JP2016225331A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2016225331A
JP2016225331A JP2015106971A JP2015106971A JP2016225331A JP 2016225331 A JP2016225331 A JP 2016225331A JP 2015106971 A JP2015106971 A JP 2015106971A JP 2015106971 A JP2015106971 A JP 2015106971A JP 2016225331 A JP2016225331 A JP 2016225331A
Authority
JP
Japan
Prior art keywords
layer
wiring
resin insulating
wiring board
lowermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015106971A
Other languages
Japanese (ja)
Inventor
悦司 鈴木
Etsuji Suzuki
悦司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015106971A priority Critical patent/JP2016225331A/en
Publication of JP2016225331A publication Critical patent/JP2016225331A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board capable of improving reliability by preventing disconnection of the wiring of a wiring layer.SOLUTION: A wiring board 1 of the present invention comprises a laminated portion and a solder resist layer. In the laminated portion, a mounting region 23 having a plurality of corner portions 61 is set on the surface of the uppermost resin insulating layer. The solder resist layer is formed on the back surface of the lowermost resin insulating layer 42 and has openings 47 at a plurality of locations. The laminated portion has a structure in which a wiring layer 43 is disposed between a plurality of resin insulating layers, and at least one resin insulating layer is an inorganic fiber containing layer. Among wiring 81 of the wiring layer 43 arranged between the lowermost resin insulating layer 42 and the lowermost inorganic fiber containing layer and disposed in a lower region A1 including a part just under the corner portion 61, a part of the wiring 81 disposed immediately above the opening edge of the opening 47 is a wide portion 82.SELECTED DRAWING: Figure 4

Description

本発明は、複数の樹脂絶縁層を積層した構造を有する積層部と、最下層の樹脂絶縁層の裏面上に形成されたソルダーレジスト層とを備える配線基板に関するものである。   The present invention relates to a wiring board including a laminated portion having a structure in which a plurality of resin insulating layers are laminated and a solder resist layer formed on the back surface of the lowermost resin insulating layer.

近年、電気機器、電子機器の小型化に伴い、これらの機器に搭載される配線基板にも小型化や高密度化が要求されている。このような配線基板としては、例えば図9,図10に示されるように、コア基板101の両面に、配線層102と樹脂絶縁層103とを交互に積層してなるビルドアップ層104を設けた配線基板100が知られている(例えば、特許文献1参照)。なお、最上層の樹脂絶縁層103の表面上に設定された搭載領域110には、ICチップ111などの電子部品が搭載され、ICチップ111と配線基板100との隙間にはアンダーフィル材112が充填されている。その結果、配線基板100及びICチップ111の界面が封止された状態で互いに固定される。また、最下層の樹脂絶縁層103の裏面上には、複数箇所に接続端子105用の開口部106を有するソルダーレジスト層107が形成されている。接続端子105の表面上には、マザーボード(図示略)との電気的な接続を図るための複数のはんだバンプ108が配設されている。そして、各はんだバンプ108により、配線基板100はマザーボード上に実装される。   In recent years, with the miniaturization of electrical equipment and electronic equipment, miniaturization and high density are also required for wiring boards mounted on these equipment. As such a wiring board, for example, as shown in FIGS. 9 and 10, build-up layers 104 formed by alternately laminating wiring layers 102 and resin insulating layers 103 are provided on both surfaces of the core board 101. A wiring substrate 100 is known (see, for example, Patent Document 1). An electronic component such as an IC chip 111 is mounted on the mounting region 110 set on the surface of the uppermost resin insulating layer 103, and an underfill material 112 is formed in the gap between the IC chip 111 and the wiring substrate 100. Filled. As a result, the interface between the wiring substrate 100 and the IC chip 111 is fixed to each other in a sealed state. On the back surface of the lowermost resin insulating layer 103, solder resist layers 107 having openings 106 for connecting terminals 105 are formed at a plurality of locations. On the surface of the connection terminal 105, a plurality of solder bumps 108 for electrical connection with a mother board (not shown) are disposed. The wiring board 100 is mounted on the mother board by the solder bumps 108.

特許第4267660号公報(図3等)Japanese Patent No. 4267660 (FIG. 3 etc.)

ところで、ICチップ111は、一般に熱膨張係数が2.0ppm/℃〜5.0ppm/℃程度の半導体材料(例えばシリコン等)を用いて形成されている。これに対して、配線基板100は半導体材料よりもかなり熱膨張係数が大きな材料、例えば10.0ppm/℃以上の樹脂材料等を用いて形成されている。よって、配線基板100にICチップ111を実装した場合には、ICチップ111−配線基板100間の熱膨張係数差に起因して応力が発生しやすくなる。さらに、配線基板100をマザーボードに実装した場合にも、配線基板100−マザーボード間の熱膨張係数差に起因して応力が発生する可能性がある。   Incidentally, the IC chip 111 is generally formed using a semiconductor material (for example, silicon) having a thermal expansion coefficient of about 2.0 ppm / ° C. to 5.0 ppm / ° C. On the other hand, the wiring board 100 is formed using a material having a considerably larger thermal expansion coefficient than that of the semiconductor material, for example, a resin material of 10.0 ppm / ° C. or higher. Therefore, when the IC chip 111 is mounted on the wiring board 100, stress is likely to occur due to the difference in thermal expansion coefficient between the IC chip 111 and the wiring board 100. Furthermore, even when the wiring board 100 is mounted on a mother board, stress may be generated due to a difference in thermal expansion coefficient between the wiring board 100 and the mother board.

なお、これらの応力は、搭載領域110のコーナー部113の直下を含む下方領域A3、特には、ソルダーレジスト層107の開口部106の開口縁に集中する。その結果、開口部106の開口縁を起点とするクラック114が発生し、発生したクラック114が内層側に進展するため、開口縁の直上に配置される配線層102の配線が電気的に断線する不具合が生じやすくなる。その結果、配線基板100の歩留まりが低下してしまうため、配線基板100に必要とされる所定の信頼性を付与できないという問題がある。   These stresses are concentrated on the lower region A3 including the region immediately below the corner portion 113 of the mounting region 110, particularly on the opening edge of the opening portion 106 of the solder resist layer 107. As a result, the crack 114 starting from the opening edge of the opening 106 is generated, and the generated crack 114 progresses to the inner layer side, so that the wiring of the wiring layer 102 disposed immediately above the opening edge is electrically disconnected. Problems are likely to occur. As a result, since the yield of the wiring board 100 is lowered, there is a problem that the predetermined reliability required for the wiring board 100 cannot be given.

本発明は上記の課題に鑑みてなされたものであり、その目的は、配線層の配線の断線を防止することにより、信頼性の向上を図ることが可能な配線基板を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring board capable of improving reliability by preventing disconnection of wiring in a wiring layer.

上記課題を解決するための手段(手段1)としては、複数の樹脂絶縁層を積層した構造を有し、半導体チップを搭載可能な搭載領域が最上層の前記樹脂絶縁層の表面上に設定された積層部と、最下層の前記樹脂絶縁層の裏面上に形成され、複数箇所に接続端子用の開口部を有するソルダーレジスト層とを備え、前記搭載領域が、前記積層部の厚さ方向から見たときに複数のコーナー部を有する形状をなす配線基板であって、前記積層部は、前記複数の樹脂絶縁層間に配線層を配置した構造を有し、前記積層部の内層において前記複数の樹脂絶縁層のうち少なくとも1層は、無機繊維層を含む無機繊維含有層であり、最下層の前記樹脂絶縁層と最下層の前記無機繊維含有層との間に配置され、かつ、前記コーナー部の直下を含む下方領域に配置される前記配線層の配線のうち、前記開口部の開口縁の直上に配置される配線の一部分が、当該配線の一部分に連続する部分よりも幅広に形成された幅広部となっていることを特徴とする配線基板がある。   As means (means 1) for solving the above-described problems, a structure in which a plurality of resin insulation layers are stacked is provided, and a mounting region in which a semiconductor chip can be mounted is set on the surface of the uppermost resin insulation layer. And a solder resist layer formed on the back surface of the lowermost resin insulation layer and having openings for connecting terminals at a plurality of locations, and the mounting region is from the thickness direction of the stacked portion. A wiring board having a shape having a plurality of corner portions when viewed, wherein the stacked portion has a structure in which a wiring layer is disposed between the plurality of resin insulation layers, At least one of the resin insulating layers is an inorganic fiber-containing layer including an inorganic fiber layer, and is disposed between the lowermost resin insulating layer and the lowermost inorganic fiber-containing layer, and the corner portion. Located in the lower area including directly under Among the wirings of the wiring layer, a part of the wiring arranged immediately above the opening edge of the opening is a wide part formed wider than a part continuous with a part of the wiring. There is a wiring board.

