバ118および/またはセンサパッケージ125からの通信を送信し、かつ/または受信するための)通信モジュール116Aと、プロセッサ110Aと、メモリ112Aと、計算モジュール113Aとを含む。ハブコンポーネント99はまた、一つまたは複数の出力をユーザへ提供するためのディスプレイ132を含む。計算サーバ118はまた、計算モジュール113Cを含む。
特に、図1に描かれたコンポーネントの全てがシステムの実施形態の全てにおいて必要とされるわけではない。すなわち、例えば、ある実施形態はハブコンポーネント中に単一の計算モジュール113Aを含むが、他の実施形態はセンサパッケージ125、ハブコンポーネント99、および計算サーバ118のそれぞれにおいて計算モジュール113を含むということが想定される。そのようなものとして、図1から、いくつかのモジュールの全て、または、あるモジュールの一部はシステムの一定のコンポーネント内に存在してもよいし、存在しなくてもよいことが理解される。
上述したように、センサパッケージ125は、センサ159がそれぞれの流体流および/または非流体流の特性/特徴をモニタするように容器の近傍で容器に係合される。特に、図1には示されていないが、一定のセンサ、例えば外気温センサは、ハブコンポーネント99内に存在してもよいことが想定される。モニタモジュール114は、センサをモニタ/照会し、集められたデータを、計算モジュール113Bおよび/またはシステム10の他のコンポーネントにより命令された指示に従って計算モジュール113Bへ転送する。例えば、計算モジュール113Bは、センサ159(特に流体流センサ)から変形測定値の読み出しを受け取り、この変形測定値の少なくとも一部に基づいていくつかの流体流パラメータを計算する。
センサ159によって生成され、モニタリングモジュール114によって収集され、計算モジュール113Bによって管理されたデータは、センサパッケージ125のメモリ112B内に局所的に格納され、かつ/または、ハブコンポーネント99および/または計算サーバ118に送信される。ハブコンポーネント99および/または計算サーバ118に一旦受信されると、計算モジュール113A,113Cは、情報を計算/処理/利用するために測定データを使用してもよい。特に、いくつかのシステムの実施形態はセンサパッケージ125内に完全に含まれが、他のシステムの実施形態は、測定値を収集してシステム10内の他のコンポーネントに送信するために必要なコンポーネントのみを含む必要最小限のセンサパッケージ125を含むということが想定される。
いくつかのシステムの実施形態では、センサ159によって生成され、計算サーバ118へ送られたデータは、後のダウンロードおよび利用のためにデータベース120内に格納される。同様に、センサパッケージ125およびハブコンポーネント99のいずれかまたは両方がそれぞれのメモリ112内に計算データベース120を含むことが想定される。
ハブコンポーネント99およびセンサパッケージ125の実施形態は、遠隔通信、リアルタイムでのソフトウェアアップデート、拡張されたデータ保存などを想定し、システム10のユーザによって様々な構成で利用されてもよい。有利なことに、ハブコンポーネント99および/またはセンサパッケージ125の実施形態は、図1に示すような計算システムを介した通信用に構成される。これは、とりわけソフトウェアアップデート、コンテンツアップデート、データベースクエリ、データ送信などのための、セルラーネットワーク、PSTN、ケーブルネットワーク、Wi−fi(登録商標)ブランドの通信、およびインターネットを含む、しかしこれらに限定されない通信ネットワーク191を利用することを含む。ハブコンポーネント99および/またはセンサパッケージ125との接続に使用され、インターネットまたは他のネットワークシステムを介してアクセス可能な他のデータ通信手段が当業者に想起されるであろう。
図示されたコンピュータシステム10は、広域ネットワーク(WAN)、ローカルエリアネットワーク(LAN)、インターネットのいずれかもしくは全てまたは他のタイプのネットワークの組み合わせを含むネットワーク191に通信可能に結合される。サーバ118なる用語は、単一のサーバシステムまたは複数のシステムまたは複数のサーバを指すことが理解される。サーバ118は、上述した通り、計算データベース120に結合される。計算データベース120は、センサの読出履歴データ、計算のアルゴリズムおよび方法、フィルタ/規則アルゴリズム、ユーザ選択、以前に計算された流体流パラメータ、傾向などに関する、しかしこれらに限定されない、様々な記録を記憶する。
計算サーバ118はネットワーク191に通信可能に結合される。ネットワーク130を介して計算サーバ118は、システム10に関連する様々な異なるハブコンポーネント99およびセンサパッケージ125と通信する。各ハブコンポーネント99および/または各センサパッケージ125は、ネットワーク通信のソフトウェアまたは機能性を動作させ/実行して計算サーバ118と(計算モジュール113Cを含む)その様々なシステム応用にアクセスする。ハブコンポーネント99またはセンサパッケージ125、さらにシステム10内の他のコンポーネント(例えば、しかしそれに限定されない、無線ルータなど)は、様々なタイプの通信リンク145によってネットワーク191に通信可能に結合される。これらの通信リンク145は、有線および無線並びに/または光リンクを含んでもよい。通信リンク145により、ハブコンポーネント99またはセンサパッケージ125は、サーバ118と、および/または相互に、仮想リンク190を確立することができる。例えば、仮想リンク190Bがサーバ118とハブ装置99との間に描写される一方、現実の有線/無線/光リンク145がサーバ118とハブ装置99との間に存在してもよい。このリンク145は、単方向通信チャネルとしてまたは双方向通信チャネルとして、ハブコンポーネント99および/またはセンサパッケージ125から計算サーバ118へデータを中継するために使用されることが想定される。
ディスプレイ132は、例えば液晶ディスプレイ(「LCD」)、プラズマディスプレイ、有機発光ダイオード(「OLED」)ディスプレイ、接触活性化ディスプレイ、およびブラウン管(「CRT」)ディスプレイ、ブレイルディスプレイ、LEDバンク、およびセグメント化されたディスプレイなどの当業者に既知のどのようなタイプの表示装置も含むことが想定される。ハブコンポーネント99は、例えばネットワークブラウザ用のプラグ・インの一部であるマルチメディアプラットホームを実行し/動作させ、またはそれとのインターフェイスをなす。
通信モジュール116は、例えば、しかし以下に限定されない、Wi−fi_33(登録商標)ブランドの通信カード、近距離無線通信(NFC)カードなどの、システム10のコンポーネントとのインターフェイスをなすための無線通信ハードウェアを含む。また、通信モジュール116は、収集された知覚データおよび他の情報をシステムの他のコンポーネントに伝送するセルラー無線送受信機を含む。当業者により理解されている通り、通信モジュール116はプロセッサ110へのアプリケーションプログラムインターフェイスを含むことを当業者は認識する。
流体流コントローラ300もまた、システム10のコンポーネントである。それは、通信ネットワーク191を利用してシステム10の他の様々なコンポーネントと通信する。流体流コントローラ300は、上述に記載のものと全く同一の特徴、側面および機能を有する通信モジュール113Dを含む。流体流コントローラ300は、容器内の流体流特性、例えば流速、混合組成などを調整する流体流処理システム(図示せず)の一部を表す。当業者は、流体流コントローラが、バルブ、ポート、ポンプ、モータ、格子、ふるいなどを含む複雑流体流処理システム内の中間コンポーネントであることを理解する。流体流コントローラ300は、少なくとも計算モジュール113Dに基づいて、システム10のコンポーネントを越えて送られた知覚データを受け取り、そのデータを分析し、様々な流体流パラメータを計算し、流体流処理システムによって流体流が調整/修正/是正されるように、流体流処理システムの他のコンポーネントにそのデータを利用し/送るように構成される。従って、流体流コントローラ300は、容器内流体流のための複雑な機構を有する、コンピュータによる調整システムにおける中間コンポーネントである。
図2Aおよび2Bは、球状流体流センサ100の一実施形態の垂直断面図であり、特に、図2Aは変形していないセンサ100の図であり、図2Bは、流体流109内で変形したセンサ100の図である。センサ100は、基台101と、剛性ストーク103を介して基台101に接続された本体部材102とを含む。ストーク103は、一端で基台101にしっかりと取り付けられ、その第二端は、液体が剛性ストーク103および本体部材102の空洞内を貫通することを防止するよう、本体部材102に融合されている。流体流の牽引の効果の全てが、主として本体部材102の形態に確実に反映されるよう、ストークが変形に対して耐性があることが想定される。
