JP3517832B2 - Water spray type hydrate manufacturing method - Google Patents
Water spray type hydrate manufacturing methodInfo
- Publication number
- JP3517832B2 JP3517832B2 JP21580899A JP21580899A JP3517832B2 JP 3517832 B2 JP3517832 B2 JP 3517832B2 JP 21580899 A JP21580899 A JP 21580899A JP 21580899 A JP21580899 A JP 21580899A JP 3517832 B2 JP3517832 B2 JP 3517832B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrate
- gas
- water
- pressure
- reaction vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はハイドレートを工業
的に製造する方法に関する。The present invention relates to relates to how you industrial production of hydrate.
【0002】[0002]
【従来の技術】ハイドレートは、低温高圧環境下で水分
子とメタンや二酸化炭素等のゲスト分子が結合した氷状
の結晶であり、水分子が作る籠の中にゲスト分子が取り
込まれた特異な構造を有する。ハイドレートの製造は気
体化合物を容易に固形化でき、また必要なときに再び気
体化でき、さらに安全であるという点で、気体化合物の
貯蔵、輸送などの見地から有用かつ重要な技術である。
ところで、ハイドレートを液相(水)と気相(ゲスト分
子となる気体)との接触界面において生成させようとす
る場合、気液界面においてハイドレート層が一旦生成さ
れると、生成したハイドレート層が気液間の物質移動を
妨げるため、それ以上反応が進行しない。このため、従
来法では、容器内でスターラ、インペラ等を回転させる
こと、または容器全体を回転、振動させること等によ
り、液相と気相を攪拌、混合してハイドレートを生成さ
せていた。2. Description of the Related Art A hydrate is an ice-like crystal in which a water molecule and a guest molecule such as methane or carbon dioxide are bonded under a low temperature and high pressure environment, and the guest molecule is incorporated into a cage formed by the water molecule. It has a unique structure. The production of hydrate is a useful and important technique from the viewpoint of storage and transportation of a gas compound, in that the gas compound can be easily solidified, can be gasified again when necessary, and is safe.
By the way, when a hydrate is to be generated at the contact interface between a liquid phase (water) and a gas phase (gas that becomes a guest molecule), once the hydrate layer is generated at the gas-liquid interface, the generated hydrate is generated. The layer prevents the mass transfer between gas and liquid, so that the reaction does not proceed any further. Therefore, in the conventional method, the liquid phase and the gas phase are stirred and mixed by rotating a stirrer, an impeller, or the like in the container, or by rotating and vibrating the entire container to generate a hydrate.
【0003】[0003]
【発明が解決しようとする課題】上記の方法では、液相
と気相の攪拌、混合を行わなければならないため、装置
全体が複雑なものとならざるを得なかった。また、上記
の方法では、容器内に存在する液相全体をハイドレート
化するのに長時間を要していた。さらに、生成したハイ
ドレートが攪拌の進行の妨げとなるため、結局のとこ
ろ、ハイドレートと水の混合物しか生成させることがで
きなかった。したがって本発明は、短時間に完全なハイ
ドレートを効率的、かつ簡便に製造するための方法を提
供することを目的とする。In the above method, since the liquid phase and the gas phase have to be stirred and mixed, the whole apparatus has to be complicated. Further, in the above method, it took a long time to hydrate the entire liquid phase existing in the container. Furthermore, since the hydrate formed hinders the progress of stirring, after all, only a mixture of hydrate and water could be formed. Accordingly, the present invention aims at providing a way for the production of complete hydrate efficiently and conveniently in a short time.
【0004】[0004]
【課題を解決するための手段】上記課題は以下の発明に
より達成された。
(1)ハイドレートのゲスト分子となる気体を圧縮し
て、反応容器内の気体の圧力がハイドレート生成圧力に
達するまで反応容器に送り込み、同時に反応容器内の気
体を冷却して、反応容器内の気体のハイドレート生成条
件を満たす温度及び圧力にし、しかる後、水を反応容器
内の圧力と配管及び水噴霧手段における圧力損失の和と
して定まる圧力値以上に加圧して、水噴霧手段に供給
し、水噴霧手段から反応容器内の気体に向けて水微粒子
として噴霧し、気体と水微粒子を接触させ、ハイドレー
トを生成させることを特徴とする水噴霧式ハイドレート
製造方法。
(2)水が水溶性有機化合物を含有することを特徴とす
る(1)項記載の水噴霧式ハイドレート製造方法。The above-mentioned objects have been achieved by the following inventions. ( 1 ) Compress the gas that becomes the guest molecule of hydrate
The gas pressure inside the reaction vessel to the hydrate formation pressure.