従って、手段1に記載の構成によると、最下層の樹脂絶縁層と最下層の無機繊維含有層との間に配置され、かつ、コーナー部の直下を含む下方領域に配置される配線層の配線のうち、ソルダーレジスト層の開口部の開口縁の直上に配置される配線の一部分が幅広部となっている。よって、開口部の開口縁を起点とするクラックが発生し、発生したクラックが開口縁の直上に配置される配線に到達したとしても、クラックは補強部分である幅広部に到達するため、配線が電気的に断線する不具合が生じにくくなる。その結果、配線基板の歩留まりが向上するため、配線基板の信頼性を向上させることができる。   Therefore, according to the structure described in the means 1, the wiring of the wiring layer disposed between the lowermost resin insulating layer and the lowermost inorganic fiber-containing layer and disposed in the lower region including directly under the corner portion Among them, a part of the wiring arranged just above the opening edge of the opening of the solder resist layer is a wide portion. Therefore, cracks starting from the opening edge of the opening occur, and even if the generated crack reaches the wiring arranged immediately above the opening edge, the crack reaches the wide part that is the reinforcing part, It becomes difficult to cause a problem of electrical disconnection. As a result, since the yield of the wiring board is improved, the reliability of the wiring board can be improved.

なお、最下層の樹脂絶縁層と最下層の無機繊維含有層との間に配置され、かつ、コーナー部の直下を含む下方領域に配置される配線層の配線は、開口部の開口縁の直上を避けるように敷設されていてもよい。このようにすれば、開口部の開口縁を起点とするクラックが発生し、発生したクラックが開口縁の直上に配置される配線に到達するリスクが小さくなるため、配線が電気的に断線する不具合が生じにくくなる。この場合も、配線基板の歩留まりが向上するため、配線基板の信頼性を向上させることができる。   In addition, the wiring of the wiring layer disposed between the lowermost resin insulating layer and the lowermost inorganic fiber-containing layer and disposed in the lower region including immediately below the corner portion is directly above the opening edge of the opening. May be laid to avoid. In this way, cracks starting from the opening edge of the opening are generated, and the risk of the generated crack reaching the wiring arranged immediately above the opening edge is reduced, so that the wiring is electrically disconnected. Is less likely to occur. Also in this case, since the yield of the wiring board is improved, the reliability of the wiring board can be improved.

上記配線基板を構成する積層部は、複数の樹脂絶縁層を積層した構造を有している。樹脂絶縁層は、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。樹脂絶縁層の形成材料の具体例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリアセタール樹脂、ポリプロピレン樹脂などの熱可塑性樹脂等が挙げられる。また、複数の樹脂絶縁層のうち少なくとも1層は、無機繊維層を含む無機繊維含有層である。無機繊維層を構成する無機繊維の好適例としては、ガラス繊維(ガラスクロス)、セラミック繊維、金属繊維、紙などが挙げられる。   The laminated portion constituting the wiring board has a structure in which a plurality of resin insulating layers are laminated. The resin insulation layer can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. Specific examples of the material for forming the resin insulation layer include thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, and polyimide resins, cycloolefin resins, polycarbonate resins, acrylic resins, polyacetal resins, and polypropylene resins. A thermoplastic resin etc. are mentioned. In addition, at least one of the plurality of resin insulating layers is an inorganic fiber-containing layer including an inorganic fiber layer. Preferable examples of the inorganic fiber constituting the inorganic fiber layer include glass fiber (glass cloth), ceramic fiber, metal fiber, paper and the like.

また、最上層の樹脂絶縁層の表面上に設定された搭載領域には、半導体チップが搭載可能となっている。なお、半導体チップ(ICチップ)としては、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory )などを挙げることができる。   In addition, a semiconductor chip can be mounted in a mounting region set on the surface of the uppermost resin insulating layer. Examples of the semiconductor chip (IC chip) include a DRAM (Dynamic Random Access Memory) and an SRAM (Static Random Access Memory).

なお、積層部は、複数の樹脂絶縁層間に配線層を配置した構造を有している。ここで、配線層は、銅、銀、金、白金、ニッケル、チタン、アルミニウム、クロム等といった各種の導電性金属を用いて形成可能であるが、特には、導電性が高く安価な銅を主体として構成されることがよい。配線層を形成する手法としては、サブトラクティブ法、セミアディティブ法、フルアディティブ法といった公知の手法が採用される。具体的に言うと、例えば、銅箔のエッチング、無電解銅めっきや電解銅めっきなどの手法が適用される。なお、スパッタやCVD等の手法により薄膜を形成した後にエッチングを行うことで配線層を形成したり、導電性ペースト等の印刷により配線層を形成したりすることも可能である。   Note that the laminated portion has a structure in which a wiring layer is disposed between a plurality of resin insulating layers. Here, the wiring layer can be formed using various conductive metals such as copper, silver, gold, platinum, nickel, titanium, aluminum, and chromium. It is good to be configured as. As a method for forming the wiring layer, a known method such as a subtractive method, a semi-additive method, or a full additive method is employed. Specifically, for example, techniques such as etching of copper foil, electroless copper plating, and electrolytic copper plating are applied. It is also possible to form a wiring layer by etching after forming a thin film by a technique such as sputtering or CVD, or to form a wiring layer by printing a conductive paste or the like.

また、最下層の樹脂絶縁層と最下層の無機繊維含有層との間に配置され、かつ、コーナー部の直下を含む下方領域に配置される配線層の配線のうち、開口部の開口縁の直上に配置される配線の一部分は、当該配線の一部分に連続する部分よりも幅広に形成された幅広部となっている。ここで、幅広部の線幅は、当該幅広部に連続する部分の2倍以上10倍以下であることがよい。仮に、幅広部の線幅が、当該幅広部に連続する部分の2倍未満であると、クラックが幅広部に到達した際に、幅広部(配線の一部分)が電気的に断線するおそれがある。一方、幅広部の線幅が、当該幅広部に連続する部分の10倍よりも大きいと、配線層の配線の形成領域が大きくなり、ひいては配線基板が大型化しやすくなる。   Of the wiring of the wiring layer disposed between the lowermost resin insulating layer and the lowermost inorganic fiber-containing layer and disposed in the lower region including directly under the corner portion, the opening edge of the opening portion A part of the wiring arranged immediately above is a wide part formed wider than a part continuing to a part of the wiring. Here, the line width of the wide portion is preferably not less than 2 times and not more than 10 times that of the portion continuing to the wide portion. If the line width of the wide portion is less than twice that of the portion that continues to the wide portion, the wide portion (part of the wiring) may be electrically disconnected when the crack reaches the wide portion. . On the other hand, if the line width of the wide portion is larger than 10 times that of the portion continuing to the wide portion, the wiring formation area of the wiring layer becomes large, and the wiring board is likely to be enlarged.

上記配線基板を構成するソルダーレジスト層は、最下層の樹脂絶縁層の裏面上に形成され、複数箇所に接続端子用の開口部を有している。「ソルダーレジスト層」とは、絶縁性及び耐熱性を有する樹脂からなり、本来的には、導体を覆い隠すことで導体へのはんだの付着を防止する保護膜のことをいう。本発明においては、少なくとも感光性を有する樹脂からなるソルダーレジスト層を用いることがよく、具体的には、エポキシ樹脂やポリイミド樹脂などの使用が好適である。   The solder resist layer constituting the wiring board is formed on the back surface of the lowermost resin insulating layer, and has openings for connection terminals at a plurality of locations. The “solder resist layer” is made of a resin having insulating properties and heat resistance, and is essentially a protective film that prevents the adhesion of solder to the conductor by covering the conductor. In the present invention, it is preferable to use a solder resist layer made of a resin having at least photosensitivity, and specifically, use of an epoxy resin or a polyimide resin is preferable.