基台101は、そのパラメータがモニタされるべき流体流を保持する構造コンポーネント、例えば容器やパイプなどの壁104を介して配置される。そのため、球状部材102は流体流に接している。2つの光学FBG歪ゲージ105,106は、本体部材102の内表面に取り付けられ、各々の内表面部分の変形をモニタする。ゲージ105,106は、接着剤を用いて取り付けられるが、例えば、溶接、機械的な留め具、化学的接着、電磁的物理的引力(磁力)など、ゲージ105,106を内表面に結合させるためのどのような手段も想定される。
光ファイバ107,108は、それぞれ、歪ゲージ105,106を、各ゲージの長さに関する情報を収集する適切な光学式質問器(図示せず)に通信可能に結合する。当業者により理解されるように、光学式質問器は、図1のモニタモジュール114の一実施形態であることが想定される。
図2Aにおいて、本体部材102の形状は、変形していない時で、かつ、流体流109の牽引力の影響下にない時は、球状である。図2Bは、流体流109によって変形した時の本体部材102を示す。流体流109(特に流体流109の圧力に比べて流体流109の牽引力)の影響下で、本体部材102は、流体流109の方向に沿って長くなる。本体部材102は変形してより流線形になり、すなわち、本体部材102の形態は、流体流109の摩擦/牽引の少なくとも一部に基づいて変化する。図2Bによって描かれた形態において、歪ゲージ105,106に対応する内表面部分は、図2Aに示されるように平穏な状態と比較して伸びる(より少ない圧縮を受ける)。勿論、歪ゲージ105,106に対応する内表面部分は他の周辺環境下で縮むことが予想される。
本体部材102の形状がより流線形になると、様々な外表面部分の物理的状態が変化することになり、この変化は、最終的には本体部材102の、対応する内表面部分によって転化される。従って、歪ゲージ105,106は、いくつかの内表面部分の変形を測定し、変形測定値をシステム10の他のコンポーネントへ伝送するよう構成される。
図3Aおよび3Bは、円筒状流体流センサ200の一実施形態の垂直断面図であり、特に、図3Aは変形していないセンサ200の図であり、図3Bは、流体流209内で変形したセンサ200の図である。センサ200は、基台201と本体部材202とを含む。本体部材202は、一端で基台201に融合され、第二端で、本体部材202の内部空洞が流体流209から隔絶されるように封止される。本体部材202は一つの連続する個片であるか、または、様々な部品個片から構成されるが、その製作に拘わらず、結果としての中空本体部材202は、実質的に平坦な外表面領域を有するまとまりのある一つのコンポーネントであることが想定される。これにより、中空本体部材202の内部空洞へのどのような機械的故障/ひび/漏出をも避けるために中空本体部材202の部品個片間のどのような継ぎ目も最小になることが保証される。
基台201は、流体流209を保持する構造コンポーネントの壁203を介して配置される。従って、本体部材202の外表面は液体に接している。当業者は、容器の液体包含機能が維持されるように基台201が壁203に係合されることを理解する。基台201と壁203との接合間のいかなる漏洩も本体部材202の内部空洞を貫通せず、かつ/または(例えば光ファイバのような、コンポーネント間で情報を伝送するためのどのような手段も含めて)内部空洞内または容器に近接して配置されたシステム10のコンポーネントに接触しないように基台201が構成されることが想定される。
2つの光学FGB歪ゲージ204,205は、光ファイバ206,207にそれぞれ通信可能に結合される。光学FGB歪ゲージ204,205は、対向する内表面上で内表面部分に係合される(すなわち、光学FGB歪ゲージ204,205は、本体部材202の同一の軸横断面に存在する)。光ファイバ206,207は、歪ゲージ204,205を、内表面部分のそれぞれ関連する対/グループからの変形測定値を入手する光学質問器(図示せず)に通信可能に結合する。
図3Aは、変形していない本体部材202を描写し、図3Bは、流体流209中の本体部材202の変形を描写する。流体流の力が本体部材202の長さに沿って均一であると仮定すると、本体部材202の変形は、均一に分布した負荷ω(N/m)のため、以下のように規定される:
Figure 2016537651
ここで、xは、本体部材202の軸に沿った座標であり(固定端はx=0に対応する)、yは座標xにおける軸変形であり、Eは本体部材202の材料のヤング率であり、Iは本体部材202の慣性の運動量であり、実質的に中空の円筒ビームについては次の通り規定される:
Figure 2016537651
ここで、rは外径であり、rは内径であり、lはビームの長さである。ビーム先端の偏差は、
Figure 2016537651
を介して求められる。
従って、本体部材202の変形測定、特に、変形して図3Bに示す変形した本体部材202を形成する内表面部分の変形測定は、本体部材202上の流体流209によって行使された牽引力に関する情報を伝送する。温度の影響がないものと仮定すると、本体部材202が変形するとき、上流の歪みゲージ204は伸び(その長さを追加の長さαだけ増大させ)、下流歪ゲージ205は縮む(その長さを同一の長さαだけ増大させる)。歪ゲージ205,206は、本体部材202の長さに沿ったある位置であってその長さ
Figure 2016537651
(Lは歪みゲージの長さ)の相対変化が最大値にある位置xに取り付けられる。均一の円筒について、この位置は中間点にある(すなわち、x=0.5・l)。
本体部材202の温度が変化した場合、本体部材202の上流側内表面部分および下流側内表面部分の両方とも熱膨張または熱収縮により伸長しまたは収縮する。従って、各歪みゲージ204,205からの変形測定値もまた、流体流の少なくとも一部に基づく熱膨張または熱収縮の影響に関する情報を含む。熱膨張または熱収縮による内表面部分の長さの変化をβとすると、歪みゲージ204に関連する内表面部分の長さにおける総変化はγ=α+βであり、歪みゲージ205に関連する内表面部分の長さは、γ=−α+βである。従って、γとγとを独立に測定することにより、(歪みゲージ204,205からの差信号([γ−γ)/2])を計算することによる)流体流の牽引による伸長と、(歪みゲージ204,205からの平均信号(γ+γ)/2]を計算することによる)熱膨張による伸長とをシステム10が別々に計算することが可能になる。
差信号(γ−γ)/2=αは、本体部材202上の流体流209による牽引力に比例する偏位δmaxに比例する。平均信号(γ+γ)/2=βは、本体部材202の熱膨張/収縮に比例する。本体部材202上の流体流209の力および温度影響のための特定パラメータを計算すること、並びに、それらを特定セットの測定値γおよびγに対応づけることは、当業者により理解されるように、モデリングまたはキャリブレーションの少なくとも一部に基づいて可能である。
システム10は、本体部材202のすぐ近くに配置された少なくとも一つの温度センサからの知覚測定値を利用することにより、本体部材202の熱膨張/収縮をその計算において補償することが想定される。このような参照センサは、流体流のリアルタイムでの温度測定値を提供し、それは、温度変化βによる膨張/収縮、および/または流体流の力αによる膨張/収縮を計算するために使用される。この種のアルゴリズム的解析は当業者により理解される。
図3Bの説明に戻り、流体流209内の本体部材202に印加される力は以下のように規定される:
Figure 2016537651
ここで、Cは円筒の抗力係数であり、
Figure 2016537651
は、円筒の横断面を規定し、ρは液体密度であり、vは流速であり、Cはレイノルド数に依存し、
Figure 2016537651
(図4)およびμは、動粘性係数である。液体粘度および密度を知ることにより、システム10は、流速および体積流量の計算に必須の情報を持つ。逆に、流体流の流量を知ることにより、システム10は、液体粘度および密度を計算する情報を持つ。従って、センサ200により、システム10は、そこから特定の流体流パラメータが時間と共に計算されモニタされ追跡される知覚測定値を収集することが可能になる。
図5は、センサ400のための本体部材の一実施形態の垂直断面図であり、特に、図5は、流体流(図示せず)内の変形されたセンサ400に関するものである。センサ400は、混合された形状/形態/構成を有する本体部材401を含む。センサ400は、流体流の牽引の少なくとも一部に基づく本体部材401の変形を促進する球状部分402を含む。従って、球状部分402は、流体流の牽引力が作用し得る追加の外部表面領域を有するセンサ400を提供する。
球状部分402は内部空洞を有しないものとして図示されているが、球状部分402は(例えば図2A−図2Bの本体部材101のような)独自の個別本体部材であることが想定される。この種の構成により、本体部材401の外表面が、円筒部分(実質的には、図3A−3Bの本体部材202のような円筒中空本体部材)に沿って球状部分402と比べて異なる態様で変形することが可能になる。当業者は、(ここに記載の)球状本体部材と(ここに記載の)円筒本体部材との相違がシステム10に異なる変形測定源を提供し、これにより流体流のパラメータに関する異なる情報および/または補足的な情報を提供できることを理解する。