It is sent to the reaction vessel until it reaches
Cool the body to the temperature and pressure that satisfy the conditions for producing hydrate of gas in the reaction vessel, and then add water to the reaction vessel.
The pressure inside and the sum of the pressure loss in the piping and water spray means
And supply it to the water spray means
Then, water fine particles are directed from the water spray means toward the gas in the reaction vessel.
And a gas and water particles are brought into contact with each other to produce a hydrate. ( 2 ) The method for producing a water spray hydrate according to item ( 1 ), wherein water contains a water-soluble organic compound.
【0005】[0005]
【発明の実施の形態】上記構成を有する方法によってハ
イドレートを製造するに際しては、ハイドレートのゲス
ト分子となる気体を増圧器により圧縮して増圧し、上記
反応容器内の上記気体の圧力がハイドレート生成圧力に
達するまで反応容器に送り込む。同時に冷却装置により
上記反応器内の上記気体をハイドレート生成温度に達す
るまで冷却して、上記反応容器内の上記気体の温度圧力
がハイドレートの生成条件を満たすようにする。しかる
後、水を、反応容器内の圧力と配管及び水噴霧手段(例
えばノズル)における圧力損失の和として定まる圧力値
以上に加圧して、上記反応容器に設けられた水噴霧手段
に供給し、上記水噴霧手段から上記反応容器内の上記気
体に向けて多数の水微粒子として噴霧し、上記気体と上
記水微粒子を接触させれば、水微粒子内に気体分子が取
り込まれ、ハイドレート化することにより、ハイドレー
トの微粒子が生成する。In the production of hydrates by PREFERRED EMBODIMENTS way that have a above-described configuration, boosts and compressed by pressure intensifier the gas to be guest molecule hydrate, the gas in the reaction vessel Feed into the reaction vessel until the pressure reaches the hydrate formation pressure. At the same time, the cooling device cools the gas in the reactor until it reaches the hydrate formation temperature, so that the temperature and pressure of the gas in the reaction vessel satisfy the hydrate formation condition. Thereafter, the water is pressurized to a pressure value or more determined as the sum of the pressure in the reaction vessel and the pressure loss in the pipe and the water spraying means (for example, nozzle), and is supplied to the water spraying means provided in the reaction vessel. If a large number of water particles are sprayed from the water spraying means toward the gas in the reaction container, and the gas and the water particles are brought into contact with each other, gas molecules are taken into the water particles and become hydrated. As a result, hydrate fine particles are generated.
【0006】本発明方法を適用しうる気体としては、例
えばメタン、エタン、プロパン、イソブタンなどの低級
脂肪族炭化水素化合物などがある。ハイドレートを生成
させる反応容器内の圧力、温度は、気体の種類によって
異なるが、例えばメタンでは通常、温度5℃の場合には
4.3MPa以上の圧力で、温度10℃の場合には6.
9MPa以上の圧力でハイドレートが生成する。一方、
エタンでは通常、温度5℃の場合には0.76MPa以
上の圧力で、温度10℃の場合には1.36MPa以上
の圧力でハイドレートが生成する。上記気体と反応容器
内で接触させる水微粒子の粒径は、気液界面で生成する
ハイドレート膜と同程度のオーダーであることが好まし
く、通常15μm以下、好ましくは3μm以下、より好
ましくは1μm以下である。このような水の微粒子を噴
霧して気体と接触させることにより、攪拌を行うことな
くハイドレートを効率よく生成させることができる。ま
た、本発明において上記気体と接触させる水には、必要
に応じ、水溶性有機化合物を含有させることができる。
水溶性有機化合物はハイドレート生成温度をより高温側
に、ハイドレート生成圧力をより低圧側に遷移させる機
能を有しており、ハイドレート生成に要する工ネルギー
を大幅に減少させることができる。このような機能を有
する水溶性有機化合物としては例えば、シクロペンタノ
ール、シクロペンタノン、テトラヒドロフラン、フラ
ン、γ−ブチロラクトン、1,4−ジオキサン、アセト
ン、1,3−ジオキソラン等があげられる。[0006] The present onset bright Way Method gases that can be applied to, for example methane, ethane, propane, and the like lower aliphatic hydrocarbon compounds such as isobutane. The pressure and temperature in the reaction vessel for producing the hydrate vary depending on the type of gas, but for example, in the case of methane, it is usually 4.3 MPa or more at a temperature of 5 ° C., and 6. at a temperature of 10 ° C.
