JP2016505484A - Liquid compounds and their use as hydrogen storage - Google Patents

Liquid compounds and their use as hydrogen storage Download PDF

Info

Publication number
JP2016505484A
JP2016505484A JP2015544397A JP2015544397A JP2016505484A JP 2016505484 A JP2016505484 A JP 2016505484A JP 2015544397 A JP2015544397 A JP 2015544397A JP 2015544397 A JP2015544397 A JP 2015544397A JP 2016505484 A JP2016505484 A JP 2016505484A
Authority
JP
Japan
Prior art keywords
hydrogen
mixture
reactor
energy
consumer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015544397A
Other languages
Japanese (ja)
Other versions
JP6280559B2 (en
Inventor
ドゥングス・イェニファー
タイヒマン・ダーニエール
ブリュックナー・ニコレ
ベスマン・アンドレアス
ヴァサーシャイト・ぺーター
Original Assignee
バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト filed Critical バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト
Publication of JP2016505484A publication Critical patent/JP2016505484A/en
Application granted granted Critical
Publication of JP6280559B2 publication Critical patent/JP6280559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03309Tanks specially adapted for particular fuels
    • B60K2015/03315Tanks specially adapted for particular fuels for hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fuel Cell (AREA)
  • Cosmetics (AREA)

Abstract

本発明に基づき、炭素および水素の元素だけから構成されており、かつ幾つかの公知の組成において熱伝導液として用い得る合成物質混合体を構成している2種以上の化合物から成る室温で液状の混合物は、少なくとも2つの縮合されておらずπ共役でない芳香族単位を有する少なくとも1種の化合物を含有しており、混合物に水素を結合または混合物から水素を遊離させるための触媒的方法において使用されることを特徴とする。In accordance with the present invention, it is composed of only carbon and hydrogen elements, and is liquid at room temperature consisting of two or more compounds that constitute a mixture of synthetic substances that can be used as a heat transfer liquid in several known compositions. The mixture of comprises at least one compound having at least two non-condensed and non-pi-conjugated aromatic units and is used in a catalytic process for bonding hydrogen to or liberating hydrogen from the mixture. It is characterized by being.

Description

本発明は、第1の請求項の前提部に記載の液状化合物および消費体に燃料を供給するための水素貯蔵体としてのその使用方法に関する。   The present invention relates to a liquid compound according to the preamble of the first claim and to its use as a hydrogen reservoir for supplying fuel to a consumer.

大規模での再生可能な供給源、例えば北海でのウィンドパークまたはデザーテックからのエネルギー調達について昨今論じられているシナリオは、本質的で技術的な前提条件として、大量のエネルギーを可能な限り損失なく貯蔵および輸送し得るための適切な手段を必要としている。そうでなければ生成量の季節的な変動を相殺することができず、そうでなければ長距離にわたる有効エネルギーの効率的な輸送を実現できない。   The scenario currently being discussed for energy procurement from large-scale renewable sources, such as wind parks in the North Sea or Dezertec, is an essential and technical precondition, with as much loss of energy as possible. There is a need for suitable means to be able to store and transport. Otherwise, seasonal variations in production cannot be offset, otherwise efficient transport of effective energy over long distances cannot be realized.

上述の挑戦を成し遂げるための特に魅力的な手段は、新規の「エネルギー担持物質」の開発ならびにその効率的なエネルギー充填および放出のための技術の提供である。「エネルギー担持物質」の使用は、「エネルギーの豊富な」場所で「エネルギーの豊富な」時間に調達されたエネルギーが、例えばエネルギーの乏しい液体Aをエネルギーの豊富な液体Bに変換するために利用されることを出発点とする。この場合のBは、損失なく長期間にわたって保存することができ、かつ高いエネルギー密度で輸送することができる。エネルギーの豊富な液体Bは、エネルギーを必要な場所でおよび時間に有効エネルギーを解放して再びAに戻される。Aは液体またはガス状物質であることができる。AもBも液体の場合、このコンセプトは、Aを再びエネルギー生成の場所に戻して改めて充填するという可能性を提供する。   A particularly attractive means to accomplish the above challenges is the development of a new “energy carrier material” and the provision of technology for its efficient energy charging and release. The use of “energy-carrying material” means that energy procured in “energy-rich” locations at “energy-rich” time can be used, for example, to convert energy-deficient liquid A to energy-rich liquid B This is the starting point. B in this case can be stored for a long period of time without loss, and can be transported at a high energy density. The energy rich liquid B is returned to A again, releasing available energy where and when needed. A can be a liquid or gaseous substance. If both A and B are liquids, this concept offers the possibility of refilling A back to the place of energy generation.

「エネルギー担持物質」をベースとするエネルギー輸送システムおよびエネルギー貯蔵システムを技術的に実現するための好ましい手法は、エネルギーの乏しい物質Aに水素を充填することでエネルギーの豊富な物質Bを形成することであり、その際に必要な水素は、好ましくは再生可能に生成された電気エネルギーを用いた水の電気分解から調達される。このエネルギー充填工程は、従来技術によれば典型的には加圧下での触媒的水素化反応によって行われる。物質Bのエネルギー放出は、低い圧力および高い温度での触媒的脱水素によって行われる。その際に再び遊離された水素は、例えば燃料電池または内燃機関においてエネルギーとして利用することができる。水素遊離が車両の中で行われると、その際に調達された水素を直接的に車両の稼働に利用することができる。従来技術で公知の例には、CH、NH、またはメタノールの形態でのエネルギー貯蔵が含まれている。これらの化合物の水素放出では、メタンおよびメタノールの場合にはガス状物質COが、またはNHの場合には窒素が発生する。 A preferred approach to technically realize an energy transport system and energy storage system based on an “energy carrying material” is to form a material B rich in energy by filling hydrogen A in a material A with low energy. The hydrogen required here is preferably procured from the electrolysis of water using regeneratively generated electrical energy. This energy charging step is typically performed by catalytic hydrogenation under pressure according to the prior art. The energy release of substance B takes place by catalytic dehydrogenation at low pressure and high temperature. The hydrogen liberated at that time can be used as energy in, for example, a fuel cell or an internal combustion engine. When hydrogen is released in the vehicle, the hydrogen procured at that time can be directly used for operation of the vehicle. Examples known in the prior art include energy storage in the form of CH 4 , NH 3 , or methanol. In the hydrogen release of these compounds, gaseous substances CO 2 are generated in the case of methane and methanol, or nitrogen is generated in the case of NH 3 .