また、最下層の樹脂絶縁層の裏面上に開口部から露出する接続端子が形成され、接続端子の厚さが配線層の厚さよりも大きいことがよい。このようにすれば、開口部の開口端から配線基板の内層側へのクラックの進展を抑えることができる。   Further, it is preferable that a connection terminal exposed from the opening is formed on the back surface of the lowermost resin insulating layer, and the thickness of the connection terminal is larger than the thickness of the wiring layer. If it does in this way, progress of a crack from the opening end of an opening to the inner layer side of a wiring board can be controlled.

第1実施形態における配線基板を示す平面図。The top view which shows the wiring board in 1st Embodiment. 配線基板とICチップとの関係を示す説明図。Explanatory drawing which shows the relationship between a wiring board and an IC chip. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 下方領域における配線層の配線の配置態様を示す要部平面図。The principal part top view which shows the arrangement | positioning aspect of the wiring of the wiring layer in a downward area | region. 第1主面上及び第2主面上に樹脂絶縁層を形成する工程を示す概略断面図。The schematic sectional drawing which shows the process of forming a resin insulating layer on the 1st main surface and the 2nd main surface. 第2層の樹脂絶縁層を形成する工程を示す概略断面図。The schematic sectional drawing which shows the process of forming the 2nd resin insulation layer. 第2実施形態における配線基板を示す概略断面図。The schematic sectional drawing which shows the wiring board in 2nd Embodiment. 下方領域における配線層の配線の配置態様を示す要部平面図。The principal part top view which shows the arrangement | positioning aspect of the wiring of the wiring layer in a downward area | region. 従来技術における配線基板を示す平面図。The top view which shows the wiring board in a prior art. 図9のB−B線断面図。BB sectional drawing of FIG.

[第1実施形態]
以下、本発明の配線基板1を具体化した第1実施形態を図面に基づき詳細に説明する。
[First Embodiment]
Hereinafter, a first embodiment in which the wiring substrate 1 of the present invention is embodied will be described in detail with reference to the drawings.

図1〜図4に示されるように、本実施形態の配線基板1は、ICチップ21搭載用の配線基板である。配線基板1を構成する積層部10は、略矩形板状のコア基板11と、コア基板11の第1主面12(図2,図3では上面)上に設けられた第1ビルドアップ層30と、コア基板11の第2主面13(図2,図3では下面)上に設けられた第2ビルドアップ層40とからなる。   As shown in FIGS. 1 to 4, the wiring board 1 of this embodiment is a wiring board for mounting the IC chip 21. The laminated portion 10 constituting the wiring substrate 1 includes a substantially rectangular plate-shaped core substrate 11 and a first buildup layer 30 provided on the first main surface 12 (the upper surface in FIGS. 2 and 3) of the core substrate 11. And a second buildup layer 40 provided on the second main surface 13 (the lower surface in FIGS. 2 and 3) of the core substrate 11.

本実施形態のコア基板11は、縦40mm×横40mm×厚さ0.8mm(=800μm)の平面視略矩形状である。コア基板11は、ガラスクロス(無機繊維層)を含む熱硬化性樹脂(エポキシ樹脂)からなるガラスクロス含有層(無機繊維含有層)となる樹脂絶縁層である。また、コア基板11は、平面方向(XY方向)における熱膨張係数が10〜30ppm/℃程度(具体的には18ppm/℃)となっている。なお、コア基板11の熱膨張係数は、0℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。   The core substrate 11 of the present embodiment has a substantially rectangular shape in plan view of 40 mm length × 40 mm width × 0.8 mm thickness (= 800 μm). The core substrate 11 is a resin insulating layer that becomes a glass cloth-containing layer (inorganic fiber-containing layer) made of a thermosetting resin (epoxy resin) including a glass cloth (inorganic fiber layer). The core substrate 11 has a thermal expansion coefficient in the plane direction (XY direction) of about 10 to 30 ppm / ° C. (specifically, 18 ppm / ° C.). In addition, the thermal expansion coefficient of the core board | substrate 11 says the average value of the measured value between 0 degreeC-glass transition temperature (Tg).

図3に示されるように、コア基板11には、スルーホール導体14が第1主面12及び第2主面13を貫通するように形成されている。かかるスルーホール導体14は、コア基板11の第1主面12側と第2主面13側とを接続導通している。なお、スルーホール導体14の内部は、例えばエポキシ樹脂などの閉塞体15で埋められている。また、コア基板11の第1主面12には、厚さ15μmの銅からなる第1配線層16がパターン形成され、コア基板11の第2主面13には、同じく厚さ15μmの銅からなる第2配線層17がパターン形成されている。各配線層16,17の一部は、スルーホール導体14に電気的に接続されている。   As shown in FIG. 3, a through-hole conductor 14 is formed in the core substrate 11 so as to penetrate the first main surface 12 and the second main surface 13. The through-hole conductor 14 connects and connects the first main surface 12 side and the second main surface 13 side of the core substrate 11. Note that the inside of the through-hole conductor 14 is filled with a closing body 15 such as an epoxy resin. The first main surface 12 of the core substrate 11 is patterned with a first wiring layer 16 made of copper having a thickness of 15 μm, and the second main surface 13 of the core substrate 11 is also made of copper having a thickness of 15 μm. The second wiring layer 17 is patterned. A part of each wiring layer 16, 17 is electrically connected to the through-hole conductor 14.

図2,図3に示されるように、第1ビルドアップ層30は、厚さ30μmの熱硬化性樹脂(エポキシ樹脂)からなる2層の樹脂絶縁層31,32と、厚さ15μmの銅からなる配線層33とを交互に積層した構造を有している。よって、無機繊維含有層となるコア基板11の厚さ(800μm)は、無機繊維含有層とはならない樹脂絶縁層31,32の厚さよりも大きくなっている。また、第1ビルドアップ層30は、コア基板11と樹脂絶縁層31との間に第1配線層16を配置し、かつ、樹脂絶縁層31と樹脂絶縁層32との間に配線層33を配置した構造を有している。本実施形態において、樹脂絶縁層31,32の完全硬化状態での熱膨張係数は、10〜60ppm/℃程度(具体的には20ppm/℃程度)となっている。なお、樹脂絶縁層31,32の熱膨張係数は、30℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。   As shown in FIGS. 2 and 3, the first buildup layer 30 is composed of two resin insulating layers 31 and 32 made of a thermosetting resin (epoxy resin) having a thickness of 30 μm and copper having a thickness of 15 μm. The wiring layers 33 are stacked alternately. Therefore, the thickness (800 μm) of the core substrate 11 that becomes the inorganic fiber-containing layer is larger than the thickness of the resin insulating layers 31 and 32 that do not become the inorganic fiber-containing layer. The first buildup layer 30 includes the first wiring layer 16 disposed between the core substrate 11 and the resin insulating layer 31, and the wiring layer 33 disposed between the resin insulating layer 31 and the resin insulating layer 32. It has an arranged structure. In the present embodiment, the thermal expansion coefficient of the resin insulating layers 31 and 32 in a completely cured state is about 10 to 60 ppm / ° C. (specifically, about 20 ppm / ° C.). In addition, the thermal expansion coefficient of the resin insulating layers 31 and 32 means an average value of measured values between 30 ° C. and the glass transition temperature (Tg).