Hydrate is generated at a pressure of 9 MPa or more. on the other hand,
In ethane, normally, a hydrate is generated at a pressure of 0.76 MPa or more when the temperature is 5 ° C. and at a pressure of 1.36 MPa or more when the temperature is 10 ° C. The particle size of the water particles to be brought into contact with the gas in the reaction vessel is preferably of the same order as that of the hydrate film formed at the gas-liquid interface, and is usually 15 μm or less, preferably 3 μm or less, more preferably 1 μm or less. Is. By spraying such fine particles of water and bringing them into contact with gas, hydrate can be efficiently generated without stirring. Further, in the present invention, the water to be brought into contact with the gas may contain a water-soluble organic compound, if necessary.
The water-soluble organic compound has a function of transitioning the hydrate formation temperature to a higher temperature side and the hydrate formation pressure to a lower pressure side, and can significantly reduce the energy required for hydrate formation. Examples of the water-soluble organic compound having such a function include cyclopentanol, cyclopentanone, tetrahydrofuran, furan, γ-butyrolactone, 1,4-dioxane, acetone, 1,3-dioxolane and the like.
【0007】[0007]
【実施例】次に本発明を図面に従って説明する。図1、
2は本発明に係る水噴霧式ハイドレート製造の好ましい
実施例を示す。
実施例1
図1は実施例1の構成を示す説明図である。図1におい
て、高圧配管6により反応容器1に接続された増圧器2
を用いてハイドレートのゲスト分子となる気体を反応容
器1に供給し、反応容器1内を気体のハイドレート生成
圧力まで加圧するとともに、温度調整手段である冷却装
置3と冷却管9により反応塔1内の気体をハイドレート
生成温度に達するまで冷却する。反応容器1に取りつけ
られた水を噴霧する手段であるノズル4は、高圧配管7
により加圧ポンプ5の吐出口に接続されている。水は加
圧ポンプ5により加圧されてノズル4に供給される。ノ
ズル5の噴射口は反応容器1内の気体に向けられてお
り、水は反応容器1内の気体に向けて多数の微粒子とし
て噴霧され、接触させられる。これにより固体のハイド
レートが析出し、反応容器1内に堆積する。図1におい
て、ノズル4と加圧ポンプ5との間には逆止弁8が設け
られている。ノズルは複数個取り付けても良い。複数個
取り付けることにより大量の水微粒子を一度に発生する
ことができ、ハイドレートの製造効率が向上する。ノズ
ルを反応容器の上方に設けて上から噴霧しても良いし、
ノズルを反応容器の側面に設けて側面から噴霧しても良
い。反応容器内のノズルの数や配列は、反応容器の大き
さ、形状などに応じ適宜定められる。冷却装置3の冷却
管9は反応容器1の外周を取り巻くように配管され、反
応容器1ごと内部の気体を冷却する。冷却管3を反応容
器1の内部に配管しても良い。反応容器内の温度調整方
法については、これに制限されず、公知のどのような方
法によってもよい。なお、反応容器内に生成、堆積した
ハイドレートは、ハイドレートの製造が終了したのち、
反応容器の気体の供給口などから固体のまま取り出して
もよいし、反応容器内でそのまま保持して必要なときに
解離させて気体をもとのガス状にし、気体の供給口など
から放出させてもよい。また、必要に応じ、ハイドレー
トもしくは気体と水の取り出し口や弁などを反応容器に
設けることもできる。The present invention will be described below with reference to the drawings. Figure 1,
2 illustrates a preferred embodiment of the water spray hydrate Manufacturing according to the present invention. Example 1 Figure 1 is an explanatory diagram showing the configuration of Example 1. Te you have <br/> 1, the intensifier is connected to the reaction vessel 1 by the high-pressure pipe 6 2
Is used to supply a gas serving as guest molecules of hydrate to the reaction vessel 1 and to pressurize the inside of the reaction vessel 1 to a gas hydrate generation pressure, and a reaction tower by a cooling device 3 and a cooling pipe 9 which are temperature adjusting means. The gas in 1 is cooled until it reaches the hydrate formation temperature. The nozzle 4, which is a means for spraying water attached to the reaction vessel 1, has a high-pressure pipe 7