エネルギーの乏しい形態Aが液体であり、したがってエネルギー放出の際に改めて液体が得られる代替的な公知のコンセプトがDE102008034221A1(特許文献1)に記載されている。この場合、エネルギーの乏しい形態Aは、エネルギーの豊富な時間におよびエネルギーの豊富な場所で改めて水素を充填するために、液体として保存および輸送することができる。このような系は「液体有機水素担体(LOHC)」と呼ばれる。このようなLOHCの例が特許出願EP1475349A2(特許文献2)で開示されている。   DE 102008034221A1 (Patent Document 1) describes an alternative known concept in which form A, which is poor in energy, is a liquid, and thus a liquid is again obtained upon energy release. In this case, the energy-poor Form A can be stored and transported as a liquid for refilling with hydrogen at a time rich in energy and at a place rich in energy. Such a system is called a “liquid organic hydrogen carrier (LOHC)”. An example of such LOHC is disclosed in patent application EP 1475349A2.

従来技術で公知のLOHC系は、エネルギーの乏しい物質Aが、沸点が高く、官能化されており、エネルギー充填工程において水素化される芳香族化合物であるような、物質ペアであることが好ましい。開示された特に好ましい一例は、N−エチルカルバゾール/ペルヒドロ−N−エチルカルバゾールの物質ペアの使用に関しており、この物質ペアの場合、エネルギー充填は典型的には約140℃および上昇させた圧力で、ならびにエネルギー放出は230〜250℃の間の温度で実施することができる。エネルギーの豊富な物質であるペルヒドロ−N−エチルカルバゾールは、挙げた系では水素約5.8質量%の水素容量を有している。したがってペルヒドロ−N−エチルカルバゾール100kgの遊離可能な水素に貯蔵されたエネルギーは、自動車を約500km動かすのに十分であり、これに関し車中でのエネルギー利用の際には燃焼生成物としてほぼ水蒸気しか生成されない。したがってこの手法は、移動性のある用途のためのその他のエネルギー貯蔵コンセプトに対して技術的に興味深い代替策である。   The LOHC system known in the prior art is preferably a material pair in which the low-energy material A is an aromatic compound that has a high boiling point, is functionalized, and is hydrogenated in the energy filling process. One particularly preferred example disclosed relates to the use of the N-ethylcarbazole / perhydro-N-ethylcarbazole material pair, where the energy charge is typically about 140 ° C. and elevated pressure, As well as energy release can be carried out at temperatures between 230-250 ° C. Perhydro-N-ethylcarbazole, a material rich in energy, has a hydrogen capacity of about 5.8% by weight of hydrogen in the system mentioned. Therefore, the energy stored in 100 kg of free hydrogen of perhydro-N-ethylcarbazole is sufficient to move the car about 500 km, in which only steam is used as a combustion product when using energy in the car. Not generated. This approach is therefore a technically interesting alternative to other energy storage concepts for mobile applications.

従来技術によれば、液状のエネルギー貯蔵分子から触媒的に水素を遊離させるための反応システムは、固体庄反応器またはスラリー相反応器から成る。さらに、水素調達のための少なくとも1つの機能を実施可能で圧力および温度が固定された反応容器を備えており、この反応容器が、金属性の担体構造を有する少なくとも1種の物体を内包しており、この担体構造上に固体で高度に多孔質のコーティングが施されており、このコーティングが、液状の水素担持化合物から水素を遊離させるために触媒的に作用する物質を含有しているような、水素を担持する液状化合物から水素を遊離させるための反応器が開発中である。これに関しては、水素を担持する液状化合物が、水素を担持する液状化合物(かなりの割合で)と、その他の化合物とから成る混合物であってもよいことが有利である。   According to the prior art, the reaction system for catalytically liberating hydrogen from liquid energy storage molecules consists of a solid state reactor or a slurry phase reactor. In addition, a reaction vessel capable of performing at least one function for hydrogen procurement and having a fixed pressure and temperature is provided, and the reaction vessel contains at least one object having a metallic support structure. A solid and highly porous coating on the support structure, the coating containing a substance that acts catalytically to liberate hydrogen from the liquid hydrogen-carrying compound. A reactor for releasing hydrogen from a liquid compound carrying hydrogen is under development. In this regard, it is advantageous that the liquid compound carrying hydrogen may be a mixture of a liquid compound carrying hydrogen (in a significant proportion) and other compounds.

従来技術で公知の多くのLOHC系は、ヘテロ原子−炭素結合を有している。この構造特徴が、系を触媒的水素放出のために活性化する。ただし、炭素−炭素結合または炭素−水素結合に比べて明らかに高い窒素−炭素結合の不安定性は、窒素−炭素結合を有するすべてのLOHC系の熱安定性を最高280℃の温度に制限することにもなっている。もちろんLOHC系の僅かな熱分解現象でも、工業的用途には既に重大である。なぜならこれによりLOHC系の固定点ならびに触媒による充填性および放出性が不利に変化するからである。高い熱安定性は、なかでも触媒的水素遊離の際の280℃超の反応温度を許容し、これはより低い温度と比べて水素遊離のより高い体積生産性をもたらす。   Many LOHC systems known in the prior art have heteroatom-carbon bonds. This structural feature activates the system for catalytic hydrogen release. However, the apparently higher nitrogen-carbon bond instability compared to carbon-carbon bonds or carbon-hydrogen bonds limits the thermal stability of all LOHC systems with nitrogen-carbon bonds to temperatures up to 280 ° C. It is also. Of course, even a slight pyrolysis phenomenon of the LOHC system is already serious for industrial applications. This is because this will adversely change the fixed point of the LOHC system as well as the packing and releasing properties by the catalyst. High thermal stability allows, among other things, reaction temperatures above 280 ° C. during catalytic hydrogen release, which leads to higher volumetric productivity of hydrogen release compared to lower temperatures.

DE102008034221A1DE102008034221A1 特許出願EP1475349A2Patent application EP1475349A2

本発明の課題は、大量に調達可能で、かつ炭素および水素だけから構成されていることならびに280℃を超えて熱的に安定していることにより上記の欠点を有さないので工業的な設備での使用が簡単に可能な、水素貯蔵体として使用するための液状化合物を提示することである。さらに、この液状化合物を使用して水素を消費体に供給するための方法を提供する。   The problem of the present invention is that it can be procured in large quantities and is composed only of carbon and hydrogen and is thermally stable above 280 ° C. It presents a liquid compound for use as a hydrogen reservoir that can be easily used in Further provided is a method for supplying hydrogen to a consumer using this liquid compound.

本発明の課題は第1の請求項の特徴によって解決される。有利な実施形態および変形形態ならびに水素を消費体に供給するための有利な方法は従属請求項の内容である。   The object of the invention is solved by the features of the first claim. Advantageous embodiments and variants and advantageous methods for supplying hydrogen to the consumer are the subject matter of the dependent claims.

本発明に基づき、炭素および水素の元素だけから構成されており、かつ幾つかの公知の組成において熱伝導液として用い得る合成物質混合体を構成している2種以上の化合物から成る室温で液状の混合物は、少なくとも2つの縮合されておらずπ共役でない芳香族単位を有する少なくとも1種の化合物を含有しており、混合物に水素を結合または混合物から水素を遊離させるための触媒的方法において使用されることを特徴とする。   In accordance with the present invention, it is composed of only carbon and hydrogen elements, and is liquid at room temperature consisting of two or more compounds that constitute a mixture of synthetic substances that can be used as a heat transfer liquid in several known compositions. The mixture of comprises at least one compound having at least two non-condensed and non-pi-conjugated aromatic units and is used in a catalytic process for bonding hydrogen to or liberating hydrogen from the mixture. It is characterized by being.

水素の乏しい形態で、熱伝導オイルとして例えばMarlotherm LHまたはMarlotherm SH(例えばSASOL社)の商標名で特定の形式において既に使用されている混合物を、液状の水素貯蔵および輸送系として使用することは、新規であり、かつ独創性がある。なぜならこの混合物の水素充填の可能性は、これまでどこでも考慮されていなかったし、水素充填により、独走性のある工程による新規の使用が可能になるからである。これは、水素の豊富な形態の、これまで公知でない水素担体としての使用から水素を遊離させる工程に対しても当てはまる。というのもまさにこの混合物が、これまで公知の液状の水素貯蔵および輸送系に対して数多くの重要で前もって予想されていなかった利点を有しているのであり、つまり産業への導入が安価で、毒性および生態毒性が公知で問題なく、ならびにすべてのパッキン材料およびタンク材料と適合している状態で、高い水素容量、低い蒸気圧、高い化学的および熱的な安定性を有しているのである。熱伝導オイルをLOHC系として利用することにより、これまで使用されていたLOHC系の、その限定的な熱安定性に基づく不利な挙動を回避できることが有利である。   Using a mixture that is already used in a specific form in the hydrogen-poor form as a heat transfer oil, for example under the trade name Marlotherm LH or Marotherm SH (eg SASOL), as a liquid hydrogen storage and transport system, New and original. This is because the possibility of hydrogen filling of this mixture has not been taken into account everywhere before, and hydrogen filling allows new use by a free-running process. This is also true for the process of liberating hydrogen from the use of hydrogen-rich forms as previously unknown hydrogen carriers. This is because this mixture has a number of important and previously unforeseen advantages over the previously known liquid hydrogen storage and transport systems, i.e. it is inexpensive to introduce into the industry, It has high hydrogen capacity, low vapor pressure, high chemical and thermal stability, with known toxicity and ecotoxicity, well known and compatible with all packing and tank materials . By utilizing the heat transfer oil as the LOHC system, it is advantageous to avoid the disadvantageous behavior of the previously used LOHC system based on its limited thermal stability.

本発明による混合物を使用して水素を消費体に少なくとも配分に応じて供給するための有利な方法は、反応器が、水素を担持する混合物のための第1の貯蔵タンクから流入管を介して混合物を供給され、反応器内で高い温度および低い圧力で脱水素化された混合物が流出管を介して反応器から第2の貯蔵タンクに導出され、その際、反応器が接続管を介して消費体に水素を供給することを特徴とする。このような方法は、消費体が内燃機関または少なくとも1つの燃料電池であり、とりわけ自動車のエネルギー供給に寄与する場合に特に有利に適用することができる。第1および第2の貯蔵タンクは相互に接続することができ、貯蔵タンクの中身が混ざり合う可能性を伴って相互に接続されてもよい。   An advantageous method for supplying hydrogen to the consumer at least according to the distribution using the mixture according to the invention is that the reactor is connected via an inlet line from the first storage tank for the mixture carrying hydrogen. The mixture fed and dehydrogenated in the reactor at high temperature and low pressure is led from the reactor to the second storage tank via the outlet pipe, where the reactor is connected via the connecting pipe. It is characterized by supplying hydrogen to the consumer. Such a method can be applied particularly advantageously when the consumer is an internal combustion engine or at least one fuel cell, in particular contributing to the energy supply of the vehicle. The first and second storage tanks can be connected to each other and may be connected to each other with the possibility that the contents of the storage tanks will mix.

本発明に基づく好ましい1つの方法は、混合物が反応器内で金属含有触媒と接触し、水素を結合または遊離させ、その際、水素充填のために使用される金属含有触媒と水素放出のために使用される金属含有触媒が同じまたは異なる固体触媒であり、この固体触媒が、パラジウム、ニッケル、白金、イリジウム、ルテニウム、コバルト、ロジウム、銅、金、レニウム、または鉄という金属の1種または複数を多孔質で非極性の担体上で細かく分散された形態で含有することを特徴とする。   One preferred method according to the invention is that the mixture is contacted with a metal-containing catalyst in the reactor to bind or liberate hydrogen, with the metal-containing catalyst used for hydrogen filling and hydrogen release. The metal-containing catalyst used is the same or different solid catalyst, which solid catalyst comprises one or more of the metals palladium, nickel, platinum, iridium, ruthenium, cobalt, rhodium, copper, gold, rhenium or iron. It is characterized in that it is contained in a finely dispersed form on a porous, nonpolar carrier.

前述の方法はすべて、反応器内で、水素を充填された混合物から、高い温度および低い圧力での触媒的脱水素により水素を遊離させることが共通している。   All of the above methods are common in liberating hydrogen in a reactor from a mixture charged with hydrogen by catalytic dehydrogenation at high temperature and low pressure.

ここで適用されている、エネルギーを担持する熱伝導オイルのコンセプトは、化石のエネルギー担体による我々のこれまでのエネルギー供給に技術的に近く、したがって船舶、精製工場、ガソリンスタンドのような存在しているインフラを利用できるという利点がある。とりわけ、エネルギーを担持する熱伝導オイルにより、再生可能な生産からの過剰なエネルギーを貯蔵することができ、かつ今日のインフラにおける移動、暖房のためのエネルギー需要および輸送と結び付けることができる。このエネルギー貯蔵体はさらに以下の利点を有しており、すなわち、ほぼ無制限で損失のない貯蔵能力、高いエネルギー密度、および低いコストという利点を有している。そのうえこのエネルギー貯蔵体は、エネルギーの長期貯蔵体としておよび輸送形態として適している。   The concept of heat-carrying oil carrying energy, which is applied here, is technically close to our previous energy supply by fossil energy carriers and therefore exists as a ship, refinery, gas station, etc. The advantage is that the existing infrastructure can be used. Among other things, the heat transfer oil that carries the energy can store excess energy from renewable production and can be coupled to energy demand and transportation for transportation, heating in today's infrastructure. This energy storage further has the following advantages: an almost unlimited, lossless storage capacity, high energy density, and low cost. Moreover, this energy store is suitable as a long-term store of energy and as a form of transport.

Marlotherm LHまたはMarlotherm SH(例えばSASOL社)のような市販の熱伝導オイルを、LOHC系の水素放出形態として利用する試みは、水素貯蔵および輸送系を形成する混合物が、水素の乏しい形態Aにおいて、少なくとも2つの縮合されていない芳香族単位を5%〜100%の間、好ましくは60〜100%の間、特に好ましくは90〜100%の間の質量分率で有する化合物を含有するのが有利であることを示した。さらに混合物が50%超で、好ましくは90%超で、すべての少なくとも2つの縮合されていない芳香族単位を含有する異なる化合物から成る場合が有利である。その際、水素貯蔵および輸送系を形成する混合物の1種の化合物が、この混合物の水素の乏しい形態では、ジベンジルトルエンという物質であり得ることが有利である。さらに有利なのは、混合物が50%超で、好ましくは90%超で、異なるジベンジルトルエンから成る場合である。これにより、水素の乏しい形態を触媒的水素化反応により水素を吸蔵させて水素の豊富な形態に変換し得ること、この水素の豊富な形態では充填された水素が少なくとも6%の質量分率において化学的に結合して存在し得ることが保証され、触媒的水素化の際の水素圧力は5〜200barの間、好ましくは10〜100barの間、最良には30〜80barの間であり、触媒的水素化の反応温度は20℃〜230℃の間、好ましくは50℃〜200℃の間、ただし最良には100〜180℃の間である。   Attempts to utilize commercially available heat conduction oils such as Marotherm LH or Marotherm SH (eg, SASOL) as the hydrogen release form of the LOHC system are based on the fact that the mixture forming the hydrogen storage and transport system is It is advantageous to contain compounds having at least two non-condensed aromatic units in a mass fraction of between 5% and 100%, preferably between 60 and 100%, particularly preferably between 90 and 100%. It showed that. Furthermore, it is advantageous if the mixture comprises more than 50%, preferably more than 90%, of different compounds containing all at least two uncondensed aromatic units. In that case, it is advantageous that one compound of the mixture forming the hydrogen storage and transport system can be the substance dibenzyltoluene in the hydrogen-poor form of this mixture. Further advantageous is when the mixture consists of more than 50%, preferably more than 90%, of different dibenzyltoluenes. This allows hydrogen-deficient forms to be converted to hydrogen-rich forms by occlusion of hydrogen through catalytic hydrogenation reactions, in which the charged hydrogen is at a mass fraction of at least 6%. The hydrogen pressure during the catalytic hydrogenation is between 5 and 200 bar, preferably between 10 and 100 bar, best between 30 and 80 bar. The reaction temperature for chemical hydrogenation is between 20 ° C. and 230 ° C., preferably between 50 ° C. and 200 ° C., but best between 100 and 180 ° C.

以下では、3つの図に基づき、水素担体として有利に使用可能な熱伝導体の一般的な物質例を挙げて記載する。   Below, based on three figures, it describes and describes the general substance example of the heat conductor which can be advantageously used as a hydrogen carrier.

Marlotherm LH(SASOL)に基づく図である。It is a figure based on Marlotherm LH (SASOL). Marlotherm SH(SASOL)を示す図である。It is a figure which shows Marlotherm SH (SASOL). 本発明による混合体における典型的な構造単位の包括的な表示を示す図である。FIG. 2 shows a comprehensive display of typical structural units in a mixture according to the invention.

Marlotherm(例えばSASOL社)または類似の工業的に利用される熱伝導オイルは、ベンジルトルエンの異なる異性体から成る混合体(Marlotherm LH、SASOL)およびジベンジルトルエンの異なる異性体から成る混合体(Marlotherm SH、SASOL)である。これらの異なる異性体は、中心のトルエン核に結合されるベンジル基を、トルエンのメチル基に対する異なる環位置でトルエン核と結び付けることによって形成される。トルエン核のメチル基に環位置1を割り振る場合、Marlotherm LH(SASOL)は、ベンジル基が位置2、位置3、または位置4でトルエン核に結合しているベンジルトルエンの混合物である。つまりMarlotherm LH(SASOL)に基づく図1では、環中心へのベンジル基の結合により、異性体混合体であることを象徴的に示しており、この異性体混合体では、ベンジル基がトルエン残基のメチル基(位置1)に対して2位、3位、または4位で結合されている。   Marlotherm (eg SASOL) or similar industrially utilized heat transfer oils are mixtures of different isomers of benzyltoluene (Marlotherm LH, SASOL) and mixtures of different isomers of dibenzyltoluene (Marlotherm). SH, SASOL). These different isomers are formed by linking a benzyl group attached to the central toluene nucleus with the toluene nucleus at different ring positions relative to the methyl group of toluene. When allocating ring position 1 to the methyl group of the toluene nucleus, Marlotherm LH (SASOL) is a mixture of benzyltoluenes where the benzyl group is attached to the toluene nucleus at position 2, position 3, or position 4. That is, in FIG. 1 based on Marlotherm LH (SASOL), the benzyl group is bonded to the ring center to symbolize that it is an isomer mixture. In this isomer mixture, the benzyl group is a toluene residue. To the methyl group (position 1) at the 2-, 3-, or 4-position.

Marlotherm SH(SASOL)はジベンジルトルエンの混合体である。ここでもトルエン核のメチル基に環位置1を割り振る場合、Marlotherm SH(SASOL)における両方のベンジル基は、位置2および3、位置2および4、位置2および5、位置2および6、位置3および4、または位置3および5で結合されている。したがって、図2ではMarlotherm SH(SASOL)が示されており、これに関して環中心へのベンジル基の結合は異性体混合体であることを象徴しており、この異性体混合体では、ベンジル基がトルエン残基のメチル基(位置1)に対して位置2および3、位置2および4、位置2および5、位置2および6、位置3および4、または位置3および5で結合されている。   Marotherm SH (SASOL) is a mixture of dibenzyltoluene. Again, when allocating ring position 1 to the methyl group of the toluene nucleus, both benzyl groups in Marotherm SH (SASOL) are position 2 and 3, position 2 and 4, position 2 and 5, position 2 and 6, position 3 and 4, or at positions 3 and 5. Accordingly, FIG. 2 shows Marotherm SH (SASOL), in which the bond of the benzyl group to the ring center is a mixture of isomers, in which the benzyl group is Connected to the methyl group of the toluene residue (position 1) at positions 2 and 3, positions 2 and 4, positions 2 and 5, positions 2 and 6, positions 3 and 4, or positions 3 and 5.

より包括的には、Marlotherm LH(SASOL)およびMarlotherm SH(SASOL)として、ならびに例えばHuelsなどその他の商品名および他の商標所有者の下で熱伝導体として利用される物質混合体は、少なくとも2つの縮合されておらずπ共役でない芳香族単位を有する化合物を含有することを特徴とすることができる。このような混合体における典型的な構造単位の包括的な表示を図3が示している。典型的には、中心の芳香族核に1〜5個のベンジル単位が結合されている。これらのベンジル単位の各々がそれ自体で再びさらなるベンジル単位またはその他のアルキル芳香族置換基を担持することができる。混合体として例えばMarlotherm LH(Huels)またはMarlotherm SH(Huels)の商品名で熱伝導オイルとして商業利用されている物質の典型的な構造単位では、環中心へのベンジル基およびその他の置換基の結合は異性体混合体であることを象徴しており、この異性体混合体では、ベンジル基がその他の置換基に対する異なる位置で結合され得る。   More generally, at least 2 substance mixtures utilized as thermal conductors as Marlotherm LH (SASOL) and Marlotherm SH (SASOL) and under other trade names and other trademark owners such as Huels, for example. It can be characterized in that it contains two non-condensed and non-π-conjugated aromatic units. A comprehensive representation of typical structural units in such a mixture is shown in FIG. Typically, 1 to 5 benzyl units are attached to the central aromatic nucleus. Each of these benzyl units can itself again carry additional benzyl units or other alkyl aromatic substituents. In a typical structural unit of a substance commercially used as a heat transfer oil under the trade name Marlotherm LH (Huels) or Marotherm SH (Huels) as a mixture, for example, bonding of a benzyl group and other substituents to the ring center Symbolizes that it is an isomer mixture, in which the benzyl group can be attached at different positions relative to other substituents.

Claims (6)

炭素および水素の元素だけから構成されており、かつ幾つかの公知の組成において熱伝導液として用い得る合成物質混合体を構成している2種以上の化合物から成る室温で液状の混合物において、少なくとも2つの縮合されておらずπ共役でない芳香族単位を有する少なくとも1種の化合物を含有しており、混合物に水素を結合または混合物から水素を遊離させるための触媒的方法において使用されることを特徴とする混合物。   In a liquid mixture at room temperature consisting of two or more compounds which are composed solely of carbon and hydrogen elements and constitute a mixture of synthetic substances that can be used as heat transfer liquids in several known compositions, at least Characterized in that it contains at least one compound having two non-condensed and non-pi-conjugated aromatic units and is used in a catalytic process for bonding hydrogen to or liberating hydrogen from the mixture And a mixture. 請求項1に記載の混合物を使用して水素を消費体に少なくとも配分に応じて供給するための方法において、反応器が、水素を担持する混合物のための第1の貯蔵タンクから流入管を介して混合物を供給され、反応器内で高い温度および低い圧力で脱水素化された混合物が流出管を介して反応器から第2の貯蔵タンクに導出され、その際、反応器が接続管を介して消費体に水素を供給することを特徴とする方法。   A method for supplying hydrogen to a consumer at least according to a distribution using the mixture according to claim 1, wherein the reactor is connected to an inlet pipe from a first storage tank for the mixture carrying hydrogen. The mixture fed with the mixture and dehydrogenated in the reactor at high temperature and low pressure is led from the reactor to the second storage tank via the outflow pipe, in which case the reactor is connected via the connecting pipe. Supplying hydrogen to the consumer. 消費体が内燃機関または少なくとも1つの燃料電池であることを特徴とする、請求項2に記載の方法。   Method according to claim 2, characterized in that the consumer is an internal combustion engine or at least one fuel cell. 消費体が自動車のエネルギー供給に寄与することを特徴とする、請求項2または3に記載の方法。   4. A method according to claim 2 or 3, characterized in that the consumer contributes to the energy supply of the vehicle. 混合物が反応器内で金属含有触媒と接触し、水素を結合または遊離させ、その際、水素充填のために使用される金属含有触媒と水素放出のために使用される金属含有触媒が同じまたは異なる固体触媒であり、固体触媒が、パラジウム、ニッケル、白金、イリジウム、ルテニウム、コバルト、ロジウム、銅、金、レニウム、または鉄という金属の1種または複数を多孔質で非極性の担体上で細かく分散された形態で含有することを特徴とする、請求項2〜4のいずれか一つに記載の方法。   The mixture contacts the metal-containing catalyst in the reactor to bind or liberate hydrogen, where the metal-containing catalyst used for hydrogen filling and the metal-containing catalyst used for hydrogen release are the same or different. A solid catalyst, in which one or more of the metals palladium, nickel, platinum, iridium, ruthenium, cobalt, rhodium, copper, gold, rhenium, or iron are finely dispersed on a porous, nonpolar support 5. The method according to any one of claims 2 to 4, characterized in that it is contained in a formed form. 反応器内で、水素を充填された混合物から、高い温度および低い圧力での触媒的脱水素により水素が遊離されることを特徴とする、請求項2〜5のいずれか一つに記載の方法。   Process according to any one of claims 2 to 5, characterized in that hydrogen is liberated in the reactor from a mixture filled with hydrogen by catalytic dehydrogenation at high temperature and low pressure. .
JP2015544397A 2012-11-28 2013-10-23 Liquid compounds and their use as hydrogen storage Active JP6280559B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012221809.2A DE102012221809A1 (en) 2012-11-28 2012-11-28 Liquid compounds and processes for their use as hydrogen storage
DE102012221809.2 2012-11-28
PCT/EP2013/072156 WO2014082801A1 (en) 2012-11-28 2013-10-23 Liquid compounds and method for the use thereof as hydrogen stores

Publications (2)

Publication Number Publication Date
JP2016505484A true JP2016505484A (en) 2016-02-25
JP6280559B2 JP6280559B2 (en) 2018-02-14

Family

ID=49484278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015544397A Active JP6280559B2 (en) 2012-11-28 2013-10-23 Liquid compounds and their use as hydrogen storage

Country Status (11)

Country Link
US (1) US10450194B2 (en)
EP (1) EP2925669B1 (en)
JP (1) JP6280559B2 (en)
KR (2) KR101992255B1 (en)
CN (1) CN104812698B (en)
AU (1) AU2013351445B2 (en)
BR (1) BR112015012183B1 (en)
CA (1) CA2892228C (en)
DE (1) DE102012221809A1 (en)
ES (1) ES2696080T3 (en)
WO (1) WO2014082801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532455A (en) * 2016-08-17 2019-11-07 ペズ,ギド,ピー System and method for electrochemical energy conversion and storage

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201332A1 (en) * 2014-01-24 2015-07-30 Hydrogenious Technologies Gmbh System and method for the material use of hydrogen
US9879828B2 (en) 2014-09-03 2018-01-30 Hydrogenious Technologies Gmbh Arrangement and method for operating hydrogen filling stations
DE102014226282A1 (en) 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reactor for the dehydrogenation of liquid hydrogen carrier materials
DE102015223997A1 (en) * 2015-12-02 2017-06-08 Siemens Aktiengesellschaft Method and device for storing hydrogen
DE102016004684A1 (en) * 2016-04-19 2017-10-19 Linde Aktiengesellschaft Fuel for aerospace vehicles
KR101862012B1 (en) 2016-09-09 2018-05-30 한국화학연구원 System for storage and release of hydrogen using pyridine-based hydrogen storage materials
KR101845515B1 (en) 2016-09-30 2018-04-04 한국과학기술연구원 Liquid hydrogen storage material and methods of storaging hydrogen using the same
DK3378848T3 (en) 2017-03-23 2022-01-17 Karlsruher Inst Technologie HYDRATION PROCEDURE FOR SYNTHESIS OF METHANE AND METHANOL.
CN109704274B (en) * 2017-10-26 2021-08-03 中国石油化工股份有限公司 Raw material system for storing hydrogen in organic liquid
KR101987553B1 (en) 2017-11-23 2019-06-10 서울여자대학교 산학협력단 Liquefied hydrogen storage material
DE102018109254A1 (en) 2018-04-18 2019-10-24 Clariant lnternational Ltd Platinum-coated catalyst
BR112020022271A2 (en) 2018-05-02 2021-02-23 Hysilabs, Sas process to produce and regenerate hydrogen-carrying compounds
CN109353987A (en) * 2018-11-23 2019-02-19 汽解放汽车有限公司 A kind of liquid hydrogen storage material and preparation method thereof
KR102622005B1 (en) * 2019-01-04 2024-01-10 한국화학연구원 The Method of Producing Aromatic Compound Comprising Pyridin Group
DE102019211876B4 (en) * 2019-08-07 2022-09-29 Rolls-Royce Solutions GmbH Power arrangement and procedure for its operation
DE102019211877A1 (en) * 2019-08-07 2021-02-11 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and internal combustion engine, set up to carry out such a method
US20220388840A1 (en) * 2019-10-31 2022-12-08 Hysilabs Sas Hydrogen carrier compounds
ES2949013T3 (en) 2019-10-31 2023-09-25 Hysilabs Sas Procedure to produce and regenerate hydrogen-bearing compounds
EP4051629B1 (en) 2019-10-31 2023-08-30 Hysilabs, SAS Process for producing and regenerating hydrogen carrier compounds
KR102310957B1 (en) 2019-11-13 2021-10-12 한국과학기술원 Catalyst for dehydrogenation reactin for liquid organic hydrogen carrie(LOHC) and manufacturing methd for the same
CN111392691B (en) * 2020-02-17 2021-09-21 浙江大学 Method for low-temperature dehydrogenation of perhydrogenated organic liquid hydrogen storage material by using palladium-based catalyst
FR3107843A1 (en) 2020-03-03 2021-09-10 Arkema France PARTIAL DEHYDROGENATION of ORGANIC LIQUIDS
KR20210120550A (en) 2020-03-27 2021-10-07 한국과학기술원 System for liquid organic hydrogen carrier and operation method for the same
KR102332811B1 (en) 2020-03-27 2021-12-01 한국과학기술원 System for liquid organic hydrogen carrier using waste heat from catalytic combustion burner in fuel cell and operation method for the same
KR102303911B1 (en) 2020-04-03 2021-09-24 한국과학기술원 Module typed system for liquid organic hydrogen carrier and operation method for the same
FR3112289B1 (en) 2020-07-10 2022-07-22 Arkema France PURIFICATION OF AROMATIC LIQUIDS
FR3112339B1 (en) 2020-07-10 2022-07-22 Arkema France PROCESS FOR IMPROVING THE QUALITY OF HYDROGEN-BEARING ORGANIC LIQUIDS
WO2022030917A1 (en) * 2020-08-03 2022-02-10 한국화학연구원 Methylbenzyl-naphthalene based hydrogen storage material and hydrogen storage and release method using same
KR102480065B1 (en) * 2020-08-03 2022-12-23 한국화학연구원 Hydrogen Storage Materials Comprising Methylbenzyl- Naphtalene Group and the Method for Hydrogen Storage and Release Using the Same
FR3115030B1 (en) * 2020-10-08 2023-12-22 Arkema France HYDROGEN STORAGE USING DERIVATIVES OF COMPOUNDS OF RENEWABLE ORIGIN
FR3115031B1 (en) 2020-10-08 2023-12-22 Arkema France HYDROGEN STORAGE USING ORGANIC LIQUID COMPOUNDS
FR3117113B1 (en) 2020-12-09 2024-04-12 Arkema France LIQUID FORMULATION FOR HYDROGEN STORAGE
FR3117114B1 (en) 2020-12-09 2024-04-12 Arkema France LIQUID FORMULATION FOR HYDROGEN STORAGE
KR20220134179A (en) 2021-03-26 2022-10-05 한국과학기술원 Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method
KR102557863B1 (en) 2021-03-26 2023-07-24 한국과학기술원 Catalyst structure for Liquid Organic Hydrogen Carrier(LOHC) dehydrogenation reactor
EP4108630A1 (en) 2021-06-25 2022-12-28 Hysilabs, SAS Hydrogen carrier compounds
KR102563327B1 (en) 2021-09-13 2023-08-03 한국화학연구원 Hydrogen storage material containing benzyl(methylbenzyl) benzene and method for hydrogen storage and release using the same
WO2023055108A1 (en) 2021-09-29 2023-04-06 한양대학교 산학협력단 Platinum-supported catalyst with improved hydrogenation/dehydrogenation reversibility and hydrogen storage and release method based on liquid organic hydrogen carrier using same
US11891300B2 (en) * 2021-11-01 2024-02-06 Chevron U.S.A. Inc. Clean liquid fuels hydrogen carrier processes
KR20230103045A (en) * 2021-12-31 2023-07-07 경북대학교 산학협력단 Hydrogen storagy material using naphthalene-based derivatives and manufacturing method thereof
KR20230135810A (en) * 2022-03-17 2023-09-26 한양대학교 산학협력단 Composition for Liquid Organic Hydrogen Carriers Containing Monobenzyl Toluene Isomers, and Method for Storing and Releasing Hydrogen Using the Same
DE102022210825A1 (en) 2022-10-13 2024-04-18 Forschungszentrum Jülich GmbH Catalyst system and method for catalytic dehydrogenation of a hydrogen carrier material, reactor arrangement with such a catalyst system and method for producing such a catalyst system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172992A (en) * 1981-02-13 1982-10-25 Nippon Steel Chem Co Ltd Lubricating oil for power transmission means
JPS6087231A (en) * 1983-09-23 1985-05-16 アトーシュム Polyarylalkane oligomer composition and manufacture
JP2007269522A (en) * 2006-03-30 2007-10-18 Chiyoda Corp Storage-transport system of hydrogen
US20080260630A1 (en) * 2007-04-16 2008-10-23 Air Products And Chemicals, Inc. Autothermal Hydrogen Storage and Delivery Systems

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1419604A1 (en) * 1961-06-12 1969-05-14 Bergwerksverband Gmbh Use of liquid high-boiling aromatic hydrocarbons as heat transfer media
SE456742B (en) * 1980-07-18 1988-10-31 Mitsubishi Oil Co COMPOSITION SUITABLE FOR MECHANICAL CREDIT TRANSFER AND USE OF COMPOSITION IN CONNECTION WITH TRACTION TYPE DRIVES
US4371726A (en) * 1981-02-13 1983-02-01 Nippon Steel Chemical Co., Ltd. Composition suitable for mechanical power transmission and process for operating traction drives
JPH088010B2 (en) * 1986-09-04 1996-01-29 日本石油化学株式会社 Electrical insulating oil composition
DE3729526A1 (en) 1987-09-03 1989-03-16 Nasser Kamilia DEVICE FOR DEHYDRATING LIQUID HYDRIDS
US7101530B2 (en) 2003-05-06 2006-09-05 Air Products And Chemicals, Inc. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
JP2005138024A (en) * 2003-11-06 2005-06-02 Sekisui Chem Co Ltd Catalyst for dehydrogenation reaction from hydrogenated aromatic compound and hydrogen manufacturing method utilizing the catalyst
JP2006248814A (en) 2005-03-09 2006-09-21 Hitachi Ltd Apparatus and method for feeding hydrogen
JP4483901B2 (en) 2007-06-29 2010-06-16 株式会社日立製作所 Engine system
DE102007039478A1 (en) * 2007-08-21 2009-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hydrogen generator and method for generating hydrogen
JP4523978B2 (en) * 2008-03-28 2010-08-11 株式会社日立製作所 Engine system
DE102008034221A1 (en) 2008-07-23 2010-01-28 Bayerische Motoren Werke Aktiengesellschaft Fuel supply device for use in motor vehicle, has reactor vessel provided for executing heat exchanger and separator functions for supplying hydrogen for consumer through dehydration of carrier medium e.g. liquid organic hydrogen carrier
CN101575257B (en) 2009-06-16 2012-06-13 华东师范大学 Catalytic hydrogenation method by taking toluene as hydrogen storing agent
CN102101645A (en) * 2009-12-16 2011-06-22 中国科学院大连化学物理研究所 Sodium borohydride hydrolysis hydrogen generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172992A (en) * 1981-02-13 1982-10-25 Nippon Steel Chem Co Ltd Lubricating oil for power transmission means
JPS6087231A (en) * 1983-09-23 1985-05-16 アトーシュム Polyarylalkane oligomer composition and manufacture
JP2007269522A (en) * 2006-03-30 2007-10-18 Chiyoda Corp Storage-transport system of hydrogen
US20080260630A1 (en) * 2007-04-16 2008-10-23 Air Products And Chemicals, Inc. Autothermal Hydrogen Storage and Delivery Systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532455A (en) * 2016-08-17 2019-11-07 ペズ,ギド,ピー System and method for electrochemical energy conversion and storage
JP7084375B2 (en) 2016-08-17 2022-06-14 ペズ,ギド,ピー Systems and methods for electrochemical energy transformation and storage

Also Published As

Publication number Publication date
US10450194B2 (en) 2019-10-22
EP2925669B1 (en) 2018-10-31
WO2014082801A1 (en) 2014-06-05
BR112015012183B1 (en) 2022-01-11
CN104812698A (en) 2015-07-29
DE102012221809A1 (en) 2014-05-28
US20150266731A1 (en) 2015-09-24
CA2892228A1 (en) 2014-06-05
KR20180030735A (en) 2018-03-23
KR20150097558A (en) 2015-08-26
KR101992255B1 (en) 2019-06-24
KR101954305B1 (en) 2019-03-05
JP6280559B2 (en) 2018-02-14
BR112015012183A2 (en) 2017-08-22
AU2013351445A1 (en) 2015-07-16
AU2013351445B2 (en) 2017-04-06
CN104812698B (en) 2017-12-15
BR112015012183A8 (en) 2019-10-01
ES2696080T3 (en) 2019-01-14
CA2892228C (en) 2020-09-08
EP2925669A1 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP6280559B2 (en) Liquid compounds and their use as hydrogen storage
Niermann et al. Liquid Organic Hydrogen Carrier (LOHC)–Assessment based on chemical and economic properties
Preuster et al. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy
Aakko-Saksa et al. Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion
Brückner et al. Evaluation of Industrially applied heat‐transfer fluids as liquid organic hydrogen carrier systems
Oh et al. 2‐(N‐Methylbenzyl) pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H2 Release and Stable Activity in Consecutive Cycles
Gianotti et al. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process
Dürr et al. Carbon dioxide‐free hydrogen production with integrated hydrogen separation and storage
Jiang et al. Current situation and prospect of hydrogen storage technology with new organic liquid
Jorschick et al. Hydrogenation of aromatic and heteroaromatic compounds–a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems
Alhumaidan et al. Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane
Jorschick et al. Charging a liquid organic hydrogen carrier system with H2/CO2 gas mixtures
Sisakova et al. Novel catalysts for dibenzyltoluene as a potential Liquid Organic Hydrogen Carrier use—A mini-review
Von Wild et al. Liquid Organic Hydrogen Carriers (LOHC): An auspicious alternative to conventional hydrogen storage technologies
Müller et al. Reversible vs. irreversible conversion of hydrogen: how to store energy efficiently?
Müller et al. Releasing hydrogen at high pressures from liquid carriers: aspects for the H2 delivery to fueling stations
Rahimpour et al. Hydrogen as an energy carrier: A comparative study between decalin and cyclohexane in thermally coupled membrane reactors in gas-to-liquid technology
Thor Wismann et al. Electrical reverse shift: Sustainable CO2 valorization for industrial scale
Zhang et al. Fischer–Tropsch synthesis with ethene co‐feeding: Experimental evidence of the CO‐insertion mechanism at low temperature
Perreault et al. Critical challenges towards the commercial rollouts of a LOHC-based H2 economy
Sage et al. Recent progress and techno-economic analysis of liquid organic hydrogen carriers for Australian renewable energy export–A critical review
JP4835967B2 (en) Hydrogen production system
Cooper et al. An integrated hydrogen storage and delivery approach using organic liquid-phase carriers
Rao et al. Methylbenzyl Naphthalene: Liquid Organic Hydrogen Carrier for Facile Hydrogen Storage and Release
Jeong et al. Promising Liquid Organic Hydrogen Carrier: cis-Perhydro-1-(n-phenylethyl) naphthalene with High H2 Capacity and Improved H2 Release Performance through Controlled Diastereomers Compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250