また、図3に示されるように、樹脂絶縁層31,32内には、それぞれ銅めっきによって形成されたビア導体34が設けられている。さらに、第2層(最上層)の樹脂絶縁層32の表面上における複数箇所には、厚さ15μmの銅からなる端子パッド35がアレイ状に形成されている。端子パッド35は、ビア導体34を介して配線層33に電気的に接続されている。また、樹脂絶縁層32の表面は、ソルダーレジスト層36によってほぼ全体的に覆われている。ソルダーレジスト層36には、端子パッド35の中央部分を露出させるための開口部37が複数箇所に形成されている。よって、端子パッド35の外周部分は、ソルダーレジスト層36によって覆われるようになる。そして、端子パッド35の表面上には、複数のはんだバンプ51が配設されている。   As shown in FIG. 3, via conductors 34 formed by copper plating are provided in the resin insulating layers 31 and 32, respectively. Further, terminal pads 35 made of copper having a thickness of 15 μm are formed in an array at a plurality of locations on the surface of the second layer (uppermost layer) resin insulation layer 32. The terminal pad 35 is electrically connected to the wiring layer 33 via the via conductor 34. Further, the surface of the resin insulating layer 32 is almost entirely covered with a solder resist layer 36. In the solder resist layer 36, openings 37 for exposing the central portion of the terminal pad 35 are formed at a plurality of locations. Therefore, the outer peripheral portion of the terminal pad 35 is covered with the solder resist layer 36. A plurality of solder bumps 51 are disposed on the surface of the terminal pad 35.

図1〜図3に示されるように、各はんだバンプ51は、ICチップ21(半導体チップ)の面接続端子22に電気的に接続されている。MPUとしての機能を有するICチップ21は、縦13.0mm×横16.0mm×厚さ0.9mmの平面視矩形状をなす板状物であって、熱膨張係数が3〜4ppm/℃程度(具体的には3.5ppm/℃程度)のシリコンからなる。ICチップ21の裏面側表層には、図示しない回路素子が形成されている。また、ICチップ21の裏面側には、複数の面接続端子22が格子状に設けられている。なお、各端子パッド35及び各はんだバンプ51からなる領域は、ICチップ21を搭載可能な搭載領域23である。搭載領域23は、最上層の樹脂絶縁層32の表面上に設定されている。また、搭載領域23は、積層部10の厚さ方向から見たときに4つのコーナー部61を有する縦13.0mm×横16.0mmの矩形状の領域である。   As shown in FIGS. 1 to 3, each solder bump 51 is electrically connected to the surface connection terminal 22 of the IC chip 21 (semiconductor chip). The IC chip 21 having a function as an MPU is a plate-like object having a rectangular shape in plan view of 13.0 mm in length, 16.0 mm in width, and 0.9 mm in thickness, and has a thermal expansion coefficient of about 3 to 4 ppm / ° C. It is made of silicon (specifically about 3.5 ppm / ° C.). Circuit elements (not shown) are formed on the back surface side surface of the IC chip 21. A plurality of surface connection terminals 22 are provided in a grid pattern on the back surface side of the IC chip 21. Note that an area including the terminal pads 35 and the solder bumps 51 is a mounting area 23 on which the IC chip 21 can be mounted. The mounting area 23 is set on the surface of the uppermost resin insulation layer 32. The mounting area 23 is a rectangular area having a length of 13.0 mm and a width of 16.0 mm having four corner portions 61 when viewed from the thickness direction of the stacked portion 10.

そして、図3に示されるように、配線基板1とICチップ21との隙間には、エポキシ樹脂からなるアンダーフィル材71が充填されている。その結果、配線基板1とICチップ21とが、界面が封止された状態で互いに固定される。   As shown in FIG. 3, the gap between the wiring substrate 1 and the IC chip 21 is filled with an underfill material 71 made of an epoxy resin. As a result, the wiring board 1 and the IC chip 21 are fixed to each other with the interface sealed.

図2,図3に示されるように、第2ビルドアップ層40は、上述した第1ビルドアップ層30とほぼ同じ構造を有している。即ち、第2ビルドアップ層40は、厚さ30μmの熱硬化性樹脂(エポキシ樹脂)からなる2層の樹脂絶縁層41,42と、厚さ15μmの銅からなる配線層43とを交互に積層した構造を有している。よって、無機繊維含有層となるコア基板11の厚さ(800μm)は、無機繊維含有層とはならない樹脂絶縁層41,42の厚さよりも大きくなっている。また、第2ビルドアップ層40は、コア基板11と樹脂絶縁層41との間に第2配線層17を配置し、かつ、樹脂絶縁層41と樹脂絶縁層42との間に配線層43を配置した構造を有している。本実施形態において、樹脂絶縁層41,42の完全硬化状態での熱膨張係数は、10〜60ppm/℃程度(具体的には20ppm/℃程度)となっている。なお、樹脂絶縁層41,42の熱膨張係数は、30℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。   As shown in FIGS. 2 and 3, the second buildup layer 40 has substantially the same structure as the first buildup layer 30 described above. That is, the second buildup layer 40 is formed by alternately laminating two resin insulating layers 41 and 42 made of a thermosetting resin (epoxy resin) having a thickness of 30 μm and a wiring layer 43 made of copper having a thickness of 15 μm. It has the structure. Therefore, the thickness (800 μm) of the core substrate 11 that becomes the inorganic fiber-containing layer is larger than the thickness of the resin insulating layers 41 and 42 that do not become the inorganic fiber-containing layer. In the second buildup layer 40, the second wiring layer 17 is disposed between the core substrate 11 and the resin insulating layer 41, and the wiring layer 43 is disposed between the resin insulating layer 41 and the resin insulating layer 42. It has an arranged structure. In the present embodiment, the coefficient of thermal expansion of the resin insulating layers 41 and 42 in a completely cured state is about 10 to 60 ppm / ° C. (specifically, about 20 ppm / ° C.). In addition, the thermal expansion coefficient of the resin insulating layers 41 and 42 means the average value of the measured value between 30 degreeC-glass transition temperature (Tg).

また、図3に示されるように、樹脂絶縁層41,42内には、それぞれ銅めっきによって形成されたビア導体44が設けられている。さらに、第2層(最下層)の樹脂絶縁層42の裏面上における複数箇所には、厚さ20μmの銅からなるBGAパッド45(接続端子)がアレイ状に形成されている。よって、BGAパッド45の厚さは、配線層16,17,33,43の厚さ(15μm)よりも大きくなっている。また、BGAパッド45は、ビア導体44を介して配線層43に電気的に接続されている。さらに、樹脂絶縁層42の裏面は、ソルダーレジスト層46によってほぼ全体的に覆われている。ソルダーレジスト層46には、BGAパッド45の中央部分を露出させるための開口部47が複数箇所に形成されている。よって、BGAパッド45の外周部分は、ソルダーレジスト層46によって覆われるようになる。さらに、BGAパッド45の裏面(下面)上には、マザーボード(図示略)との電気的な接続を図るための複数のはんだバンプ52が配設されている。そして、各はんだバンプ52により、配線基板1はマザーボード上に実装される。   As shown in FIG. 3, via conductors 44 formed by copper plating are provided in the resin insulating layers 41 and 42, respectively. Furthermore, BGA pads 45 (connection terminals) made of copper having a thickness of 20 μm are formed in an array at a plurality of locations on the back surface of the second layer (lowermost layer) resin insulation layer 42. Therefore, the thickness of the BGA pad 45 is larger than the thickness (15 μm) of the wiring layers 16, 17, 33, and 43. Further, the BGA pad 45 is electrically connected to the wiring layer 43 through the via conductor 44. Further, the back surface of the resin insulating layer 42 is almost entirely covered with a solder resist layer 46. In the solder resist layer 46, openings 47 for exposing the central portion of the BGA pad 45 are formed at a plurality of locations. Therefore, the outer peripheral portion of the BGA pad 45 is covered with the solder resist layer 46. Further, a plurality of solder bumps 52 are provided on the back surface (lower surface) of the BGA pad 45 for electrical connection with a mother board (not shown). The wiring board 1 is mounted on the mother board by the solder bumps 52.

次に、最下層の樹脂絶縁層42と最下層の無機繊維含有層(本実施形態ではコア基板11)との間に配置され、かつ、コーナー部61の直下を含む下方領域A1に配置される配線層17,43について説明する。図3,図4に示されるように、本実施形態の下方領域A1は、コーナー部61の頂点P1(図4参照)からBGAパッド45(または、ソルダーレジスト層46の開口部47)の3個分だけ搭載領域23の中央側に延びる領域と、頂点P1からBGAパッド45の4個分だけ搭載領域23の外側に延びる領域とによって構成されている。また、本実施形態の下方領域A1は、頂点P1を通過するとともに積層部10を厚さ方向に貫通する軸線を中心とした半径5mmの領域であると言うこともできる。そして、配線層17,43の配線81のうち、開口部47の開口縁の直上に配置される配線81の一部分(換言すると、積層部10の厚さ方向から見たときに開口部47の開口縁と交差する部分)は、当該配線81の一部分に連続する部分よりも幅広に形成された幅広部82となっている。本実施形態において、配線81において幅広部82に連続する部分(即ち、幅広部82ではない部分)の線幅は、25μmに設定されている。そして、幅広部82の線幅は、95μmに設定されており、幅広部82に連続する部分の2倍以上10倍以下(本実施形態では3.8倍)である。また、全ての幅広部82の長さは、400μm以上1200μm以下(本実施形態では800μm)である。   Next, it is disposed between the lowermost resin insulation layer 42 and the lowermost inorganic fiber-containing layer (core substrate 11 in the present embodiment), and is disposed in the lower region A1 including directly under the corner portion 61. The wiring layers 17 and 43 will be described. As shown in FIGS. 3 and 4, the lower region A <b> 1 of the present embodiment includes three from the apex P <b> 1 of the corner portion 61 (see FIG. 4) to the BGA pad 45 (or the opening 47 of the solder resist layer 46). An area extending toward the center of the mounting area 23 and an area extending from the apex P1 to the outside of the mounting area 23 by four BGA pads 45 are formed. In addition, it can be said that the lower region A1 of the present embodiment is a region having a radius of 5 mm with an axis passing through the apex P1 and penetrating the laminated portion 10 in the thickness direction. Of the wiring 81 of the wiring layers 17, 43, a part of the wiring 81 arranged immediately above the opening edge of the opening 47 (in other words, the opening of the opening 47 when viewed from the thickness direction of the stacked portion 10). A portion intersecting the edge) is a wide portion 82 formed wider than a portion continuing to a part of the wiring 81. In the present embodiment, the line width of the portion that continues to the wide portion 82 in the wiring 81 (that is, the portion that is not the wide portion 82) is set to 25 μm. The line width of the wide portion 82 is set to 95 μm and is not less than 2 times and not more than 10 times (3.8 times in this embodiment) that of the portion continuous with the wide portion 82. Further, the length of all the wide portions 82 is not less than 400 μm and not more than 1200 μm (800 μm in this embodiment).

次に、本実施形態の配線基板1の製造方法を説明する。   Next, the manufacturing method of the wiring board 1 of this embodiment is demonstrated.

まず、コア基板11の中間製品を従来周知の手法により作製し、あらかじめ準備しておく。コア基板11の中間製品は以下のように作製される。まず、縦400mm×横400mm×厚さ0.8mmの基材の両面に銅箔が貼付された銅張積層板(図示略)を準備する。そして、ドリルを用いてレーザ孔あけ加工を行い、銅張積層板を貫通する貫通孔を所定位置にあらかじめ形成しておく。次に、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことでスルーホール導体14を形成した後、そのスルーホール導体14内に閉塞体15を充填形成する。さらに、配線層16,17を例えばセミアディティブ法によってパターニングする。具体的には、無電解銅めっきの後、この無電解銅めっき層を共通電極として電解銅めっきを施す。さらに、ドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行うことにより、ドライフィルムを所定パターンに形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層及び銅箔をエッチングで除去する。その後、ドライフィルムを剥離し、コア基板11の中間製品を得る。なお、コア基板11の中間製品とは、コア基板11となるべき領域を平面方向に沿って縦横に複数配列した構造の多数個取り用コア基板である。   First, an intermediate product of the core substrate 11 is prepared by a conventionally known method and prepared in advance. The intermediate product of the core substrate 11 is manufactured as follows. First, a copper clad laminate (not shown) in which a copper foil is pasted on both sides of a base having a length of 400 mm, a width of 400 mm, and a thickness of 0.8 mm is prepared. And a laser drilling process is performed using a drill and the through-hole which penetrates a copper clad laminated board is previously formed in the predetermined position. Next, after the through-hole conductor 14 is formed by performing electroless copper plating and electrolytic copper plating according to a conventionally known method, the closing body 15 is filled and formed in the through-hole conductor 14. Further, the wiring layers 16 and 17 are patterned by, for example, a semi-additive method. Specifically, after the electroless copper plating, electrolytic copper plating is performed using the electroless copper plating layer as a common electrode. Further, the dry film is laminated, and the dry film is exposed and developed to form a dry film in a predetermined pattern. In this state, unnecessary electrolytic copper plating layer, electroless copper plating layer and copper foil are removed by etching. Thereafter, the dry film is peeled off to obtain an intermediate product of the core substrate 11. The intermediate product of the core substrate 11 is a multi-piece core substrate having a structure in which a plurality of regions to be the core substrate 11 are arranged vertically and horizontally along the plane direction.

次に、従来周知の手法に基づいて第1主面12の上に第1ビルドアップ層30を形成するとともに、第2主面13の上に第2ビルドアップ層40を形成する。具体的に言うと、まず、第1主面12上に熱硬化性エポキシ樹脂を被着(貼付)することにより、樹脂絶縁層31を形成する(図5参照)。また、第2主面13上に熱硬化性エポキシ樹脂を被着(貼付)することにより、樹脂絶縁層41を形成する(図5参照)。なお、熱硬化性エポキシ樹脂を被着する代わりに、感光性エポキシ樹脂や絶縁樹脂や液晶ポリマー(LCP:Liquid Crystalline Polymer)を被着してもよい。   Next, the first buildup layer 30 is formed on the first main surface 12 and the second buildup layer 40 is formed on the second main surface 13 based on a conventionally known method. Specifically, first, a resin insulating layer 31 is formed by depositing (attaching) a thermosetting epoxy resin on the first main surface 12 (see FIG. 5). Further, a resin insulating layer 41 is formed by applying (sticking) a thermosetting epoxy resin on the second main surface 13 (see FIG. 5). Instead of depositing a thermosetting epoxy resin, a photosensitive epoxy resin, an insulating resin, or a liquid crystal polymer (LCP) may be deposited.

さらに、YAGレーザまたは炭酸ガスレーザを用いてレーザ孔あけ加工を行い、ビア導体34,44が形成されるべき位置にビア孔を形成する。具体的には、樹脂絶縁層31を貫通するビア孔を形成して第1配線層16の表面を露出させるとともに、樹脂絶縁層41を貫通するビア孔を形成して第2配線層17の表面を露出させる。次に、樹脂絶縁層31の表面上、樹脂絶縁層41の裏面上、及び、ビア孔の内面に対する無電解銅めっきを行った後に電解銅めっきを行う。その結果、ビア孔の内部にビア導体34,44が形成されるとともに、樹脂絶縁層31上に配線層33が形成され、樹脂絶縁層41上に配線層43が形成される(図5参照)。   Further, laser drilling is performed using a YAG laser or a carbon dioxide gas laser to form via holes at positions where the via conductors 34 and 44 are to be formed. Specifically, a via hole penetrating the resin insulating layer 31 is formed to expose the surface of the first wiring layer 16, and a via hole penetrating the resin insulating layer 41 is formed to form the surface of the second wiring layer 17. To expose. Next, after performing electroless copper plating on the surface of the resin insulating layer 31, the back surface of the resin insulating layer 41, and the inner surface of the via hole, electrolytic copper plating is performed. As a result, via conductors 34 and 44 are formed inside the via hole, a wiring layer 33 is formed on the resin insulating layer 31, and a wiring layer 43 is formed on the resin insulating layer 41 (see FIG. 5). .

次に、樹脂絶縁層31の表面上に熱硬化性エポキシ樹脂を被着(貼付)することにより、第2層(最上層)の樹脂絶縁層32を形成するとともに、樹脂絶縁層41の裏面上に熱硬化性エポキシ樹脂を被着(貼付)することにより、第2層(最下層)の樹脂絶縁層42を形成する(図6参照)。なお、熱硬化性エポキシ樹脂を被着する代わりに、感光性エポキシ樹脂や絶縁樹脂や液晶ポリマーを被着してもよい。さらに、YAGレーザまたは炭酸ガスレーザを用いてレーザ孔あけ加工を行い、ビア導体34,44が形成されるべき位置にビア孔を形成する。具体的には、樹脂絶縁層32を貫通するビア孔を形成し、配線層33の表面を露出させるとともに、樹脂絶縁層42を貫通するビア孔を形成し、配線層43の表面を露出させる。次に、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行い、ビア孔の内部にビア導体34,44を形成するとともに、樹脂絶縁層32上に端子パッド35を形成し、樹脂絶縁層42上にBGAパッド45を形成する(図6参照)。   Next, a second layer (uppermost layer) resin insulation layer 32 is formed by applying (sticking) a thermosetting epoxy resin on the surface of the resin insulation layer 31, and on the back surface of the resin insulation layer 41. A second layer (lowermost layer) of resin insulation layer 42 is formed by applying (sticking) a thermosetting epoxy resin to (see FIG. 6). Instead of depositing the thermosetting epoxy resin, a photosensitive epoxy resin, an insulating resin, or a liquid crystal polymer may be deposited. Further, laser drilling is performed using a YAG laser or a carbon dioxide gas laser to form via holes at positions where the via conductors 34 and 44 are to be formed. Specifically, a via hole penetrating the resin insulating layer 32 is formed to expose the surface of the wiring layer 33, and a via hole penetrating the resin insulating layer 42 is formed to expose the surface of the wiring layer 43. Next, electroless copper plating and electrolytic copper plating are performed according to a conventionally known method to form via conductors 34 and 44 inside the via hole, and a terminal pad 35 is formed on the resin insulating layer 32, and the resin insulating layer is formed. A BGA pad 45 is formed on 42 (see FIG. 6).

次に、最上層の樹脂絶縁層32の表面上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト層36を形成する。また、最下層の樹脂絶縁層42の裏面上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト層46を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト層36に開口部37を形成するとともに、ソルダーレジスト層46に開口部47を形成する。   Next, the solder resist layer 36 is formed by applying and curing a photosensitive epoxy resin on the surface of the uppermost resin insulation layer 32. Also, a solder resist layer 46 is formed by applying and curing a photosensitive epoxy resin on the back surface of the lowermost resin insulation layer 42. Next, exposure and development are performed in a state in which a predetermined mask is arranged to form an opening 37 in the solder resist layer 36 and an opening 47 in the solder resist layer 46.

さらに、開口部37から露出する端子パッド35の表面に、はんだペーストを印刷するとともに、開口部47から露出するBGAパッド45の表面に、はんだペーストを印刷する。次に、はんだペーストが印刷された配線基板をリフロー炉内に配置して、はんだの融点より10〜40℃高い温度に加熱する。この時点で、はんだペーストが溶融し、半球状に盛り上がった形状のICチップ21搭載用のはんだバンプ51が形成されるとともに、同じく半球状に盛り上がった形状のマザーボード実装用のはんだバンプ52が形成される。なお、この状態のものは、配線基板1となるべき製品領域を平面方向に沿って縦横に複数配列した多数個取り用配線基板であると把握することができる。さらに、多数個取り用配線基板を分割すると、個々の製品である配線基板1が多数個同時に得られる。   Further, the solder paste is printed on the surface of the terminal pad 35 exposed from the opening 37, and the solder paste is printed on the surface of the BGA pad 45 exposed from the opening 47. Next, the wiring board on which the solder paste is printed is placed in a reflow furnace and heated to a temperature 10 to 40 ° C. higher than the melting point of the solder. At this point, the solder paste is melted to form the solder bumps 51 for mounting the IC chip 21 in a hemispherical shape, and the solder bumps 52 for mounting the motherboard in the same hemispherical shape are formed. The It can be understood that the product in this state is a multi-cavity wiring board in which a plurality of product regions to be the wiring board 1 are arranged vertically and horizontally along the plane direction. Furthermore, when the multi-piece wiring board is divided, a large number of wiring boards 1 as individual products can be obtained simultaneously.

その後、配線基板1の搭載領域23にICチップ21を載置する。このとき、ICチップ21側の面接続端子22と各はんだバンプ51とを位置合わせする。そして、220℃〜240℃程度の温度に加熱して各はんだバンプ51をリフローすることにより、各はんだバンプ51と面接続端子22とを接合し、配線基板1側とICチップ21側とを電気的に接続する。その結果、搭載領域23にICチップ21が搭載される。さらに、配線基板1とICチップ21との隙間にアンダーフィル材71を充填して硬化処理を行い、隙間を樹脂封止する。その結果、図3に示される配線基板1が完成する。   Thereafter, the IC chip 21 is mounted on the mounting area 23 of the wiring board 1. At this time, the surface connection terminals 22 on the IC chip 21 side and the solder bumps 51 are aligned. Then, each solder bump 51 is reflowed by heating to a temperature of about 220 ° C. to 240 ° C., thereby joining each solder bump 51 and the surface connection terminal 22 to electrically connect the wiring board 1 side and the IC chip 21 side. Connect. As a result, the IC chip 21 is mounted on the mounting area 23. Further, the gap between the wiring board 1 and the IC chip 21 is filled with an underfill material 71 and subjected to a curing process, and the gap is sealed with resin. As a result, the wiring board 1 shown in FIG. 3 is completed.

従って、本実施形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態の配線基板1では、樹脂絶縁層42とコア基板11との間に配置され、かつ、コーナー部61の直下を含む下方領域A1に配置される配線層17,43の配線81のうち、ソルダーレジスト層46の開口部47の開口縁の直上に配置される配線81の一部分が幅広部82となっている。よって、開口部47の開口縁を起点とするクラック114(図10参照)が発生し、発生したクラック114が開口縁の直上に配置される配線81に到達したとしても、クラック114は補強部分である幅広部82に到達するため、配線81が電気的に断線する不具合が生じにくくなる。その結果、配線基板1の歩留まりが向上するため、配線基板1の信頼性を向上させることができる。   (1) In the wiring substrate 1 of the present embodiment, the wiring of the wiring layers 17 and 43 disposed between the resin insulating layer 42 and the core substrate 11 and disposed in the lower region A1 including immediately below the corner portion 61. 81, a part of the wiring 81 arranged immediately above the opening edge of the opening 47 of the solder resist layer 46 is a wide portion 82. Therefore, even if a crack 114 (see FIG. 10) starting from the opening edge of the opening 47 is generated and the generated crack 114 reaches the wiring 81 arranged immediately above the opening edge, the crack 114 is a reinforcing portion. Since it reaches a certain wide portion 82, it is difficult to cause a problem that the wiring 81 is electrically disconnected. As a result, since the yield of the wiring board 1 is improved, the reliability of the wiring board 1 can be improved.

(2)本実施形態では、配線層17,43の配線81の一部分を幅広部82とすることで、配線81の電気的な断線を防止している。即ち、信頼性に優れた配線基板1を得るためにアンダーフィル材71の形状を制御したりしなくても済むため、ICチップ21の実装が容易になり、配線基板1の生産性が向上する。また、本実施形態の配線基板1は、配線81の形状を変更しただけのものであるため、配線基板1の製造に従来から用いられている工程を変更することなく、配線81の断線を防止することができる。   (2) In the present embodiment, a part of the wiring 81 of the wiring layers 17 and 43 is formed as the wide portion 82, thereby preventing electrical disconnection of the wiring 81. That is, since it is not necessary to control the shape of the underfill material 71 in order to obtain the wiring substrate 1 having excellent reliability, the mounting of the IC chip 21 is facilitated, and the productivity of the wiring substrate 1 is improved. . In addition, since the wiring board 1 of the present embodiment is the one in which the shape of the wiring 81 is only changed, the disconnection of the wiring 81 can be prevented without changing the process conventionally used for manufacturing the wiring board 1. can do.

(3)本実施形態のICチップ21は、高剛性であって、樹脂絶縁層31,32,41,42よりも熱膨張係数が小さく、ICチップ21に熱膨張係数が近いコア基板11によって支持される。よって、コア基板11が変形しにくくなるため、コア基板11を備えた配線基板1に実装されるICチップ21をより安定的に支持できる。従って、大きな熱応力に起因するICチップ21のクラックや接続不良を防止することができる。ゆえに、ICチップ21として、熱膨張係数差による応力(歪)が大きくなり熱応力の影響が大きく、かつ発熱量が大きく使用時の熱衝撃が厳しい10mm角以上の大型のICチップや、脆いとされるLow−k(低誘電率)のICチップを用いることができる。   (3) The IC chip 21 of the present embodiment is highly rigid, has a smaller thermal expansion coefficient than the resin insulating layers 31, 32, 41, and 42, and is supported by the core substrate 11 having a thermal expansion coefficient close to that of the IC chip 21. Is done. Therefore, since the core substrate 11 is difficult to deform, the IC chip 21 mounted on the wiring substrate 1 including the core substrate 11 can be supported more stably. Therefore, it is possible to prevent the IC chip 21 from cracking and poor connection due to large thermal stress. Therefore, as the IC chip 21, the stress (strain) due to the difference in thermal expansion coefficient is large, the influence of the thermal stress is large, the heat generation is large, the thermal shock during use is severe, and the large 10 mm square or more IC chip or A low-k (low dielectric constant) IC chip can be used.

[第2実施形態]
以下、本発明を具体化した第2実施形態を図面に基づき詳細に説明する。ここでは、第1実施形態と相違する部分を中心に説明する。本実施形態では、下方領域の一部において、配線層の配線の配置態様が前記第1実施形態とは異なっている。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. Here, it demonstrates centering on the part which is different from 1st Embodiment. In this embodiment, the wiring arrangement of the wiring layer is different from the first embodiment in a part of the lower region.

詳述すると、図7,図8に示される配線基板121は、最下層の樹脂絶縁層162とコア基板131(樹脂絶縁層、無機繊維含有層)との間に配置され、かつ、コーナー部181の直下を含む下方領域A2に配置される配線層(第2配線層137及び配線層163)を備えている。これら配線層137,163の配線201は、ソルダーレジスト層166の開口部167の開口縁の直上を避けるように敷設されている(図8に示す回避部202参照)。なお、本実施形態の下方領域A2は、コーナー部181の頂点P2(図8参照)から接続端子であるBGAパッド165(または、ソルダーレジスト層166の開口部167)の3個分だけ搭載領域143の中央側に延びる領域と、頂点P2からBGAパッド165の4個分だけ搭載領域143の外側に延びる領域とによって構成された配線回避区域である。また、本実施形態の下方領域A2は、頂点P2を通過するとともに積層部10を厚さ方向に貫通する軸線を中心とした半径5mmの領域であると言うこともできる。   Specifically, the wiring substrate 121 shown in FIGS. 7 and 8 is disposed between the lowermost resin insulating layer 162 and the core substrate 131 (resin insulating layer, inorganic fiber-containing layer), and the corner portion 181. Wiring layers (second wiring layer 137 and wiring layer 163) disposed in the lower region A2 including immediately below are provided. The wiring 201 of these wiring layers 137 and 163 is laid so as to avoid a position directly above the opening edge of the opening 167 of the solder resist layer 166 (see the avoidance section 202 shown in FIG. 8). Note that the lower region A2 of the present embodiment has a mounting region 143 corresponding to three BGA pads 165 (or openings 167 of the solder resist layer 166) that are connection terminals from the apex P2 of the corner portion 181 (see FIG. 8). This is a wiring avoidance area constituted by an area extending toward the center of the area and an area extending from the apex P2 to the outside of the mounting area 143 by four BGA pads 165. In addition, it can be said that the lower region A2 of the present embodiment is a region having a radius of 5 mm with an axis passing through the apex P2 and penetrating the stacked portion 10 in the thickness direction.

従って、本実施形態では、最下層の樹脂絶縁層162とコア基板131との間に配置され、かつ、コーナー部181の直下を含む下方領域A2に配置される配線層137,163の配線201が、開口部167の開口縁の直上を避けるように敷設されている。よって、開口部167の開口縁を起点とするクラック114(図10参照)が発生し、発生したクラック114が開口縁の直上に進展したとしても、クラック114が配線201に到達するリスクが小さくなるため、配線201が電気的に断線する不具合が生じにくくなる。この場合、配線基板121の歩留まりが向上するため、配線基板121の信頼性を向上させることができる。   Therefore, in the present embodiment, the wiring 201 of the wiring layers 137 and 163 disposed between the lowermost resin insulating layer 162 and the core substrate 131 and disposed in the lower region A2 including immediately below the corner portion 181 is provided. , And is laid so as to avoid the position directly above the opening edge of the opening 167. Therefore, even if the crack 114 (see FIG. 10) starting from the opening edge of the opening 167 occurs, and the generated crack 114 progresses directly above the opening edge, the risk that the crack 114 reaches the wiring 201 is reduced. Therefore, it is difficult to cause a problem that the wiring 201 is electrically disconnected. In this case, since the yield of the wiring board 121 is improved, the reliability of the wiring board 121 can be improved.

なお、本実施形態の以下のように変更してもよい。   In addition, you may change as follows of this embodiment.

・上記各実施形態において、搭載領域23,143が有するコーナー部61,181の下方領域に配置される配線層43,163の配線81,201は、開口部47の開口縁の直上に配置される部分が幅広部82となる第1実施形態の構成と、開口部167の開口縁の直上を避けるように敷設される第2実施形態の構成との両方を有していてもよい。   In each of the above embodiments, the wirings 81 and 201 of the wiring layers 43 and 163 disposed in the regions below the corner portions 61 and 181 included in the mounting regions 23 and 143 are disposed immediately above the opening edge of the opening 47. You may have both the structure of 1st Embodiment in which a part becomes the wide part 82, and the structure of 2nd Embodiment laid so that the opening edge of the opening part 167 may be avoided.

・上記各実施形態の接続端子は、BGA(ボールグリッドアレイ)用のBGAパッド45であった。しかし、接続端子は、BGAパッド45のみに限定される訳ではなく、例えば、PGA(ピングリッドアレイ)用のPGAパッド等であってもよい。   -The connection terminal of each said embodiment was the BGA pad 45 for BGA (ball grid array). However, the connection terminal is not limited to the BGA pad 45 alone, and may be, for example, a PGA pad for PGA (pin grid array).

・上記各実施形態の配線基板は、コア基板11,131を有する配線基板1,121に具体化されていたが、コア基板11,131を有しないコアレス配線基板に具体化されていてもよい。   -Although the wiring board of each said embodiment was embodied in the wiring boards 1 and 121 which have the core substrates 11 and 131, you may be actualized in the coreless wiring board which does not have the core substrates 11 and 131.

次に、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, the technical ideas grasped by the embodiment described above are listed below.

(1)上記手段1において、前記幅広部の長さは、400μm以上1200μm以下であることを特徴とする配線基板。   (1) In the above means 1, the wide substrate has a length of 400 μm or more and 1200 μm or less.

(2)上記手段1において、前記無機繊維含有層となる樹脂絶縁層は、前記無機繊維含有層とはならない樹脂絶縁層よりも厚いコア基板であることを特徴とする配線基板。   (2) In the above means 1, the wiring board is characterized in that the resin insulating layer that becomes the inorganic fiber-containing layer is a core substrate that is thicker than the resin insulating layer that does not become the inorganic fiber-containing layer.

(3)上記手段1において、前記無機繊維含有層は、前記無機繊維層であるガラスクロスを含むガラスクロス含有層であることを特徴とする配線基板。   (3) In the said means 1, the said inorganic fiber content layer is a glass cloth content layer containing the glass cloth which is the said inorganic fiber layer, The wiring board characterized by the above-mentioned.

(4)上記手段1において、前記接続端子は、BGAパッドまたはPGAパッドであることを特徴とする配線基板。   (4) In the above means 1, the connection board is a BGA pad or a PGA pad.

(5)上記手段1において、前記ソルダーレジスト層は、前記接続端子の外周部分を覆う一方、前記接続端子の中央部分を前記開口部から露出させることを特徴とする配線基板。   (5) In the above means 1, the solder resist layer covers an outer peripheral portion of the connection terminal, while exposing a central portion of the connection terminal from the opening.

(6)上記手段1において、前記下方領域は、前記コーナー部の頂点から前記接続端子の3個分だけ前記搭載領域の中央側に延びる領域と、前記コーナー部の頂点から前記接続端子の4個分だけ前記搭載領域の外側に延びる領域とによって構成されていることを特徴とする配線基板。   (6) In the above means 1, the lower region includes an area extending from the apex of the corner part to the center side of the mounting area by three of the connection terminals, and four of the connection terminals from the apex of the corner part. And a region extending outward from the mounting region.

1,121…配線基板
10…積層部
11,131…樹脂絶縁層及び無機繊維含有層としてのコア基板
16…配線層としての第1配線層
17,137…配線層としての第2配線層
21…半導体チップとしてのICチップ
23,143…搭載領域
31,32,41,42,162…樹脂絶縁層
33,43,163…配線層
45,165…接続端子としてのBGAパッド
46,166…ソルダーレジスト層
47,167…開口部
61,181…コーナー部
81,201…配線層の配線
82…幅広部
A1,A2…下方領域
DESCRIPTION OF SYMBOLS 1,121 ... Wiring board 10 ... Lamination | stacking part 11,131 ... Core board | substrate 16 as a resin insulation layer and an inorganic fiber containing layer ... 1st wiring layer 17,137 as a wiring layer ... 2nd wiring layer 21 as a wiring layer ... IC chips 23, 143 as semiconductor chips, mounting regions 31, 32, 41, 42, 162 ... resin insulation layers 33, 43, 163 ... wiring layers 45, 165 ... BGA pads 46, 166 as soldering contact layers, solder resist layers 47,167 ... openings 61,181 ... corner portions 81,201 ... wiring 82 in the wiring layer ... wide portions A1, A2 ... lower region

Claims (4)

複数の樹脂絶縁層を積層した構造を有し、半導体チップを搭載可能な搭載領域が最上層の前記樹脂絶縁層の表面上に設定された積層部と、最下層の前記樹脂絶縁層の裏面上に形成され、複数箇所に接続端子用の開口部を有するソルダーレジスト層とを備え、
前記搭載領域が、前記積層部の厚さ方向から見たときに複数のコーナー部を有する形状をなす
配線基板であって、
前記積層部は、前記複数の樹脂絶縁層間に配線層を配置した構造を有し、
前記積層部の内層において前記複数の樹脂絶縁層のうち少なくとも1層は、無機繊維層を含む無機繊維含有層であり、
最下層の前記樹脂絶縁層と最下層の前記無機繊維含有層との間に配置され、かつ、前記コーナー部の直下を含む下方領域に配置される前記配線層の配線のうち、前記開口部の開口縁の直上に配置される配線の一部分が、当該配線の一部分に連続する部分よりも幅広に形成された幅広部となっている
ことを特徴とする配線基板。
A stacked portion having a structure in which a plurality of resin insulating layers are stacked, and a mounting area where a semiconductor chip can be mounted is set on the surface of the uppermost resin insulating layer, and on the back surface of the lowermost resin insulating layer And a solder resist layer having openings for connection terminals at a plurality of locations,
The mounting region is a wiring board having a shape having a plurality of corner portions when viewed from the thickness direction of the stacked portion,
The laminated portion has a structure in which a wiring layer is disposed between the plurality of resin insulating layers,
In the inner layer of the laminated part, at least one of the plurality of resin insulation layers is an inorganic fiber-containing layer including an inorganic fiber layer,
Of the wiring of the wiring layer disposed between the lowermost resin insulation layer and the lowermost inorganic fiber-containing layer and disposed in a lower region including directly under the corner portion, A wiring board characterized in that a part of a wiring arranged immediately above an opening edge is a wide part formed wider than a part continuous with a part of the wiring.
最下層の前記樹脂絶縁層と最下層の前記無機繊維含有層との間に配置され、かつ、前記コーナー部の直下を含む下方領域に配置される前記配線層の配線は、前記開口部の開口縁の直上を避けるように敷設されていることを特徴とする請求項1に記載の配線基板。   The wiring of the wiring layer disposed between the lowermost resin insulating layer and the lowermost inorganic fiber-containing layer and disposed in a lower region including directly under the corner portion is an opening of the opening. The wiring board according to claim 1, wherein the wiring board is laid so as to avoid a position directly above the edge. 前記幅広部の線幅は、当該幅広部に連続する部分の2倍以上10倍以下であることを特徴とする請求項1または2に記載の配線基板。   3. The wiring board according to claim 1, wherein a line width of the wide portion is not less than 2 times and not more than 10 times a portion continuous with the wide portion. 最下層の前記樹脂絶縁層の裏面上に前記開口部から露出する前記接続端子が形成され、前記接続端子の厚さが前記配線層の厚さよりも大きいことを特徴とする請求項1乃至3のいずれか1項に記載の配線基板。   The connection terminal exposed from the opening is formed on the back surface of the lowermost resin insulating layer, and the thickness of the connection terminal is larger than the thickness of the wiring layer. The wiring board according to any one of claims.
JP2015106971A 2015-05-27 2015-05-27 Wiring board Pending JP2016225331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106971A JP2016225331A (en) 2015-05-27 2015-05-27 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106971A JP2016225331A (en) 2015-05-27 2015-05-27 Wiring board

Publications (1)

Publication Number Publication Date
JP2016225331A true JP2016225331A (en) 2016-12-28

Family

ID=57748465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106971A Pending JP2016225331A (en) 2015-05-27 2015-05-27 Wiring board

Country Status (1)

Country Link
JP (1) JP2016225331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024155164A1 (en) * 2023-01-20 2024-07-25 엘지이노텍 주식회사 Circuit board and semiconductor package comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024155164A1 (en) * 2023-01-20 2024-07-25 엘지이노텍 주식회사 Circuit board and semiconductor package comprising same

Similar Documents

Publication Publication Date Title
JP5010737B2 (en) Printed wiring board
JP3670917B2 (en) Semiconductor device and manufacturing method thereof
JP5224845B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5389770B2 (en) Printed circuit board with built-in electronic element and manufacturing method thereof
WO2014155455A1 (en) Wiring board
US9338886B2 (en) Substrate for mounting semiconductor, semiconductor device and method for manufacturing semiconductor device
JP2013149948A (en) Wiring board and manufacturing method of the same
JP2005310946A (en) Semiconductor device
JP2013093404A (en) Wiring board and manufacturing method of the same
US9622347B2 (en) Wiring substrate, semiconductor device, method of manufacturing wiring substrate, and method of manufacturing semiconductor device
US10485098B2 (en) Electronic component device
JP2016063130A (en) Printed wiring board and semiconductor package
JP2017152536A (en) Printed wiring board and manufacturing method thereof
JP2007266111A (en) Semiconductor device, laminated semiconductor device using the same, base substrate, and semiconductor device manufacturing method
JP2018032660A (en) Printed wiring board and method for manufacturing the same
JP2017084997A (en) Printed wiring board and method of manufacturing the same
WO2015083345A1 (en) Wiring board with embedded components and manufacturing method thereof
JP7247046B2 (en) Wiring board and method for manufacturing wiring board
JP2018032661A (en) Printed wiring board and method for manufacturing the same
JP2016051747A (en) Wiring board
JP2016225331A (en) Wiring board
JP2014192177A (en) Wiring board
JP6250309B2 (en) Manufacturing method of multilayer wiring board
JP2015141953A (en) Component built-in wiring board and method for manufacturing the same
JP2013070003A (en) Wiring board