Is connected to the discharge port of the pressurizing pump 5. Water is pressurized by the pressure pump 5 and supplied to the nozzle 4. The injection port of the nozzle 5 is directed toward the gas inside the reaction container 1, and water is sprayed toward the gas inside the reaction container 1 as a large number of fine particles and brought into contact therewith. As a result, solid hydrate is deposited and deposited in the reaction vessel 1. Te placed <br/> 1, the check valve 8 is provided between the nozzle 4 and the pressure pump 5. A plurality of nozzles may be attached. By attaching a plurality of particles, a large amount of water particles can be generated at one time, and the hydrate production efficiency is improved. A nozzle may be provided above the reaction vessel and sprayed from above,
A nozzle may be provided on the side surface of the reaction container to spray from the side surface. The number and arrangement of the nozzles in the reaction container are appropriately determined according to the size and shape of the reaction container. The cooling pipe 9 of the cooling device 3 is arranged so as to surround the outer periphery of the reaction container 1, and cools the gas inside the reaction container 1 together. The cooling pipe 3 may be provided inside the reaction container 1. The method for adjusting the temperature in the reaction container is not limited to this, and any known method may be used. The hydrate produced and accumulated in the reaction vessel was prepared after the hydrate production was completed.
The solid may be taken out as it is from the gas supply port of the reaction container or the like, or it may be held in the reaction container as it is and dissociated when necessary to return the gas to the original gas state and released from the gas supply port. May be. Further, if necessary, a hydrate or a port for taking out gas and water or a valve may be provided in the reaction vessel.
【0008】実施例2
図2は、実施例2の構成を示す説明図である。図2にお
いて、図1と同符号は同じものを示す。図2中、10は
タンクを示し、水はここで水溶性有機化合物と混合され
て加圧ポンプ5の吸込口に供給される。水溶性有機化合
物としては、先にあげたシクロペンタノール等を用いる
ことができる。図2においても、実施例1と同様に必要
に応じてハイドレート等の取り出し口などを設けること
ができる。Second Embodiment FIG. 2 is an explanatory diagram showing the configuration of the second embodiment. 2, the same symbols as those in FIG. 1 indicate the same things. In FIG. 2, reference numeral 10 denotes a tank, in which water is mixed with a water-soluble organic compound and supplied to the suction port of the pressure pump 5. As the water-soluble organic compound, the above-mentioned cyclopentanol or the like can be used. Also In Fig. 2, may be provided, such as outlet such hydrate optionally in the same manner as in Example 1.
【0009】本発明においては、反応容器内の温度、圧
力を、供給した気体のハイドレート生成条件とすること
ができ、内部で水の微粒子と気体を効率よく接触させる
ことができるものであれば、反応容器の大きさ、形状
等、特に制限はない。反応容器の材質も特に制限はな
く、例えばSUS304などを用いる。本発明は反応容
器内の温度、圧力を制御するため、これらを測定、表示
する手段などを有するが、図1、2においては省略し
た。[0009] Oite the present onset bright, that the temperature in the reaction vessel, the pressure may be a hydrate formation conditions of the supplied gas, can be contacted efficiently particulates and gaseous water inside If it is, the size and shape of the reaction container are not particularly limited. The material of the reaction vessel is not particularly limited, and SUS304 or the like is used. Since this onset Ming to control temperature, the pressure in the reaction vessel, these measurements has the like means for displaying, and omitted in FIGS.