図6は、流体流センサからの変形測定信号の少なくとも一部に基づいてシステム10により計算された流体流力を時間とともにグラフ表示したものである。ここで記載されるように、粒子状の流体流において、流体流センサの本体部材は、流体流の牽引力の少なくとも一部に基づくだけでなく流体流中の粒子/粒子塊の繰り返し発生する衝撃にも基づく変形を受ける。このような場合、流体流センサは、図6に示すように、システム10によりパルス状の応答中へ計算された測定値を提供する。
より具体的には、図6は、図3A−3Bのセンサ200の本体部材202に与えられた、粒子状の流体流209の力を示す。本体部材202は主として円筒形であり、ある期間にわたる500Hzの取得レートでの高剪断湿式造粒(HSWG)処理において流体流中へ延設されている。この期間にわたる歪みゲージ204,205からの変形測定値の少なくとも一部に基づいてシステム10によって計算されるように、顆粒ブレードは正弦一致の501周波数(流体流のパラメータの一実施形態)を示し、また、流体流が複数の流力ピーク502を有することが認められる。複数の流力ピーク502(流体流のパラメータの他の実施形態)は、粒子流内の粒子、粒子塊、および/または固まった顆粒に起因する衝撃の力、時間および周波数に関する情報を提供する。システム10は、この情報を利用/処理して粒子状流体流の質量および密度を示すこれらのピークの大きさを計算する。当業者は、これらの計算に必要なアルゴリズムを容易に理解する。
図7は、図3A−3Bの線7‘−7’に沿った本体部材の水平断面図である。図7において、センサ600は、その長さに沿って実質的に円筒形である本体部材601を含む。センサ600はまた、本体部材601の内表面に取り付けられた、2つの歪みゲージ対、歪みゲージ602,603および歪みゲージ604,605を含む。歪みゲージ602,603および歪みゲージ604,605は、特定の関連する内表面部分で、歪みゲージ602,603によって形成される(線xで指示される)面が歪みゲージ604,605によって形成される(線yで指示される)面に垂直になるように変形測定を行う。複数の他の歪みゲージ対/グループが本体部材601の長さに沿って存在し、また、これらは他の歪ゲージ対/グループに対して様々な角度を規定できることが想定される。
ここで述べられている通り、図3A−3Bの2つの光学FGB歪ゲージ204,205は、流体流209の方向が、歪みゲージ対が存在する軸横断面面に平行であるように配置される。仮に流体流209が向きを変え、かつ、センサ200が図示された一対/グループの歪みゲージしか持たなかった場合、センサ200はこの面に対する力の投影だけに応答することを当業者は理解する。仮にそうだとしたら、かつ、仮に流体流の大きさおよび角度方向がそうではなくて既知でなく、かつ/または感知されない場合、センサ200は、望ましい流体流パラメータを計算するために必要な変形測定を提供することができない。
この欠点は、直交する方向で動作する少なくとも2対の歪みゲージをセンサ200が包含すれば解消される。図7は、センサ600におけるこのような実施形態を示す。従って、任意の方向の流体流(図示せず)において、歪みゲージ602,603は、望ましい流体流パラメータのxベクトル成分に適した変形測定を行い、また、歪みゲージ604,605は、望ましい流体流パラメータのyベクトル成分に適した変形測定を行う。当業者は、変形測定を分類し処理するために必要なアルゴリズム、および、得られたベクトル成分に基づいて合成の流体流パラメータを計算するために必要なアルゴリズムを容易に理解する。
図8は、図3A−3Bの流体流センサ200と同様の、複数の変形された円筒形流体流センサ700の一実施形態の垂直断面図である。複数の流体流センサ700は、容器の構造壁701に沿って直列に取り付けられるが、複数の流体流センサ700は、図8で描かれるものに限るものではない。個々の流体流センサ700が壁701の複数のパス(path)に沿って配置されるよう構成されることを当業者は理解する。さらに、個々の流体流センサ700は、大きな距離だけ離隔され、かつ、異なる長さを流体流703中へ延在させるように構成される。さらに、個々の流体流センサ700は、それぞれ、ここに述べられている通り、処理のために知覚情報をハブコンポーネント99および/または計算サーバ118へ送る。さらに、個々の流体流センサ700は、同一のセンサパッケージ125の一部または別々のセンサパッケージ125の一部である。
図9は、産業プロセスのモニタリングおよび制御のための流体流力測定システム809のハイレベル機能ブロック図を示す。一つまたは複数のセンサ100,200が容器内流体流中に延設される。質問器800は、光ファイバ107,108,206,207を介してセンサ100,200に通信可能に結合される。FBG歪ゲージ105,106,204,205は、可変光学スペクトルの光源801からの光を用いて質問される。可変光学スペクトルの光源801は、波長可変レーザを含み、光源制御ユニット802により少なくとも部分的に制御される。
歪ゲージ105,106,204,205の特定の内表面部分から反射した光は、当該技術分野で容易に理解されるように、光ファイバ107,108,206,207を介して質問器800に返送される。より具体的には、反射光は、内表面部分の変形に関する情報を包含し、可撓性中空本体部材102,202に作用する流体流パラメータを示す。質問器800の一つまたは複数の光検出器803は、特定の内表面部分からの反射光を受け取る。光検出器803からの信号/データ出力は、信号調整器804によって調整され、信号処理ユニット805によってディジタル化される。
質問器800は、プロセッサ806、メモリ807、およびヒューマン・インターフェース装置806を含む計算モジュールによって制御される。計算モジュールは、適切なソフトウェアが予めロードされ、少なくとも部分的に、変形測定、例えば「A SENSOR」を処理し始め、これらを分類し、これらにラベルを付け、これらを相互に関連づける。また、質問器800は、通信モデル810をさらに含み、この通信モデル810を介して質問器800は、未加工の変形測定および/または処理されたデータ/信号を遠隔のモニタリング及び制御サーバ811へ配信する。これは通信ネットワーク812を含む。
モニタリング及び制御サーバ811に関連づけられた計算データベース813を用いることにより、モニタリング及び制御サーバ811は、質問器800から受け取ったデータを分析し、所定のアルゴリズムまたはユーザインタフェイスに従って制御コマンド/信号をプロセス制御ユニット814へ送る。次にプロセス制御ユニット814は、そのコマンド/信号を利用して産業プロセスに変化を導入する。例えば、プロセス制御ユニット814は、産業プロセスに含まれる高剪断湿式造粒の回転速度を変更する制御コマンドを伝送する。さらに、プロセス制御ユニット814は、流体流中に特定量の化学薬品を添加する制御コマンドを伝送する。次いで、サーバ811は、あるフィードバックおよび制御システムに基づいて、質問器800内のソフトウェアを修正することにより、測定の形態/技術を変更する。
図10は、容器内流体流の継続的インサイチュモニタリングの方法を説明する論理フローチャートである。ブロック505で始まり、計算モジュールはモニタ期間の開始時刻を決定する。ブロック510で、センサパッケージ内の流体流センサの個々の歪みゲージからの別々の変形測定がモニタリングモジュールによってモニタされる。ブロック515で、モニタモジュールおよび/または計算モジュールが個々の歪みゲージからの別々の変形測定を処理して流体流パラメータがターゲットから逸れているかどうかを決定する。当業者によって理解されるように、このことは、過去の全ての変形測定値および現在の全ての変形測定値の回帰的および/または統計的な分析の実行を含んでもよい。さらに、このことは、必要な場合に、バッファリングおよび調整を含んでもよい。さらに、当業者により理解されるように、ターゲットは、特定の値でも、範囲でも、ある計算されたトレンドからの統計的偏差でもよい。
計算された流体流パラメータがターゲットから逸れると、方法において2つの偏差が生じる。計算された流体流パラメータがターゲットから逸れると、方法は、ブロック520へ続き、そこで出力警報信号がモニタモジュールおよび/または計算モジュールによって伝送される。出力警報信号は、ここに述べられたユーザインタフェイスを介したユーザへの可視的警報の形態を取ってもよいことを当業者は理解する。当業者はまた、出力警報信号はシステムのバックグラウンド中にあってシステムの操作に影響を与える無音の信号として機能してもよいことを理解する。一旦警報信号が出力されると、方法は、ブロック525へと進む。
計算された流体流パラメータがターゲットから逸れていなければ、ブロック525で、センサパッケージ内の流体流センサの個々の歪みゲージからの別々の変形測定は、モニタリングモジュールによって継続して測定される。ブロック530で、モニタモジュールおよび/または計算モジュールは、個々の歪みゲージからの別々の変形測定値を処理して流体流パラメータを計算し、この流体流パラメータをシステムのコンポーネントへ出力する。
次に、ブロック535で、計算モジュールは、モニタリング期間の終了時刻を決定する。次いで、ブロック540で、計算モジュールは、個々の歪みゲージからの別々の変形測定値と計算された流体流パラメータとを記憶する。計算モジュールはまた、モニタリング期間にわたる個別の流体流パラメータのどのような統計分析をも記憶する。
図11は、容器内流体流の継続的インサイチュモニタリングの他の方法を示す論理フローチャートである。ブロック605から始まり、流体流センサの本体部材の個々の歪みゲージからの別々の変形測定値がモニタリングモジュールによって受け取られる。ブロック610で、計算モジュールは、個々の歪みゲージからの別々の変形測定を分析する。
ブロック615で、計算モジュールは、個々の歪みゲージからの関連する測定値を分類する。これには歪みゲージの相対位置に関する情報とこれらのゲージが読み込んでいる内表面部分の情報とが含まれてもよいことを当業者は理解する。これにはまた、モニタリングモジュールが伝送する歪みゲージ間の関係に関する情報、すなわち、特定の予め確立された対/グループの一部なのかどうか、感知された流体流の方向に並んで直接位置合せされているのかどうか、または、流体流に対して特定の角度をなすのかどうかが含まれてもよい。これにはまた、他の非歪みゲージからの関連する知覚データを伝送するモニタリングモジュールが含まれてもよい。
次に、ブロック620で、計算モジュールは、確立されたグループ内で個々の歪みゲージからの関連する測定値を比較する。これには個々の歪みゲージからの関連する過去の測定に関する履歴情報を処理し、確立されたグル−プ内の他のものとの比較で現在の測定値が不正確または不明確でありそうかどうかを決定することを含めてもよいことを当業者は理解する。これには、グループ内で測定値を比較して現在の測定値が不正確または不明確でありそうかどうかを決定することが含まれてもよい。これにはまた、当業者により理解されるように、統計的または回帰的分析が含まれてもよい。
次に、ブロック625で、計算モジュールは、確立されたグループ内で関連する測定値間の差を計算する。これは、確立されたグループ内で関連する測定値をただ減算することでよいことを当業者は理解する。また、これに、あり得る異常値および/または誤って分類された測定値を除去する、より複雑な方法が含まれてもよい。また、これに、確立されたグループ内での測定値間の総差をもたらす統計分析が含まれてもよい。
次いで、ブロック630で、確立されたグループ内で関連する測定値間の差が他のシステムコンポーネントへ出力される。この情報が流体流パラメータの計算のため、関連する歪みゲージ間の差分信号の計算のため、および、関連する歪みゲージ間の平均信号の計算のために役立ち得ることを当業者は理解する。
次いで、ブロック635で、流体流センサの本体部材の個々の歪みゲージからの更なる測定値がモニタリングモジュールによって受け取られる。ブロック640で、計算モジュールは次に個々の歪みゲージからの関連する測定値を再び分類する。ブロック645で、個々の歪みゲージからの関連する測定値の分類がブロック615での分類態様から変化する場合、方法において2つの偏差が発生する。個々の歪みゲージからの関連する測定値の分類がブロック615での分類態様から変化しなかった場合は、方法はブロック630へ戻る。
個々の歪みゲージからの関連する測定値の分類がブロック615での分類態様から変化した場合は 、次にブロック650で、計算モジュールは、新たに確立されたグループ内で個々の歪みゲージからの関連する測定値を比較する。これには、個々の歪みゲージからの関連する測定値間の過去の比較に関する履歴情報を処理して現在の分類が不正確または不明確になされたものでありそうかどうかを決定することが含まれることを当業者は理解する。
次に、ブロック655で、計算モジュールは、新たに確立されたグループ内で関連する測定値間の差を計算する。次いで、ブロック660で、新たに確立されたグループ内での関連する測定値間の差が他のシステムコンポーネントへ出力される。
図12は、容器内流体流の継続的インサイチュモニタリングの他の方法を示す論理フローチャートである。方法900は、上述した方法600と実質的に同一であるが、計算モジュールがブロック920の確立されたグループのうちでより好適なグループをさらに特定する。確立されたグループは、センサの本体部材の具体的な形状および構成に依存してより好適なグループとして特定されてもよいことを当業者は理解する。それはまた、センサと相互に作用するときの流体流の大きさ、方向および角度、並びに、潜在的な好適な分類が流体流に関連する程度、すなわち、グループ内で測定を生成する歪みゲージの全てが流体流に対して実質的に平行か、または実質的に垂直であるかに依存してもよい。例えば、図7において、歪みゲージ602,603からの変形測定値を含むグループと歪みゲージ604,605からの変形測定値を含むグループとはそれぞれ流体流209に平行な歪みゲージのグループと流体流209に垂直な歪みゲージのグループとを表すため、いずれもより好適なグループと特定されてもよい。
次に、ブロック925で、計算モジュールは、特定された、より好適なグループ内で個々の歪みゲージからの関連する測定値を比較する。次いで、ブロック930で、計算モジュールは、特定されたより好適なグループ内の変形測定値の少なくとも一部に基づいて流体流パラメータのベクトル成分を計算する。このことは、方法600のブロック625で述べられている通り、特定されたより好適なグループ内で関連する測定間の差を計算する計算モジュールを含んでもよいことを当業者は理解する。
次に、ブロック935で、流体流パラメータの計算されたベクトル成分が他のシステムコンポーネントへ出力される。この情報が、流体流パラメータの計算のため、関連する歪みゲージ間の差分信号の計算のため、および、関連する歪みゲージ間の平均信号の計算のために役立ち得ることを当業者は理解する。
次に、ブロック940で、流体流センサの本体部材の個々の歪みゲージからのさらなる測定値がモニタリングモジュールによって受け取られる。ブロック945で、計算モジュールは次に個々の歪みゲージからの関連する測定値を再度分類する。ブロック950で、特定されたより好適なグループがブロック920で特定されたものから変化した場合、方法において2つの偏差が発生する。特定されたより好適なグループがブロック920で特定されたものから変化しなかった場合、方法はブロック925へ戻る。
特定されたより好適なグループがブロック920で特定されたものから変化した場合は 、ブロック955で、計算モジュールが、ブロック945から確立されたグループのうちでより好適なグループを新たに特定する。確立されたグループは、センサと相互に作用するときの流体流の大きさ、方向または角度に依存してより好適なグループとして新たに特定されてもよいことを当業者は理解する。
次に、ブロック960で、計算モジュールは、新たに特定されたより好適なグループ内で個々の歪みゲージからの関連する測定値を比較する。次いで、ブロック965で、計算モジュールは、新たに特定されたより好適なグループ内の変形測定値の少なくとも一部に基づいて流体流パラメータのベクトル成分を計算する。次に、ブロック970で、計算された流体流パラメータのベクトル成分が他のシステムコンポーネントへ出力される。
図13は、容器内流体流の継続的インサイチュモニタリングの装置、システムおよび方法のための例示的なソフトウェアアーキテクチャを示す概略図である。図13に示されるように、CPUまたはディジタル信号プロセッサ110は、メインバス211を介してメモリ112へ結合される。メモリ112は、ハブコンポーネント99、センサパッケージ125またはこれらの組み合わせの内部に存在してもよい。同様に、計算モジュール113およびCPU110がハブコンポーネント99、センサパッケージ125またはこれらの組み合わせの内部に存在してもよいことが理解されるであろう。
上述の通り、CPU110は、N個のコアプロセッサを有する多数コアプロセッサである。すなわち、CPU110は、第1コア222、第2コア224および第Nコア230を含む。当業者に既知であるように、第1コア222、第2コア224および第Nコア230のそれぞれが特定のアプリケーションまたはプログラムをサポートするために利用可能である。代替的に、1または2以上のアプリケーションまたはプログラムが2以上の利用可能なコアに亘る処理のために配布されてもよい。
CPU110は、ソフトウェアおよび/またはハードウェアを含んでもよい計算モジュール113からコマンドを受け取ってもよい。ソフトウェアとして具体化される場合、モジュール113は、CPU110および他のプロセッサによって実行されている他のアプリケーションプログラムへのコマンドを発行するCPU110によって実行される命令を含む。
CPU110の第1コア222、第2コア224から第Nコア230は、単一の集積回路ダイ上に集積されてもよいし、複合回路パッケージ内の別々のダイ上で集積または連結されてもよい。設計者は、1または2以上の共通のキャッシュを介して第1コア222、第2コア224から第Nコア230を連結してもよいし、バス、リング、メッシュおよびクロスバートポロジーなどのネットワークトポロジーを介して通過するメッセージまたは指示を実行してもよい。
バス211は、当該技術分野で知られているように、1または2以上の有線、無線または光学的結合を介した複数の通信経路を含んでもよい。簡単のために省略されるが、バス211は、通信を可能にする、コントローラ、バッファ(キャッシュ)、ドライバ、リピータおよびレシーバなどの追加の要素を持ってもよい。さらに、バス211は、上述したコンポーネント間の適切な通信を可能にするアドレス、コントロール、および/またはデータ接続を含んでもよい。
図13に示されるように、コンポーネント99,125によって使用されるロジックがソフトウェアで実行される場合、起動ロジック250、管理ロジック260、計算インターフェイスロジック270、アプリケーションストア280内のアプリケーション、および、ファイルシステム290の部分の一つまたは2以上は、いかなるコンピュータ関連のシステムまたは方法によってまたは関連して使用するためのコンピュータ読み取り可能ないかなる媒体に記憶されてもよいことに注目しなければならない。本明細書に照らして、コンピュータ読み取り可能な媒体は、コンピュータ関連のシステムまたは方法によってまたは関連して使用するためのコンピュータプログラムおよびデータを収容しまたは記憶することができる、電気的、磁気的、光学的または他の物理的デバイスまたは手段である。様々な論理要素およびデータ記憶は、指示実行システム、機器または装置から指示を取ってきてこの指示を実行できる、コンピュータベースのシステム、プロセッサ含有システム、または他のシステムのような、指示実行システム、機器または装置によってまたは関連して使用するためのどのようなコンピュータ読み取り可能な媒体中でも具体化されてよい。本明細書に照らして、コンピュータ読み取り可能な媒体は、指示実行システム、機器または装置によってまたは関連して使用するためのプログラムを記憶し、通信し、伝搬し、または輸送できるどのような手段でもあり得る。
コンピュータ読み取り可能な媒体は、例えば、電気的、磁気的、光学的、電磁的、赤外線または半導体システム、機器、装置または伝搬媒質であり得るが、これらに限定されない。コンピュータ読み取り可能な媒体のより具体的な例(包括的でないリスト)は以下を含むであろう:1または2以上の配線を有する電気的接続(電気的)、ポータブルコンピュータディスケット(磁気的)、ランダム・アクセス・メモリ(RAM)(電気的)、読出専用メモリ(ROM)(電気的)、消去可能PROM(EPROM、EEPROM、またはフラッシュメモリ)(電気的)、光ファイバ(光学的)、フラッシュ、および、ポータブルコンパクトディスク読出専用メモリ(CDROM)(光学的)。コンピュータ読み取り可能な媒体は、プログラムが印刷された紙や他の適切な媒体ですらあり得ることに留意されたい。例えばこのような紙や媒体の光学式走査を介してプログラムが電気的に取得され、その後コンパイルされ、解読され、また、そうでなければ、必要であれば適切な態様で処理され、それからコンピュータのメモリに記憶されることができるからである。
起動ロジック250、管理ロジック260、および、おそらく計算インターフェイスロジック270のうちの1つ以上がハードウェアで実行される別の実施形態では、様々なロジックが、当該技術分野でそれぞれよく知られた以下の技術のいずれかまたは組み合わせで実行されてもよい:データ信号上で論理関数を実行するための論理ゲートを有する個別論理回路、適切な組み合わせ論理ゲートを有する特定用途向け集積回路(ASIC)、プログラムマブル・ゲート・アレイ(PGA)、フィールド・プログラマブル・ゲート・アレイ(FPGA)など。
メモリ112は、フラッシュメモリまたは固体メモリ装置などの不揮発性のデータストレージデバイスである。単一の装置として描写されているが、メモリ112は、ディジタル信号プロセッサ110(または追加のプロセッサコア)に連結された個別のデータストアを有する配布されたメモリ装置でもよい。
起動ロジック250は、正確なセンサ読出を特定し、かつ/または流体流パラメータの計算を生成するための選択プログラムを選択的に特定し、読み込み、実行するための1または2以上の実行可能な指示を含む。起動ロジック250は、選択計算プログラムを特定し、読み込み、実行してもよい。例となる選択プログラムは、組み込まれたファイルシステム290のプログラムストア296内で発見されてもよい。例となる選択プログラムは、CPU110内の1または2以上のコアプロセッサによって実行される場合、計算モジュール113により提供された1または2以上の信号に従って動作して正確なセンサ読出を特定し、かつ/または流体流パラメータを計算してもよい。
管理ロジック260は、各々のプロセッサコアの1または2以上についてシステムプログラムを終了するための他、より好適な代替プログラムを選択的に特定し、読み込み、実行するための1または2以上の実行可能な指示を含む。管理ロジック260は、ランタイムで、またはコンポーネント99に電力が投入され装置のオペレータによって使用されている間にこれらの機能を実行するよう準備される。代替プログラムは、いくつかのシステム態様でユーザによりカスタマイズ可能であり、組み込まれたファイルシステム290のプログラムストア296内で発見可能である。
インターフェイスロジック270は、提供し、管理し、外部入力とともに相互に作用して、組み込まれたファイルシステム290の中に記憶された情報を観察し、構成し、またそうでなければアップデートするための1または2以上の実行可能な指示を含む。一実施形態において、インターフェイスロジック270は、USBポート142を介して受け取った製造者の入力と連動して動作してもよい。これらの入力は、プログラムストア296から削除されまたはプログラムストア296へ追加されるべき1または2以上のプログラムを含んでもよい。代替的に、これらの入力は、プログラムストア296内の1または2以上のプログラムへの編集または変更を含んでもよい。さらに、これらの入力は、起動ロジック250および管理ロジック260のいずれかまたは両方に対する1または2以上の変更または全体の取り替えを特定してもよい。例を挙げれば、これらの入力は、カスタマイズされた計算アルゴリズムの生成に使用されるパラメータの重みに対する変更を含んでもよい。
インターフェイスロジック270は、コンポーネント99への規定された操作条件の下で製造者がエンドユーザ経験を制御可能に構成し調整することを可能にする。メモリ112がフラッシュメモリである場合、起動ロジック250、管理ロジック260、インターフェイスロジック270、アプリケーションストア280内のアプリケーションプログラム、または組み込まれたファイルシステム290内の情報のうちの1つ以上は、編集されても、取り替えられても、またそうでなければ修正されてもよい。いくつかの実施形態において、インターフェイスロジック270は、コンポーネント99、125のエンドユーザまたはオペレータに、起動ロジック250、管理ロジック260、アプリケーションストア280内のアプリケーションおよび組み込まれたファイルシステム290内の情報を検索し、配置し、修正しまたは取り替えることを許容する。オペレータは、結果として得られたインターフェイスを使用して、コンポーネント99,125の次の起動時に実行される変更を行ってもよい。代替的に、オペレータは、結果として得られたインターフェイスを使用して、ランタイム中に実行される変更を行ってもよい。
組み込まれたファイルシステム290は、階層的に配設された計算ストア292を含む。この点で、ファイルシステム290は、その全ファイルシステム容量のうちで、コンポーネント99,125によって使用される様々な計算方程式および/またはシステムアルゴリズムの構成および管理のための情報を格納するための予約された領域を含んでもよい。
本明細書中で述べられたプロセスまたはプロセスフロー中のあるステップは、上述のように機能する発明のため、当然ながら他に先行する。しかしながら、上述したステップの順序またはシーケンスが本発明の機能性を変更しなければ、本発明はそのようなステップ順序に限定されるものではない。すなわち、いくつかのステップは、本発明の範囲および精神から逸脱することなく、他のステップと前後してまたは並行(実質的に同時)に実行してもよいことが認められる。いくつかの例において、あるステップは、本発明から逸脱することなく、省略されてもよく、または実行されなくてもよい。さらに、「その後」、「次に」、「次いで」などのような用語は、上記ステップの順序を限定することを企図したものではない。これらの用語は、単に例としての方法の説明を通して読者を導くために使用されるだけである。
様々な実施形態が例として提供されたが、これらは上記説明の範囲を制限することを企図したものではない。上述の実施形態は、異なる特徴を含み、本開示の全ての実施形態においてその全てが必ずしも要求されるものではない。本開示のうちのいくつかの実施形態は、これらの特徴のいくつか、またはこれらの特徴の可能な組み合わせのみを利用する。上述した本開示の実施形態の変形、および、上述の実施形態で注目されたような特徴の異なる組み合わせを含む本開示の実施形態は、当業者に想起されるであろう。本開示は上述の本明細書で特に示され説明されたものによって限定されるものでないことが当業者により理解されるであろう。本発明の範囲は付属の特許請求の範囲によって規定される。

Claims (20)

  1. センサを含むセンサパッケージを備える、容器内流体流の継続的インサイチュモニタリングのためのシステムであって、
    前記センサは、
    a)第1外表面部分と第1内表面部分とを含むように内部空洞を規定する本体部材であって、前記内部空洞が流体流から隔絶され、かつ、前記第1外表面部分が前記流体流と接するように、前記流体流中へ延在するように構成され、前記第1外表面部分と前記第1内表面部分とは、それぞれ、前記流体流の牽引力の少なくとも一部に基づいて変形するように構成され、前記第1内表面部分が前記第1外表面部分の変形を転化する本体部材と、
    b)前記本体部材の前記空洞内に配置されて前記第1内表面部分の前記変形を測定するように構成されて、前記第1内表面部分の変形測定値を伝送する第1歪ゲージと、
    を含むシステム。
  2. 前記第1内表面部分は、前記本体部材のうちで前記流体流の前記牽引力が前記本体部材内での最大の変形を発生させる部分を規定する、請求項1に記載のシステム。
  3. 前記センサパッケージは、
    a)前記第1内表面部分の変形測定値を分析し、
    b)前記第1内表面部分の前記変形測定値の少なくとも一部に基づいて流体流パラメータを計算する、
    ように構成される請求項1に記載のシステム。
  4. 前記流体流パラメータは、流体の力、温度、速度、流率、粘度および密度からなるグループから選択される、請求項3に記載のシステム。
  5. 前記流体流は粒子状であり、前記流体流パラメータは前記流体流中の粒子の質量および密度からなるグループから選択される、請求項3に記載のシステム。
  6. 前記第1歪ゲージは、光学歪ゲージ、電気抵抗式歪ゲージおよび半導体歪ゲージからなるグループから選択される、請求項1に記載のシステム。
  7. 前記本体部材は球形または円筒形である、請求項1に記載のシステム。
  8. 容器内流体流の継続的インサイチュモニタリングのためのシステムであって、
    a)センサを備え、このセンサは、
    b)第1外表面部分と第1内表面部分とを含むように内部空洞を規定する本体部材であって、前記内部空洞が流体流から隔絶され、かつ、前記第1外表面部分が前記流体流と接するように、前記流体流へ延在するように構成され、前記第1外表面部分と前記第1内表面部分とは、それぞれ、前記流体流の牽引力の少なくとも一部に基づいて変形するように構成され、前記第1内表面部分が前記第1外表面部分の変形を転化する本体部材と、
    c)前記本体部材の前記空洞内に配置されて前記第1内表面部分の前記変形を測定するように構成され、光信号を介して前記第1内表面部分の変形測定値を伝送する第1光学式歪ゲージと、
    d)前記第1光学式歪ゲージと通信可能に結合されて前記光学式歪ゲージにより伝送された光信号を受け取るように構成され、前記第1内表面部分の変形測定値を伝送する質問器と、
    を備えるシステム。
  9. 前記質問器に通信可能に結合され、
    a)前記質問器から前記第1内表面部分の前記変形測定値を受け取り、
    b)前記第1内表面部分の前記変形測定値を分析し、
    c)前記第1内表面部分の前記変形測定値の少なくとも一部に基づいて流体流パラメータを計算する
    ように構成されたコントローラをさらに備える、請求項8に記載のシステム。
  10. 前記本体部材は、
    a)それぞれ、前記流体流の牽引力の少なくとも一部に基づいて変形するように構成された第2外表面部分および第2内表面部分と、
    b)前記第2内表面部分の変形を測定するように構成された第2歪ゲージと、
    をさらに含み、
    前記第2内表面部分は、前記第2外表面部分の変形を転化し、
    前記第2および第1内表面部分は第1面によって位置揃えされる、
    請求項1に記載のシステム。
  11. 前記本体部材は、
    a)それぞれ、前記流体流の牽引力の少なくとも一部に基づいて変形するように構成された第3および第4外表面部分並びに第3および第4内表面部分と、
    b)前記第3内表面部分の前記変形を測定するように構成され、前記第3内表面部分の変形測定値を伝送する第3歪ゲージと、
    c)前記第4内表面部分の前記変形を測定するように構成され、前記第4内表面部分の変形測定値を伝送する第4歪ゲージと、
    をさらに含み、
    前記第3内表面部分は、前記第3外表面部分の変形を転化し、
    前記第4内表面部分は、前記第4外表面部分の変形を転化し、
    前記第3および第4内表面部分は第2面によって位置揃えされ、
    前記第1および第2面は交差して角度を規定する、
    請求項10に記載のシステム。
  12. 前記センサパッケージは、
    a)前記第1、第2、第3および第4内表面部分の変形測定値を分析し、
    b)前記第1、第2、第3および第4内表面部分の前記変形測定値と、前記第1および第2面によって規定される角度と、の少なくとも一部に基づいて流体流パラメータを計算する
    ように構成される、請求項11に記載のシステム。
  13. 前記第1および第2面によって規定される角度は90.0°である、請求項12に記載のシステム。
  14. 容器内流体流の継続的インサイチュモニタリング方法であって、
    a)容器内流体流中に少なくとも部分的にセンサを延設し、前記センサは本体部分と第1歪ゲージとを含み、前記本体部分は第1内表面部分を含むように内部空洞を規定し、前記内部空洞は前記流体流から隔絶され、前記第1歪ゲージは前記内部空洞内に配置されることと、
    b)前記第1歪ゲージにより前記第1内表面部分の変形を検出することと、
    c)前記第1歪ゲージにより前記第1内表面部分の前記変形の測定値を伝送することと、
    d)前記第1内表面部分の前記変形測定値を分析することと、
    e)前記第1内表面部分の前記変形測定値の少なくとも一部に基づいて流体流パラメータを計算することと、
    を備える、容器内流体流の継続的インサイチュモニタリング方法。
  15. 前記流体流を変えることをさらに備える請求項14に記載の方法。
  16. 前記センサは、第2、第3および第4歪ゲージをさらに含み、
    前記本体部材は、第2、第3、および第4内表面をさらに含み、
    前記第1および第2内表面部分は、第1面によって位置揃えされ、
    前記第3および第4内表面部分は、第2面によって位置揃えされ、
    前記第1および第2面は交差して角度を規定し、
    前記方法は、
    f)前記第2歪ゲージにより前記第2内表面部分の変形を検出することと、
    g)前記第3歪ゲージにより前記第3内表面部分の変形を検出することと、
    h)前記第4歪ゲージにより前記第4内表面部分の変形を検出することと、
    i)前記第1、第2、第3および第4内表面部分の変形測定値を伝送することと、
    j)前記第2、第3および第4内表面部分の変形測定値を分析することと、
    をさらに備え、
    前記流体流パラメータを計算することは、前記第2、第3および第4内表面部分の前記変形測定値の少なくとも一部にさらに基づき、
    前記流体流パラメータを計算することは、
    i)前記第1および第2内表面部分の前記変形測定値を比較することと、
    ii)前記第3および第4内表面部分の前記変形測定値を比較することと、
    を含む、請求項14に記載の方法。
  17. 前記流体流パラメータを計算することは、
    iii)前記第1および第2内表面部分の変形測定値間の差を計算することと、
    iv)前記第3および第4内表面部分の変形測定値間の差を計算することと、
    v)前記第1および第2内表面部分の変形測定値間の差と、前記第3および第4内表面部分の変形測定値間の差と、の少なくとも一部に基づいて前記流体流パラメータを計算することと、
    をさらに含む、請求項16に記載の方法。
  18. 前記流体流パラメータはベクトルであり、
    前記流体流パラメータを計算することは、
    iii)前記第1および第2面により規定される角度と、前記第1および第2内表面部分の変形測定値と、の少なくとも一部に基づいて前記流体流パラメータの第1ベクトル成分を計算することと、
    iv)前記第1および第2面により規定される角度と、前記第3および第4内表面部分の変形測定値と、の少なくとも一部に基づいて前記流体流パラメータの第2ベクトル成分を計算することと、
    をさらに含む、請求項16に記載の方法。
  19. 前記流体流パラメータを計算することは、
    vi)前記第1および第2内表面部分の変形測定値間の差の少なくとも一部に基づいて前記第1および第2歪ゲージから差信号を計算することと、
    vii)前記第1および第2内表面部分の変形測定値間の差の少なくとも一部に基づいて第1および第2歪ゲージから平均値信号を計算することと、
    viii)前記第1内表面部分の熱膨張に対する前記流体流の牽引力に起因する前記第1内表面部分の変形を計算することと、
    をさらに含む、請求項17に記載の方法。
  20. 前記センサは、前記流体流の温度を感知するように構成された参照温度センサをさらに含み、
    前記流体流パラメータを計算することは、
    ix)前記参照センサにより前記流体流の温度を検出することと、
    x)前記参照センサにより前記流体流の温度測定値を伝送することと、
    xi)前記流体流の牽引力に対する前記流体流の温度に起因する前記第1内表面部分の熱膨張を計算することと、
    をさらに含む、請求項19に記載の方法。
JP2016552488A 2013-11-08 2014-11-07 流動学的に複雑な流体をモニタするためのセンサ Active JP6328782B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361901738P 2013-11-08 2013-11-08
US61/901,738 2013-11-08
PCT/US2014/064545 WO2015070017A1 (en) 2013-11-08 2014-11-07 A sensor for monitoring rheologically complex flows

Publications (2)

Publication Number Publication Date
JP2016537651A true JP2016537651A (ja) 2016-12-01
JP6328782B2 JP6328782B2 (ja) 2018-05-23

Family

ID=53042124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016552488A Active JP6328782B2 (ja) 2013-11-08 2014-11-07 流動学的に複雑な流体をモニタするためのセンサ

Country Status (7)

Country Link
US (2) US9863796B2 (ja)
EP (1) EP2920557B1 (ja)
JP (1) JP6328782B2 (ja)
CN (1) CN105612410B (ja)
CA (1) CA2882549C (ja)
DK (1) DK2920557T3 (ja)
WO (1) WO2015070017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118476A (ja) * 2019-01-21 2020-08-06 Tdk株式会社 風速測定方法および風速計

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027364A2 (en) 2010-08-24 2012-03-01 Feedlogic Corporation System for metering feed in feed lines
US20150355003A1 (en) * 2013-01-11 2015-12-10 Feedlogic Corporation Accelerometer-based system for monitoring flow
US20140260588A1 (en) * 2013-03-12 2014-09-18 Halliburton Energy Services Flow Sensing Fiber Optic Cable and System
CA2882549C (en) * 2013-11-08 2016-08-16 Valery Sheverev A sensor for monitoring rheologically complex flows
DE102015206708A1 (de) * 2015-04-15 2016-10-20 Robert Bosch Gmbh Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
US11156509B2 (en) * 2016-02-29 2021-10-26 Liquid Wire Inc. Sensors with deformable conductors and selective deformation
CN106123980A (zh) * 2016-06-17 2016-11-16 东北大学 一种基于光纤光栅的探针式流量计
CN106769677B (zh) * 2017-01-12 2019-07-05 中国石油大学(北京) 高温高压油水混合流体在线粘度检测装置及方法
US10041844B1 (en) 2017-04-07 2018-08-07 International Business Machines Corporation Fluid flow rate assessment by a non-intrusive sensor in a fluid transfer pump system
US10690548B2 (en) 2017-04-07 2020-06-23 International Business Machines Corporation Environmental factor assessment by a non-intrusive sensor in a fluid transfer pumping system
GB201712911D0 (en) * 2017-08-11 2017-09-27 Nuron Ltd Containment systems
CN107764354A (zh) * 2017-10-26 2018-03-06 浙江圣地物联科技有限公司 一种防水称重传感器
WO2019086978A1 (en) * 2017-10-31 2019-05-09 Abb Schweiz Ag An augmented flowmeter with a system for simulating fluid parameters
CN108799842B (zh) * 2018-06-07 2023-11-28 辽宁川宇蓄能给水设备有限公司 地下输水管线网络智能检漏报警装置
CN109916774B (zh) * 2018-12-29 2021-09-21 华南理工大学 一种测量物质微观黏度的方法和设备
CN110132187B (zh) * 2019-05-27 2021-05-07 上海大学 一种杆系结构变形传感器
WO2020245330A1 (en) * 2019-06-07 2020-12-10 F. Hoffmann-La Roche Ag Low volume filling of a liquid into a container
CN110220472B (zh) * 2019-07-22 2024-01-16 福州大学 一种监测早龄期面板翘曲行为的光纤位移传感器
CN112461303B (zh) * 2020-11-05 2023-06-23 浙江工业大学 一种用于测量气体流量的流量计
CN112504357B (zh) * 2020-11-26 2023-01-24 黄河勘测规划设计研究院有限公司 一种河道过流能力动态分析方法和系统
US11639866B2 (en) * 2021-02-19 2023-05-02 Saudi Arabian Oil Company Processes and device for automatically controlling the level of packing fluid for drum type volumetric gas flow meters
WO2022213181A1 (en) * 2021-04-05 2022-10-13 Sur-Tech Instruments Ltd. Improved metering systems & methods
WO2022245199A1 (en) * 2021-05-20 2022-11-24 Yew Hoo Weng A flow meter suitable for determining fluid characteristics
CN113315083B (zh) * 2021-07-29 2021-11-26 华海通信技术有限公司 一种海缆尾端的保护装置以及海缆系统
WO2023195844A1 (en) * 2022-04-07 2023-10-12 Yew Hoo Weng An improved flow meter for determining fluid characteristics

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074570A (en) * 1977-03-15 1978-02-21 Calspan Corporation Fluid speed measuring apparatus
JPS6225268A (ja) * 1985-07-25 1987-02-03 Sumitomo Electric Ind Ltd オプテイカル風速計
US6253625B1 (en) * 2000-10-13 2001-07-03 Predator Systems, Inc. Target flow meters with immersed strain gauges
US6426796B1 (en) * 1998-09-28 2002-07-30 Luna Innovations, Inc. Fiber optic wall shear stress sensor
US20030126921A1 (en) * 2001-09-20 2003-07-10 Zisk Edward J. Fiber optic monitoring of flow inside and outside a tube downhole
US20050063444A1 (en) * 2000-11-28 2005-03-24 Frick Roger L. Optical sensor for measuring physical and material properties
US20050171710A1 (en) * 2002-01-23 2005-08-04 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe
US20070083340A1 (en) * 2004-03-10 2007-04-12 Bailey Timothy J Apparatus and method for measuring settlement of solids in a multiphase flow
US7308832B1 (en) * 2007-04-20 2007-12-18 Dieterich Standard, Inc. Strain gage differential pressure measurement in a fluid flow meter
JP2008191077A (ja) * 2007-02-07 2008-08-21 Chishin Go 風力監視装置
US20100083731A1 (en) * 2008-10-06 2010-04-08 Rosemount Inc. Pressure-based diagnostic system for process transmitter
JP2010276343A (ja) * 2009-05-26 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> 土粒子計測システム及び土粒子計測方法
US20120279313A1 (en) * 2011-05-05 2012-11-08 Diatzikis Evangelos V Fluid flow velocity and temperature measurement
WO2012177737A1 (en) * 2011-06-21 2012-12-27 Ohio University Device and method for monitoring interaction between a fluid and a wall

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744863A (en) * 1985-04-26 1988-05-17 Wisconsin Alumni Research Foundation Sealed cavity semiconductor pressure transducers and method of producing the same
DE19808222A1 (de) * 1998-02-27 1999-09-02 Abb Research Ltd Faser-Bragg-Gitter Drucksensor mit integrierbarem Faser-Bragg-Gitter Temperatursensor
WO2003062759A1 (en) * 2002-01-23 2003-07-31 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe
US7196318B2 (en) * 2004-07-16 2007-03-27 Kin-Man Yip Fiber-optic sensing system
BRPI0403786A (pt) * 2004-09-09 2006-05-02 Petroleo Brasileiro Sa transdutor de pressão diferencial a fibra óptica
US7127953B1 (en) 2005-04-20 2006-10-31 Gordon Yowell Target flow meters
US7729567B2 (en) * 2007-05-14 2010-06-01 The Hong Kong Polytechnic University Fiber optic transducer for simultaneous pressure and temperature measurement in fluid flow
US8276463B2 (en) * 2007-11-27 2012-10-02 Lenterra, Inc. Shear stress measurement apparatus
US8028586B2 (en) 2008-05-13 2011-10-04 Lenterra, Inc. Load cell and system for measuring forces based on optical spectra shifts
WO2011112673A2 (en) * 2010-03-09 2011-09-15 Cidra Corporate Services Inc. Single wrapped sensor flow meter
DE102013002118B4 (de) * 2013-02-08 2015-01-15 Viega Gmbh & Co. Kg Verteilerventil mit integrierter Durchflussmesseinheit
CA2882549C (en) * 2013-11-08 2016-08-16 Valery Sheverev A sensor for monitoring rheologically complex flows

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074570A (en) * 1977-03-15 1978-02-21 Calspan Corporation Fluid speed measuring apparatus
JPS6225268A (ja) * 1985-07-25 1987-02-03 Sumitomo Electric Ind Ltd オプテイカル風速計
US6426796B1 (en) * 1998-09-28 2002-07-30 Luna Innovations, Inc. Fiber optic wall shear stress sensor
US6253625B1 (en) * 2000-10-13 2001-07-03 Predator Systems, Inc. Target flow meters with immersed strain gauges
US20050063444A1 (en) * 2000-11-28 2005-03-24 Frick Roger L. Optical sensor for measuring physical and material properties
US20030126921A1 (en) * 2001-09-20 2003-07-10 Zisk Edward J. Fiber optic monitoring of flow inside and outside a tube downhole
US20050171710A1 (en) * 2002-01-23 2005-08-04 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe
US20070083340A1 (en) * 2004-03-10 2007-04-12 Bailey Timothy J Apparatus and method for measuring settlement of solids in a multiphase flow
JP2008191077A (ja) * 2007-02-07 2008-08-21 Chishin Go 風力監視装置
US7308832B1 (en) * 2007-04-20 2007-12-18 Dieterich Standard, Inc. Strain gage differential pressure measurement in a fluid flow meter
US20100083731A1 (en) * 2008-10-06 2010-04-08 Rosemount Inc. Pressure-based diagnostic system for process transmitter
JP2010276343A (ja) * 2009-05-26 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> 土粒子計測システム及び土粒子計測方法
US20120279313A1 (en) * 2011-05-05 2012-11-08 Diatzikis Evangelos V Fluid flow velocity and temperature measurement
WO2012177737A1 (en) * 2011-06-21 2012-12-27 Ohio University Device and method for monitoring interaction between a fluid and a wall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANTISEK URBAN ET AL: "Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation", SENSORS, vol. 10, JPN7017001613, 8 December 2010 (2010-12-08), CH, pages 11212 - 11225, XP055273704, ISSN: 0003561257, DOI: 10.3390/s101211212 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118476A (ja) * 2019-01-21 2020-08-06 Tdk株式会社 風速測定方法および風速計

Also Published As

Publication number Publication date
DK2920557T3 (da) 2021-08-09
US20160041015A1 (en) 2016-02-11
EP2920557A4 (en) 2016-07-27
CA2882549C (en) 2016-08-16
EP2920557A1 (en) 2015-09-23
CN105612410A (zh) 2016-05-25
JP6328782B2 (ja) 2018-05-23
US20180120135A1 (en) 2018-05-03
US9863796B2 (en) 2018-01-09
US10215600B2 (en) 2019-02-26
WO2015070017A1 (en) 2015-05-14
CN105612410B (zh) 2019-04-16
EP2920557B1 (en) 2021-05-19
CA2882549A1 (en) 2015-05-08

Similar Documents

Publication Publication Date Title
JP6328782B2 (ja) 流動学的に複雑な流体をモニタするためのセンサ
KR101298551B1 (ko) 유량계 파라미터에서의 이상을 검출하기 위한 방법
US10895496B2 (en) Method and system for monitoring rotor blades of a turbomachine using blade tip timing (BTT)
US10309866B2 (en) Measuring system with a pressure device as well as method for monitoring and/or checking such a pressure device
KR20150024873A (ko) 진동 데이터를 사용하여 처리 제어 디바이스의 상태를 결정하는 방법 및 장치
CN103314279B (zh) 一种用于指示液体流量的临界水平的方法和设备
CN105308428A (zh) 具有压力装置的测量系统以及用于监控和/或检查此压力装置的方法
MX2010010142A (es) Administracion de flujo y tubo usando medicion de perfil de velocidad y/o espesor de pared de tubo y monitoreo de desgaste.
DK2519806T3 (en) Measurement system with a vibration type transducer
A. Nour et al. A review of the real-time monitoring of fluid-properties in tubular architectures for industrial applications
US20220390344A1 (en) Method of monitoring a condition prevailing inside a piping system with respect to an impairment due to accretion, abrasion or corrosion
KR102631238B1 (ko) 2개의 베이스라인 미터 검증들에 기초한 진동계의 변화 검출
US20190063960A1 (en) Measurement system
US20170082480A1 (en) Real-time condition based monitoring (cbm) based ultrasonic meter (usm) accuracy performance detection and notification
CN107567576A (zh) 测量流体参数的装置、测量流体参数的方法和计算机程序产品
JP7012144B2 (ja) 振動計の変化の検出及び識別
US20160332129A1 (en) Radial mode fluid process meter
García-Berrocal et al. The Coriolis mass flow meter as a volume meter for the custody transfer in liquid hydrocarbons logistics
JP2018527565A (ja) より小さな寸法でガスを測定するための超音波計測器
US9512715B2 (en) Systems and methods for pressure and temperature measurement
JP7079897B2 (ja) 資産としての流量計
EP3999316A1 (en) A method and system for manufacturing a three-dimensional porous structure
Navada et al. Efficient Flow Control in Industrial Processes: Estimating In-flow at Control Valves Without Physical Sensors
RU2773013C1 (ru) Обнаружение изменения в вибрационном измерителе на основе двух базовых проверок измерителя
US20230341247A1 (en) Vibronic measuring system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250