JP2016225277A - Positive electrode material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery using the positive electrode material - Google Patents

Positive electrode material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery using the positive electrode material Download PDF

Info

Publication number
JP2016225277A
JP2016225277A JP2016037973A JP2016037973A JP2016225277A JP 2016225277 A JP2016225277 A JP 2016225277A JP 2016037973 A JP2016037973 A JP 2016037973A JP 2016037973 A JP2016037973 A JP 2016037973A JP 2016225277 A JP2016225277 A JP 2016225277A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte secondary
tungsten
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037973A
Other languages
Japanese (ja)
Other versions
JP6998107B2 (en
Inventor
立 江崎
Tatsu Ezaki
立 江崎
徹太郎 林
Tetsutaro Hayashi
徹太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2016225277A publication Critical patent/JP2016225277A/en
Application granted granted Critical
Publication of JP6998107B2 publication Critical patent/JP6998107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode material for a nonaqueous electrolyte secondary battery, with which both of high capacity and high output can be obtained when the positive electrode material is used for a positive electrode.SOLUTION: A method for manufacturing a positive electrode material for a nonaqueous electrolyte secondary battery is characterized in that lithium metal composite oxide powder, at least one organic solvent selected from among ethanol, methanol, propanol, butanol, and acetonitrile, and a tungsten additive material of a tungsten oxide with a grain size of 0.01-0.09 μm or lithium tungstate with a grain size of 0.01-0.09 μm are mixed, the lithium metal composite oxide powder being represented by general formula LiNiCoMO(where, 0.01≤x≤0.35, 0≤y≤0.35, 0.97≤z≤1.20, and M represents an additive element and is at least one element selected from among Mn, V, Mg, Mo, Nb, Ti and Al) and comprising a primary particle and a secondary particle formed by the aggregation of the primary particles.SELECTED DRAWING: None

Description

本発明は、非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode material.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれ、また、ハイブリット自動車をはじめとする電気自動車用の電池として高出力の二次電池の開発も強く望まれている。
このような要求を満たす二次電池として、リチウムイオン二次電池がある。
In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight non-aqueous electrolyte secondary batteries with high energy density is strongly desired, and electric vehicles including hybrid vehicles Development of a high-power secondary battery as a battery for power generation is also strongly desired.
As a secondary battery satisfying such requirements, there is a lithium ion secondary battery.

このリチウムイオン二次電池は、負極および正極の活物質に、リチウムが脱離および挿入できる材料が用いられている。
このようなリチウムイオン二次電池については、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
In this lithium ion secondary battery, a material from which lithium can be desorbed and inserted is used for the active material of the negative electrode and the positive electrode.
Such lithium ion secondary batteries are currently being actively researched and developed. Among them, lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode material are among them. Since a high voltage of 4V class can be obtained, practical use is progressing as a battery having a high energy density.

これまでに提案されている活物質材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などが挙げられる。
このうちリチウムニッケル複合酸化物、及びリチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良く、低抵抗で高出力が得られ電池特性に優れた材料として注目され、近年、さらには高出力化に必要な低抵抗化が重要視されている。
Examples of active material materials that have been proposed so far include lithium cobalt composite oxide (LiCoO 2 ) that is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel that is less expensive than cobalt, lithium Examples thereof include nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, and the like.
Of these, lithium nickel composite oxide and lithium nickel cobalt manganese composite oxide are attracting attention as materials with good cycle characteristics, low resistance and high output, and excellent battery characteristics. Low resistance is regarded as important.

このような電池特性を改善する方法として、異元素の添加が用いられており、とりわけW、Mo、Nb、Ta、Reなどの高価数をとることができる遷移金属が有用とされている。
例えば、特許文献1には、非水系電解質二次電池の正極材として、リチウム金属複合酸化物粉末とタングステン酸リチウムを混合することで高容量、高出力をもたらすことができる正極材料が提案されている。また、特許文献2では、リチウム金属複合酸化物粉末と酸化タングステンを混合して同様の効果が得られるとある。
しかし、いずれもタングステン化合物を正極材中に均一に分散させることで効果を得るものであるが、混合量が増える場合には活物質表面にタングステン酸リチウムを均一に被覆することの不安定さが増す虞があり、リチウムイオン伝導性を安定して大きく向上させることが難しかった。
Addition of foreign elements is used as a method for improving such battery characteristics, and transition metals capable of taking high numbers such as W, Mo, Nb, Ta and Re are particularly useful.
For example, Patent Document 1 proposes a positive electrode material that can provide high capacity and high output by mixing lithium metal composite oxide powder and lithium tungstate as a positive electrode material of a non-aqueous electrolyte secondary battery. Yes. Further, in Patent Document 2, it is said that the same effect can be obtained by mixing lithium metal composite oxide powder and tungsten oxide.
However, in either case, the effect is obtained by uniformly dispersing the tungsten compound in the positive electrode material. However, when the amount of mixing increases, the instability of uniformly covering the surface of the active material with lithium tungstate is not stable. There is a risk that it will increase, and it has been difficult to stably improve lithium ion conductivity.

特開2013−171785号公報JP 2013-171785 A 特開2012−28313号公報JP 2012-28313 A

本発明は係る問題点に鑑み、正極に用いられた場合に高容量とともに高出力が得られる非水系電解質二次電池用正極材料を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a positive electrode material for a non-aqueous electrolyte secondary battery that can provide a high output with a high capacity when used in a positive electrode.

本発明者らは、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられるリチウム金属複合酸化物の粉体特性および電池の正極抵抗に対する影響について鋭意研究し、リチウム金属複合酸化物粉末との濡れ性を考慮した有機溶剤を介して粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムを混合することで、電池の正極抵抗を大幅に低減して出力特性を向上させることが可能であることを見出し、本発明を完成した。   In order to solve the above-mentioned problems, the present inventors have intensively studied the influence of the lithium metal composite oxide used as the positive electrode active material for the nonaqueous electrolyte secondary battery on the powder characteristics and the positive electrode resistance of the battery. By mixing tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm through an organic solvent in consideration of wettability with the oxide powder, The inventors have found that the output characteristics can be improved by significantly reducing the positive electrode resistance, and the present invention has been completed.

すなわち、本発明の第1の発明である非水系電解質二次電池用正極材料の製造方法は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合することを特徴とする非水系電解質二次電池用正極材料の製造方法である。 That is, the manufacturing method of the first positive electrode material for a nonaqueous electrolyte secondary battery which is the invention of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is an additive element, and at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al Lithium metal composite oxide powder composed of primary particles and secondary particles formed by aggregation of primary particles, and tungsten oxide having a particle size of 0.01 to 0.09 μm or a particle size of 0.01 to 0 A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, characterized by mixing a tungsten additive material of 0.09 μm lithium tungstate.

本発明の第2の発明である非水系電解質二次電池用正極材料の製造方法は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合することを特徴とする非水系電解質二次電池用正極材料の製造方法である。 Second method for manufacturing a positive electrode material for a nonaqueous electrolyte secondary battery which is the invention of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0. 35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is an additive element, and at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) A lithium metal composite oxide powder composed of primary particles and secondary particles composed of aggregated primary particles, at least one organic solvent selected from ethanol, methanol, propanol, butanol, and acetonitrile, A positive electrode for a non-aqueous electrolyte secondary battery, wherein a tungsten additive material of tungsten oxide having a diameter of 0.01 to 0.09 μm or lithium tungstate having a particle diameter of 0.01 to 0.09 μm is mixed. It is a fee method of manufacturing.

本発明の第3の発明は、第1及び第2の発明におけるリチウム金属複合酸化物粉末とタングステン酸リチウムのタングステン添加材料を混合する前に、そのリチウム金属複合酸化物粉末を水洗する工程を含むことを特徴とする非水系電解質二次電池用正極材料の製造方法である。   The third invention of the present invention includes a step of washing the lithium metal composite oxide powder with water before mixing the lithium metal composite oxide powder and the tungsten additive material of lithium tungstate in the first and second inventions. This is a method for producing a positive electrode material for a non-aqueous electrolyte secondary battery.

本発明の第4の発明は、第1から第3の発明における非水系電解質二次電池用正極材料に含まれるタングステン量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよび添加元素Mの原子数の合計に対して、0.1〜3.0原子%であることを特徴とする非水系電解質二次電池用正極材料の製造方法である。   According to a fourth aspect of the present invention, the amount of tungsten contained in the positive electrode material for a non-aqueous electrolyte secondary battery in the first to third aspects is the amount of nickel, cobalt, and additive element M contained in the lithium metal composite oxide powder. It is a manufacturing method of the positive electrode material for nonaqueous electrolyte secondary batteries characterized by being 0.1-3.0 atomic% with respect to the sum total of the number of atoms.

本発明の第5の発明は、第1から第4の発明におけるタングステン添加材料がWOの酸化タングステン、若しくはLiWO、LiWO、Liから選択される少なくとも1種のタングステン酸リチウムであることを特徴とする非水系電解質二次電池用正極材料の製造方法である。 According to a fifth aspect of the present invention, the tungsten additive material in the first to fourth aspects is at least one selected from tungsten oxide of WO 3 or Li 2 WO 4 , Li 4 WO 5 , Li 6 W 2 O 9. A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, characterized by being a lithium tungstate.

本発明の第6の発明である非水系電解質二次電池用正極材料は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料である。 Sixth positive electrode material for a nonaqueous electrolyte secondary battery which is the invention of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is an additive element, and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) Lithium metal composite oxide powder comprising primary particles and secondary particles formed by agglomeration of primary particles, and tungsten oxide having a particle size of 0.01 to 0.09 μm or tungstic acid having a particle size of 0.01 to 0.09 μm A positive electrode material for a non-aqueous electrolyte secondary battery comprising a mixture of lithium and a tungsten additive material.

本発明の第7の発明は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と、粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料である。 Seventh aspect of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is an additive element, and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), and the primary particles and the primary particles are aggregated. Lithium metal composite oxide powder composed of the formed secondary particles, at least one organic solvent selected from ethanol, methanol, propanol, butanol and acetonitrile, and tungsten oxide having a particle size of 0.01 to 0.09 μm, or A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a mixture of lithium tungstate having a particle size of 0.01 to 0.09 μm and a tungsten additive material.

本発明の第8の発明は、第6及び第7の発明における非水系電解質二次電池用正極材料に含まれるタングステン量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよび添加元素Mの原子数の合計に対してタングステンの原子数が0.1〜3.0原子%であることを特徴とする非水系電解質二次電池用正極材料である。   In an eighth aspect of the present invention, the amount of tungsten contained in the positive electrode material for a non-aqueous electrolyte secondary battery in the sixth and seventh aspects is nickel, cobalt, and additive element M contained in the lithium metal composite oxide powder. The positive electrode material for a non-aqueous electrolyte secondary battery is characterized in that the number of tungsten atoms is 0.1 to 3.0 atomic% with respect to the total number of atoms.

本発明の第9の発明は、第6〜第8の発明におけるタングステン添加材料がWOの酸化タングステン若しくはLiWO、LiWO、Liから選択される少なくとも1種のタングステン酸リチウムであることを特徴とし、さらに第10の発明は、第9の発明におけるタングステン添加材料がタングステン酸リチウムである場合には、LiWOを含むタングステン酸リチウムであることを特徴とする非水系電解質二次電池用正極材料である。 According to a ninth aspect of the present invention, the tungsten-added material in the sixth to eighth aspects is at least one selected from tungsten oxide of WO 3 or Li 2 WO 4 , Li 4 WO 5 , Li 6 W 2 O 9. The tenth aspect of the invention is a lithium tungstate containing Li 4 WO 5 when the tungsten-added material in the ninth aspect of the invention is lithium tungstate. The positive electrode material for a non-aqueous electrolyte secondary battery.

本発明の第11の発明は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子及び一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、N−メチル−2−ピロリジノンと、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料である。 Eleventh aspect of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is an additive element, and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), and is formed by agglomeration of primary particles and primary particles. Lithium metal composite oxide powder comprising secondary particles, N-methyl-2-pyrrolidinone, tungsten oxide having a particle size of 0.01 to 0.09 μm, or lithium tungstate having a particle size of 0.01 to 0.09 μm A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a mixture with a tungsten additive material.

本発明の第12の発明は、本発明の第6から第11の発明における非水系電解質二次電池用正極材料を含む正極を有することを特徴とする非水系電解質二次電池である。   A twelfth aspect of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode including the positive electrode material for a nonaqueous electrolyte secondary battery according to the sixth to eleventh aspects of the present invention.

本発明の第13の発明は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物に、導電材及び結着剤と前記結着剤を溶解する溶剤のN−メチル−2−ピロリジノンを混合することを特徴とする非水系電解質二次電池用正極合材の製造方法である。 Thirteenth aspect of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is an additive element, and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), and the primary particles and the primary particles are aggregated. A mixture of the lithium metal composite oxide powder composed of the secondary particles and tungsten-added material of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm, A method for producing a positive electrode mixture for a non-aqueous electrolyte secondary battery, comprising mixing a conductive material and a binder, and N-methyl-2-pyrrolidinone as a solvent for dissolving the binder.

本発明の第14の発明は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物に、導電材、結着剤、及び結着剤を溶解する溶剤のN−メチル−2−ピロリジノンとを混合することを特徴とする非水系電解質二次電池用正極合材の製造方法である。 Fourteenth aspect of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is an additive element, and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), and is formed by aggregation of primary particles and primary particles. Lithium metal composite oxide powder comprising secondary particles, at least one organic solvent selected from ethanol, methanol, propanol, butanol and acetonitrile, tungsten oxide having a particle size of 0.01 to 0.09 μm, or a particle size of 0 Conductive material, binder, and N-methyl-2-pyrrolidinone, a solvent that dissolves the binder, are mixed in a mixture of 0.01 to 0.09 μm lithium tungstate with a tungsten additive material. Which is a method for producing a positive electrode for a non-aqueous electrolyte secondary battery characterized.

本発明の第15の発明は、第13又は第14の発明に記載の製造方法による非水系電解質二次電池用正極合材を含む正極を有することを特徴とする非水系電解質二次電池である。   A fifteenth aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode mixture for a non-aqueous electrolyte secondary battery by the production method according to the thirteenth or fourteenth aspect. .

本発明によれば、電池の正極材に用いられた場合に高容量とともに高出力な非水系電解質二次電池を実現可能とする非水系電解質二次電池用正極活物質が得られると共に、その製造方法は、容易で工業的規模での生産に適したものであり、その工業的価値は極めて大きい。   According to the present invention, when used as a positive electrode material of a battery, a positive electrode active material for a non-aqueous electrolyte secondary battery that can realize a high-capacity and high-output non-aqueous electrolyte secondary battery is obtained, and its manufacture The method is easy and suitable for production on an industrial scale, and its industrial value is extremely high.

インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。It is a schematic explanatory drawing of the measurement example of impedance evaluation, and the equivalent circuit used for analysis. 電池評価に使用したコイン型電池1の概略断面図である。It is a schematic sectional drawing of the coin-type battery 1 used for battery evaluation.

以下、本発明について詳細に説明するが、まず本発明の正極活物質(正極材料)について説明した後、その製造方法および該正極活物質を用いた非水系電解質二次電池について説明する。   Hereinafter, the present invention will be described in detail. First, the positive electrode active material (positive electrode material) of the present invention will be described, and then a manufacturing method thereof and a non-aqueous electrolyte secondary battery using the positive electrode active material will be described.

(1)正極活物質(正極材料)
本発明の非水系電解質二次電池用正極材料は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子と、その一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料の混合物であることを特徴とするものである。
本発明においては、母材となる正極活物質として上記一般式で表されるリチウム金属複合酸化物粉末を用いることにより、高い充放電容量が得られ、さらにリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合することにより、充放電容量を維持しながら出力特性を向上させるものである。
(1) Positive electrode active material (positive electrode material)
The positive electrode material for a nonaqueous electrolyte secondary battery of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35 0.97 ≦ z ≦ 1.20, where M is an additive element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al). Tungsten addition of lithium metal composite oxide powder composed of secondary particles formed by aggregation of particles and tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm It is a mixture of materials.
In the present invention, a high charge / discharge capacity can be obtained by using the lithium metal composite oxide powder represented by the above general formula as the positive electrode active material as a base material. By mixing a tungsten-added material of 0.01 to 0.09 μm tungsten oxide or lithium tungstate having a particle size of 0.01 to 0.09 μm, the output characteristics are improved while maintaining the charge / discharge capacity.

通常、正極活物質の表面が異種化合物により完全に被覆されてしまうと、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウム複合酸化物の持つ高容量という長所が消されてしまう。また、リチウム複合酸化物中に異種元素を固溶させることは、容量の低下を招きやすい。
一方で、リチウムイオン伝導率が高い化合物は、リチウムイオンの移動を促す効果があるため、正極活物質の表面をこのような化合物で被覆することで、逆に正極活物質の表面におけるインターカレーションの促進が可能であるが、被覆するためには熱処理等の後処理が必要であり、正極活物質が有する優れた電池特性の劣化を招く虞もある。
そこで、リチウムイオン伝導率が高い化合物を微粒子にして用い、正極活物質表面にその微粒子を存在させることで、熱処理による被覆の必要がなくなり、性能向上が可能であることを見出した。
しかし、タングステン添加材料の微粒子を正極活物質表面に被覆する際に、粒子の偏析が起こり易く、均一な被覆が得難く、効果の全てを発揮することは困難であった。
そこで、正極活物質粒子を被覆する際、もしくは被覆する前に正極活物質との濡れ性が高く、電池特性に悪影響を与えない有機溶剤であるエタノールなどを混合することで、タングステン添加材料微粒子の偏析が抑制され、より均一な被覆が可能であることを見出した。
Normally, when the surface of the positive electrode active material is completely covered with a different compound, the movement (intercalation) of lithium ions is greatly restricted, and as a result, the advantage of the high capacity of the lithium composite oxide is eliminated. Will be. In addition, dissolving different elements in the lithium composite oxide tends to cause a decrease in capacity.
On the other hand, since a compound having high lithium ion conductivity has an effect of promoting the movement of lithium ions, the surface of the positive electrode active material can be intercalated on the surface of the positive electrode active material by coating the surface of the positive electrode active material with such a compound. However, post-treatment such as heat treatment is necessary for coating, which may lead to deterioration of excellent battery characteristics of the positive electrode active material.
Therefore, it was found that a compound having a high lithium ion conductivity was used as fine particles and the fine particles were present on the surface of the positive electrode active material, thereby eliminating the need for coating by heat treatment and improving the performance.
However, when the fine particles of the tungsten additive material are coated on the surface of the positive electrode active material, segregation of the particles easily occurs, it is difficult to obtain a uniform coating, and it is difficult to exert all the effects.
Therefore, when the cathode active material particles are coated or before coating, the tungsten additive material fine particles are mixed by mixing ethanol, which is an organic solvent that has high wettability with the cathode active material and does not adversely affect battery characteristics. It was found that segregation was suppressed and a more uniform coating was possible.

本発明で使用する酸化タングステンは、正極活物質表面の余剰リチウムと反応してタングステン酸リチウムへと変化して活物質表面に存在していると考えられる。   The tungsten oxide used in the present invention is considered to be present on the surface of the active material by reacting with excess lithium on the surface of the positive electrode active material to change into lithium tungstate.

またタングステン酸リチウムも、リチウムイオン伝導率が高い化合物であるが、タングステン酸リチウムの場合には、リチウム金属複合酸化物と単に混合して、リチウム金属複合酸化物の粒子間に分散させるのみで、リチウムの移動を促進して、大幅に正極抵抗を低減できる効果を示す。
このタングステン酸リチウムが、活物質の表面に微粒子として均一に存在することで、電解液若しくは正極活物質に作用して、電解液と正極活物質界面との間でリチウムの伝導パスが形成され、活物質の反応抵抗を低減して出力特性を向上させる。
Lithium tungstate is also a compound with high lithium ion conductivity, but in the case of lithium tungstate, it is simply mixed with the lithium metal composite oxide and dispersed between the particles of the lithium metal composite oxide. The effect of promoting the movement of lithium and greatly reducing the positive electrode resistance is shown.
Since this lithium tungstate is present uniformly as fine particles on the surface of the active material, it acts on the electrolytic solution or the positive electrode active material, and a lithium conduction path is formed between the electrolytic solution and the positive electrode active material interface, Reduce the reaction resistance of the active material and improve the output characteristics.

正極材料内でタングステン添加材料である粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムが不均一に分布した場合には、リチウム金属複合酸化物の粒子間でリチウムイオンの移動が不均一となるため、特定のリチウム金属複合酸化物粒子に負荷がかかり、サイクル特性の悪化や反応抵抗の上昇を招きやすい。
したがって、活物質表面にタングステン酸リチウムの微粒子が均一に存在し、正極材料内において均一に粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムが分布されていることが好ましい。
When tungsten oxide with a particle size of 0.01 to 0.09 μm or lithium tungstate with a particle size of 0.01 to 0.09 μm, which is a tungsten additive material, is unevenly distributed in the positive electrode material, a lithium metal composite oxide Since the movement of lithium ions between these particles becomes non-uniform, a load is applied to specific lithium metal composite oxide particles, which tends to deteriorate cycle characteristics and increase reaction resistance.
Therefore, lithium tungstate fine particles are uniformly present on the active material surface, and tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm is uniformly present in the positive electrode material. It is preferable that they are distributed.

したがって、上記酸化タングステン若しくはタングステン酸リチウムの微粒子を正極活物質表面と正極材料内で均一に分散させる必要があり、その粒径を0.01〜0.09μmとすることが好ましく、0.01〜0.05μmとすることがより好ましい。
その粒径が0.01μm未満では、粉砕コストがかかり過ぎることがあるため好ましくなく、粒子径が0.09μmを超えると、正極材料表面にタングステン酸リチウムを均一に付着させることができず、反応抵抗の低減効果が十分に得られない場合があり好ましくない。
この粒径は、レーザー回折散乱法、またはマイクロトラックにおける体積積算平均値を用いて測定した平均粒径を使用する。
なお、粒子径が上記範囲を超える場合には、混合前に粉砕することが好ましい。
Therefore, it is necessary to uniformly disperse the tungsten oxide or lithium tungstate fine particles on the surface of the positive electrode active material and the positive electrode material, and the particle size is preferably 0.01 to 0.09 μm, More preferably, the thickness is 0.05 μm.
If the particle size is less than 0.01 μm, the pulverization cost may be excessive, which is not preferable. If the particle size exceeds 0.09 μm, lithium tungstate cannot be uniformly attached to the surface of the positive electrode material, and the reaction The resistance reduction effect may not be obtained sufficiently, which is not preferable.
As this particle size, an average particle size measured using a laser diffraction scattering method or a volume integrated average value in a microtrack is used.
In addition, when a particle diameter exceeds the said range, it is preferable to grind | pulverize before mixing.

さらに、この正極材料に含まれるタングステン量は、混合するリチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよび添加元素Mの原子数の合計に対して、0.1〜3.0原子%とすることが好ましい。
これにより、高い充放電容量と出力特性を両立することができるが、タングステン量が0.1原子%未満では、活物質表面に均一に微粒子を設けることができずに、出力特性の改善効果が十分に得られない場合がある。一方タングステン量が3.0原子%を超えると、タングステン酸リチウムが多くなり過ぎてリチウム金属複合酸化物と電解液のリチウム伝導が阻害され、または、活物質の量が相対的に減少するため充放電容量が低下することがある。
Furthermore, the amount of tungsten contained in the positive electrode material is 0.1 to 3.0 atomic% with respect to the total number of atoms of nickel, cobalt, and additive element M contained in the lithium metal composite oxide powder to be mixed. It is preferable.
This makes it possible to achieve both high charge / discharge capacity and output characteristics. However, if the amount of tungsten is less than 0.1 atomic%, fine particles cannot be uniformly provided on the surface of the active material, and the effect of improving the output characteristics can be achieved. You may not get enough. On the other hand, when the amount of tungsten exceeds 3.0 atomic%, the lithium tungstate increases too much and lithium conduction between the lithium metal composite oxide and the electrolytic solution is hindered, or the amount of the active material is relatively decreased. The discharge capacity may decrease.

このタングステン酸リチウムは、LiWO、LiWO若しくはLiから選択される少なくとも1種であることが好ましく、LiWOを含むものであることがより好ましい。
タングステン酸リチウム中にLiWOが50%以上含まれることが特に好ましい。
これらのタングステン酸リチウムは、高いリチウムイオン伝導率を有するものであり、リチウム金属複合酸化物粉末と混合することで上記効果が十分に得られる。
The lithium tungstate is preferably at least one selected from Li 2 WO 4 , Li 4 WO 5 or Li 6 W 2 O 9, and more preferably includes Li 4 WO 5 .
It is particularly preferable that 50% or more of Li 4 WO 5 is contained in lithium tungstate.
These lithium tungstates have high lithium ion conductivity, and the above effect can be sufficiently obtained by mixing with lithium metal composite oxide powder.

リチウム金属複合酸化物のリチウム量は、リチウム金属複合酸化物中のニッケル、コバルトおよび添加元素Mの原子数の和(Me)とリチウム(Li)の原子数との比(Li/Me)で0.97〜1.20である。
Li/Meが0.97未満であると、上記正極材料を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Meが1.20を超えると、正極材料の放電容量が低下するとともに、正極の反応抵抗も増加してしまう。そこで、より大きな放電容量を得るためには、Li/Meを1.10以下とすることが好ましい。
The amount of lithium in the lithium metal composite oxide is 0 in terms of the ratio (Li / Me) of the sum of atoms (Me) of nickel, cobalt, and additive element M in the lithium metal composite oxide to the number of atoms of lithium (Li). 97 to 1.20.
When Li / Me is less than 0.97, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the positive electrode material is increased, so that the output of the battery is lowered. On the other hand, when Li / Me exceeds 1.20, the discharge capacity of the positive electrode material decreases and the reaction resistance of the positive electrode also increases. Therefore, in order to obtain a larger discharge capacity, Li / Me is preferably set to 1.10 or less.

Coおよび添加元素Mは、サイクル特性や出力特性などの電池特性を向上させるために添加するものであるが、これらの添加量を示すxおよびyが0.35を超えると、Redox反応に貢献するNiが減少するため、電池容量が低下する。
一方、Coの添加量を示すxが0.01未満になると、サイクル特性や熱安定性が十分に得られない。したがって、電池に用いたときに十分な電池容量を得るためには、添加元素Mの添加量を示すyを0.15以下とすることが好ましい。
Co and additive element M are added in order to improve battery characteristics such as cycle characteristics and output characteristics. If x and y indicating these addition amounts exceed 0.35, they contribute to the Redox reaction. Since Ni decreases, the battery capacity decreases.
On the other hand, when x indicating the amount of Co added is less than 0.01, cycle characteristics and thermal stability cannot be obtained sufficiently. Therefore, in order to obtain a sufficient battery capacity when used in a battery, it is preferable that y indicating the amount of additive element M added is 0.15 or less.

また、電解液との接触面積を多くすることが、出力特性の向上に有利であることから、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粒子を用いる。   In addition, since it is advantageous for improving the output characteristics to increase the contact area with the electrolytic solution, lithium metal composite oxide particles composed of primary particles and secondary particles formed by aggregation of the primary particles are used. .

本発明の正極材料は、リチウム金属複合酸化物粉末と、酸化タングステン若しくはタングステン酸リチウムの微粉末を有機溶剤とともに混合することにより酸化タングステン若しくはタングステン酸リチウムの微粒子を正極活物質表面と正極材料内で均一に分散させて出力特性を改善したものであり、正極活物質としてのリチウム金属複合酸化物の粒径、タップ密度などの粉体特性は、通常に用いられる正極活物質の範囲内であれば良く、また、リチウム金属複合酸化物は、公知の方法で得られたものでよく、上記組成および粉体特性を満たすものを用いることができる。
リチウム金属複合酸化物粉末と、酸化タングステン若しくはタングステン酸リチウムを混合することにより得られる効果は、たとえば、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物など、本発明で掲げた正極活物質だけでなく一般的に使用されるリチウム二次電池用正極活物質にも適用できる。
The positive electrode material of the present invention mixes lithium metal composite oxide powder and fine powder of tungsten oxide or lithium tungstate together with an organic solvent, whereby tungsten oxide or lithium tungstate fine particles are mixed in the surface of the positive electrode active material and the positive electrode material. Uniformly dispersed to improve the output characteristics, and the powder properties such as the particle size and tap density of the lithium metal composite oxide as the positive electrode active material are within the range of the positive electrode active material normally used. In addition, the lithium metal composite oxide may be obtained by a known method, and one satisfying the above composition and powder characteristics can be used.
The effects obtained by mixing the lithium metal composite oxide powder with tungsten oxide or lithium tungstate include, for example, lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel cobalt manganese composite oxide, The present invention can be applied not only to the positive electrode active material described in the present invention but also to a commonly used positive electrode active material for a lithium secondary battery.

(2)正極活物質(正極材料)の製造方法
本発明の非水系電解質二次電池用正極材料の製造方法においては、母材としての正極活物質として一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合する。混合後、溶剤を含む正極材料を乾燥させてもいいし、そのまま正極合材の製造に用いることもできる。乾燥は、公知の方法および条件でよく、リチウム金属複合酸化物の電池特性が劣化しない範囲で行えばよい。
(2) In the manufacturing method of the positive electrode active material a positive electrode material for a nonaqueous electrolyte secondary battery manufacturing method present invention (positive electrode material), the general formula as a cathode active material for a base material Li z Ni 1-x-y Co x M y O 2 (where 0.01 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is Mn, V, Mg, Mo, Nb, Ti And lithium metal composite oxide powder composed of primary particles and secondary particles formed by aggregation of the primary particles, ethanol, methanol, propanol, butanol, acetonitrile And at least one organic solvent selected from the group consisting of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm. To. After mixing, the positive electrode material containing a solvent may be dried or used as it is for the production of a positive electrode mixture. The drying may be performed by a known method and conditions as long as the battery characteristics of the lithium metal composite oxide are not deteriorated.

リチウム金属複合酸化物粉末と、酸化タングステン若しくはタングステン酸リチウムは、正極活物質表面への微粒子形成と正極材料内での微粒子の分散を均一にするためには十分な混合が必要であるが、本発明では、さらにリチウム金属複合酸化物粉末とタングステン添加材料との混合時に、リチウム金属複合酸化物粉末との濡れ性の良好なエタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤を、リチウム金属複合酸化物粉末100g当たり、10〜200ml、より好ましくは30〜100mlの範囲で添加して混合する。10mlより少ないと均一な混合が難しくなり、200mlを超えると乾燥に時間を要することになり好ましくない。
その混合には、一般的な混合機を使用することができ、例えば、シェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いてリチウム金属複合酸化物粒子の形骸が破壊されない程度で、酸化タングステン若しくはタングステン酸リチウムとを十分に混合してやればよい。
これにより、酸化タングステン若しくはタングステン酸リチウムの微粒子を、リチウム金属複合酸化物粉末表面に均一に分布させることができる。
Lithium metal composite oxide powder and tungsten oxide or lithium tungstate need to be sufficiently mixed to form fine particles on the surface of the positive electrode active material and to make the fine particles dispersed uniformly in the positive electrode material. In the invention, at the time of mixing the lithium metal composite oxide powder and the tungsten-added material, at least one organic compound selected from ethanol, methanol, propanol, butanol, and acetonitrile having good wettability with the lithium metal composite oxide powder. The solvent is added and mixed in the range of 10 to 200 ml, more preferably 30 to 100 ml, per 100 g of the lithium metal composite oxide powder. If it is less than 10 ml, uniform mixing becomes difficult, and if it exceeds 200 ml, it takes time to dry, which is not preferred.
For the mixing, a general mixer can be used. For example, the shape of the lithium metal composite oxide particles is not destroyed using a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, etc. Tungsten oxide or lithium tungstate may be mixed sufficiently.
Thereby, the fine particles of tungsten oxide or lithium tungstate can be uniformly distributed on the surface of the lithium metal composite oxide powder.

本発明の製造方法においては、正極材料の電池容量および安全性を向上させるために、上記混合工程の前に、さらにリチウム金属複合酸化物粉末を水洗することができる。
この水洗は、公知の方法および条件でよく、リチウム金属複合酸化物粉末から過度にリチウムが溶出して電池特性が劣化しない範囲で行えばよい。
水洗した場合には、乾燥してから酸化タングステン若しくはタングステン酸リチウムと混合しても、固液分離のみで乾燥せずに酸化タングステン若しくはタングステン酸リチウムと混合した後、乾燥しても、いずれの方法でもよい。
また乾燥は、公知の方法および条件でよく、リチウム金属複合酸化物の電池特性が劣化しない範囲で行えばよい。
In the production method of the present invention, in order to improve the battery capacity and safety of the positive electrode material, the lithium metal composite oxide powder can be further washed with water before the mixing step.
This washing with water may be performed by a known method and conditions as long as lithium is not excessively eluted from the lithium metal composite oxide powder and the battery characteristics are not deteriorated.
In case of washing with water, it can be either dried and mixed with tungsten oxide or lithium tungstate, or it can be mixed with tungsten oxide or lithium tungstate without drying only by solid-liquid separation and then dried. But you can.
The drying may be performed by a known method and conditions as long as the battery characteristics of the lithium metal composite oxide are not deteriorated.

(3)非水系電解質二次電池
本発明の非水系電解質二次電池は、正極、負極および非水系電解液などからなり、一般の非水系電解質二次電池と同様の構成要素により構成される。
なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
(3) Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and the like, and includes the same components as those of a general non-aqueous electrolyte secondary battery.
The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention can be variously modified based on the knowledge of those skilled in the art based on the embodiment described in the present specification. It can be implemented in an improved form. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.

(a)正極
本発明による非水系電解質二次電池用正極材料を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
まず、粉末状の正極材料、導電材、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。尚、本発明の正極材料の製造方法であるリチウム金属複合酸化物粉末と、その粉末と濡れ性の良い有機溶剤と、酸化タングステン若しくはタングステン酸リチウムの微粉末を混合するのと同時に、導電材、結着剤、溶剤を添加し混練して正極合材のペースト(以下、正極合材ペーストと称す)を作製して用いることもできる。
ここで、正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。
そのため、溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60〜95質量部とし、導電材の含有量を1〜20質量部とし、結着剤の含有量を1〜20質量部とすることが望ましい。
(A) Positive electrode Using the positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
First, a powdered positive electrode material, a conductive material, and a binder are mixed, and if necessary, a target solvent such as activated carbon and viscosity adjustment is added and kneaded to prepare a positive electrode mixture paste. The lithium metal composite oxide powder, which is a method for producing the positive electrode material of the present invention, an organic solvent having good wettability with the powder, and a fine powder of tungsten oxide or lithium tungstate are mixed simultaneously with the conductive material, A binder and a solvent may be added and kneaded to produce a positive electrode mixture paste (hereinafter referred to as a positive electrode mixture paste) for use.
Here, each mixing ratio in the positive electrode mixture paste is also an important factor that determines the performance of the non-aqueous electrolyte secondary battery.
Therefore, when the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass, like the positive electrode of a general nonaqueous electrolyte secondary battery, It is desirable that the content of the conductive material is 1 to 20 parts by mass and the content of the binder is 1 to 20 parts by mass.

得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。
このようにして、シート状の正極を作製することができる。
作製したシート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法によってもよい。
The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density.
In this way, a sheet-like positive electrode can be produced.
The produced sheet-like positive electrode can be cut into an appropriate size or the like according to the intended battery and used for battery production. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.

正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。
使用する溶剤としては、具体的には、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
The binder plays a role of anchoring the active material particles. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulosic resin, polyacrylic. An acid or the like can be used.
If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent to be used. Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(b)負極
負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(B) Negative electrode A negative electrode mixture in which a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder and an appropriate solvent is added to the negative electrode. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.

負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。
この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used.
In this case, as the negative electrode binder, a fluorine-containing resin such as PVDF can be used as in the case of the positive electrode, and as a solvent for dispersing these active materials and the binder, N-methyl-2-pyrrolidone or the like can be used. Organic solvents can be used.

(c)セパレータ
正極と負極との間には、セパレータを挟み込んで配置する。
セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(C) Separator A separator is interposed between the positive electrode and the negative electrode.
The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.

(d)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶剤に溶解したものである。
有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(D) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.

支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤等を含んでいてもよい。
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

(e)非水系電解質二次電池の形状、構成
以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
(E) Shape and configuration of non-aqueous electrolyte secondary battery The shape of the non-aqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is cylindrical, Various types such as a laminated type can be used.
In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. The positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like and sealed in a battery case to complete a non-aqueous electrolyte secondary battery. .

(f)特性
本発明の正極活物質を用いた非水系電解質二次電池は、高容量で高出力となる。
特により好ましい形態で得られた正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、さらに高容量で高出力である。また、熱安定性が高く、安全性においても優れているものである。
(F) Characteristics The nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high capacity and a high output.
A non-aqueous electrolyte secondary battery using a positive electrode active material obtained in a more preferable form, for example, has a high initial discharge capacity of 165 mAh / g or more and a low positive electrode resistance when used for the positive electrode of a 2032 type coin battery. Higher capacity and higher output. Further, it has high thermal stability and is excellent in safety.

なお、本発明における正極抵抗の測定方法を以下に例示する。
電気化学的評価手法として一般的な交流インピーダンス法にて電池反応の周波数依存性について測定を行うと、溶液抵抗、負極抵抗と負極容量、および正極抵抗と正極容量に基づくナイキスト線図が図1のように得られる。
In addition, the measuring method of the positive electrode resistance in this invention is illustrated below.
When the frequency dependence of the battery reaction is measured by a general AC impedance method as an electrochemical evaluation method, the Nyquist diagram based on the solution resistance, the negative electrode resistance and the negative electrode capacity, and the positive electrode resistance and the positive electrode capacity is shown in FIG. Is obtained as follows.

この電極における電池反応は電荷移動に伴う抵抗成分と電気二重層による容量成分とからなり、これらを電気回路で表すと抵抗と容量の並列回路となり、電池全体としては溶液抵抗と負極、正極の並列回路を直列に接続した等価回路で表される。
この等価回路を用いて測定したナイキスト線図に対してフィッティング計算を行い、各抵抗成分、容量成分を見積もることができる。
The battery reaction at this electrode consists of a resistance component due to charge transfer and a capacitance component due to the electric double layer. When these are expressed as an electric circuit, it becomes a parallel circuit of resistance and capacity. It is represented by an equivalent circuit in which circuits are connected in series.
Fitting calculation is performed on the Nyquist diagram measured using this equivalent circuit, and each resistance component and capacitance component can be estimated.

正極抵抗は、得られるナイキスト線図の低周波数側の半円の直径と等しい。
以上のことから、作製される正極について、交流インピーダンス測定を行い、得られたナイキスト線図に対し等価回路でフィッティング計算することで、正極抵抗を見積もることができる。
The positive electrode resistance is equal to the diameter of the semicircle on the low frequency side of the obtained Nyquist diagram.
From the above, the positive electrode resistance can be estimated by performing AC impedance measurement on the manufactured positive electrode and performing fitting calculation on the obtained Nyquist diagram with an equivalent circuit.

本発明により得られた正極材料を用いた正極を有する非水系電解質二次電池について、その性能(初期放電容量、正極抵抗)を確認した。
以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
The performance (initial discharge capacity, positive electrode resistance) of a nonaqueous electrolyte secondary battery having a positive electrode using the positive electrode material obtained by the present invention was confirmed.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(電池の製造および評価)
正極材料の評価には、図2に示す2032型コイン電池(以下、コイン型電池1という)を使用した。
図2に示すように、コイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
(Battery manufacture and evaluation)
For the evaluation of the positive electrode material, a 2032 type coin battery (hereinafter referred to as coin type battery 1) shown in FIG. 2 was used.
As shown in FIG. 2, the coin-type battery 1 is composed of a case 2 and an electrode 3 accommodated in the case 2.
The case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a. When the negative electrode can 2b is disposed in the opening of the positive electrode can 2a, A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a.

電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
なお、ケース2はガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が非接触の状態を維持するように相対的な移動が固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封してケース2内と外部との間を気密液密に遮断する機能も有している。
The electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order. The positive electrode 3a contacts the inner surface of the positive electrode can 2a, and the negative electrode 3b contacts the inner surface of the negative electrode can 2b. As shown in FIG.
The case 2 includes a gasket 2c, and relative movement is fixed by the gasket 2c so as to maintain a non-contact state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b to block the inside and outside of the case 2 in an airtight and liquid tight manner.

用いたコイン型電池1は、以下のようにして製作した。
まず、非水系電解質二次電池用正極材料52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚み100μmにプレス成形して、正極3aを作製した。
次に作製した正極3aを真空乾燥機中120℃で12時間乾燥した。
乾燥した正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、図2のコイン型電池1を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。
The coin-type battery 1 used was manufactured as follows.
First, 52.5 mg of a positive electrode material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed, press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa, and the positive electrode 3a was produced.
Next, the produced positive electrode 3a was dried in a vacuum dryer at 120 ° C. for 12 hours.
Using the dried positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolyte, the coin-type battery 1 of FIG. 2 was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C.

なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。
また、セパレータ3cには、膜厚25μmのポリエチレン多孔膜を用いた。
電解液は、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
As the negative electrode 3b, a negative electrode sheet in which graphite powder having an average particle diameter of about 20 μm punched into a disk shape with a diameter of 14 mm and polyvinylidene fluoride were applied to a copper foil was used.
Further, a polyethylene porous film having a film thickness of 25 μm was used for the separator 3c.
As the electrolytic solution, an equivalent mixed solution (manufactured by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte was used.

製造したコイン型電池1の性能を示す初期放電容量、正極抵抗は、以下の方法により評価した。
初期放電容量は、コイン型電池1を製作してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。
The initial discharge capacity and positive electrode resistance showing the performance of the manufactured coin-type battery 1 were evaluated by the following methods.
The initial discharge capacity is left for about 24 hours after the coin-type battery 1 is manufactured. After the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4 The capacity when the battery was charged to 3 V, discharged after a pause of 1 hour to a cutoff voltage of 3.0 V was defined as the initial discharge capacity.

正極抵抗は、コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン社製、1255B)を使用して交流インピーダンス法により測定して図1に示すナイキストプロットを得た。
得られたナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算して、正極抵抗の値を算出した。
なお、本実施例では、複合水酸化物製造、正極活物質および二次電池の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。
The positive resistance is measured by the AC impedance method using a frequency response analyzer and potentio galvanostat (1255B manufactured by Solartron) after charging the coin-type battery 1 at a charging potential of 4.1 V. The Nyquist plot shown in FIG. Got.
The obtained Nyquist plot is represented as the sum of the characteristic curves indicating the solution resistance, the negative electrode resistance and its capacity, and the positive electrode resistance and its capacity, so that fitting calculation is performed using an equivalent circuit based on this Nyquist plot, The value of the positive electrode resistance was calculated.
Note that, in this example, Wako Pure Chemical Industries, Ltd. reagent grade samples were used for the production of composite hydroxide, the production of the positive electrode active material, and the secondary battery.

ニッケルを主成分とする酸化物と水酸化リチウムを混合して焼成する公知の技術で得られたLi1.02Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粉末を1.5g/mlの条件で水洗して正極材料の母材とした。
なお、組成はICP法により分析し、平均粒径はレーザー回折散乱法における体積積算平均値を用いて評価した。
A lithium metal composite represented by Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 obtained by a known technique in which an oxide mainly composed of nickel and lithium hydroxide are mixed and fired The oxide powder was washed with water under the condition of 1.5 g / ml to obtain a base material for the positive electrode material.
The composition was analyzed by the ICP method, and the average particle size was evaluated using the volume integrated average value in the laser diffraction scattering method.

作製したリチウム金属複合酸化物粉末20gに、タングステン添加材料として粒径0.01μmのタングステン酸リチウム(LiWO)粉末0.9gを添加し、さらにシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合して、タングステン酸リチウムとリチウム金属複合酸化物粉末の混合物を得て正極材料とした。
この正極材料中のタングステン含有量をICP法により分析したところ、ニッケル、コバルトおよび添加元素Mの原子数の合計に対して1.5原子%の組成であることを確認した。
これより、タングステン酸リチウム粉末とリチウム金属複合酸化物粉末の混合物の配合と正極材料の組成が同等であることも確認した。
To 20 g of the produced lithium metal composite oxide powder, 0.9 g of lithium tungstate (Li 2 WO 4 ) powder having a particle size of 0.01 μm was added as a tungsten additive material, and a shaker mixer apparatus (Willy e Bacchofen (WAB) ) TURBULA Type T2C manufactured by the company) was sufficiently mixed to obtain a mixture of lithium tungstate and lithium metal composite oxide powder, which was used as a positive electrode material.
When the tungsten content in the positive electrode material was analyzed by the ICP method, it was confirmed that the composition was 1.5 atomic% with respect to the total number of atoms of nickel, cobalt, and additive element M.
From this, it was also confirmed that the mixture of the mixture of the lithium tungstate powder and the lithium metal composite oxide powder and the composition of the positive electrode material were equivalent.

(電池評価)
得られた正極材料を用いて形成された正極を有するコイン型電池1について、電池特性を評価した。
実施例1における初期放電容量は196.4mAh/gであった。
(Battery evaluation)
Battery characteristics of the coin-type battery 1 having a positive electrode formed using the obtained positive electrode material were evaluated.
The initial discharge capacity in Example 1 was 196.4 mAh / g.

以下、実施例2〜4および比較例1、2については、実施例1から変更した物質、条件のみを示す。また、実施例1〜4および比較例1、2の初期放電容量および正極抵抗の評価値を表1に示す。   Hereinafter, for Examples 2 to 4 and Comparative Examples 1 and 2, only the substances and conditions changed from Example 1 are shown. Table 1 shows evaluation values of initial discharge capacities and positive electrode resistances of Examples 1 to 4 and Comparative Examples 1 and 2.

母材となるリチウム金属複合酸化物粉末に粒径0.01μmの酸化タングステンWOを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。 A coin type using a positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 1 except that tungsten oxide WO 3 having a particle size of 0.01 μm was added to a lithium metal composite oxide powder as a base material. A battery was produced and the battery was evaluated.

母材となるリチウム金属複合酸化物粉末に粒径0.01μmのタングステン酸リチウムLiWOを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。 A positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 1 was used except that lithium metal tungstate Li 4 WO 5 having a particle size of 0.01 μm was added to the lithium metal composite oxide powder as a base material. A coin-type battery was prepared and evaluated.

母材となるリチウム金属複合酸化物粉末に粒径0.09μmのタングステン酸リチウムLiWOを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。 A positive electrode material for a nonaqueous electrolyte secondary battery produced in the same manner as in Example 1 was used except that lithium metal tungstate Li 2 WO 4 having a particle size of 0.09 μm was added to the lithium metal composite oxide powder as a base material. A coin-type battery was prepared and evaluated.

(比較例1)
実施例1で母材として用いたリチウム金属複合酸化物粉末を正極活物質(正極材料)に用いてコイン型電池を作成し、その電池評価を行った。
(Comparative Example 1)
A coin-type battery was prepared using the lithium metal composite oxide powder used as a base material in Example 1 as a positive electrode active material (positive electrode material), and the battery was evaluated.

(比較例2)
実施例1で母材としたリチウム金属複合酸化物粉末に粒径10μmのタングステン酸リチウムLiWOを添加した以外は、実施例1と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池を作製し、その電池評価を行った。
以上の実施例1〜4、及び比較例1、2の測定結果を表1に纏めて示す。
(Comparative Example 2)
A positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 1, except that lithium tungstate Li 2 WO 4 having a particle size of 10 μm was added to the lithium metal composite oxide powder used as the base material in Example 1. A coin-type battery was produced using the battery, and the battery was evaluated.
The measurement results of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1.

Figure 2016225277
Figure 2016225277

ニッケルを主成分とする酸化物と水酸化リチウムを混合して焼成する公知の技術で得られたLi1.02Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粉末を1.5g/mlの条件で水洗して正極材料の母材とした。
なお、組成はICP法により分析し、平均粒径はレーザー回折散乱法における体積積算平均値を用いて評価した。
A lithium metal composite represented by Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 obtained by a known technique in which an oxide mainly composed of nickel and lithium hydroxide are mixed and fired The oxide powder was washed with water under the condition of 1.5 g / ml to obtain a base material for the positive electrode material.
The composition was analyzed by the ICP method, and the average particle size was evaluated using the volume integrated average value in the laser diffraction scattering method.

作製したリチウム金属複合酸化物粉末20gに、有機溶剤としてエタノール10ml、タングステン添加材料として粒径0.01μmのタングステン酸リチウム(LiWO)粉末0.18gを添加し、さらに、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合して、90℃、10分の乾燥後、タングステン酸リチウムとリチウム金属複合酸化物粉末の混合物を得て正極材料とした。
この正極材料中のタングステン含有量をICP法により分析したところ、ニッケル、コバルトおよび添加元素Mの原子数の合計に対して0.3原子%の組成であることを確認した。
これより、タングステン酸リチウム粉末とリチウム金属複合酸化物粉末の混合物の配合と正極材料の組成が同等であることも確認した。
To 20 g of the prepared lithium metal composite oxide powder, 10 ml of ethanol as an organic solvent and 0.18 g of lithium tungstate (Li 4 WO 5 ) powder having a particle size of 0.01 μm as a tungsten additive material are added, and a shaker mixer device ( Mix well using TURBULA Type T2C manufactured by Willy et Bacchofen (WAB), and after drying at 90 ° C. for 10 minutes, obtain a mixture of lithium tungstate and lithium metal composite oxide powder to be a positive electrode material .
When the tungsten content in this positive electrode material was analyzed by the ICP method, it was confirmed that the composition was 0.3 atomic% with respect to the total number of atoms of nickel, cobalt, and additive element M.
From this, it was also confirmed that the mixture of the mixture of the lithium tungstate powder and the lithium metal composite oxide powder and the composition of the positive electrode material were equivalent.

(電池評価)
得られた正極材料を用いて形成された正極を有するコイン型電池1について、電池特性を評価した。
実施例5における初期放電容量は196.0mAh/gであった。
以下、実施例6〜9および比較例3についても、実施例5から変更した物質、条件のみを示す。
(Battery evaluation)
Battery characteristics of the coin-type battery 1 having a positive electrode formed using the obtained positive electrode material were evaluated.
The initial discharge capacity in Example 5 was 196.0 mAh / g.
Hereinafter, also about Examples 6-9 and Comparative Example 3, only the substance and conditions changed from Example 5 are shown.

添加する有機溶剤にメタノールを用いた以外は、実施例5と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池1を作製し、その電池評価を行った。   A coin-type battery 1 was produced using a positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 5 except that methanol was used as the organic solvent to be added, and the battery was evaluated.

添加する有機溶剤にアセトニトリルを用いた以外は、実施例5と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池1を作製し、その電池評価を行った。   A coin-type battery 1 was produced using a positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 5 except that acetonitrile was used as the organic solvent to be added, and the battery was evaluated.

有機溶剤にN-メチル−2−ピロリジノン(NMP)を追加した以外は、実施例5と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池1を作製し、その電池評価を行った。   A coin-type battery 1 was produced using a positive electrode material for a non-aqueous electrolyte secondary battery produced in the same manner as in Example 5 except that N-methyl-2-pyrrolidinone (NMP) was added to the organic solvent. Evaluation was performed.

実施例5の方法で得られた正極材料52.5mgに、10mlのN-メチル−2−ピロリジノン(NMP)、アセチレンブラック15mg、及びポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合した正極合材を作製した後、実施例5と同様の方法により、コイン型電池1を作製して電池評価を行った。その結果、実施例5とほぼ同等の結果が得られた。   Positive electrode mixture obtained by mixing 52.5 mg of the positive electrode material obtained by the method of Example 5 with 10 ml of N-methyl-2-pyrrolidinone (NMP), 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE). After that, a coin-type battery 1 was produced by the same method as in Example 5 and battery evaluation was performed. As a result, almost the same result as in Example 5 was obtained.

(比較例3)
実施例5で母材としたリチウム金属複合酸化物粉末に、添加する有機溶剤としてN-メチル−2−ピロリジノン(NMP)を用い、粒径0.01μmのタングステン酸リチウムLiWOを添加した以外は、実施例5と同様にして作製した非水系電解質二次電池用正極材料を用いてコイン型電池1を作製し、その電池評価を行った。
以上の実施例5〜9、比較例3の結果を纏めて表2に示す。
(Comparative Example 3)
To the lithium metal composite oxide powder used as the base material in Example 5, N-methyl-2-pyrrolidinone (NMP) was used as an organic solvent to be added, and lithium tungstate Li 4 WO 5 having a particle diameter of 0.01 μm was added. The coin type battery 1 was produced using the positive electrode material for nonaqueous electrolyte secondary batteries produced in the same manner as in Example 5, and the battery was evaluated.
The results of Examples 5 to 9 and Comparative Example 3 are summarized in Table 2.

Figure 2016225277
Figure 2016225277

(評価)
実施例1〜9の正極材料は、本発明に従って製造されたため、この正極材料を用いた非水系電解質二次電池は、初期放電容量が高く、正極抵抗も低いものとなっており、優れた特性を有した電池が得られることが確認された。
特に実施例5〜9の正極材料は、正極活物質との濡れ性に優れた有機溶剤を含むために、初期放電容量と正極抵抗がともに良好である。
(Evaluation)
Since the positive electrode materials of Examples 1 to 9 were manufactured according to the present invention, the non-aqueous electrolyte secondary battery using this positive electrode material had high initial discharge capacity and low positive electrode resistance, and excellent characteristics. It was confirmed that a battery having
In particular, since the positive electrode materials of Examples 5 to 9 contain an organic solvent excellent in wettability with the positive electrode active material, both the initial discharge capacity and the positive electrode resistance are good.

比較例1は、タングステン酸リチウムが混合されていないため、正極抵抗が大幅に高く、高出力化の要求に対応することは困難である。
比較例2は、タングステン添加材料のタングステン酸リチウムLiWOの粒径が10μmと本発明の範囲から外れていたため、比較例1と同様に正極抵抗が高くなってしまい高出力化の要求に対応することが困難である。
また、比較例3は、有機溶剤として正極活物質との濡れ性に優れないNMPのみを用いたことで、濡れ性に優れる有機溶剤を用いる場合に比べて正極抵抗を下げることができなかった。
In Comparative Example 1, since lithium tungstate is not mixed, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
In Comparative Example 2, since the particle size of lithium tungstate Li 2 WO 4 as a tungsten additive material was 10 μm, which was out of the scope of the present invention, the positive electrode resistance was increased similarly to Comparative Example 1, and there was a demand for higher output. It is difficult to respond.
Further, in Comparative Example 3, only NMP that was not excellent in wettability with the positive electrode active material was used as the organic solvent, so that the positive electrode resistance could not be lowered as compared with the case where an organic solvent excellent in wettability was used.

また、実施例8では、粉末との濡れ性が良い有機溶剤を追添加して混合したことで、初期放電容量が高く、正極抵抗も低いものとなった。
また、実施例9では、粉末との濡れ性が良い有機溶剤を混合し、正極材料を形成した後に、導電材、結着剤と共に、結着剤を溶解する溶剤のN-メチル−2−ピロリジノン(NMP)を混合した場合でも良好な特性が得られていることが判る。
In Example 8, an organic solvent having good wettability with the powder was added and mixed, so that the initial discharge capacity was high and the positive electrode resistance was low.
In Example 9, after mixing an organic solvent having good wettability with the powder and forming a positive electrode material, N-methyl-2-pyrrolidinone, a solvent that dissolves the binder together with the conductive material and the binder. It can be seen that good characteristics are obtained even when (NMP) is mixed.

以上の結果より、本発明の正極材料を用いた非水系電解質二次電池は、初期放電容量が高く、正極抵抗も低いものとなり、優れた特性を有した電池となることが確認できる。   From the above results, it can be confirmed that the non-aqueous electrolyte secondary battery using the positive electrode material of the present invention has a high initial discharge capacity and a low positive electrode resistance, and has excellent characteristics.

本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。
また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。
なお、本発明は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
The non-aqueous electrolyte secondary battery of the present invention is suitable for a power source of a small portable electronic device (such as a notebook personal computer or a mobile phone terminal) that always requires a high capacity, and an electric vehicle battery that requires a high output. Also suitable.
In addition, the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output, and thus is suitable as a power source for an electric vehicle subject to restrictions on mounting space.
The present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

1 コイン型電池
2 ケース
2a 正極缶
2b 負極缶
2c ガスケット
3 電極
3a 正極
3b 負極
3c セパレータ
DESCRIPTION OF SYMBOLS 1 Coin type battery 2 Case 2a Positive electrode can 2b Negative electrode can 2c Gasket 3 Electrode 3a Positive electrode 3b Negative electrode 3c Separator

Claims (15)

一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合することを特徴とする非水系電解質二次電池用正極材料の製造方法。 Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) A non-aqueous electrolyte secondary characterized by mixing a composite oxide powder and a tungsten additive material of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm A method for producing a positive electrode material for a battery. 一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と、粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料を混合することを特徴とする非水系電解質二次電池用正極材料の製造方法。 Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) Composite oxide powder, at least one organic solvent selected from ethanol, methanol, propanol, butanol and acetonitrile, tungsten oxide having a particle size of 0.01 to 0.09 μm, or 0.01 to 0.09 μm A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, comprising mixing a tungsten-added material of lithium tungstate. 前記リチウム金属複合酸化物粉末と、前記タングステン添加材料を混合する前に、前記リチウム金属複合酸化物粉末を水洗する工程を含むことを特徴とする請求項1又は2に記載の非水系電解質二次電池用正極材料の製造方法。   The non-aqueous electrolyte secondary according to claim 1, further comprising a step of washing the lithium metal composite oxide powder with water before mixing the lithium metal composite oxide powder and the tungsten additive material. A method for producing a positive electrode material for a battery. 前記正極材料に含まれるタングステン量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよび添加元素Mの原子数の合計に対して、0.1〜3.0原子%であることを特徴とする請求項1〜3のいずれか1項に記載の非水系電解質二次電池用正極材料の製造方法。   The amount of tungsten contained in the positive electrode material is 0.1 to 3.0 atomic% with respect to the total number of atoms of nickel, cobalt, and additive element M contained in the lithium metal composite oxide powder. The manufacturing method of the positive electrode material for nonaqueous electrolyte secondary batteries of any one of Claims 1-3 to do. 前記タングステン添加材料がWOの酸化タングステン、若しくはLiWO、LiWO、Liから選択される少なくとも1種のタングステン酸リチウムであることを特徴とする請求項1〜4のいずれか1項に記載の非水系電解質二次電池用正極材料の製造方法。 The tungsten additive material is tungsten oxide of WO 3 or at least one lithium tungstate selected from Li 2 WO 4 , Li 4 WO 5 and Li 6 W 2 O 9 . 5. The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to any one of 4. 一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料。 Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) A non-aqueous electrolyte comprising a mixture of a composite oxide powder and a tungsten additive material of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm Positive electrode material for secondary battery. 一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と、粒径0.01〜0.09μmの酸化タングステン、若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料。
Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) Composite oxide powder, at least one organic solvent selected from ethanol, methanol, propanol, butanol and acetonitrile, tungsten oxide having a particle size of 0.01 to 0.09 μm, or 0.01 to 0.09 μm A positive electrode material for a non-aqueous electrolyte secondary battery, comprising a mixture of the lithium tungstate and a tungsten additive material.
前記正極材料に含まれるタングステン量が、リチウム金属複合酸化物粉末に含まれるニッケル、コバルトおよび添加元素Mの原子数の合計に対して、0.1〜3.0原子%であることを特徴とする請求項6又は7に記載の非水系電解質二次電池用正極材料。   The amount of tungsten contained in the positive electrode material is 0.1 to 3.0 atomic% with respect to the total number of atoms of nickel, cobalt, and additive element M contained in the lithium metal composite oxide powder. The positive electrode material for a non-aqueous electrolyte secondary battery according to claim 6 or 7. 前記タングステン添加材料が、WOの酸化タングステン、若しくはLiWO、LiWO5、Liから選択される少なくとも1種のタングステン酸リチウムであることを特徴とする請求項6〜8のいずれか1項に記載の非水系電解質二次電池用正極材料。 The tungsten additive material according to claim, characterized in that tungsten oxide, or Li 2 WO 4, Li 4 WO 5, at least one lithium tungstate selected from Li 6 W 2 O 9 of WO 3 6 The positive electrode material for nonaqueous electrolyte secondary batteries of any one of -8. 前記タングステン添加材料が、タングステン酸リチウムである場合にはLiWOを含むタングステン酸リチウムであることを特徴とする請求項9に記載の非水系電解質二次電池用正極材料。 10. The positive electrode material for a non-aqueous electrolyte secondary battery according to claim 9, wherein the tungsten-added material is lithium tungstate containing Li 4 WO 5 when lithium tungstate is used. 一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、N−メチル−2−ピロリジノンと、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物を含むことを特徴とする非水系電解質二次電池用正極材料。 Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) A mixture of a composite oxide powder, N-methyl-2-pyrrolidinone, and a tungsten additive material of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm. A positive electrode material for a non-aqueous electrolyte secondary battery. 請求項6〜11のいずれか1項に記載の非水系電解質二次電池用正極材料を含む正極を有することを特徴とする非水系電解質二次電池。   It has a positive electrode containing the positive electrode material for nonaqueous electrolyte secondary batteries of any one of Claims 6-11, The nonaqueous electrolyte secondary battery characterized by the above-mentioned. 一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物に、
導電材及び結着剤と前記結着剤を溶解する溶剤のN−メチル−2−ピロリジノンを混合することを特徴とする非水系電解質二次電池用正極合材の製造方法。
Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) In a mixture of a composite oxide powder and a tungsten additive material of tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm,
A method for producing a positive electrode mixture for a non-aqueous electrolyte secondary battery, comprising mixing a conductive material and a binder, and N-methyl-2-pyrrolidinone as a solvent for dissolving the binder.
一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末と、
エタノール、メタノール、プロパノール、ブタノール、アセトニトリルから選択される少なくとも1種の有機溶剤と粒径0.01〜0.09μmの酸化タングステン若しくは粒径0.01〜0.09μmのタングステン酸リチウムのタングステン添加材料との混合物に、
導電材及び結着剤と前記結着剤を溶解する溶剤のN−メチル−2−ピロリジノンを混合することを特徴とする非水系電解質二次電池用正極合材の製造方法。
Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is added Lithium metal consisting of primary particles and secondary particles formed by agglomeration of the primary particles, which is an element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) Complex oxide powder;
Tungsten additive material of at least one organic solvent selected from ethanol, methanol, propanol, butanol and acetonitrile and tungsten oxide having a particle size of 0.01 to 0.09 μm or lithium tungstate having a particle size of 0.01 to 0.09 μm To the mixture with
A method for producing a positive electrode mixture for a non-aqueous electrolyte secondary battery, comprising mixing a conductive material and a binder, and N-methyl-2-pyrrolidinone as a solvent for dissolving the binder.
請求項13又は14に記載の製造方法による非水系電解質二次電池用正極合材を含む正極を有することを特徴とする非水系電解質二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode mixture for a non-aqueous electrolyte secondary battery according to the production method according to claim 13 or 14.
JP2016037973A 2015-05-29 2016-02-29 Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each Active JP6998107B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015110483 2015-05-29
JP2015110483 2015-05-29

Publications (2)

Publication Number Publication Date
JP2016225277A true JP2016225277A (en) 2016-12-28
JP6998107B2 JP6998107B2 (en) 2022-01-18

Family

ID=57746707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037973A Active JP6998107B2 (en) 2015-05-29 2016-02-29 Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each

Country Status (1)

Country Link
JP (1) JP6998107B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018142520A (en) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 Selection method of coating material, cathode active material for lithium ion secondary battery, and the lithium ion secondary battery
JP2019102129A (en) * 2017-11-28 2019-06-24 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using the same
JP2020009756A (en) * 2018-06-27 2020-01-16 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN111406332A (en) * 2017-11-21 2020-07-10 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
CN113964378A (en) * 2021-09-16 2022-01-21 电子科技大学长三角研究院(湖州) Composite solid electrolyte and manufacturing method thereof
US11757085B2 (en) 2019-07-18 2023-09-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US11923534B2 (en) 2019-07-18 2024-03-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078263A1 (en) * 2009-12-24 2011-06-30 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
WO2013015069A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Non-aqueous electrolyte secondary cell
JP2013125732A (en) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
JP2013143380A (en) * 2012-01-06 2013-07-22 Samsung Sdi Co Ltd Positive electrode material for lithium battery, positive electrode prepared from the same, and lithium battery including the positive electrode
JP2013152866A (en) * 2012-01-25 2013-08-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and nonaqueous electrolytic secondary battery with the positive electrode active material
JP2013171785A (en) * 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode material
JP2013229339A (en) * 2011-05-30 2013-11-07 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078263A1 (en) * 2009-12-24 2011-06-30 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
JP2013229339A (en) * 2011-05-30 2013-11-07 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material
WO2013015069A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Non-aqueous electrolyte secondary cell
JP2013125732A (en) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
JP2013143380A (en) * 2012-01-06 2013-07-22 Samsung Sdi Co Ltd Positive electrode material for lithium battery, positive electrode prepared from the same, and lithium battery including the positive electrode
JP2013152866A (en) * 2012-01-25 2013-08-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and nonaqueous electrolytic secondary battery with the positive electrode active material
JP2013171785A (en) * 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd Positive electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7159535B2 (en) 2017-01-27 2022-10-25 住友金属鉱山株式会社 Lithium tungstate, method for producing lithium tungstate, apparatus for producing lithium tungstate, positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018142520A (en) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 Selection method of coating material, cathode active material for lithium ion secondary battery, and the lithium ion secondary battery
CN111406332A (en) * 2017-11-21 2020-07-10 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
EP3716372A4 (en) * 2017-11-21 2021-01-13 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
US11735728B2 (en) 2017-11-21 2023-08-22 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and method of manufacturing cathode active material for non-aqueous electrolyte secondary battery
JP2019102129A (en) * 2017-11-28 2019-06-24 トヨタ自動車株式会社 Positive electrode material and lithium secondary battery using the same
JP2020009756A (en) * 2018-06-27 2020-01-16 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7371364B2 (en) 2018-06-27 2023-10-31 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries and its manufacturing method, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
US11757085B2 (en) 2019-07-18 2023-09-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
US11923534B2 (en) 2019-07-18 2024-03-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
CN113964378B (en) * 2021-09-16 2023-09-26 电子科技大学长三角研究院(湖州) Composite solid electrolyte and manufacturing method thereof
CN113964378A (en) * 2021-09-16 2022-01-21 电子科技大学长三角研究院(湖州) Composite solid electrolyte and manufacturing method thereof

Also Published As

Publication number Publication date
JP6998107B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP5370515B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
JP6210439B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5772626B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6090608B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2013171785A5 (en)
JP6998107B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each
WO2017018099A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and nonaqueous electrolyte secondary battery
JP2012079464A5 (en)
JP2016110999A5 (en)
JP2017117766A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2017063003A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
JP2019012654A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2016104305A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
WO2016084930A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and producing method therefor, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP6730777B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
WO2016084931A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used
JP6848199B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP6819859B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP6819860B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP6919175B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2020149901A (en) Manufacturing method of positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, manufacturing method of positive electrode mixture for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201009

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201012

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201211

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201215

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210513

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211026

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211124

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150