【0010】[0010]
【発明の効果】本発明においては、水を微粒子化して気
体中に噴霧することにより、液相と気相との接触面積が
飛躍的に増大し、短時間でハイドレートを生成させるこ
とができる。また、液相と気相の混合、攪拌を行う必要
がなく、攪拌手段等のない簡便な装置でハイドレートの
製造が行える。また、従来は気液界面で生成したハイド
レート層が気液間の物質移動を妨げ、反応が効率よく進
行せず、生成物も水とハイドレートとの混合物であった
が、本発明によれば効率よく、完全なハイドレートを生
成させることができる。本発明によれば気体をこのよう
に簡便に固体化することができ、必要に応じこの固体よ
り気体を取り出すことも可能なうえ、水を使用している
ため安全であり、気体化合物の貯蔵、輸送などにおいて
優れた効果を奏する。INDUSTRIAL APPLICABILITY In the present invention, the contact area between the liquid phase and the gas phase is dramatically increased by atomizing water and spraying it into a gas, and a hydrate can be produced in a short time. . Further, it is not necessary to mix and stir the liquid phase and the gas phase, and the hydrate can be produced by a simple apparatus having no stirring means. Further, conventionally, the hydrate layer formed at the gas-liquid interface hinders the mass transfer between the gas and the liquid, the reaction does not proceed efficiently, and the product is a mixture of water and hydrate. If so, it is possible to efficiently generate a complete hydrate. According to the present invention, the gas can be easily solidified in this way, and the gas can be taken out from the solid if necessary, and it is safe because water is used, and the gas compound can be stored, It has an excellent effect in transportation.
【図1】実施例1の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of a first embodiment.
【図2】実施例2の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a second embodiment.
1 反応容器 2 増圧器 3 冷却装置 4 ノズル 5 加圧ポンプ 6、7 高圧配管 8 逆止弁 9 冷却管 10 タンク 1 reaction vessel 2 Booster 3 Cooling device 4 nozzles 5 pressure pump 6,7 High pressure piping 8 Check valve 9 Cooling pipe 10 tanks
フロントページの続き (56)参考文献 特表 平6−511500(JP,A) 国際公開99/019282(WO,A1) 日本化学会誌,1993,No.4,P 389〜394 (58)調査した分野(Int.Cl.7,DB名) C07C 7/20 C07C 5/00 C07C 9/02 - 9/12 Front page continuation (56) References Tokuhyo 6-511500 (JP, A) International Publication 99/019282 (WO, A1) Journal of the Chemical Society of Japan, 1993, No. 4, P 389-394 (58) Fields investigated (Int.Cl. 7 , DB name) C07C 7/20 C07C 5/00 C07C 9/02-9/12
Claims (2)
圧縮して、反応容器内の気体の圧力がハイドレート生成
圧力に達するまで反応容器に送り込み、同時に反応容器
内の気体を冷却して、反応容器内の気体のハイドレート
生成条件を満たす温度及び圧力にし、しかる後、水を反
応容器内の圧力と配管及び水噴霧手段における圧力損失
の和として定まる圧力値以上に加圧して、水噴霧手段に
供給し、水噴霧手段から反応容器内の気体に向けて水微
粒子として噴霧し、気体と水微粒子を接触させ、ハイド
レートを生成させることを特徴とする水噴霧式ハイドレ
ート製造方法。1. A gas which becomes a guest molecule of hydrate
When compressed, the gas pressure in the reaction vessel creates hydrate
Feed into the reaction vessel until the pressure is reached and simultaneously
The gas inside is cooled, and the hydrate formation conditions are satisfied temperature and pressure of the gas in the reaction vessel, and thereafter, water anti
Pressure in reaction vessel and pressure loss in piping and water spray means
Pressurize more than the pressure value determined as the sum of
The water is sprayed from the water spray means to the gas in the reaction vessel.
A method for producing a water-spraying hydrate, which comprises spraying as particles and bringing gas and water particles into contact with each other to generate hydrate.
特徴とする請求項1記載の水噴霧式ハイドレート製造方
法。2. The method for producing a water spray hydrate according to claim 1 , wherein the water contains a water-soluble organic compound.
