KR20220134179A - Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method - Google Patents

Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method Download PDF

Info

Publication number
KR20220134179A
KR20220134179A KR1020210039506A KR20210039506A KR20220134179A KR 20220134179 A KR20220134179 A KR 20220134179A KR 1020210039506 A KR1020210039506 A KR 1020210039506A KR 20210039506 A KR20210039506 A KR 20210039506A KR 20220134179 A KR20220134179 A KR 20220134179A
Authority
KR
South Korea
Prior art keywords
lohc
hydrogen
hydrogenation reaction
reaction system
catalyst
Prior art date
Application number
KR1020210039506A
Other languages
Korean (ko)
Inventor
배중면
이상훈
김태홍
이재명
한광우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020210039506A priority Critical patent/KR20220134179A/en
Publication of KR20220134179A publication Critical patent/KR20220134179A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a liquid organic hydrogen carrier (LOHC) hydrogenation reaction system, which comprises: an LOHC supply unit for supplying LOHC; a hydrogen supply unit for supplying hydrogen; a hydrogenation reaction unit equipped with a catalyst in which a hydrogenation reaction occurs by reacting with the LOHC and hydrogen; and a mixing injection nozzle mixing the LOHC and hydrogen supplied from the LOHC supply unit and the hydrogen supply unit before the hydrogenation reaction, and injecting the mixture into the catalyst. According to the present invention, it is possible to increase a contact area between three materials having different phases, and thus the hydrogenation reaction is promoted and a hydrogen storage rate can be increased.

Description

LOHC 수소화 반응 시스템 및 그 운전방법{Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method}LOHC hydrogenation reaction system and its operation method {Liquid organic hydrogen carrier (LOHC) hydrogenation reaction system and its operation method}

본 발명은 LOHC 수소화 반응 시스템 및 그 운전방법에 관한 것으로서, 보다 상세하게는 LOHC, 수소 및 촉매 간의 접촉 면적을 높여 수소화 반응을 향상시키는 LOHC 수소화 반응 시스템 및 그 운전방법에 관한 것이다.The present invention relates to a LOHC hydrogenation reaction system and a method for operating the same, and more particularly, to a LOHC hydrogenation reaction system for improving hydrogenation reaction by increasing a contact area between LOHC, hydrogen, and a catalyst, and a method for operating the same.

액상유기화합물 수소저장(Liquid Organic Hydrogen Carrier, 이하 'LOHC')는 화학적으로 수소를 저장하는 방식으로서, 이러한 액상유기화합물을 이용한 수소(에너지) 저장·운송은 우수한 운송 효율 및 경제성을 갖는 기술로 알려져 있다.Liquid organic compound hydrogen storage (Liquid Organic Hydrogen Carrier, hereinafter 'LOHC') is a method of chemically storing hydrogen. have.

다양한 액상유기화합물 기반 수소저장기술 중, 탄소-탄소 이중결합을 포함한 액상유기화합물은 대용량의 수소를 안전하게 상압에서 저장하고 운송할 수 있는 장점으로 인해 최근 크게 주목받고 있다. 도 1을 참조하면, 액상유기화합물 형태로 수소를 저장하기 위해서는 액상유기화합물과 수소가 반응하여 결합하는 수소화 반응과, 저장되었던 수소를 방출하기 위해 액상유기화합물에 결합되었던 수소가 떨어지는 탈수소화 반응이 수반되어야 한다.Among various liquid organic compound-based hydrogen storage technologies, liquid organic compounds including carbon-carbon double bonds have recently attracted great attention due to their advantages of safely storing and transporting large amounts of hydrogen at atmospheric pressure. 1, in order to store hydrogen in the form of a liquid organic compound, a hydrogenation reaction in which a liquid organic compound and hydrogen react and combine, and a dehydrogenation reaction in which hydrogen bound to the liquid organic compound falls to release the stored hydrogen. should be accompanied

화학적 수소저장은 수소화 반응에 의해 이루어지는데, 발열반응인 관계로 낮은 반응온도가 선호되지만 이 경우 수소저장 속도가 매우 느린 단점이 있다. 그러므로 이를 극복하기 위해서는 고활성 수소화 촉매 및 이를 위한 촉매 제법이 요구되며 반응 시 생성되는 발열량을 제어할 수 있는 반응시스템의 개발이 반드시 필요하다.Chemical hydrogen storage is accomplished by a hydrogenation reaction. Since it is an exothermic reaction, a low reaction temperature is preferred, but in this case, the hydrogen storage rate is very slow. Therefore, in order to overcome this, a high-activity hydrogenation catalyst and a catalyst preparation for the same are required, and the development of a reaction system capable of controlling the amount of heat generated during the reaction is absolutely necessary.

화학적 수소추출은 탈수소화 반응으로 이루어지며, 흡열반응인 관계로 수소화 반응보다 높은 온도를 요구하므로 저온에서 높은 수소추출 속도를 보이면서 고온에서 촉매의 안정성을 담보할 수 있는 고효율 촉매의 개발이 반드시 요구된다. 뿐만 아니라 고상 촉매, 액상 LOHC 물질, 기상 수소와 같이 3개의 상이 탈수소화 반응시스템에 공존하기 때문에 수소추출이 용이한 반응시스템의 개발은 필수적이다.Chemical hydrogen extraction is a dehydrogenation reaction, and because it is an endothermic reaction, it requires a higher temperature than the hydrogenation reaction. Therefore, it is necessary to develop a high-efficiency catalyst that can guarantee the stability of the catalyst at high temperature while showing high hydrogen extraction rate at low temperature. . In addition, since three phases such as solid catalyst, liquid LOHC material, and gaseous hydrogen coexist in the dehydrogenation reaction system, it is essential to develop a reaction system that facilitates hydrogen extraction.

이와 관련하여, 대한민국 등록특허 제10-1954305호는 수소 저장소로 유용한 액상화합물을, 대한민국 등록특허 제10-1950701호는 수소화 및 탈수소화 촉매 활성을 개선할 수 있는 촉매 지지체를, 대한민국 공개특허 제10-2020-0117354호는 수소 저장 및 방출을 개선할 수 있는 촉매를 개시하고 있다.In this regard, Korean Patent No. 10-1954305 discloses a liquid compound useful as a hydrogen reservoir, Korean Patent No. 10-1950701 discloses a catalyst support capable of improving hydrogenation and dehydrogenation catalyst activity, and Korean Patent Laid-Open Patent No. 10 -2020-0117354 discloses a catalyst capable of improving hydrogen storage and release.

그러나, 고상 촉매, 액상 LOHC 물질, 수소 가스와 같이 3개의 상이 공존하는 수소화 반응에 있어서, 수소저장이 용이한 반응시스템은 개시되지 못한 상황이다.However, in a hydrogenation reaction in which three phases coexist, such as a solid catalyst, a liquid LOHC material, and hydrogen gas, a reaction system in which hydrogen is easily stored has not been disclosed.

KRUS 10-195430510-1954305 B1B1 KRUS 10-195070110-1950701 B1B1 KRUS 10-2020-011735410-2020-0117354 A1A1

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 서로 다른 상을 갖는 반응물질과 촉매간의 접촉을 높여 수소저장을 위한 수소화 반응을 촉진시킬 수 있는 새로운 대안에 해당하는 LOHC 수소화 반응 시스템 및 그 운전방법을 제공하려는 것이다.The present invention is to solve the above problems, and the LOHC hydrogenation reaction system and its operating method corresponding to a new alternative that can promote the hydrogenation reaction for hydrogen storage by increasing the contact between the reactants having different phases and the catalyst is intended to provide

본 발명은 LOHC 수소화 반응 시스템으로서, LOHC를 공급하는 LOHC 공급부,The present invention is a LOHC hydrogenation reaction system, the LOHC supply unit for supplying LOHC,

수소를 공급하는 수소 공급부, 상기 LOHC 및 수소와 반응하여 수소화 반응이 일어나는 촉매가 구비된 수소화 반응부 및 상기 수소화 반응 이전에 상기 LOHC 공급부 및 수소 공급부로부터 공급되는 LOHC와 수소를 혼합하여 상기 촉매에 분사시키는 혼합분사노즐을 포함하는 LOHC 수소화 반응 시스템을 제공한다.A hydrogen supply unit for supplying hydrogen, a hydrogenation reaction unit equipped with a catalyst in which a hydrogenation reaction occurs by reacting with the LOHC and hydrogen, and LOHC supplied from the LOHC supply unit and the hydrogen supply unit before the hydrogenation reaction are mixed with hydrogen and sprayed on the catalyst It provides a LOHC hydrogenation reaction system comprising a mixing injection nozzle.

상기 혼합분사노즐은 공급되는 LOHC를 액적 형태로 아토마이징 시킬 수 있다.The mixing injection nozzle may atomize the supplied LOHC in the form of droplets.

상기 혼합분사노즐의 운전조건에 따라 아토마이징된 LOHC의 액적 지름이 가변될 수 있다.A droplet diameter of the atomized LOHC may vary according to the operating conditions of the mixing injection nozzle.

본 발명의 일 실시예로, 상기 혼합분사노즐은 초음파 인젝터일 수 있다.In one embodiment of the present invention, the mixing injection nozzle may be an ultrasonic injector.

또한, 본 발명은 상기 LOHC 수소화 반응 시스템의 운전방법으로, LOHC 및 수소를 혼합분사노즐로 공급하는 단계, 상기 공급된 LOHC를 아토마이징 하는 단계, 상기 아토마이징된 LOHC와 수소를 혼합하는 단계 및 상기 혼합된 LOHC와 수소를 촉매에 분사하여 수소화 반응시키는 단계를 포함하는 LOHC 수소화 반응 시스템의 운전방법을 제공한다.In addition, the present invention provides a method of operating the LOHC hydrogenation reaction system, comprising the steps of supplying LOHC and hydrogen to a mixing injection nozzle, atomizing the supplied LOHC, mixing the atomized LOHC with hydrogen, and the It provides a method of operating a LOHC hydrogenation reaction system comprising the step of performing a hydrogenation reaction by injecting mixed LOHC and hydrogen to a catalyst.

본 발명의 일 실시예로, 상기 아토마이징은 LOHC에 초음파를 가하여 진행될 수 있다.In an embodiment of the present invention, the atomizing may be performed by applying ultrasonic waves to the LOHC.

본 발명에 따른 LOHC 수소화 반응 시스템은 LOHC와 수소 가스를 균일하게 혼합하여 촉매에 공급함으로써, 서로 다른 상을 갖는 세 물질간의 접촉 면적을 높일 수 있고, 이를 통해 수소화 반응이 촉진되어 수소 저장속도를 높일 수 있다.In the LOHC hydrogenation reaction system according to the present invention, by uniformly mixing LOHC and hydrogen gas and supplying it to the catalyst, the contact area between three materials having different phases can be increased, and through this, the hydrogenation reaction is promoted to increase the hydrogen storage rate. can

도 1은 LOHC의 수소화 및 탈수소화 반응을 나타내는 도면이다.
도 2는 본 발명에 따른 LOHC 수소화 반응 시스템을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 혼합분사노즐을 나타내는 도면이다.
1 is a diagram showing the hydrogenation and dehydrogenation reactions of LOHC.
2 is a view showing a LOHC hydrogenation reaction system according to the present invention.
3 is a view showing a mixing injection nozzle according to an embodiment of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood that all modifications, equivalents and substitutes included in the spirit and scope of the present invention are included. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

이하, 본 발명의 바람직한 실시예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred embodiments of the present invention. However, it goes without saying that the technical spirit of the present invention is not limited thereto and may be variously implemented by those skilled in the art.

본 발명은 액상유기화합물 수소저장체(Liquid Organic Hydrogen Carrier, 이하 'LOHC')와 수소가 반응하여 수소가 상기 LOHC에 저장되는 수소화 반응을 촉진시켜 수소저장 속도를 높이기 위해, LOHC를 공급하는 LOHC 공급부, 수소를 공급하는 수소 공급부, 상기 LOHC 및 수소와 반응하여 수소화 반응이 일어나는 촉매가 구비된 수소화 반응부 및 상기 수소화 반응 이전에 상기 LOHC 공급부 및 수소 공급부로부터 공급되는 LOHC와 수소를 혼합하여 상기 촉매에 분사시키는 혼합분사노즐을 포함하는, LOHC 수소화 반응 시스템을 제공한다.The present invention is a liquid organic compound hydrogen carrier (hereinafter 'LOHC') and hydrogen react to promote a hydrogenation reaction in which hydrogen is stored in the LOHC to increase the hydrogen storage rate, LOHC supply unit for supplying LOHC , a hydrogen supply unit for supplying hydrogen, a hydrogenation reaction unit equipped with a catalyst in which a hydrogenation reaction occurs by reacting with the LOHC and hydrogen, and LOHC supplied from the LOHC supply unit and the hydrogen supply unit before the hydrogenation reaction. It provides a LOHC hydrogenation reaction system comprising a mixing jet nozzle for jetting.

LOHC 수소화 반응은 서로 다른 상을 갖는 3가지 물질, 즉 고상 촉매, 액상 LOHC, 수소 가스간의 상호작용으로서, 상기 3가지 물질이 동시에 접촉해야만 수소화 반응이 일어날 수 있다. 고상의 촉매는 반응기 내부에 고정되어 있으므로, 결국 액상 LOHC와 수소 가스를 균일하게 촉매에 공급하여 3가지 물질의 접촉 면적을 높일 필요가 있다. 그러나, 기존 LOHC 수소화 반응 시스템은 액상 LOHC와 수소 가스를 별도로 반응기에 공급하기 때문에 액상 LOHC와 수소 가스를 균일하게 혼합하여 고상 촉매에 공급하기 어려운 점이 있었다.The LOHC hydrogenation reaction is an interaction between three materials having different phases, that is, a solid catalyst, liquid LOHC, and hydrogen gas, and the hydrogenation reaction can occur only when the three materials are in contact at the same time. Since the solid catalyst is fixed inside the reactor, it is necessary to increase the contact area of the three materials by uniformly supplying liquid LOHC and hydrogen gas to the catalyst. However, in the conventional LOHC hydrogenation reaction system, since liquid LOHC and hydrogen gas are separately supplied to the reactor, it is difficult to uniformly mix liquid LOHC and hydrogen gas to supply the solid catalyst.

도 2를 참조하면, 본 발명은 상술한 문제를 해결하기 위해, 액상 LOHC와 수소 가스가 수소화 반응기 내부로 공급되기 전에 혼합분사노즐을 통해 균일하게 혼합된 상태로 촉매에 분사하여, 서로 다른 상을 갖는 3가지 물질의 접촉 면적을 높일 수 있는 LOHC 수소화 반응 시스템을 제공한다.2, in order to solve the above problem, the present invention sprays the catalyst in a uniformly mixed state through the mixing injection nozzle before liquid LOHC and hydrogen gas are supplied into the hydrogenation reactor, thereby forming different phases. To provide a LOHC hydrogenation reaction system that can increase the contact area of three materials with

상기 혼합분사노즐은 공급되는 액상 LOHC를 액적 형태로 아토마이징(atomizing) 시키며, 이에 따라 액상 LOHC와 수소 가스가 보다 균일하게 혼합될 수 있다. 이때, 상기 혼합분사노즐은 각 LOHC, 수소 공급부에 연결되어 액상 LOHC와 수소 가스가 독립적으로 출입하기 위한 2개의 채널을 구비하는 것은 자명한 사실에 해당할 것이다.The mixing injection nozzle atomizes the supplied liquid LOHC in the form of droplets, so that the liquid LOHC and hydrogen gas can be more uniformly mixed. In this case, the mixing injection nozzle is connected to each LOHC and the hydrogen supply unit, and it will be obvious that the liquid LOHC and the hydrogen gas have two channels for independently entering and exiting.

상기 아토마이징 된 LOHC의 액적 지름은 혼합분사노즐의 운전조건(지름, 유량, 압력, 반응온도 등)에 따라 달라질 수 있으며, 이를 통해 수소 가스와의 균일한 혼합을 유도할 수 있다. 상기 LOHC의 액적 지름이 큰 경우 액적이 촉매단에 고르게 퍼지지 않아 반응속도가 저감될 수 있고, 액적 지름이 지나치게 작은 경우 LOHC가 휘발되어 향후 액화를 위한 추가적인 에너지 소모(손실)이 발생할 수 있다. 따라서, 반응속도 저감과 에너지 손실을 방지하기 위해, LOHC의 액적 지름을 조절하는 것이 필요하며, 수소 가스와의 균일한 혼합을 위해 LOHC의 입자를 액적 형태로 작게 만드는 한 본 발명의 범위에 속한다.The diameter of the atomized droplet of the LOHC may vary depending on the operating conditions (diameter, flow rate, pressure, reaction temperature, etc.) of the mixing injection nozzle, through which uniform mixing with hydrogen gas can be induced. When the droplet diameter of the LOHC is large, the reaction rate may be reduced because the droplets are not evenly spread across the catalyst stage. Therefore, in order to reduce the reaction rate and prevent energy loss, it is necessary to adjust the droplet diameter of the LOHC, and as long as the particles of the LOHC are made small in the form of droplets for uniform mixing with hydrogen gas, it is within the scope of the present invention.

또한, 상기 LOHC의 액적 지름이 달라짐에 따라, 상기 혼합되는 액적 형태의 LOHC와 수소 가스의 혼합율이 상이해질 수 있다. 이때, LOHC의 비율이 높은 경우에는 촉매 표면의 수소비율이 줄어들고, LOHC의 비율이 낮은 경우에는 촉매 표면의 LOHC 비율이 줄어들어 반응속도가 저감될 수 있는 바, 혼합율은 혼합분사노즐의 운전조건(지름, 유량, 압력, 반응온도 등)과 수소화 반응속도를 고려하여 조절할 수 있다.Also, as the droplet diameter of the LOHC changes, the mixing ratio of the mixed droplet LOHC and hydrogen gas may be different. At this time, When the ratio of LOHC is high, the hydrogen ratio on the surface of the catalyst decreases, and when the ratio of LOHC is low, the LOHC ratio on the surface of the catalyst decreases and the reaction rate can be reduced. , pressure, reaction temperature, etc.) and hydrogenation reaction rate.

또한, 도 3을 참조하면, 액상 LOHC를 아토마이징 시키기 위한 혼합분사노즐은, 예를 들어 초음파 인젝터를 사용할 수 있으나, 이에 제한되는 것은 아니며, 액상 LOHC를 아토마이징 시키는 수단에 해당하는 한 본 발명의 범위에 속한다.In addition, referring to FIG. 3 , the mixing injection nozzle for atomizing liquid LOHC may use, for example, an ultrasonic injector, but is not limited thereto, and as long as it corresponds to a means for atomizing liquid LOHC, the present invention belong to the scope

또한, 본 발명은 LOHC 및 수소를 혼합분사노즐로 공급하는 단계, 상기 공급된 LOHC를 아토마이징 하는 단계, 상기 아토마이징된 LOHC와 수소를 혼합하는 단계 및 상기 혼합된 LOHC와 수소를 촉매에 분사하여 수소화 반응시키는 단계를 포함하는, LOHC 수소화 반응 시스템의 운전방법을 제공한다.In addition, the present invention provides the steps of supplying LOHC and hydrogen to a mixed injection nozzle, atomizing the supplied LOHC, mixing the atomized LOHC and hydrogen, and spraying the mixed LOHC and hydrogen to the catalyst. It provides a method of operating a LOHC hydrogenation reaction system, comprising the step of performing a hydrogenation reaction.

먼저, 각기 저장된 LOHC 및 수소를 수소화 반응기 전단에 위치한 혼합분사노즐로 공급하며, 공급된 LOHC는 혼합분사노즐 내에서 아토마이징 되어 액적 형태로 분해된다. 이후, 아토마이징된 LOHC와 수소가 만나 균일하게 혼합되며, 혼합된 LOHC와 수소는 수소화 반응기 내의 촉매에 분사됨으로써 수소화 반응이 진행된다.First, each stored LOHC and hydrogen are supplied to the mixing injection nozzle located in front of the hydrogenation reactor, and the supplied LOHC is atomized in the mixing injection nozzle and decomposed into droplets. Thereafter, the atomized LOHC and hydrogen meet and are uniformly mixed, and the mixed LOHC and hydrogen are sprayed onto the catalyst in the hydrogenation reactor to proceed with the hydrogenation reaction.

이하, 본 발명의 바람직한 실시예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred embodiments of the present invention. However, it goes without saying that the technical spirit of the present invention is not limited thereto and may be variously implemented by those skilled in the art.

Claims (6)

LOHC 수소화 반응 시스템으로서,
LOHC를 공급하는 LOHC 공급부;
수소를 공급하는 수소 공급부;
상기 LOHC 및 수소와 반응하여 수소화 반응이 일어나는 촉매가 구비된 수소화 반응부; 및
상기 수소화 반응 이전에 상기 LOHC 공급부 및 수소 공급부로부터 공급되는 LOHC와 수소를 혼합하여 상기 촉매에 분사시키는 혼합분사노즐을 포함하는 것을 특징으로 하는 LOHC 수소화 반응 시스템.
A LOHC hydrogenation reaction system comprising:
LOHC supply unit for supplying LOHC;
a hydrogen supply unit for supplying hydrogen;
a hydrogenation reaction unit provided with a catalyst in which a hydrogenation reaction occurs by reacting with the LOHC and hydrogen; and
LOHC hydrogenation reaction system comprising a mixing injection nozzle for mixing LOHC and hydrogen supplied from the LOHC supply unit and the hydrogen supply unit before the hydrogenation reaction and injecting the mixture to the catalyst.
제1항에 있어서,
상기 혼합분사노즐은 공급되는 LOHC를 액적 형태로 아토마이징 시키는 것을 특징으로 하는 LOHC 수소화 반응 시스템.
According to claim 1,
The LOHC hydrogenation reaction system, characterized in that the mixing injection nozzle atomizes the supplied LOHC in the form of droplets.
제2항에 있어서,
상기 혼합분사노즐의 운전조건에 따라 아토마이징된 LOHC의 액적 지름이 가변되는 것을 특징으로 하는 LOHC 수소화 반응 시스템.
3. The method of claim 2,
LOHC hydrogenation reaction system, characterized in that the droplet diameter of atomized LOHC varies according to the operating conditions of the mixing injection nozzle.
제1항에 있어서,
상기 혼합분사노즐은 초음파 인젝터인 것을 특징으로 하는 LOHC 수소화 반응 시스템.
According to claim 1,
The LOHC hydrogenation reaction system, characterized in that the mixing injection nozzle is an ultrasonic injector.
LOHC 및 수소를 혼합분사노즐로 공급하는 단계;
상기 공급된 LOHC를 아토마이징 하는 단계;
상기 아토마이징된 LOHC와 수소를 혼합하는 단계; 및
상기 혼합된 LOHC와 수소를 촉매에 분사하여 수소화 반응시키는 단계를 포함하는 것을 특징으로 하는 LOHC 수소화 반응 시스템의 운전방법.
supplying LOHC and hydrogen to the mixing nozzle;
atomizing the supplied LOHC;
mixing the atomized LOHC with hydrogen; and
The operation method of the LOHC hydrogenation system, characterized in that it comprises the step of hydrogenation reaction by injecting the mixed LOHC and hydrogen to the catalyst.
제5항에 있어서,
상기 아토마이징은 LOHC에 초음파를 가하여 진행되는 것을 특징으로 하는 LOHC 수소화 반응 시스템의 운전방법.
6. The method of claim 5,
The atomizing is a method of operating a LOHC hydrogenation reaction system, characterized in that it proceeds by applying ultrasonic waves to the LOHC.
KR1020210039506A 2021-03-26 2021-03-26 Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method KR20220134179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210039506A KR20220134179A (en) 2021-03-26 2021-03-26 Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210039506A KR20220134179A (en) 2021-03-26 2021-03-26 Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method

Publications (1)

Publication Number Publication Date
KR20220134179A true KR20220134179A (en) 2022-10-05

Family

ID=83596367

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210039506A KR20220134179A (en) 2021-03-26 2021-03-26 Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method

Country Status (1)

Country Link
KR (1) KR20220134179A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950701B1 (en) 2017-08-25 2019-02-21 한양대학교 산학협력단 Method for Storing and Releasing Hydrogen Using Catalysts Based upon Carbon-coated Support
KR101954305B1 (en) 2012-11-28 2019-03-05 하이드로지니어스 테크놀로지스 게엠베하 Liquid compounds and method for the use thereof as hydrogen stores
KR20200117354A (en) 2019-04-04 2020-10-14 한양대학교 산학협력단 Method for Storing and Releasing Hydrogen Using Palladium Supported Catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954305B1 (en) 2012-11-28 2019-03-05 하이드로지니어스 테크놀로지스 게엠베하 Liquid compounds and method for the use thereof as hydrogen stores
KR101950701B1 (en) 2017-08-25 2019-02-21 한양대학교 산학협력단 Method for Storing and Releasing Hydrogen Using Catalysts Based upon Carbon-coated Support
KR20200117354A (en) 2019-04-04 2020-10-14 한양대학교 산학협력단 Method for Storing and Releasing Hydrogen Using Palladium Supported Catalysts

Similar Documents

Publication Publication Date Title
US5916432A (en) Process for dispersing transition metal catalytic particles in heavy oil
Song et al. Bifunctional Silver (I) Complex‐Catalyzed CO2 Conversion at Ambient Conditions: Synthesis of α‐Methylene Cyclic Carbonates and Derivatives
US2971700A (en) Apparatus for coating articles with chemically reactive liquids
US7461618B2 (en) Reformer mixing chamber and method for operating same
TW371774B (en) Liquid vaporizer system and method
EP2537581B1 (en) Method for making a cobalt metal foam catalyst in which a cobalt catalyst powder is coated onto the surface of a metal foam, the cobalt metal foam catalyst, a thermal-medium-circulating heat-exchange reactor using the cobalt metal foam catalyst, and a method for producing a liquid fuel by means of a fischer-tropsch synthesis reaction using the thermal-medium-circulating heat-exchange reactor
JP2003137506A (en) Method for reforming of fuel, in particular heating oil
US8562700B2 (en) Multi-functional compact fuel converter and a process for converting liquid fuel
US9878288B2 (en) Ammonia gas generator, method for producing ammonia and use of the same for reducing nitrogen oxides in exhaust gases
JP2002522328A (en) How to convert urea to ammonia
Kang et al. Performance improvement of diesel autothermal reformer by applying ultrasonic injector for effective fuel delivery
JP2008543720A (en) Reformer and reforming method for producing hydrogen from hydrocarbon fuel
CN107735168A (en) For spraying liquid and producing the apparatus and method of superfine mist
KR20220134179A (en) Liquid organic hydrogen carrier(LOHC) hydrogenation reaction system and its operation method
US6991183B2 (en) Atomizing nozzle
CN1883786B (en) Nano particle synthesizing process
CN113385025A (en) Dry powder water mist three-fluid spray gun and using method
KR20000011647A (en) Plant with high temperature fuel cells
JP4427449B2 (en) Spraying equipment
KR100853393B1 (en) Fuel reformer comprising sprayind device, sprayer used in the fuel reformer and fuel reforming method
US11338262B2 (en) Method for improving reaction yield
EP1095904B1 (en) Process for the catalytic conversion of fuel with water and oxygen
JP2003178783A (en) Fuel cell power generating equipment
US11279885B2 (en) Catalyst regenerator
JP3517832B2 (en) Water spray type hydrate manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application