Law .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21580899A JP3517832B2 (en) | 1999-07-29 | 1999-07-29 | Water spray type hydrate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21580899A JP3517832B2 (en) | 1999-07-29 | 1999-07-29 | Water spray type hydrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001039900A JP2001039900A (en) | 2001-02-13 |
JP3517832B2 true JP3517832B2 (en) | 2004-04-12 |
Family
ID=16678610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21580899A Expired - Fee Related JP3517832B2 (en) | 1999-07-29 | 1999-07-29 | Water spray type hydrate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3517832B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012047018A2 (en) * | 2010-10-05 | 2012-04-12 | Korea Institute Of Industrial Technology | Gas hydrate reactor comprising thermoelectric module |
KR101199784B1 (en) | 2010-11-30 | 2012-11-09 | (주)유성 | Reaction apparatus for forming gas hydrate |
US8367880B2 (en) | 2010-04-26 | 2013-02-05 | Korea Institute Of Industrial Technology | Device and method for continuous hydrate production and dehydration by centrifugal force |
US8486340B2 (en) | 2009-09-15 | 2013-07-16 | Korea Institute Of Industrial Technology | Apparatus and method for continuously producing and pelletizing gas hydrates using dual cylinder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102895934A (en) * | 2012-10-17 | 2013-01-30 | 海门市海菱碳业有限公司 | Improved cold and heat exchange reaction kettle |
-
1999
- 1999-07-29 JP JP21580899A patent/JP3517832B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
日本化学会誌,1993,No.4,P389〜394 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8486340B2 (en) | 2009-09-15 | 2013-07-16 | Korea Institute Of Industrial Technology | Apparatus and method for continuously producing and pelletizing gas hydrates using dual cylinder |
US8367880B2 (en) | 2010-04-26 | 2013-02-05 | Korea Institute Of Industrial Technology | Device and method for continuous hydrate production and dehydration by centrifugal force |
WO2012047018A2 (en) * | 2010-10-05 | 2012-04-12 | Korea Institute Of Industrial Technology | Gas hydrate reactor comprising thermoelectric module |
WO2012047018A3 (en) * | 2010-10-05 | 2012-06-21 | Korea Institute Of Industrial Technology | Gas hydrate reactor comprising thermoelectric module |
KR101228571B1 (en) * | 2010-10-05 | 2013-02-01 | 조후갑 | Gas hydrate reactor comprising thermoelectric module |
NO347528B1 (en) * | 2010-10-05 | 2023-12-11 | Korea Inst Ind Tech | GAS HYDRATE REACTOR COMPREHENSIVE THERMOELECTRIC MODULE |
KR101199784B1 (en) | 2010-11-30 | 2012-11-09 | (주)유성 | Reaction apparatus for forming gas hydrate |
Also Published As
Publication number | Publication date |
---|---|
JP2001039900A (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3517832B2 (en) | Water spray type hydrate manufacturing method | |
JPS62191033A (en) | Method for forming uniform liquid droplet | |
JP3433288B2 (en) | Mixed gas separation device and mixed gas separation method | |
JP2004075771A (en) | Apparatus for producing gas hydrate | |
JP2010527893A (en) | Production of hydrogen from borohydride and glycerol | |
CN113201373A (en) | Low-pressure preservation method of natural gas hydrate | |
US5927082A (en) | Gas generator | |
JP4045476B2 (en) | Gas hydrate manufacturing method and manufacturing apparatus | |
US6339939B1 (en) | Process for the conversion of a flow containing hydrocarbons by partial oxidation | |
JPH10216501A (en) | Slurry bed reactor | |
CN1042547C (en) | Process for the production of a powder coating, apparatus for carrying out the process, and powder formulation for carrying out the process | |
JPH06511500A (en) | Method for producing gas hydrates for transportation and storage | |
WO2017094603A1 (en) | Method for producing high-pressure hydrogen | |
US20040176649A1 (en) | Making gas hydrate utilizing ultrafine bubbles and ultra-particulate gas hydrate | |
JP2011025203A (en) | Functional mist generator | |
US6183701B1 (en) | Method of and apparatus for manufacturing methanol | |
JP2004059630A (en) | Method for producing gas hydrate and apparatus | |
JP2003343360A (en) | Hydrogen engine system | |
JP2933482B2 (en) | Coal liquefaction method and apparatus | |
CN209276462U (en) | A kind of overcritical water catalysis agent generates and recycles online gasification system | |
Cooke | Industrial Gases | |
JP4538625B2 (en) | COATING METHOD AND APPARATUS USING CO2 | |
JP2000264851A (en) | Method for producing hydrate and device for producing the same | |
JP2000256227A (en) | Method and apparatus for producing hydrate | |
JP4899144B2 (en) | Method and apparatus for manufacturing structure H hydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3517832 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |