WO2016084931A1 - Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used Download PDF

Info

Publication number
WO2016084931A1
WO2016084931A1 PCT/JP2015/083368 JP2015083368W WO2016084931A1 WO 2016084931 A1 WO2016084931 A1 WO 2016084931A1 JP 2015083368 W JP2015083368 W JP 2015083368W WO 2016084931 A1 WO2016084931 A1 WO 2016084931A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2015/083368
Other languages
French (fr)
Japanese (ja)
Inventor
崇 尾崎
佑樹 古市
横山 潤
小向 哲史
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015212399A external-priority patent/JP6090609B2/en
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP15862689.5A priority Critical patent/EP3226330B1/en
Priority to CN201580074697.XA priority patent/CN107210441B/en
Priority to US15/531,595 priority patent/US11171326B2/en
Publication of WO2016084931A1 publication Critical patent/WO2016084931A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
  • This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode.
  • a lithium ion secondary battery is currently being actively researched and developed.
  • a lithium ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode material Since a high voltage of 4V class can be obtained, practical use is progressing as a battery having a high energy density.
  • the materials mainly proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel.
  • Examples thereof include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and lithium manganese composite oxide (LiMn 2 O 4 ) using manganese.
  • lithium nickel composite oxide has attracted attention as a material that can provide a high battery capacity. Further, in recent years, low resistance necessary for high output is regarded as important. Addition of foreign elements is used as a method for realizing the low resistance, and transition metals capable of taking high numbers such as W, Mo, Nb, Ta, Re, etc. are particularly useful.
  • Patent Document 1 contains at least one element selected from Mo, W, Nb, Ta, and Re in an amount of 0.1 to 5 mol% with respect to the total molar amount of Mn, Ni, and Co.
  • Lithium transition metal compound powder for a lithium secondary battery positive electrode material has been proposed, and Mo, W, Nb, Ta, and Li in the surface portion of primary particles and the total of metal elements other than Mo, W, Nb, Ta, and Re
  • the total atomic ratio of Re is preferably 5 times or more of the atomic ratio of the entire primary particle.
  • the lithium transition metal compound powder is obtained by pulverizing raw materials in a liquid medium, spray-drying a slurry in which these are uniformly dispersed, and firing the resulting spray-dried body. Therefore, a part of different elements such as Mo, W, Nb, Ta, and Re is replaced with Ni arranged in a layer, and there is a problem that battery characteristics such as battery capacity and cycle characteristics are deteriorated. It was.
  • Patent Document 2 discloses a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a layered lithium transition metal composite oxide, the lithium transition metal composite oxide being composed of primary particles and aggregates thereof.
  • a positive electrode active material for a secondary battery has been proposed.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent battery characteristics even under a more severe use environment can be obtained, and in particular, the surface of the particle is composed of molybdenum, vanadium, tungsten, boron and fluorine.
  • the initial characteristics are improved without impairing the improvement of thermal stability, load characteristics and output characteristics.
  • the effect of at least one additive element selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine is considered to be an improvement in initial characteristics, that is, initial discharge capacity and initial efficiency, and refers to output characteristics. is not.
  • the additive element is mixed with the hydroxide that has been heat-treated at the same time as the lithium compound and fired, a part of the additive element is replaced with nickel arranged in layers. There was a problem that caused the battery characteristics to deteriorate.
  • Patent Document 3 discloses a metal including at least one selected from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, and Mo around the positive electrode active material and / or a plurality of these.
  • a positive electrode active material coated with an intermetallic compound and / or oxide obtained by a combination has been proposed. Such a coating can absorb oxygen gas and ensure safety, but no output characteristics are disclosed.
  • the disclosed manufacturing method is a method of coating using a planetary ball mill, and such a coating method causes physical damage to the positive electrode active material, resulting in deterioration of battery characteristics.
  • Patent Document 4 a composite oxide particle mainly composed of lithium nickelate is subjected to heat treatment by adhering a tungstic acid compound, and the content of carbonate ions is 0.15% by weight or less.
  • a positive electrode active material has been proposed. According to this proposal, there is a tungstic acid compound or a decomposition product of the tungstic acid compound on the surface of the positive electrode active material, and the oxidation activity on the surface of the composite oxide particles in a charged state is suppressed. Although gas generation can be suppressed, the output characteristics are not disclosed at all.
  • the disclosed production method preferably comprises a composite oxide particle heated to a boiling point or higher of a solution in which an adherent component is dissolved, and a sulfuric acid compound, a nitric acid compound, a boric acid compound, or a phosphoric acid compound as well as a tungstate compound. Since the solution dissolved in the solvent is applied as the adhering component, and the solvent is removed in a short time, the tungsten compound is not sufficiently dispersed on the surface of the composite oxide particles, so that there is a problem that it is not uniformly applied. .
  • Patent Document 5 discloses a lithium metal composite oxide including primary particles and secondary particles formed by aggregation of the primary particles, and Li 2 WO 4 , Li 4 A positive electrode active material for a non-aqueous electrolyte secondary battery having fine particles containing lithium tungstate represented by either WO 5 or Li 6 W 2 O 9 has been proposed, and high output is obtained with high capacity. Yes. However, although the output is increased while maintaining a high capacity, a further increase in capacity is required.
  • the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery that, when used in a positive electrode material, has a high capacity and suppresses an increase in the amount of gas generated while obtaining a higher output.
  • the purpose is to do.
  • the present inventors have intensively studied the influence on the powder characteristics of the lithium metal composite oxide used as the positive electrode active material for the non-aqueous electrolyte secondary battery and the output characteristics of the battery.
  • the form of the lithium tungstate can be controlled by heat-treating a mixture in which lithium and tungsten outside the particles of the lithium metal composite oxide are controlled to a specific ratio. The present invention has been completed.
  • the first invention of the present invention have the general formula: Li z Ni 1-x- y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇ z ⁇ 1.30, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), and secondary particles formed by agglomeration of primary particles Lithium metal composite oxide powder having a layered crystal structure composed of secondary particles, 2% by mass or more of moisture with respect to the lithium metal composite oxide powder, and tungsten of tungsten compound or tungsten compound and lithium compound The total lithium contained in the water and solid tungsten compound or the water and solid tungsten compound and lithium compound relative to the amount of tungsten contained.
  • a lithium metal composite oxide powder is mixed with water to form a slurry.
  • a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising: a water washing step of washing the oxide powder with water; and then a solid-liquid separation step of solid-liquid separation after the water washing step as a pre-process of the mixing step. is there.
  • a third invention of the present invention is for a non-aqueous electrolyte secondary battery, wherein the concentration of the lithium metal composite oxide powder contained in the slurry according to the second invention is 200 to 5000 g with respect to 1 L of water. It is a manufacturing method of a positive electrode active material.
  • the tungsten compound is added at least during the water washing step and after the solid-liquid separation step.
  • the water washing step forms a slurry in which the lithium metal composite oxide powder is mixed with an aqueous solution of a tungsten compound to form a positive electrode active for a non-aqueous electrolyte secondary battery. It is a manufacturing method of a substance.
  • a sixth invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the tungsten compound according to the fourth invention is in a powder state.
  • a seventh invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the heat treatment in the first to sixth inventions is performed at 100 to 600 ° C.
  • the amount of tungsten contained in the tungsten mixture according to the first to seventh aspects is 0 with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder.
  • a nonaqueous electrolyte secondary battery comprising a lithium metal composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of the primary particles.
  • a use positive electrode active material the general formula: Li z Ni 1-x- y Co x M y W a O 2 + ⁇ (although, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇ z ⁇ 1.30, 0 ⁇ a ⁇ 0.03, 0 ⁇ ⁇ ⁇ 0.15, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al)
  • the lithium metal composite oxide has lithium tungstate on the surface of primary particles, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate is 50 to 90 mol%, for a non-aqueous electrolyte secondary battery It is a positive electrode active material.
  • the amount of lithium contained in a lithium compound other than lithium tungstate present on the surface of the lithium metal composite oxide particles in the ninth aspect is 0.08 with respect to the total amount of the positive electrode active material.
  • the amount of tungsten contained in the lithium tungstate according to the ninth and tenth aspects of the present invention is W relative to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that the number of atoms is 0.05 to 2.0 atomic%.
  • the lithium tungstate according to the ninth to eleventh aspects of the present invention is present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 200 nm. It is a positive electrode active material for electrolyte secondary batteries.
  • a thirteenth aspect of the present invention is a nonaqueous system characterized in that the lithium tungstate according to the ninth to eleventh aspects is present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 150 nm. It is a positive electrode active material for electrolyte secondary batteries.
  • the lithium tungstate according to the ninth to eleventh aspects is the primary particle of the lithium metal composite oxide as both fine particles having a particle diameter of 1 to 200 nm and a film having a thickness of 1 to 150 nm.
  • a fifteenth aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the ninth to fourteenth aspects.
  • the positive electrode active material for nonaqueous electrolyte secondary batteries which can implement
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium metal having a layered structure crystal structure composed of primary particles and secondary particles formed by agglomeration of primary particles.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite oxide having a composition of general formula of the positive electrode active material: Li z Ni 1-x- y Co x M y W a O 2 + ⁇ (although, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0.95 ⁇ z ⁇ 1.30, 0 ⁇ a ⁇ 0.03, 0 ⁇ ⁇ ⁇ 0.15, M is Mn, V, Mg, Mo, Lithium tungstate is present on the surface of the primary particle of the lithium metal composite oxide, and Li 4 WO 5 is present in the lithium tungstate, represented by at least one element selected from Nb, Ti and Al)
  • the ratio is 50 to 90 mol% It is an.
  • a lithium metal composite oxide powder whose base material is composed of primary particles and secondary particles formed by agglomeration of primary particles (hereinafter, secondary particles and primary particles present alone are combined to form “lithium”
  • the abundance ratio of Li 4 WO 5 contained in the lithium tungstate formed on the surface of the primary particle (hereinafter referred to as the Li 4 WO 5 abundance ratio). Is from 50 to 90 mol%, it suppresses an increase in the amount of gas generated and improves the output characteristics while maintaining the charge / discharge capacity.
  • lithium tungstate is formed on the surface of the lithium metal composite oxide particles and on the surface of the primary particles inside, but this lithium tungstate has high lithium ion conductivity and the movement of lithium ions. Has the effect of prompting.
  • the lithium tungstate is formed on the primary particle surface of the lithium metal composite oxide particles, a Li conduction path is formed at the interface with the electrolytic solution, so that the reaction resistance of the positive electrode active material (hereinafter, positive electrode)
  • positive electrode the positive electrode active material
  • the output characteristics of the battery are improved by reducing the resistance. That is, by reducing the positive electrode resistance, the voltage lost in the battery is reduced, and the voltage actually applied to the load side becomes relatively high, so that a high output can be obtained. Further, since the voltage applied to the load side is increased, lithium is sufficiently inserted into and extracted from the positive electrode, so that the charge / discharge capacity of the battery (hereinafter sometimes referred to as “battery capacity”) is also improved. is there.
  • lithium tungstate it is important that the abundance ratio of Li 4 WO 5 is 50 to 90 mol%. That is, lithium tungstate has many forms such as Li 2 WO 4 , Li 4 WO 5 and Li 6 W 2 O 9, but Li 4 WO 5 has high lithium ion conductivity, and Li on the surface of the primary particles. Since the reaction resistance of the positive electrode active material is greatly reduced by the presence of 4 WO 5 , a greater effect of improving the output characteristics can be obtained. Further, the battery capacity can be improved by reducing the positive electrode resistance.
  • lithium tungstate is only Li 4 WO 5
  • the amount of gas generated during high-temperature storage of the battery increases, which causes a safety problem.
  • the details of the cause of the increased gas generation amount are unknown, but Li 4 WO 5 is considered to be because Li is easily dissociated by a solvent, particularly moisture.
  • Li 4 WO 5 by setting the abundance ratio of Li 4 WO 5 to 50 to 90 mol%, preferably 50 to 80 mol%, an effect of greatly reducing the reaction resistance can be obtained while suppressing an increase in gas generation amount.
  • Li 2 WO 4 is not as high as Li 4 WO 5, but has high lithium ion conductivity and is not easily dissociated by moisture. Therefore, the effect of suppressing the amount of gas generated during high-temperature storage of the battery is high.
  • the abundance ratio of Li 2 WO 4 contained in the lithium tungstate formed on the surface of the primary particles (hereinafter referred to as Li 2 WO 4 abundance ratio) is 10 to 50 mol%, and Li 4 WO 5 and Li 2
  • the total abundance ratio of WO 4 is preferably 90 mol% or more. In this situation, a large effect of reducing the reaction resistance can be obtained while further suppressing an increase in the amount of gas generated.
  • the existence form of lithium tungstate can be measured as long as the existence form can be specified by a molar ratio, and can be measured by instrumental analysis using an X-ray or an electron beam. Alternatively, it may be calculated by pH titration analysis with hydrochloric acid.
  • the primary particle surface in the present invention means the surface of the primary particle exposed at the outer surface of the secondary particle and the surface of the secondary particle that can penetrate the electrolyte through the outside of the secondary particle and the inside of the secondary particle. It includes the surface of primary particles exposed in the voids. Furthermore, even a grain boundary between primary particles is included as long as the primary particles are not completely bonded and the electrolyte solution can penetrate.
  • the contact with the electrolytic solution is not limited to the outer surface of the secondary particles formed by agglomeration of the primary particles, but also the gap between the primary particles in the vicinity of the inner surface of the secondary particles and the incomplete grain boundary.
  • LWO since it also occurs, it is necessary to form LWO also on the surface of the primary particles to promote the movement of lithium ions. Therefore, the reaction resistance of the positive electrode active material can be further reduced by forming LWO on more primary particle surfaces that can be contacted with the electrolytic solution.
  • the form of the LWO on the primary particle surface is such that when the surface of the primary particle is coated with a layered material, the contact area with the electrolytic solution becomes small.
  • the formation of the compound is specified. It tends to result in concentration on the primary particle surface. That is, although the layered material as the coating has high lithium ion conductivity, the effects of improving the charge / discharge capacity and reducing the positive electrode resistance can be obtained, but there is room for improvement.
  • LWO is preferably present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 200 nm.
  • the lithium ion conductivity can be effectively improved with a sufficient contact area with the electrolytic solution, thereby improving the charge / discharge capacity and more effectively reducing the positive electrode resistance.
  • the particle diameter is less than 1 nm, fine particles may not have sufficient lithium ion conductivity.
  • the particle diameter exceeds 200 nm, the formation of fine particles on the primary particle surface becomes non-uniform, and the higher effect of reducing positive electrode resistance may not be obtained.
  • the fine particles do not have to be completely formed on the entire surface of the primary particles, but may be scattered. Even in the scattered state, if the fine particles are formed on the outer surface and the inner primary particle surface of the lithium metal composite oxide particles, the effect of reducing the reaction resistance of the positive electrode can be obtained.
  • fine particles it is not necessary for all the fine particles to be present as fine particles having a particle diameter of 1 to 200 nm.
  • 50% or more of the fine particles formed on the surface of the primary particles are formed in a particle diameter range of 1 to 200 nm. High effect can be obtained.
  • the primary particle surface is covered with a thin film, a conduction path of Li can be formed at the interface with the electrolytic solution while suppressing a decrease in specific surface area, which means higher charge / discharge capacity and reduced positive electrode resistance.
  • An effect is obtained.
  • the surface of the primary particles is coated with such a thin film-like LWO, it is preferably present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 150 nm. If the film thickness is less than 1 nm, the film may not have sufficient lithium ion conductivity. Moreover, when a film thickness exceeds 150 nm, lithium ion conductivity will fall and the higher effect of positive electrode resistance reduction may not be acquired.
  • this coating may be partially formed on the primary particle surface, and the film thickness range of all coatings may not be 1 to 150 nm. If a film having a film thickness of 1 to 150 nm is formed at least partially on the primary particle surface, a high effect can be obtained. Furthermore, even when the fine particle form and the thin film form form are mixed and LWO is formed on the primary particle surface, a high effect on the battery characteristics can be obtained.
  • lithium tungstate when lithium tungstate is formed non-uniformly between lithium metal composite oxide particles, the movement of lithium ions between lithium metal composite oxide particles becomes non-uniform. Particles are loaded, and cycle characteristics and output characteristics are likely to deteriorate. Therefore, it is preferable that lithium tungstate is uniformly formed between the lithium metal composite oxide particles.
  • the property of the primary particle surface of such a lithium metal composite oxide can be judged, for example, by observing with a field emission scanning electron microscope (SEM).
  • SEM field emission scanning electron microscope
  • the amount of lithium contained in the lithium compound other than lithium tungstate present on the surface of such lithium metal composite oxide particles is 0.08 mass relative to the total amount of the positive electrode active material. % Or less, and more preferably 0.05% by mass or less.
  • excess lithium amount 0.08 mass relative to the total amount of the positive electrode active material. % Or less, and more preferably 0.05% by mass or less.
  • the amount of tungsten contained in the lithium tungstate is 3.0 atomic% or less, preferably 0.05 to 2.0%, based on the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. Atomic%.
  • the amount of LWO formed is sufficient to reduce the positive electrode resistance, and a sufficient primary particle surface capable of contact with the electrolyte is ensured. It is possible to make the amount as high as possible, and it is possible to further achieve both high charge / discharge capacity and output characteristics. If the amount of tungsten is less than 0.05 atomic%, the effect of improving the output characteristics may not be sufficiently obtained. If the amount of tungsten exceeds 3.0 atomic%, the amount of lithium tungstate to be formed increases so that lithium Lithium conduction between the metal complex oxide and the electrolyte may be hindered, and the charge / discharge capacity may be reduced.
  • the total amount of lithium in the positive electrode active material increases by the amount of lithium contained in the lithium tungstate, but the ratio of the sum of the number of atoms Ni, Co and M (Me) in the positive electrode active material to the number of Li atoms.
  • “Li / Me” is 0.95 to 1.30, preferably 0.97 to 1.25, and more preferably 0.97 to 1.20.
  • Li / Me of the lithium metal composite oxide particles as the core material is preferably 0.95 to 1.25, more preferably 0.95 to 1.20, and a high battery capacity is obtained, and formation of the LW compound is achieved. A sufficient amount of lithium can be secured.
  • Li / Me of the positive electrode active material as a whole is 0.95 to 1.15, and Li / Me of the lithium metal composite oxide particles is 0.95 to 1.10.
  • the core material is lithium metal composite oxide particles that do not contain an LW compound, and becomes a positive electrode active material by forming an LW compound on the primary particle surface of the lithium metal composite oxide particles. If the Li / Me is less than 0.95, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases. On the other hand, when Li / Me exceeds 1.30, the initial discharge capacity of the positive electrode active material decreases and the reaction resistance of the positive electrode also increases.
  • the positive electrode active material of the present invention has improved output characteristics by forming lithium tungstate on the primary particle surface of the lithium metal composite oxide, and the powder characteristics such as particle size and tap density as the positive electrode active material are as follows: What is necessary is just to be in the range of the positive electrode active material used normally.
  • the mixing step includes a lithium metal composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of the primary particles, and 2 masses with respect to the lithium metal composite oxide powder.
  • % Of water and a tungsten compound, or a mixture of a tungsten compound and a lithium compound, and the water and solid tungsten compound or the water and solid tungsten compound and lithium with respect to the amount of tungsten (W) contained This is a step of obtaining a tungsten mixture in which the molar ratio of the total amount of lithium (Li) contained in the compound (hereinafter referred to as Li molar ratio) is 3 to 5.
  • the moisture content of the lithium metal composite oxide powder in the tungsten mixture (hereinafter simply referred to as the mixture) is 2% by mass or more.
  • the amount of moisture may be 2% by mass or more. However, if the amount of moisture is excessively large, the efficiency of the heat treatment in the subsequent process is reduced, or the elution of lithium from the lithium metal composite oxide particles is increased, resulting in a mixture.
  • the amount of water is preferably 20% by mass or less. More preferably, it is set to ⁇ 15% by mass, and further preferably 3 to 10% by mass. By setting the amount of water within the above range, the pH rises due to the lithium content eluted in the water, and the effect of suppressing the elution of excessive lithium is exhibited.
  • the molar ratio of Co and M in the lithium metal composite oxide powder is maintained up to the positive electrode active material.
  • the tungsten compound to be used is preferably water-soluble so as to dissolve in the water contained in the mixture in order to penetrate the surface of the primary particles inside the secondary particles. That is, the tungsten compound used includes a tungsten compound in an aqueous solution state.
  • the tungsten compound existing in the state of the aqueous solution only needs to have an amount that can penetrate to the surface of the primary particles inside the secondary particles, a part thereof may be mixed in a solid state. Moreover, even if it is difficult to dissolve in water at room temperature, any compound that dissolves in water by heating during heat treatment may be used. Furthermore, since the water in the mixture becomes alkaline due to the contained lithium, it may be a compound that is soluble in alkali.
  • the tungsten compound is not limited as long as it can be dissolved in water, but tungsten oxide, lithium tungstate, ammonium tungstate, sodium tungstate, and the like are preferable, and tungsten oxide, which is less likely to be mixed with impurities, Lithium tungstate and ammonium tungstate are more preferable, and tungsten oxide and lithium tungstate are more preferable.
  • the Li molar ratio of this mixture is set to 3.0 or more and 5.0 or less.
  • the Li 4 WO 5 abundance ratio of the obtained positive electrode active material can be 50 to 90 mol%.
  • the Li molar ratio is less than 3.0, the Li 4 WO 5 abundance ratio is less than 50 mol%, and when the Li molar ratio exceeds 5.0, the Li 4 WO 5 abundance ratio exceeds 90 mol% and surplus lithium The amount exceeds 0.08% by mass with respect to the total amount of the positive electrode active material. Therefore, from the viewpoint of controlling the abundance ratio of Li 4 WO 5 and reducing the amount of excess lithium, the Li molar ratio is preferably less than 4.5, and more preferably 4.0 or less. Depending on the tungsten compound to be added, the Li molar ratio may be less than 3.0. In this case, the lithium compound may be added to compensate for the shortage. Water-soluble compounds such as LiOH) are preferred.
  • the amount of tungsten contained in this mixture is preferably 3.0 atomic percent or less with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder, More preferably, it is set to ⁇ 2.0 atomic%.
  • the amount of tungsten contained in the lithium tungstate in the positive electrode active material can be within a preferable range, and the high charge / discharge capacity and the output characteristics of the positive electrode active material can be further compatible.
  • water may be supplied and mixed together with the tungsten compound so that the water content of the mixture becomes 2% by mass or more, and an aqueous solution of tungsten compound or a tungsten compound and water may be supplied individually.
  • the lithium metal composite oxide powder obtained by firing the metal composite hydroxide or the metal composite oxide and the lithium compound has secondary particles or unreacted lithium compounds on the surface of the primary particles. . For this reason, the amount of lithium present in the water constituting the mixture becomes excessive, and it may be difficult to control the Li molar ratio.
  • a water washing step in which the lithium metal composite oxide powder is mixed with water to make a slurry and washed with water before obtaining the mixture. It is preferable to provide.
  • the amount of lithium present in the water in the mixture can be reduced to facilitate the control of the Li molar ratio.
  • the water washing conditions in the water washing step are sufficient to reduce unreacted lithium compounds, for example, preferably 0.08% by mass or less, more preferably 0.05% by mass or less, based on the total amount of lithium metal composite oxide particles.
  • concentration of the lithium metal composite oxide powder within this range, unreacted lithium compounds can be more sufficiently reduced while suppressing deterioration due to elution of lithium from the lithium metal composite oxide particles.
  • the washing time and washing temperature may be in a range where the unreacted lithium compound can be sufficiently reduced.
  • the washing time is preferably 5 to 60 minutes and the washing temperature is preferably in the range of 10 to 40 ° C.
  • the step of adding the tungsten compound is not limited.
  • the mixing step is preferably completed after the water washing step. If the mixture is obtained before the water washing step, the tungsten compound is washed away by water washing, so that the amount of tungsten in the mixture may be insufficient. Therefore, when a water washing process is provided, it is preferable to obtain a predetermined mixture by adding a tungsten compound at least during the water washing process and after the solid-liquid separation process.
  • the tungsten compound when the tungsten compound is added in the water washing step, the tungsten compound may be added to water mixed with the lithium metal composite oxide powder in advance to form an aqueous solution or suspension, or may be added after slurrying.
  • the tungsten compound is preferably a tungsten compound that is completely dissolved in the slurry during washing with water.
  • the tungsten compound when added after the solid-liquid separation step, the tungsten compound may be in an aqueous solution state or a powder state.
  • the tungsten compound When added after the solid-liquid separation step, there is no lithium or tungsten removed together with the liquid components, and all the tungsten compounds remain in the mixture, so that the Li molar ratio can be easily controlled.
  • the tungsten compound when the tungsten compound is added during the washing step, the tungsten compound may be in an aqueous solution state or a powder state, and a uniform mixture can be obtained by adding the tungsten compound to the slurry and stirring.
  • a tungsten compound used is in the form of an aqueous solution or a water-soluble compound
  • the tungsten compound dissolved in the slurry is removed together with the liquid components of the slurry in the solid-liquid separation step after washing with water.
  • the tungsten dissolved in the water in the mixture can make the amount of tungsten in the mixture sufficient.
  • the amount of tungsten in the mixture becomes stable along with the amount of water depending on the washing conditions and the solid-liquid separation conditions. Therefore, these conditions may be determined together with the type and amount of the tungsten compound by preliminary tests.
  • the total amount of lithium contained in the water and the tungsten compound relative to tungsten in the mixture (hereinafter referred to as the total amount of lithium) can also be determined by a preliminary test in the same manner as the amount of tungsten.
  • the amount of tungsten in the mixture when the tungsten compound is added in the water washing step can be determined by ICP emission spectroscopy. Further, the amount of lithium contained in the water of the mixture can be determined from the analysis value of lithium and the amount of water by ICP emission spectroscopy in the liquid component separated into solid and liquid after washing with water. On the other hand, the amount of lithium contained in the solid tungsten compound is determined by adding the tungsten compound to a lithium hydroxide aqueous solution having the same concentration as the liquid component after water washing, stirring under the same conditions as in water washing, and remaining tungsten as a residue. The amount remaining as a solid content in the mixture can be calculated from the ratio of the compounds, and can be determined from the tungsten compound remaining as a solid content.
  • the amount of tungsten contained in the mixture when the tungsten compound is added after the solid-liquid separation step can be determined from the amount of the tungsten compound to be added.
  • the total amount of lithium in the mixture is the amount of lithium contained in the moisture determined from the analysis value of lithium by ICP emission spectroscopy and the amount of moisture of the liquid component solid-liquid separated after washing with water, the amount of tungsten compound added, or the amount of tungsten compound And may be calculated as the sum of lithium amounts obtained from the lithium compound amount.
  • the tungsten compound When the tungsten compound is added as an aqueous solution after the solid-liquid separation step, it is necessary to adjust the aqueous solution so that the water content preferably does not exceed 20% by mass as described above. It is preferable that the concentration be 05 to 2 mol / L. Thereby, the required amount of tungsten can be added while suppressing the moisture of the mixture. If the amount of water exceeds 20% by mass, the liquid may be adjusted again by solid-liquid separation, but the amount of tungsten and lithium in the removed liquid component should be determined to confirm the Li molar ratio of the mixture. Is required.
  • the mixing after the solid-liquid separation step is preferably performed at a temperature of 50 ° C. or less. If the temperature exceeds 50 ° C., the moisture content may be less than 2% by mass due to drying during mixing.
  • the mixing with the tungsten compound is not limited as long as it is a device capable of mixing uniformly, and a general mixer can be used.
  • the mixture may be sufficiently mixed with the tungsten compound using a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like so that the shape of the lithium metal composite oxide particles is not destroyed.
  • the composition of the positive electrode active material obtained is only tungsten added and added in the mixing step from the lithium metal composite oxide as a base material and lithium added as necessary.
  • the composition is known formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0 .35, 0 ⁇ y ⁇ 0.35, 0.95 ⁇ z ⁇ 1.25, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) Lithium metal composite oxide is used.
  • Li / Me decreases due to lithium elution at the time of washing with water.
  • a lithium metal composite oxide in which / Me is adjusted may be used.
  • the decrease amount of Li / Me due to general water washing conditions is about 0.03 to 0.08.
  • z indicating Li / Me of the lithium metal composite oxide as a base material is preferably 0.95 ⁇ z ⁇ 1.30, and preferably 0.97 ⁇ z ⁇ 1.20.
  • the primary particles and secondary particles formed by agglomeration of the primary particles are formed. It is preferable to use a lithium metal composite oxide powder having voids and grain boundaries that can be penetrated.
  • the heat treatment step is a step of heat treating the produced mixture. Thereby, lithium tungstate is formed on the primary particle surface of the lithium metal composite oxide from lithium and tungsten contained in the moisture of the mixture, and a positive electrode active material for a non-aqueous electrolyte secondary battery is obtained. If LWO is formed, the heat treatment method is not particularly limited, but in order to prevent deterioration of electrical characteristics when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, a reaction with moisture or carbonic acid in the atmosphere is performed. Avoid heat treatment in an oxidizing atmosphere such as an oxygen atmosphere or in a vacuum atmosphere at a temperature of 100 to 600 ° C.
  • the heat treatment temperature is less than 100 ° C., the evaporation of moisture is not sufficient and LWO may not be formed sufficiently.
  • the heat treatment temperature exceeds 600 ° C., primary particles of the lithium metal composite oxide are sintered and some tungsten is dissolved in the layered structure of the lithium metal composite oxide. The discharge capacity may decrease.
  • the temperature rate is preferably 0.8 to 1.2 ° C./min. Even in the mixing step, the tungsten compound powder is dissolved in the water in the mixture. By setting the temperature increase rate, the solid tungsten compound is sufficiently dissolved during the temperature increase, and the primary particles inside the secondary particles. It can penetrate to the particle surface.
  • the heat treatment time is not particularly limited, but is preferably 3 to 20 hours, and more preferably 5 to 15 hours in order to sufficiently evaporate the water in the mixture to form LWO.
  • Non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and the like, and includes the same components as those of a general non-aqueous electrolyte secondary battery.
  • the embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention can be variously modified based on the knowledge of those skilled in the art based on the embodiment described in the present specification. It can be implemented in an improved form. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
  • a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows. First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and, if necessary, a target solvent such as activated carbon and viscosity adjustment is added and kneaded to prepare a positive electrode mixture paste. Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size or the like according to the target battery and used for battery production.
  • the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.
  • the conductive agent for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black (registered trademark), and the like can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluorine rubber ethylene propylene diene rubber
  • styrene butadiene cellulosic resin
  • An acid or the like can be used.
  • a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
  • a solvent that dissolves the binder is added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
  • Negative electrode A negative electrode mixture in which a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder and an appropriate solvent is added to the negative electrode. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
  • a metal foil current collector such as copper
  • the negative electrode active material for example, a fired organic compound such as natural graphite, artificial graphite, or phenol resin, or a powdery carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder, as in the case of the positive electrode, and a solvent for dispersing these active materials and the binder can be N-methyl-2-pyrrolidone or the like. Organic solvents can be used.
  • (C) Separator A separator is interposed between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; -A single compound selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, or a mixture of two or more. Can be used.
  • the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution described above is various, such as a cylindrical type and a laminated type. can do.
  • the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside.
  • the positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like and sealed in a battery case to complete a non-aqueous electrolyte secondary battery. .
  • the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high capacity and a high output.
  • the non-aqueous electrolyte secondary battery using the positive electrode active material according to the present invention obtained in a particularly preferred form is, for example, a high initial discharge capacity of 165 mAh / g or more and a low positive electrode when used for the positive electrode of a 2032 type coin battery. Resistance is obtained, and further, high capacity and high output. Moreover, it can be said that it has high thermal stability and is excellent in safety.
  • the measurement method of the positive electrode resistance in the present invention is a solution resistance, a negative electrode resistance and a negative electrode capacity, and a positive electrode resistance when the frequency dependence of the battery reaction is measured by a general AC impedance method as an electrochemical evaluation method.
  • a Nyquist diagram based on the positive electrode capacity is obtained as shown in FIG.
  • the battery reaction at the electrode consists of a resistance component accompanying the charge transfer and a capacity component due to the electric double layer. When these are expressed as an electric circuit, it becomes a parallel circuit of resistance and capacity. It is represented by an equivalent circuit in which circuits are connected in series. Fitting calculation is performed on the Nyquist diagram measured using this equivalent circuit, and each resistance component and capacitance component can be estimated.
  • the positive electrode resistance is equal to the diameter of the semicircle on the low frequency side of the obtained Nyquist diagram. From the above, the positive electrode resistance can be estimated by performing AC impedance measurement on the manufactured positive electrode and performing fitting calculation on the obtained Nyquist diagram with an equivalent circuit.
  • the performance (initial stage discharge capacity, positive electrode resistance) was measured.
  • the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
  • the coin-type battery 1 is composed of a case 2 and an electrode 3 accommodated in the case 2.
  • the case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a.
  • the negative electrode can 2b is disposed in the opening of the positive electrode can 2a, A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a.
  • the electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order.
  • the positive electrode 3a contacts the inner surface of the positive electrode can 2a
  • the negative electrode 3b contacts the inner surface of the negative electrode can 2b. As shown in FIG.
  • the case 2 includes a gasket 2c, and relative movement is fixed by the gasket 2c so as to maintain a non-contact state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b to block the inside and outside of the case 2 in an airtight and liquid tight manner.
  • the coin type battery 1 shown in FIG. 2 was manufactured as follows. First, 52.5 mg of a positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed, and press-molded to a diameter of 11 mm and a thickness of 100 ⁇ m at a pressure of 100 MPa. A positive electrode 3a was produced. The produced positive electrode 3a was dried in a vacuum dryer at 120 ° C. for 12 hours. Using the positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolyte, the coin-type battery 1 shown in FIG. 2 was produced in a glove box in an Ar atmosphere in which the dew point was controlled at ⁇ 80 ° C.
  • PTFE polytetrafluoroethylene resin
  • the negative electrode 3b a negative electrode sheet in which graphite powder having an average particle diameter of about 20 ⁇ m punched into a disk shape with a diameter of 14 mm and polyvinylidene fluoride were applied to a copper foil was used.
  • the separator 3c a polyethylene porous film having a film thickness of 25 ⁇ m was used.
  • the electrolytic solution an equivalent mixed solution (manufactured by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte was used.
  • the initial discharge capacity and positive electrode resistance showing the performance of the manufactured coin battery 1 were evaluated as follows.
  • the initial discharge capacity is left for about 24 hours after the coin-type battery 1 is manufactured, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4
  • OCV Open Circuit Voltage
  • the capacity when the battery was charged to 3 V, discharged after a pause of 1 hour to a cutoff voltage of 3.0 V was defined as the initial discharge capacity.
  • the positive electrode resistance is a Nyquist plot shown in FIG. 1 when the coin-type battery 1 is charged at a charging potential of 4.1 V and measured by an AC impedance method using a frequency response analyzer and a potentiogalvanostat (Solartron, 1255B). Is obtained. Since this Nyquist plot is represented as the sum of the solution resistance, the negative electrode resistance and its capacity, and the characteristic curve indicating the positive electrode resistance and its capacity, the fitting calculation was performed using an equivalent circuit based on this Nyquist plot, and the positive resistance The value of was calculated.
  • the lamination cell 4 shown in the schematic explanatory drawing of FIG. 4 was used for evaluation of the gas generation amount of a positive electrode active material.
  • the laminate cell 4 is manufactured by pasting a positive electrode active material on an aluminum current collector foil (thickness: 0.02 mm), leaving a conductive portion connected to the outside, and drying, so that the basis weight of the positive electrode active material is 7 mg.
  • a positive electrode sheet 5 on which a positive electrode active material layer of / cm 2 was formed was produced.
  • carbon powder acetylene black
  • a negative electrode active material layer having a negative electrode active material weight of 5 mg / cm 2 was formed in the same manner.
  • a negative electrode sheet 6 was produced.
  • a laminated sheet was formed between the produced positive electrode sheet 5 and negative electrode sheet 6 with a separator 7 made of a polypropylene microporous film (thickness 20.7 ⁇ m, porosity density 43.9%) interposed. Then, this laminated sheet is sandwiched between two aluminum laminate sheets 8 (thickness 0.05 mm), and the three sides of the aluminum laminate sheet are heat-sealed and sealed to assemble a laminate cell having a structure as shown in FIG. It was.
  • the produced laminate cell 4 was stored for 12 hours in a constant temperature bath (Cosmo Pier) manufactured by Hitachi Appliances, Ltd. set at 25 ° C. After storing for 12 hours, using a charge / discharge device (Hokuto Denko Co., Ltd .: HJ1001SD8) while being housed in a thermostatic chamber, a constant current mode of 0.2 C in the range of 3.0 to 4.3 V The battery was charged and discharged three times. After charging and discharging, the battery was charged in a constant current mode of 1 C up to 4.6 V, and then left in a constant temperature bath for 72 hours to generate gas in the laminate cell 4. At this time, the laminate cell 4 was sandwiched and held between a pair of plate-like members (made of stainless steel), and an exposed portion was formed by exposing a width of 1 cm from the end of the laminate cell from the pair of plate-like members.
  • the gas generation test-laminated laminate cell (hereinafter referred to as a “tested laminate cell”) 4a is taken out of the thermostatic bath, and marking is performed with an oil-based magic at a position 1 cm wide from the end of the tested laminate cell 4a. It was. Thereafter, as shown in the schematic explanatory diagram of the gas generation amount evaluation method in FIG. 5, the tested laminate cell 4a is placed on the table T of the manual hydraulic press machine PA4 (manufactured by NPA Corporation: model number TB-50H).
  • the pressure member PP is pressed by the manual hydraulic press machine PA and a pressure of 4 kN is applied to the tested laminate cell 4a, and the gas in the tested laminate cell 4a is collected in the non-pressurized part UPA.
  • the non-pressurized part UPA was swollen by the collected gas, and one end part of the mounting member MP was moved upward.
  • the value of the dial gauge Ga was read, the amount of movement of one end of the mounting member MP was measured, and the amount of generated gas was evaluated.
  • each reagent-grade sample manufactured by Wako Pure Chemical Industries, Ltd. was used for producing composite hydroxide, producing a positive electrode active material, and a secondary battery.
  • This lithium metal composite oxide powder had an average particle size of 12.4 ⁇ m and a specific surface area of 0.3 m 2 / g.
  • the average particle diameter was evaluated using the volume integrated average value in the laser diffraction scattering method, and the specific surface area was evaluated using the BET method based on nitrogen gas adsorption.
  • aqueous solution of a tungsten compound was obtained by adding and stirring 15.6 g of tungsten oxide (WO 3 ) in an aqueous solution in which 5.6 g of lithium hydroxide (LiOH) was dissolved in 100 ml of pure water.
  • lithium metal composite oxide powder as a base material was immersed in the aqueous solution and further mixed by stirring for 10 minutes, and at the same time, the lithium metal composite oxide powder was washed with water. Then, it solid-liquid-separated by carrying out suction filtration using Nutsche, and obtained the tungsten mixture which consists of lithium metal complex oxide particle
  • the obtained mixture was put into a stainless steel (SUS) firing container, heated in a vacuum atmosphere at a heating rate of 2.8 ° C./min to 210 ° C. and heat-treated for 13 hours, and then cooled to room temperature. Finally, the mixture was pulverized through a sieve having an aperture of 38 ⁇ m to obtain a positive electrode active material having lithium tungstate on the primary particle surfaces.
  • SUS stainless steel
  • the obtained positive electrode active material was embedded in a resin and subjected to a cross section polisher to prepare an observation sample.
  • the cross section was observed by SEM using the sample at a magnification of 5000 times, the primary particles and secondary particles formed by agglomeration of the primary particles were formed, and fine particles of lithium tungstate were formed on the primary particle surface. It was confirmed that the particle diameter of the fine particles was 20 to 145 nm.
  • secondary particles with lithium tungstate formed on the primary particle surface account for 90% of the observed number of secondary particles, and it was confirmed that lithium tungstate was uniformly formed between the secondary particles. It was.
  • TEM transmission electron microscope
  • a laminate cell 4 was prepared using the obtained positive electrode active material as a positive electrode material, a gas generation test was performed, and the amount of gas generated was evaluated. In the evaluation, the amount of gas generated was evaluated as a relative value with Example 1 as 100.
  • Example 1 shows the morphological analysis results of the lithium tungstates of Examples 1 to 6 and Comparative Examples 1 to 5, and the evaluation values of the initial discharge capacity and the positive electrode resistance.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 3.5 g of LiOH and 10.5 g of WO 3 were used.
  • the tungsten mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 6.8% by mass.
  • the Li concentration of the liquid component was 1.74 mol / L
  • the tungsten content of the tungsten mixture was 0.0023 mol
  • the Li molar ratio was 3.8.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.3 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.994 and the core material Li / Me was 0.992. Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated. Met.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 7.0 g of LiOH and 19.3 g of WO 3 were used.
  • the tungsten mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.3% by mass.
  • the Li concentration of the liquid component was 3.19 mol / L
  • the tungsten content of the mixture was 0.0046 mol
  • the Li molar ratio was 3.8.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.6 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.995 and the Li / Me of the core material was 0.993. Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated. Met.
  • the tungsten mixture was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 7.5% by mass.
  • the Li concentration of the liquid component during solid-liquid separation was 0.31 mol / L
  • the tungsten content of the mixture was 0.062 mol
  • the Li molar ratio was 3.2. .
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 2.0 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.990 and the Li / Me of the core material was 0.988. Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 55 mol%. Met.
  • lithium metal composite oxide powder as a base material was immersed in 400 ml of pure water and washed with water. After solid-liquid separation, 31.2 g of lithium tungstate (Li 4 WO A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that an aqueous solution in which 5 ) was dissolved was added to obtain a tungsten mixture.
  • the tungsten mixture was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 6.4% by mass. Further, when analyzed by ICP emission spectroscopy, the Li concentration of the liquid component at the time of solid-liquid separation after addition of lithium tungstate was 1.36 mol / L, the tungsten content of the mixture was 0.0065 mol, Li The molar ratio was 4.0.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.2 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.992 and the core material Li / Me was 0.989. Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 75 mol%. Met.
  • the average particle size obtained by a known technique of mixing and firing oxide powder composed of Ni, Co and Mn and lithium hydroxide is 5.6 ⁇ m, the specific surface area is 0.7 m 2 / g, Li 1 .175
  • the powder of lithium metal composite oxide particles represented by Ni 0.34 Co 0.33 Mn 0.33 O 2 was used as a base material.
  • a positive electrode active material was obtained.
  • the mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 7.8% by mass.
  • the Li concentration of the liquid component was 2.24 mol / L
  • the tungsten content of the mixture was 0.0039 mol
  • the Li molar ratio was 3.8.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 1.146, and the core material Li / Me was 1.144. Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 and Li 2 WO 4 was confirmed in the lithium tungstate, and the abundance ratio of Li 2 WO 4 contained in the lithium tungstate was determined. When calculated, the abundance ratio of Li 4 WO 5 was 60 mol%, and the abundance ratio of Li 2 WO 4 was considered to be 40 mol%. Furthermore, the excess lithium was 0.02 mass% with respect to the total amount of the positive electrode active material. The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
  • Example 1 A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that the aqueous solution of the tungsten compound was changed to pure water and washed.
  • Li / Me of the obtained positive electrode active material was analyzed by ICP emission spectroscopy, Li / Me was 0.991. Excess lithium was 0.03% by mass relative to the total amount of the positive electrode active material.
  • the morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
  • Example 2 A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 9.5 g of LiOH and 15.6 g of WO 3 were used. The tungsten mixture after the solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.6% by mass. When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 4.22 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 6.3.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.996 and the core material Li / Me was 0.993. Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 95 mol%. Met.
  • Example 3 A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1, except that 4.0 g of LiOH and 15.6 g of WO 3 were used. The tungsten mixture after the solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.6% by mass. When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 1.95 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 2.9.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.994 and the core material Li / Me was 0.992. Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 35 mol. %Met.
  • the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.992, and the Li / Me of the core material was 0.991.
  • lithium tungstate was attached only to the surface of the positive electrode active material particles and was not present on the surface of the primary particles inside.
  • the morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
  • Example 5 A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 6 except that it was changed to pure water and washed without using an aqueous solution of a tungsten compound.
  • Li / Me of the obtained positive electrode active material was analyzed by ICP emission spectroscopy, Li / Me was 1.138. Excess lithium was 0.04 mass% with respect to the total amount of the positive electrode active material.
  • the morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
  • FIG. 3 shows an example of a cross-sectional observation result of the positive electrode active material obtained in the example of the present invention using a scanning microscope.
  • the obtained positive electrode active material is composed of primary particles and primary particles aggregated. It was confirmed that fine particles containing lithium tungstate were formed on the primary particle surface. The fine particles containing lithium tungstate are indicated by arrows in FIG.
  • Comparative Example 1 since lithium tungstate is not formed on the primary particle surfaces, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
  • Comparative Examples 2 and 3 the amount of tungsten with respect to the number of Ni, Co, and M atoms contained in the positive electrode active material is similar to that in Example 1, but Comparative Example 2 has a large proportion of Li 4 WO 5 .
  • the positive electrode resistance is about the same as that of the example, but the amount of gas generation is increased.
  • the ratio of Li 4 WO 5 is small in Comparative Example 3, the amount of gas generation is small, but the positive electrode resistance is high.
  • Comparative Example 4 Since Comparative Example 4 was mixed with the tungsten compound in a dry state, lithium tungstate was not formed on the surface of the primary particles inside the secondary particles, the positive electrode resistance was high, and the lithium tungstate was Li 4 WO 5 . It can be seen that the amount of gas generation is also increasing. In Comparative Example 5, since lithium tungstate is not formed on the primary particle surface, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
  • the non-aqueous electrolyte secondary battery of the present invention is suitable for a power source of a small portable electronic device (such as a notebook personal computer or a mobile phone terminal) that always requires a high capacity, and an electric vehicle battery that requires a high output. Also suitable.
  • the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output, and thus is suitable as a power source for an electric vehicle subject to restrictions on mounting space.
  • the present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

Abstract

Provided is a positive electrode active material for a nonaqueous electrolyte secondary cell with which high capacity and greater output is obtained when used as a positive electrode material. A method for manufacturing the positive electrode active material for a nonaqueous electrolyte secondary cell, the method having: a mixing step in which is obtained a W mixture of Li metal composite oxide particles comprising primary particles represented by the general formula LizNi1-x-yCoxMyO2 (O < x ≤ 0.35, 0 ≤ y ≤ 0.35, 0.95 ≤ z ≤ 1.30, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and secondary particles in which the primary particles are aggregated, 2 mass% or more of liquid in relation to the oxide particles, and a W compound or a W compound and an Li compound, the molar ratio of the total amount of Li contained in the W compound, or the W compound and Li compound, of the liquid and solid portions, in relation to the amount of W contained, being 3-5; and a heat treatment step for heat-treating the W mixture, and forming lithium tungstate on the surface of the primary particles of the Li metal composite oxide particles.

Description

非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
 本発明は、非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池に関するものである。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。 In recent years, with the widespread use of portable electronic devices such as mobile phones and laptop computers, the development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. In addition, development of a high output secondary battery is strongly desired as a battery for electric vehicles including hybrid vehicles.
 このような要求を満たす二次電池として、リチウムイオン二次電池がある。
 このリチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質は、リチウムを脱離および挿入することの可能な材料が用いられている。このようなリチウムイオン二次電池は、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
As a secondary battery satisfying such requirements, there is a lithium ion secondary battery.
This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode. Such a lithium ion secondary battery is currently being actively researched and developed. Among them, a lithium ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode material, Since a high voltage of 4V class can be obtained, practical use is progressing as a battery having a high energy density.
 これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
 このうちリチウムニッケル複合酸化物は、高い電池容量が得られる材料として注目されている。さらに、近年では高出力化に必要な低抵抗化が重要視されている。
 上記低抵抗化を実現する方法として異元素の添加が用いられており、とりわけW、Mo、Nb、Ta、Reなどの高価数をとることができる遷移金属が有用とされている。
The materials mainly proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel. Examples thereof include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and lithium manganese composite oxide (LiMn 2 O 4 ) using manganese.
Among these, lithium nickel composite oxide has attracted attention as a material that can provide a high battery capacity. Further, in recent years, low resistance necessary for high output is regarded as important.
Addition of foreign elements is used as a method for realizing the low resistance, and transition metals capable of taking high numbers such as W, Mo, Nb, Ta, Re, etc. are particularly useful.
 例えば、特許文献1には、Mo、W、Nb、Ta及びReから選ばれる1種以上の元素が、Mn、Ni及びCoの合計モル量に対して0.1~5モル%含有されているリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が提案され、一次粒子の表面部分のLi並びにMo、W、Nb、Ta及びRe以外の金属元素の合計に対するMo、W、Nb、Ta及びReの合計の原子比が、一次粒子全体の該原子比の5倍以上であることが好ましいとされている。 For example, Patent Document 1 contains at least one element selected from Mo, W, Nb, Ta, and Re in an amount of 0.1 to 5 mol% with respect to the total molar amount of Mn, Ni, and Co. Lithium transition metal compound powder for a lithium secondary battery positive electrode material has been proposed, and Mo, W, Nb, Ta, and Li in the surface portion of primary particles and the total of metal elements other than Mo, W, Nb, Ta, and Re The total atomic ratio of Re is preferably 5 times or more of the atomic ratio of the entire primary particle.
 この提案によれば、リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の低コスト化及び高安全性化と高負荷特性、粉体取り扱い性向上の両立を図ることができる。
しかし、上記リチウム遷移金属系化合物粉体は、原料を液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥し、得られた噴霧乾燥体を焼成することで得ている。そのため、Mo、W、Nb、Ta及びReなどの異元素の一部が層状に配置されているNiと置換してしまい、電池の容量やサイクル特性などの電池特性が低下してしまう問題があった。
According to this proposal, it is possible to achieve both low cost and high safety of the lithium transition metal compound powder for the lithium secondary battery positive electrode material, high load characteristics, and improved powder handling properties.
However, the lithium transition metal compound powder is obtained by pulverizing raw materials in a liquid medium, spray-drying a slurry in which these are uniformly dispersed, and firing the resulting spray-dried body. Therefore, a part of different elements such as Mo, W, Nb, Ta, and Re is replaced with Ni arranged in a layer, and there is a problem that battery characteristics such as battery capacity and cycle characteristics are deteriorated. It was.
 また、特許文献2には、少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解質二次電池用正極活物質であって、そのリチウム遷移金属複合酸化物は、一次粒子およびその凝集体である二次粒子の一方または両方からなる粒子の形態で存在し、その粒子の少なくとも表面に、モリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種を備える化合物を有する非水電解質二次電池用正極活物質が提案されている。 Patent Document 2 discloses a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a layered lithium transition metal composite oxide, the lithium transition metal composite oxide being composed of primary particles and aggregates thereof. A non-aqueous electrolyte having a compound which is present in the form of a particle composed of one or both of secondary particles and has at least one selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine on at least the surface of the particle A positive electrode active material for a secondary battery has been proposed.
 これにより、より一層厳しい使用環境下においても優れた電池特性を有する非水電解質二次電池用正極活物質が得られるとされ、特に、粒子の表面にモリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種を有する化合物を有することにより、熱安定性、負荷特性および出力特性の向上を損なうことなく、初期特性が向上するとしている。 As a result, it is said that a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent battery characteristics even under a more severe use environment can be obtained, and in particular, the surface of the particle is composed of molybdenum, vanadium, tungsten, boron and fluorine. By having a compound having at least one selected from the group, the initial characteristics are improved without impairing the improvement of thermal stability, load characteristics and output characteristics.
 しかしながら、モリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種の添加元素による効果は、初期特性、すなわち初期放電容量および初期効率の向上にあるとされ、出力特性に言及したものではない。また、開示されている製造方法によれば、添加元素をリチウム化合物と同時に熱処理した水酸化物と混合して焼成するため、添加元素の一部が層状に配置されているニッケルと置換してしまい電池特性の低下を招く問題があった。 However, the effect of at least one additive element selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine is considered to be an improvement in initial characteristics, that is, initial discharge capacity and initial efficiency, and refers to output characteristics. is not. Further, according to the disclosed manufacturing method, since the additive element is mixed with the hydroxide that has been heat-treated at the same time as the lithium compound and fired, a part of the additive element is replaced with nickel arranged in layers. There was a problem that caused the battery characteristics to deteriorate.
 さらに、特許文献3には、正極活物質の周りにTi、Al、Sn、Bi、Cu、Si、Ga、W、Zr、B、Moから選ばれた少なくとも一種を含む金属及びまたはこれら複数個の組み合わせにより得られる金属間化合物、及びまたは酸化物を被覆した正極活物質が提案されている。
 このような被覆により、酸素ガスを吸収させ安全性を確保できるとしているが、出力特性に関しては全く開示されていない。また、開示されている製造方法は、遊星ボールミルを用いて被覆するものであり、このような被覆方法では、正極活物質に物理的なダメージを与えてしまい、電池特性が低下してしまう。
Further, Patent Document 3 discloses a metal including at least one selected from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, and Mo around the positive electrode active material and / or a plurality of these. A positive electrode active material coated with an intermetallic compound and / or oxide obtained by a combination has been proposed.
Such a coating can absorb oxygen gas and ensure safety, but no output characteristics are disclosed. Further, the disclosed manufacturing method is a method of coating using a planetary ball mill, and such a coating method causes physical damage to the positive electrode active material, resulting in deterioration of battery characteristics.
 また、特許文献4には、ニッケル酸リチウムを主体とする複合酸化物粒子にタングステン酸化合物を被着させて加熱処理を行ったもので、炭酸イオンの含有量が0.15重量%以下である正極活物質が提案されている。
 この提案によれば、正極活物質の表面にタングステン酸化合物またはタングステン酸化合物の分解物が存在し、充電状態における複合酸化物粒子表面の酸化活性を抑制するため、非水電解液等の分解によるガス発生を抑制することができるとしているが、出力特性に関しては全く開示されていない。
In Patent Document 4, a composite oxide particle mainly composed of lithium nickelate is subjected to heat treatment by adhering a tungstic acid compound, and the content of carbonate ions is 0.15% by weight or less. A positive electrode active material has been proposed.
According to this proposal, there is a tungstic acid compound or a decomposition product of the tungstic acid compound on the surface of the positive electrode active material, and the oxidation activity on the surface of the composite oxide particles in a charged state is suppressed. Although gas generation can be suppressed, the output characteristics are not disclosed at all.
 さらに、開示されている製造方法は、好ましくは被着成分を溶解した溶液の沸点以上に加熱した複合酸化物粒子に、タングステン酸化合物とともに硫酸化合物、硝酸化合物、ホウ酸化合物またはリン酸化合物を被着成分として溶媒に溶解した溶液を被着させるものであり、溶媒を短時間で除去するため、複合酸化物粒子表面にタングステン化合物が十分に分散されず、均一に被着されないという問題点がある。 Furthermore, the disclosed production method preferably comprises a composite oxide particle heated to a boiling point or higher of a solution in which an adherent component is dissolved, and a sulfuric acid compound, a nitric acid compound, a boric acid compound, or a phosphoric acid compound as well as a tungstate compound. Since the solution dissolved in the solvent is applied as the adhering component, and the solvent is removed in a short time, the tungsten compound is not sufficiently dispersed on the surface of the composite oxide particles, so that there is a problem that it is not uniformly applied. .
 また、リチウムニッケル複合酸化物の高出力化に関する改善が行われている。例えば特許文献5には、一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物であって、前記リチウム金属複合酸化物の表面に、LiWO、LiWO、Liのいずれかで表されるタングステン酸リチウムを含む微粒子を有する非水系電解質二次電池用正極活物質が提案され、高容量とともに高出力が得られるとされている。しかしながら、高容量が維持されながら高出力化されているものの、更なる高容量化が要求されている。 In addition, improvements relating to higher output of the lithium nickel composite oxide have been made. For example, Patent Document 5 discloses a lithium metal composite oxide including primary particles and secondary particles formed by aggregation of the primary particles, and Li 2 WO 4 , Li 4 A positive electrode active material for a non-aqueous electrolyte secondary battery having fine particles containing lithium tungstate represented by either WO 5 or Li 6 W 2 O 9 has been proposed, and high output is obtained with high capacity. Yes. However, although the output is increased while maintaining a high capacity, a further increase in capacity is required.
特開2009‐289726号公報JP 2009-289726 A 特開2005‐251716号公報JP 2005-251716 A 特開平11‐16566号公報Japanese Patent Laid-Open No. 11-16566 特開2010‐40383号公報JP 2010-40383 A 特開2013‐125732号公報JP 2013-125732 A
 本発明は係る問題点に鑑み、正極材に用いられた場合に高容量とともに、ガス発生量の増加を抑制しながら、更なる高出力が得られる非水系電解質二次電池用正極活物質を提供することを目的とする。 In view of the above problems, the present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery that, when used in a positive electrode material, has a high capacity and suppresses an increase in the amount of gas generated while obtaining a higher output. The purpose is to do.
 本発明者らは、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられているリチウム金属複合酸化物の粉体特性、および電池の出力特性に対する影響について鋭意研究したところ、リチウム金属複合酸化物を構成する一次粒子および二次粒子の表面に、特定の形態を有するタングステン酸リチウムを形成させることで、正極活物質の正極抵抗を低減して電池の出力特性を向上させることが可能であることを見出した。さらに、その製造方法として、リチウム金属複合酸化物の粒子外のリチウムとタングステンを特定の比率に制御した混合物を熱処理することで、上記タングステン酸リチウムの形態を制御することが可能であることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied the influence on the powder characteristics of the lithium metal composite oxide used as the positive electrode active material for the non-aqueous electrolyte secondary battery and the output characteristics of the battery. In addition, by forming lithium tungstate having a specific form on the surfaces of primary particles and secondary particles constituting the lithium metal composite oxide, the positive electrode resistance of the positive electrode active material is reduced and the output characteristics of the battery are improved. I found that it was possible. Furthermore, as a manufacturing method thereof, it has been found that the form of the lithium tungstate can be controlled by heat-treating a mixture in which lithium and tungsten outside the particles of the lithium metal composite oxide are controlled to a specific ratio. The present invention has been completed.
 即ち、本発明の第1の発明は、一般式:LiNi1-x-yCo(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子、および一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物粉末と、そのリチウム金属複合酸化物粉末に対して2質量%以上の水分と、タングステン化合物もしくはタングステン化合物およびリチウム化合物とのタングステン混合物であり、含有されるタングステン量に対する水分と固体分のタングステン化合物、もしくは水分と固体分のタングステン化合物およびリチウム化合物に含有される合計のリチウム量のモル比が3~5であるタングステン混合物を得る混合工程と、得られたタングステン混合物を熱処理してリチウム金属複合酸化物の一次粒子表面にタングステン酸リチウムを形成させる熱処理工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 That is, the first invention of the present invention have the general formula: Li z Ni 1-x- y Co x M y O 2 ( however, 0 <x ≦ 0.35,0 ≦ y ≦ 0.35,0.95 ≦ z ≦ 1.30, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), and secondary particles formed by agglomeration of primary particles Lithium metal composite oxide powder having a layered crystal structure composed of secondary particles, 2% by mass or more of moisture with respect to the lithium metal composite oxide powder, and tungsten of tungsten compound or tungsten compound and lithium compound The total lithium contained in the water and solid tungsten compound or the water and solid tungsten compound and lithium compound relative to the amount of tungsten contained. A mixing step of obtaining a tungsten mixture having a molar ratio of 3 to 5; and a heat treatment step of heat-treating the obtained tungsten mixture to form lithium tungstate on the primary particle surface of the lithium metal composite oxide. And a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
 本発明の第2の発明は、第1の発明の非水系電解質二次電池用正極活物質の製造方法において、リチウム金属複合酸化物粉末を水と混合してスラリーを形成して、リチウム金属複合酸化物粉末を水洗する水洗工程と、次いで、水洗工程後に固液分離する固液分離工程を混合工程の前工程として備えることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 According to a second aspect of the present invention, in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the first aspect, a lithium metal composite oxide powder is mixed with water to form a slurry. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising: a water washing step of washing the oxide powder with water; and then a solid-liquid separation step of solid-liquid separation after the water washing step as a pre-process of the mixing step. is there.
 本発明の第3の発明は、第2の発明におけるスラリーに含まれるリチウム金属複合酸化物粉末の濃度が、水1Lに対して200~5000gであることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A third invention of the present invention is for a non-aqueous electrolyte secondary battery, wherein the concentration of the lithium metal composite oxide powder contained in the slurry according to the second invention is 200 to 5000 g with respect to 1 L of water. It is a manufacturing method of a positive electrode active material.
 本発明の第4の発明は、第2及び第3の発明の非水系電解質二次電池用正極活物質の製造方法において、タングステン化合物を少なくとも前記水洗工程中、固液分離工程後に添加して前記タングステン混合物を得ることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 According to a fourth aspect of the present invention, in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the second and third aspects, the tungsten compound is added at least during the water washing step and after the solid-liquid separation step. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein a tungsten mixture is obtained.
 本発明の第5の発明は、第4の発明における水洗工程が、リチウム金属複合酸化物粉末をタングステン化合物の水溶液と混合したスラリーを形成することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the water washing step forms a slurry in which the lithium metal composite oxide powder is mixed with an aqueous solution of a tungsten compound to form a positive electrode active for a non-aqueous electrolyte secondary battery. It is a manufacturing method of a substance.
 本発明の第6の発明は、第4の発明におけるタングステン化合物が、粉末状態であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A sixth invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the tungsten compound according to the fourth invention is in a powder state.
 本発明の第7の発明は、第1から第6の発明における熱処理が、100~600℃で行うことを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A seventh invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the heat treatment in the first to sixth inventions is performed at 100 to 600 ° C.
 本発明の第8の発明は、第1から第7の発明におけるタングステン混合物に含まれるタングステン量が、リチウム金属複合酸化物粉末に含まれるNi、CoおよびMの原子数の合計に対して、0.05~2.0原子%とすることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 According to an eighth aspect of the present invention, the amount of tungsten contained in the tungsten mixture according to the first to seventh aspects is 0 with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by comprising 0.05 to 2.0 atomic%.
 本発明の第9の発明は、一次粒子及び、一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物粉末からなる非水系電解質二次電池用正極活物質であって、一般式:LiNi1-x-yCo2+α(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、リチウム金属複合酸化物の一次粒子表面にタングステン酸リチウムを有し、タングステン酸リチウムに含まれるLiWOの存在比率が50~90mol%であることを特徴とする非水系電解質二次電池用正極活物質である。 According to a ninth aspect of the present invention, there is provided a nonaqueous electrolyte secondary battery comprising a lithium metal composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of the primary particles. a use positive electrode active material, the general formula: Li z Ni 1-x- y Co x M y W a O 2 + α ( although, 0 <x ≦ 0.35,0 ≦ y ≦ 0.35,0.95 ≦ z ≦ 1.30, 0 <a ≦ 0.03, 0 ≦ α ≦ 0.15, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) The lithium metal composite oxide has lithium tungstate on the surface of primary particles, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate is 50 to 90 mol%, for a non-aqueous electrolyte secondary battery It is a positive electrode active material.
 本発明の第10の発明は、第9の発明におけるリチウム金属複合酸化物粒子の表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量が、正極活物質全量に対して0.08質量%以下であることを特徴とする非水電解質二次電池用正極活物質である。 In a tenth aspect of the present invention, the amount of lithium contained in a lithium compound other than lithium tungstate present on the surface of the lithium metal composite oxide particles in the ninth aspect is 0.08 with respect to the total amount of the positive electrode active material. A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the content is not more than mass%.
 本発明の第11の発明は、第9及び第10の発明におけるタングステン酸リチウムに含有されるタングステン量が、リチウム金属複合酸化物に含まれるNi、CoおよびMの原子数の合計に対してWの原子数が0.05~2.0原子%であることを特徴とする非水系電解質二次電池用正極活物質である。 According to an eleventh aspect of the present invention, the amount of tungsten contained in the lithium tungstate according to the ninth and tenth aspects of the present invention is W relative to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. The positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that the number of atoms is 0.05 to 2.0 atomic%.
 本発明の第12の発明は、第9から第11の発明におけるタングステン酸リチウムが、粒子径1~200nmの微粒子として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。 According to a twelfth aspect of the present invention, the lithium tungstate according to the ninth to eleventh aspects of the present invention is present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 200 nm. It is a positive electrode active material for electrolyte secondary batteries.
 本発明の第13の発明は、第9から第11の発明におけるタングステン酸リチウムが、膜厚1~150nmの被膜として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。 A thirteenth aspect of the present invention is a nonaqueous system characterized in that the lithium tungstate according to the ninth to eleventh aspects is present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 150 nm. It is a positive electrode active material for electrolyte secondary batteries.
 本発明の第14の発明は、第9から第11の発明におけるタングステン酸リチウムが、粒子径1~200nmの微粒子及び膜厚1~150nmの被膜の両形態として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。 According to a fourteenth aspect of the present invention, the lithium tungstate according to the ninth to eleventh aspects is the primary particle of the lithium metal composite oxide as both fine particles having a particle diameter of 1 to 200 nm and a film having a thickness of 1 to 150 nm. A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by being present on the surface.
 本発明の第15の発明は、第9~14の発明における非水系電解質二次電池用正極活物質を含む正極を有することを特徴とする非水系電解質二次電池である。 A fifteenth aspect of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the ninth to fourteenth aspects.
 本発明によれば、電池の正極材に用いた場合に、ガス発生量を抑制しつつ、高容量とともに高出力が実現可能な非水系電解質二次電池用正極活物質が得られる。
 さらに、その製造方法は、容易で工業的規模での生産に適したものであり、その工業的価値は極めて大きい。
ADVANTAGE OF THE INVENTION According to this invention, when used for the positive electrode material of a battery, the positive electrode active material for nonaqueous electrolyte secondary batteries which can implement | achieve high output with a high capacity | capacitance is suppressed, suppressing gas generation amount.
Furthermore, the manufacturing method is easy and suitable for production on an industrial scale, and its industrial value is extremely large.
インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。It is a schematic explanatory drawing of the measurement example of impedance evaluation, and the equivalent circuit used for analysis. 電池評価に使用した2032型コイン電池1の概略断面図である。It is a schematic sectional drawing of the 2032 type coin battery 1 used for battery evaluation. 実施例で得られた正極活物質の走査顕微鏡による断面観察結果を示す一例である。It is an example which shows the cross-sectional observation result by the scanning microscope of the positive electrode active material obtained in the Example. 電池評価に使用したラミネートセル4の概略説明図である。It is a schematic explanatory drawing of the laminate cell 4 used for battery evaluation. 油圧プレス機PAによりラミネートセル4を加圧するガス発生量の評価方法を示す概略説明図である。It is a schematic explanatory drawing which shows the evaluation method of the gas generation amount which pressurizes the lamination cell 4 with the hydraulic press machine PA.
 以下、本発明について、まず本発明の正極活物質について説明した後、その製造方法と本発明による正極活物質を用いた非水系電解質二次電池について説明する。 Hereinafter, after describing the positive electrode active material of the present invention first, the production method and the nonaqueous electrolyte secondary battery using the positive electrode active material according to the present invention will be described.
(1)正極活物質
 本発明の非水系電解質二次電池用正極活物質は、一次粒子、および一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物からなる非水系電解質二次電池用正極活物質であって、正極活物質の組成が一般式:LiNi1-x-yCo2+α(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、そのリチウム金属複合酸化物の一次粒子表面にタングステン酸リチウムを有し、前記タングステン酸リチウム中に含まれるLiWOの存在比率が50~90mol%であることを特徴とするものである。
(1) Positive electrode active material The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium metal having a layered structure crystal structure composed of primary particles and secondary particles formed by agglomeration of primary particles. a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite oxide having a composition of general formula of the positive electrode active material: Li z Ni 1-x- y Co x M y W a O 2 + α ( although, 0 <x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.95 ≦ z ≦ 1.30, 0 <a ≦ 0.03, 0 ≦ α ≦ 0.15, M is Mn, V, Mg, Mo, Lithium tungstate is present on the surface of the primary particle of the lithium metal composite oxide, and Li 4 WO 5 is present in the lithium tungstate, represented by at least one element selected from Nb, Ti and Al) The ratio is 50 to 90 mol% It is an.
 本発明においては、母材として一般式LiNi1-x-yCo(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物を用いることにより、高い充放電容量を得るものである。より高い充放電容量を得るためには、上記一般式において、x+y≦0.2、0.95≦z≦1.10とすることが好ましい。高い熱的安定性が要求される場合には、x+y>0.2とすることが好ましい。
 さらに、その母材が一次粒子と一次粒子が凝集して形成された二次粒子とから構成されたリチウム金属複合酸化物粉末(以下、二次粒子と単独で存在する一次粒子を合わせて「リチウム金属複合酸化物粒子」ということがある。)の形態を採り、その一次粒子表面に形成されたタングステン酸リチウム中に含まれるLiWOの存在比率(以下、LiWO存在比率という)が50~90mol%であることにより、ガス発生量の増加を抑制するとともに充放電容量を維持しながら出力特性を向上させるものである。
In the present invention, the general formula as a base material Li z Ni 1-x-y Co x M y O 2 ( however, 0 <x ≦ 0.35,0 ≦ y ≦ 0.35,0.95 ≦ z ≦ 1 .30, M is a lithium metal composite oxide represented by (at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), thereby obtaining a high charge / discharge capacity. is there. In order to obtain a higher charge / discharge capacity, it is preferable to satisfy x + y ≦ 0.2 and 0.95 ≦ z ≦ 1.10. When high thermal stability is required, it is preferable to satisfy x + y> 0.2.
Further, a lithium metal composite oxide powder whose base material is composed of primary particles and secondary particles formed by agglomeration of primary particles (hereinafter, secondary particles and primary particles present alone are combined to form “lithium” The abundance ratio of Li 4 WO 5 contained in the lithium tungstate formed on the surface of the primary particle (hereinafter referred to as the Li 4 WO 5 abundance ratio). Is from 50 to 90 mol%, it suppresses an increase in the amount of gas generated and improves the output characteristics while maintaining the charge / discharge capacity.
 一般的に、正極活物質の表面が異種化合物により完全に被覆されてしまうと、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウムニッケル複合酸化物の持つ高容量という長所が消されてしまう。
 対して、本発明においては、リチウム金属複合酸化物粒子の表面及び内部の一次粒子表面にタングステン酸リチウムを形成させているが、このタングステン酸リチウムは、リチウムイオン伝導性が高く、リチウムイオンの移動を促す効果がある。このため、リチウム金属複合酸化物粒子の一次粒子表面に上記タングステン酸リチウムを形成させることで、電解液との界面でLiの伝導パスを形成することから、正極活物質の反応抵抗(以下、正極抵抗ということがある。)を低減して電池の出力特性を向上させるものである。
 すなわち、正極抵抗が低減されることで、電池内で損失される電圧が減少し、実際に負荷側に印加される電圧が相対的に高くなるため、高出力が得られる。また、負荷側への印加電圧が高くなることで、正極でのリチウムの挿抜が十分に行われるため、電池の充放電容量(以下、「電池容量」ということがある。)も向上するものである。
In general, when the surface of the positive electrode active material is completely covered with a different compound, the movement (intercalation) of lithium ions is greatly limited, resulting in a high capacity of the lithium nickel composite oxide. The advantages are erased.
On the other hand, in the present invention, lithium tungstate is formed on the surface of the lithium metal composite oxide particles and on the surface of the primary particles inside, but this lithium tungstate has high lithium ion conductivity and the movement of lithium ions. Has the effect of prompting. For this reason, since the lithium tungstate is formed on the primary particle surface of the lithium metal composite oxide particles, a Li conduction path is formed at the interface with the electrolytic solution, so that the reaction resistance of the positive electrode active material (hereinafter, positive electrode) The output characteristics of the battery are improved by reducing the resistance.
That is, by reducing the positive electrode resistance, the voltage lost in the battery is reduced, and the voltage actually applied to the load side becomes relatively high, so that a high output can be obtained. Further, since the voltage applied to the load side is increased, lithium is sufficiently inserted into and extracted from the positive electrode, so that the charge / discharge capacity of the battery (hereinafter sometimes referred to as “battery capacity”) is also improved. is there.
 ここで、このタングステン酸リチウムの中で、LiWO存在比率を50~90mol%とすることが重要である。
 即ち、タングステン酸リチウムはLiWO、LiWO、Liなど多くの存在形態を有するが、LiWOは、リチウムイオン伝導性が高く、一次粒子の表面にLiWOを存在させることで、正極活物質の反応抵抗がより大きく低減されるため、より大きな出力特性向上の効果が得られる。さらに、正極抵抗の低減により、電池容量の向上も可能となる。
Here, in this lithium tungstate, it is important that the abundance ratio of Li 4 WO 5 is 50 to 90 mol%.
That is, lithium tungstate has many forms such as Li 2 WO 4 , Li 4 WO 5 and Li 6 W 2 O 9, but Li 4 WO 5 has high lithium ion conductivity, and Li on the surface of the primary particles. Since the reaction resistance of the positive electrode active material is greatly reduced by the presence of 4 WO 5 , a greater effect of improving the output characteristics can be obtained. Further, the battery capacity can be improved by reducing the positive electrode resistance.
 しかしながら、タングステン酸リチウムをLiWOのみとすると電池の高温保存時におけるガス発生量が増加するため、安全性上の問題が生じる。ガス発生量が増加する原因の詳細は不明であるが、LiWOはLiが溶媒、特に水分によって解離しやすいためと考えられる。 However, if lithium tungstate is only Li 4 WO 5, the amount of gas generated during high-temperature storage of the battery increases, which causes a safety problem. The details of the cause of the increased gas generation amount are unknown, but Li 4 WO 5 is considered to be because Li is easily dissociated by a solvent, particularly moisture.
 したがって、本発明においては、このLiWO存在比率を50~90mol%、好ましくは50~80mol%とすることで、ガス発生量の増加を抑制しながら、反応抵抗の大きな低減効果を得ている。
 一方、LiWOは、LiWOほどは高くないが、高いリチウムイオン伝導率を有し、かつ水分によって解離しにくいため、電池の高温保存時におけるガス発生量の抑制効果が高い。
Therefore, in the present invention, by setting the abundance ratio of Li 4 WO 5 to 50 to 90 mol%, preferably 50 to 80 mol%, an effect of greatly reducing the reaction resistance can be obtained while suppressing an increase in gas generation amount. Yes.
On the other hand, Li 2 WO 4 is not as high as Li 4 WO 5, but has high lithium ion conductivity and is not easily dissociated by moisture. Therefore, the effect of suppressing the amount of gas generated during high-temperature storage of the battery is high.
 したがって、一次粒子の表面に形成させたタングステン酸リチウム中に含まれるLiWOの存在比率(以下、LiWO存在比率という)を10~50mol%とし、かつLiWOとLiWOの合計の存在比率を90mol%以上とすることが好ましい。この状況により、ガス発生量の増加をさらに抑制しながら、反応抵抗の大きな低減効果が得られる。 Therefore, the abundance ratio of Li 2 WO 4 contained in the lithium tungstate formed on the surface of the primary particles (hereinafter referred to as Li 2 WO 4 abundance ratio) is 10 to 50 mol%, and Li 4 WO 5 and Li 2 The total abundance ratio of WO 4 is preferably 90 mol% or more. In this situation, a large effect of reducing the reaction resistance can be obtained while further suppressing an increase in the amount of gas generated.
 タングステン酸リチウムの存在形態の測定は、存在形態がモル比で特定可能であればよく、X線や電子線を用いた機器分析により可能である。また、塩酸によるpH滴定分析によって算出してもよい。 The existence form of lithium tungstate can be measured as long as the existence form can be specified by a molar ratio, and can be measured by instrumental analysis using an X-ray or an electron beam. Alternatively, it may be calculated by pH titration analysis with hydrochloric acid.
 さらに、電解液との接触は、一次粒子表面で起こるため、一次粒子表面にタングステン酸リチウム(以下、「LWO」ということがある。)が形成されていることが重要である。ここで、本発明における一次粒子表面とは、二次粒子の外面で露出している一次粒子の表面と二次粒子の外部と通じて電解液が浸透可能な二次粒子の表面近傍および内部の空隙に露出している一次粒子の表面を含むものである。さらに、一次粒子間の粒界であっても一次粒子の結合が不完全で電解液が浸透可能な状態となっていれば含まれるものである。 Furthermore, since contact with the electrolytic solution occurs on the surface of the primary particles, it is important that lithium tungstate (hereinafter sometimes referred to as “LWO”) is formed on the surface of the primary particles. Here, the primary particle surface in the present invention means the surface of the primary particle exposed at the outer surface of the secondary particle and the surface of the secondary particle that can penetrate the electrolyte through the outside of the secondary particle and the inside of the secondary particle. It includes the surface of primary particles exposed in the voids. Furthermore, even a grain boundary between primary particles is included as long as the primary particles are not completely bonded and the electrolyte solution can penetrate.
 この電解液との接触は、一次粒子が凝集して形成された二次粒子の外面のみでなく、上記二次粒子の表面近傍および内部の一次粒子間の空隙、さらには上記不完全な粒界でも生じるため、上記一次粒子表面にもLWOを形成させ、リチウムイオンの移動を促すことが必要である。したがって、電解液との接触が可能な一次粒子表面のより多くにLWOを形成させることで、正極活物質の反応抵抗をより一層低減させることが可能となる。 The contact with the electrolytic solution is not limited to the outer surface of the secondary particles formed by agglomeration of the primary particles, but also the gap between the primary particles in the vicinity of the inner surface of the secondary particles and the incomplete grain boundary. However, since it also occurs, it is necessary to form LWO also on the surface of the primary particles to promote the movement of lithium ions. Therefore, the reaction resistance of the positive electrode active material can be further reduced by forming LWO on more primary particle surfaces that can be contacted with the electrolytic solution.
 さらに、LWOの一次粒子表面上における形態は、一次粒子表面を層状物で被覆した場合には、電解液との接触面積が小さくなってしまう、また、層状物を形成すると、化合物の形成が特定の一次粒子表面に集中するという結果になり易い。即ち、被覆物としての層状物が高いリチウムイオン伝導性を持っていることにより、充放電容量の向上、正極抵抗の低減という効果が得られるものの、十分ではなく改善の余地がある。 Furthermore, the form of the LWO on the primary particle surface is such that when the surface of the primary particle is coated with a layered material, the contact area with the electrolytic solution becomes small. When the layered material is formed, the formation of the compound is specified. It tends to result in concentration on the primary particle surface. That is, although the layered material as the coating has high lithium ion conductivity, the effects of improving the charge / discharge capacity and reducing the positive electrode resistance can be obtained, but there is room for improvement.
 したがって、より高い効果を得るため、LWOは、粒子径1~200nmの微粒子としてリチウム金属複合酸化物の一次粒子表面に存在することが好ましい。
 このような形態を採ることにより、電解液との接触面積を十分なものとして、リチウムイオン伝導性を効果的に向上できるため、充放電容量を向上させるとともに正極抵抗をより効果的に低減させることができる。その粒子径が1nm未満では、微細な粒子が十分なリチウムイオン伝導性を有しない場合がある。また、粒子径が200nmを超えると、微粒子の一次粒子表面における形成が不均一になり、正極抵抗低減のより高い効果が得られない場合がある。
Therefore, in order to obtain a higher effect, LWO is preferably present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 200 nm.
By adopting such a configuration, the lithium ion conductivity can be effectively improved with a sufficient contact area with the electrolytic solution, thereby improving the charge / discharge capacity and more effectively reducing the positive electrode resistance. Can do. If the particle diameter is less than 1 nm, fine particles may not have sufficient lithium ion conductivity. On the other hand, if the particle diameter exceeds 200 nm, the formation of fine particles on the primary particle surface becomes non-uniform, and the higher effect of reducing positive electrode resistance may not be obtained.
 ここで、微粒子は完全に一次粒子表面の全面において形成されている必要はなく、点在している状態でもよい。点在している状態でも、リチウム金属複合酸化物粒子の外面および内部の一次粒子表面に微粒子が形成されていれば、正極の反応抵抗の低減効果が得られる。 Here, the fine particles do not have to be completely formed on the entire surface of the primary particles, but may be scattered. Even in the scattered state, if the fine particles are formed on the outer surface and the inner primary particle surface of the lithium metal composite oxide particles, the effect of reducing the reaction resistance of the positive electrode can be obtained.
 また、微粒子は、全てが粒子径1~200nmの微粒子として存在する必要がなく、好ましくは一次粒子表面に形成された微粒子の個数で50%以上が、1~200nmの粒子径範囲で形成されていれば高い効果が得られる。 Further, it is not necessary for all the fine particles to be present as fine particles having a particle diameter of 1 to 200 nm. Preferably, 50% or more of the fine particles formed on the surface of the primary particles are formed in a particle diameter range of 1 to 200 nm. High effect can be obtained.
 一方、一次粒子表面を薄膜で被覆すると、比表面積の低下を抑制しながら、電解液との界面でLiの伝導パスを形成させることができ、より高い充放電容量の向上、正極抵抗の低減という効果が得られる。このような薄膜状のLWOにより一次粒子表面を被覆する場合には、膜厚1~150nmの被膜としてリチウム金属複合酸化物の一次粒子表面に存在することが好ましい。
 その膜厚が1nm未満では、被膜が十分なリチウムイオン伝導性を有しない場合がある。また、膜厚が150nmを超えると、リチウムイオン伝導性が低下し、正極抵抗低減のより高い効果が得られない場合がある。
On the other hand, when the primary particle surface is covered with a thin film, a conduction path of Li can be formed at the interface with the electrolytic solution while suppressing a decrease in specific surface area, which means higher charge / discharge capacity and reduced positive electrode resistance. An effect is obtained. When the surface of the primary particles is coated with such a thin film-like LWO, it is preferably present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 150 nm.
If the film thickness is less than 1 nm, the film may not have sufficient lithium ion conductivity. Moreover, when a film thickness exceeds 150 nm, lithium ion conductivity will fall and the higher effect of positive electrode resistance reduction may not be acquired.
 しかし、この被膜は、一次粒子表面上で部分的に形成されていてもよく、全ての被膜の膜厚範囲が1~150nmでなくてもよい。一次粒子表面に少なくとも部分的に膜厚が1~150nmの被膜が形成されていれば、高い効果が得られる。
 さらに、微粒子形態と薄膜の被膜形態が混在して一次粒子表面にLWOが形成されている場合にも、電池特性に対する高い効果が得られる。
However, this coating may be partially formed on the primary particle surface, and the film thickness range of all coatings may not be 1 to 150 nm. If a film having a film thickness of 1 to 150 nm is formed at least partially on the primary particle surface, a high effect can be obtained.
Furthermore, even when the fine particle form and the thin film form form are mixed and LWO is formed on the primary particle surface, a high effect on the battery characteristics can be obtained.
 一方、リチウム金属複合酸化物粒子間で不均一にタングステン酸リチウムが形成された場合は、リチウム金属複合酸化物粒子間でのリチウムイオンの移動が不均一となるため、特定のリチウム金属複合酸化物粒子に負荷がかかり、サイクル特性や出力特性の悪化を招きやすい。
 したがって、リチウム金属複合酸化物粒子間においても均一にタングステン酸リチウムが形成されていることが好ましい。
On the other hand, when lithium tungstate is formed non-uniformly between lithium metal composite oxide particles, the movement of lithium ions between lithium metal composite oxide particles becomes non-uniform. Particles are loaded, and cycle characteristics and output characteristics are likely to deteriorate.
Therefore, it is preferable that lithium tungstate is uniformly formed between the lithium metal composite oxide particles.
 このようなリチウム金属複合酸化物の一次粒子表面の性状は、例えば、電界放射型走査電子顕微鏡(SEM)で観察することにより判断でき、本発明の非水系電解質二次電池用正極活物質については、リチウム金属複合酸化物からなる一次粒子表面にタングステン酸リチウムが形成されていることを確認している。
 したがって、このタングステン酸リチウムの形成量は、反応抵抗を低減させるために十分な量であって、かつ電解液との接触が可能な一次粒子表面を十分に確保できる量とすることが必要である。
The property of the primary particle surface of such a lithium metal composite oxide can be judged, for example, by observing with a field emission scanning electron microscope (SEM). For the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, It has been confirmed that lithium tungstate is formed on the surface of primary particles made of lithium metal composite oxide.
Therefore, it is necessary that the amount of lithium tungstate formed is sufficient to reduce the reaction resistance and to ensure a sufficient primary particle surface that can be contacted with the electrolytic solution. .
 このようなリチウム金属複合酸化物粒子の表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量(以下、余剰リチウム量という。)は、正極活物質の全量に対して0.08質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。
 余剰リチウム量を0.08質量%以下とすることで、高温時のガス発生をより効果的に抑制することを可能としている。
 即ち、リチウム金属複合酸化物の一次粒子表面には、タングステン酸リチウム以外にも水酸化リチウムおよび炭酸リチウムが存在し、リチウム金属複合酸化物表面に存在する余剰リチウム量を制御することで、水酸化リチウムおよび炭酸リチウムが原因として生じる電池の高温保存時のガス発生をより効果的に抑制することができる。
The amount of lithium contained in the lithium compound other than lithium tungstate present on the surface of such lithium metal composite oxide particles (hereinafter referred to as excess lithium amount) is 0.08 mass relative to the total amount of the positive electrode active material. % Or less, and more preferably 0.05% by mass or less.
By making the amount of excess lithium 0.08% by mass or less, it is possible to more effectively suppress gas generation at high temperatures.
That is, lithium hydroxide and lithium carbonate exist in addition to lithium tungstate on the primary particle surface of the lithium metal composite oxide, and the amount of excess lithium present on the surface of the lithium metal composite oxide is controlled, thereby Generation of gas during high-temperature storage of the battery caused by lithium and lithium carbonate can be more effectively suppressed.
 さらに、タングステン酸リチウムに含まれるタングステン量は、リチウム金属複合酸化物に含まれるNi、CoおよびMの原子数の合計に対して、3.0原子%以下、好ましくは0.05~2.0原子%である。これにより、出力特性の改善効果が得られる。さらに、0.05~2.0原子%とすることで、LWOの形成量を正極抵抗を低減させるために十分な量とするとともに、電解液との接触が可能な一次粒子表面を十分に確保できる量とすることができ、高い充放電容量と出力特性をさらに両立することができる。
 タングステン量が0.05原子%未満では、出力特性の改善効果が十分に得られない場合があり、タングステン量が3.0原子%を超えると、形成されるタングステン酸リチウムが多くなり過ぎてリチウム金属複合酸化物と電解液のリチウム伝導が阻害され、充放電容量が低下することがある。
Further, the amount of tungsten contained in the lithium tungstate is 3.0 atomic% or less, preferably 0.05 to 2.0%, based on the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. Atomic%. Thereby, the improvement effect of an output characteristic is acquired. Furthermore, by setting the content to 0.05 to 2.0 atomic%, the amount of LWO formed is sufficient to reduce the positive electrode resistance, and a sufficient primary particle surface capable of contact with the electrolyte is ensured. It is possible to make the amount as high as possible, and it is possible to further achieve both high charge / discharge capacity and output characteristics.
If the amount of tungsten is less than 0.05 atomic%, the effect of improving the output characteristics may not be sufficiently obtained. If the amount of tungsten exceeds 3.0 atomic%, the amount of lithium tungstate to be formed increases so that lithium Lithium conduction between the metal complex oxide and the electrolyte may be hindered, and the charge / discharge capacity may be reduced.
 また、正極活物質全体のリチウム量は、タングステン酸リチウムに含まれるリチウム分だけ増加するが、正極活物質中のNi、CoおよびMの原子数の和(Me)とLiの原子数との比「Li/Me」が、0.95~1.30であり、0.97~1.25であることが好ましく、0.97~1.20であることがより好ましい。これにより、芯材としてのリチウム金属複合酸化物粒子のLi/Meを好ましくは0.95~1.25、より好ましくは0.95~1.20として高い電池容量を得るとともに、LW化合物の形成に十分な量のリチウムを確保することができる。より高い電池容量を得るためには、正極活物質全体のLi/Meを0.95~1.15、リチウム金属複合酸化物粒子のLi/Meを0.95~1.10とすることがさらに好ましい。ここで、芯材とはLW化合物を含まないリチウム金属複合酸化物粒子であり、リチウム金属複合酸化物粒子の一次粒子表面にLW化合物が形成されることで正極活物質となる。
 そのLi/Meが0.95未満であると、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Meが1.30を超えると、正極活物質の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。
Further, the total amount of lithium in the positive electrode active material increases by the amount of lithium contained in the lithium tungstate, but the ratio of the sum of the number of atoms Ni, Co and M (Me) in the positive electrode active material to the number of Li atoms. “Li / Me” is 0.95 to 1.30, preferably 0.97 to 1.25, and more preferably 0.97 to 1.20. Thereby, Li / Me of the lithium metal composite oxide particles as the core material is preferably 0.95 to 1.25, more preferably 0.95 to 1.20, and a high battery capacity is obtained, and formation of the LW compound is achieved. A sufficient amount of lithium can be secured. In order to obtain a higher battery capacity, it is preferable that Li / Me of the positive electrode active material as a whole is 0.95 to 1.15, and Li / Me of the lithium metal composite oxide particles is 0.95 to 1.10. preferable. Here, the core material is lithium metal composite oxide particles that do not contain an LW compound, and becomes a positive electrode active material by forming an LW compound on the primary particle surface of the lithium metal composite oxide particles.
If the Li / Me is less than 0.95, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases. On the other hand, when Li / Me exceeds 1.30, the initial discharge capacity of the positive electrode active material decreases and the reaction resistance of the positive electrode also increases.
 本発明の正極活物質は、リチウム金属複合酸化物の一次粒子表面にタングステン酸リチウム形成させて出力特性を改善したものであり、正極活物質としての粒径、タップ密度などの粉体特性は、通常に用いられる正極活物質の範囲内であればよい。 The positive electrode active material of the present invention has improved output characteristics by forming lithium tungstate on the primary particle surface of the lithium metal composite oxide, and the powder characteristics such as particle size and tap density as the positive electrode active material are as follows: What is necessary is just to be in the range of the positive electrode active material used normally.
(2)正極活物質の製造方法
 以下、本発明の非水系電解質二次電池用正極活物質の製造方法を工程ごとに詳細に説明する。
(2) Method for Producing Positive Electrode Active Material Hereinafter, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention will be described in detail for each step.
[混合工程]
 混合工程は、一次粒子および一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物粉末と、そのリチウム金属複合酸化物粉末に対して2質量%以上の水分と、タングステン化合物、若しくはタングステン化合物およびリチウム化合物との混合物であり、含有されるタングステン(W)量に対するその水分と固体分のタングステン化合物、もしくはその水分と固体分のタングステン化合物およびリチウム化合物に含有される合計のリチウム(Li)量のモル比(以下、Liモル比という。)が3~5であるタングステン混合物を得る工程である。
[Mixing process]
The mixing step includes a lithium metal composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of the primary particles, and 2 masses with respect to the lithium metal composite oxide powder. % Of water and a tungsten compound, or a mixture of a tungsten compound and a lithium compound, and the water and solid tungsten compound or the water and solid tungsten compound and lithium with respect to the amount of tungsten (W) contained This is a step of obtaining a tungsten mixture in which the molar ratio of the total amount of lithium (Li) contained in the compound (hereinafter referred to as Li molar ratio) is 3 to 5.
 タングステン混合物(以下、単に混合物という。)におけるリチウム金属複合酸化物粉末に対する水分は2質量%以上である。これにより、二次粒子外部と通じている一次粒子間の空隙や不完全な粒界まで水分とともにタングステン化合物に含まれるタングステンが浸透し、一次粒子表面に十分な量のWを分散させることができる。この水分の量は、2質量%以上であればよいが、過度に水分が多いと後工程の熱処理の効率が低下する、あるいは、リチウム金属複合酸化物粒子からのリチウムの溶出が増加して混合物中のLiモル比が高くなり過ぎるとともに、得られる正極活物質を電池の正極に用いた際の電池特性が悪化することがあるため、水分の量は20質量%以下とすることが好ましく、3~15質量%とすることがより好ましく、3~10質量%とすることがさらに好ましい。
 水分の量を上記範囲とすることで、水分中に溶出したリチウム分によりpHが上昇して、過剰なリチウムの溶出を抑制する効果を示す。なお、リチウム金属複合酸化物粉末におけるCoおよびMのモル比は、正極活物質まで維持される。
The moisture content of the lithium metal composite oxide powder in the tungsten mixture (hereinafter simply referred to as the mixture) is 2% by mass or more. Thereby, tungsten contained in the tungsten compound penetrates into the voids between the primary particles communicating with the outside of the secondary particles and imperfect grain boundaries together with moisture, and a sufficient amount of W can be dispersed on the surface of the primary particles. . The amount of moisture may be 2% by mass or more. However, if the amount of moisture is excessively large, the efficiency of the heat treatment in the subsequent process is reduced, or the elution of lithium from the lithium metal composite oxide particles is increased, resulting in a mixture. Since the Li molar ratio in the inside becomes excessively high and battery characteristics when the obtained positive electrode active material is used for the positive electrode of the battery may be deteriorated, the amount of water is preferably 20% by mass or less. More preferably, it is set to ˜15% by mass, and further preferably 3 to 10% by mass.
By setting the amount of water within the above range, the pH rises due to the lithium content eluted in the water, and the effect of suppressing the elution of excessive lithium is exhibited. The molar ratio of Co and M in the lithium metal composite oxide powder is maintained up to the positive electrode active material.
 使用するタングステン化合物は、二次粒子内部の一次粒子表面まで浸透させるため、混合物に含有される水分に溶解する水溶性であることが好ましい。即ち、使用するタングステン化合物には、水溶液の状態のタングステン化合物も含むものである。 The tungsten compound to be used is preferably water-soluble so as to dissolve in the water contained in the mixture in order to penetrate the surface of the primary particles inside the secondary particles. That is, the tungsten compound used includes a tungsten compound in an aqueous solution state.
 この水溶液の状態で存在するタングステン化合物は、二次粒子内部の一次粒子表面まで浸透できる量があればよいため、一部は固体の状態で混合されていてもよい。また、常温では、水に溶解させることが困難であっても、熱処理時の加温で水に溶解する化合物であればよい。さらに、混合物中の水分は含有されるリチウムによってアルカリ性となるため、アルカリ性において溶解可能な化合物であってもよい。 Since the tungsten compound existing in the state of the aqueous solution only needs to have an amount that can penetrate to the surface of the primary particles inside the secondary particles, a part thereof may be mixed in a solid state. Moreover, even if it is difficult to dissolve in water at room temperature, any compound that dissolves in water by heating during heat treatment may be used. Furthermore, since the water in the mixture becomes alkaline due to the contained lithium, it may be a compound that is soluble in alkali.
 このように、タングステン化合物は水に溶解可能であれば限定されるものではないが、酸化タングステン、タングステン酸リチウム、タングステン酸アンモニウム、タングステン酸ナトリウムなどが好ましく、不純物混入の可能性が低い酸化タングステン、タングステン酸リチウム、タングステン酸アンモニウムがより好ましく、酸化タングステン、タングステン酸リチウムがさらに好ましい。 As described above, the tungsten compound is not limited as long as it can be dissolved in water, but tungsten oxide, lithium tungstate, ammonium tungstate, sodium tungstate, and the like are preferable, and tungsten oxide, which is less likely to be mixed with impurities, Lithium tungstate and ammonium tungstate are more preferable, and tungsten oxide and lithium tungstate are more preferable.
 この混合物のLiモル比は、3.0以上5.0以下とする。
 これにより、得られる正極活物質のLiWO存在比率を50~90mol%とすることができる。Liモル比が3.0未満になると、LiWO存在比率が50mol%未満になり、Liモル比が5.0を超えると、LiWO存在比率が90mol%を超えるとともに、余剰リチウム量が、正極活物質の全量に対して0.08質量%を超えてしまう。
 そこで、LiWO存在比率の制御と余剰リチウム量低減の観点から、Liモル比は4.5未満であることが好ましく、4.0以下であることがより好ましい。なお、添加するタングステン化合物によっては、Liモル比が3.0未満になる場合があるが、その場合には、リチウム化合物を添加して不足分を補えばよく、リチウム化合物としては水酸化リチウム(LiOH)などの水溶性化合物が好ましい。
The Li molar ratio of this mixture is set to 3.0 or more and 5.0 or less.
Thereby, the Li 4 WO 5 abundance ratio of the obtained positive electrode active material can be 50 to 90 mol%. When the Li molar ratio is less than 3.0, the Li 4 WO 5 abundance ratio is less than 50 mol%, and when the Li molar ratio exceeds 5.0, the Li 4 WO 5 abundance ratio exceeds 90 mol% and surplus lithium The amount exceeds 0.08% by mass with respect to the total amount of the positive electrode active material.
Therefore, from the viewpoint of controlling the abundance ratio of Li 4 WO 5 and reducing the amount of excess lithium, the Li molar ratio is preferably less than 4.5, and more preferably 4.0 or less. Depending on the tungsten compound to be added, the Li molar ratio may be less than 3.0. In this case, the lithium compound may be added to compensate for the shortage. Water-soluble compounds such as LiOH) are preferred.
 さらに、この混合物中に含まれるタングステン量を、リチウム金属複合酸化物粉末に含まれるNi、CoおよびMの原子数の合計に対して、3.0原子%以下とすることが好ましく、0.05~2.0原子%とすることがより好ましい。これにより、正極活物質中におけるタングステン酸リチウムに含まれるタングステン量を好ましい範囲とすることができ、正極活物質の高い充放電容量と出力特性をさらに両立することができる。 Furthermore, the amount of tungsten contained in this mixture is preferably 3.0 atomic percent or less with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder, More preferably, it is set to ˜2.0 atomic%. Thereby, the amount of tungsten contained in the lithium tungstate in the positive electrode active material can be within a preferable range, and the high charge / discharge capacity and the output characteristics of the positive electrode active material can be further compatible.
 この混合工程においては、混合物の水分が2質量%以上となるようにタングステン化合物とともに水分を供給して混合すればよく、タングステン化合物の水溶液やタングステン化合物と水を個別に供給してもよい。
 一方、金属複合水酸化物、もしくは金属複合酸化物とリチウム化合物を焼成して得られたリチウム金属複合酸化物粉末は、二次粒子や一次粒子の表面に未反応のリチウム化合物が存在している。このため、この混合物を構成する水分に存在するリチウム量が多くなり過ぎ、Liモル比を制御することが困難になることがある。
In this mixing step, water may be supplied and mixed together with the tungsten compound so that the water content of the mixture becomes 2% by mass or more, and an aqueous solution of tungsten compound or a tungsten compound and water may be supplied individually.
On the other hand, the lithium metal composite oxide powder obtained by firing the metal composite hydroxide or the metal composite oxide and the lithium compound has secondary particles or unreacted lithium compounds on the surface of the primary particles. . For this reason, the amount of lithium present in the water constituting the mixture becomes excessive, and it may be difficult to control the Li molar ratio.
 したがって、混合物を得る前に、リチウム金属複合酸化物粉末を水と混合しスラリー化して水洗する水洗工程を備えることが好ましく、水分量を調整するため、水洗後に固液分離する固液分離工程を備えることが好ましい。
 この水洗工程を備えることにより、混合物中の水分中に存在するリチウム量を低減してLiモル比の制御を容易にすることができる。
Therefore, it is preferable to provide a water washing step in which the lithium metal composite oxide powder is mixed with water to make a slurry and washed with water before obtaining the mixture. It is preferable to provide.
By providing this water washing step, the amount of lithium present in the water in the mixture can be reduced to facilitate the control of the Li molar ratio.
 水洗工程における水洗条件は、未反応のリチウム化合物を十分に低減、例えば、リチウム金属複合酸化物粒子の全量に対して好ましくは0.08質量%以下、より好ましくは0.05質量%以下に低減できればよく、スラリー化する際には、スラリーに含まれるリチウム金属複合酸化物粉末の濃度を、水1Lに対して200~5000gとして撹拌することが好ましい。
 リチウム金属複合酸化物粉末の濃度をこの範囲とすることで、リチウム金属複合酸化物粒子からのリチウムの溶出による劣化を抑制しながら、未反応のリチウム化合物をより十分に低減することができる。
 水洗時間、水洗温度も未反応のリチウム化合物を十分に低減可能な範囲とすればよく、例えば、水洗時間は5~60分間、水洗温度は10~40℃の範囲とすることが好ましい。
The water washing conditions in the water washing step are sufficient to reduce unreacted lithium compounds, for example, preferably 0.08% by mass or less, more preferably 0.05% by mass or less, based on the total amount of lithium metal composite oxide particles. In order to form a slurry, it is preferable to stir the lithium metal composite oxide powder contained in the slurry at a concentration of 200 to 5000 g with respect to 1 L of water.
By setting the concentration of the lithium metal composite oxide powder within this range, unreacted lithium compounds can be more sufficiently reduced while suppressing deterioration due to elution of lithium from the lithium metal composite oxide particles.
The washing time and washing temperature may be in a range where the unreacted lithium compound can be sufficiently reduced. For example, the washing time is preferably 5 to 60 minutes and the washing temperature is preferably in the range of 10 to 40 ° C.
 本発明においては、上記のような混合物が得られれば、タングステン化合物を添加する工程は制限されないが、水洗工程を備える場合、水洗工程後に混合工程を完了させることが好ましい。水洗工程前に混合物を得てしまうと、水洗によってタングステン化合物が洗い流されるため、混合物中のタングステン量が不足してしまうことがある。
 したがって、水洗工程を備える場合、少なくとも水洗工程中、固液分離工程後のいずれかにおいてタングステン化合物を添加して、所定の混合物を得ることが好ましい。
In the present invention, if a mixture as described above is obtained, the step of adding the tungsten compound is not limited. However, when a water washing step is provided, the mixing step is preferably completed after the water washing step. If the mixture is obtained before the water washing step, the tungsten compound is washed away by water washing, so that the amount of tungsten in the mixture may be insufficient.
Therefore, when a water washing process is provided, it is preferable to obtain a predetermined mixture by adding a tungsten compound at least during the water washing process and after the solid-liquid separation process.
 そこで、タングステン化合物を水洗工程において添加する場合、予めリチウム金属複合酸化物粉末と混合する水にタングステン化合物を加えて水溶液や懸濁液としてもよく、スラリー化後に添加してもよい。また、合計リチウム量の制御を容易にするため、タングステン化合物は、水洗時のスラリーに全溶解するタングステン化合物が好ましい。また、水に難溶性のタングステン化合物、あるいはリチウムを含まない化合物を用いることが好ましい。
 これらにより、混合物中の固体分のタングステン化合物から溶解するリチウムによる影響を小さくし、容易に混合物中の合計リチウム量を制御することが可能となる。
Therefore, when the tungsten compound is added in the water washing step, the tungsten compound may be added to water mixed with the lithium metal composite oxide powder in advance to form an aqueous solution or suspension, or may be added after slurrying. In order to easily control the total amount of lithium, the tungsten compound is preferably a tungsten compound that is completely dissolved in the slurry during washing with water. In addition, it is preferable to use a tungsten compound that is hardly soluble in water or a compound that does not contain lithium.
As a result, the influence of lithium dissolved from the solid tungsten compound in the mixture can be reduced, and the total amount of lithium in the mixture can be easily controlled.
 一方、固液分離工程後にタングステン化合物を添加する場合においても、タングステン化合物は水溶液の状態でも、粉末の状態のいずれでもよい。固液分離工程後に添加する場合は、液成分とともに除去されるリチウムやタングステンがなく、タングステン化合物が全て混合物中に残留するため、Liモル比の制御が容易になる。 On the other hand, when the tungsten compound is added after the solid-liquid separation step, the tungsten compound may be in an aqueous solution state or a powder state. When added after the solid-liquid separation step, there is no lithium or tungsten removed together with the liquid components, and all the tungsten compounds remain in the mixture, so that the Li molar ratio can be easily controlled.
 さらに、水洗工程中にタングステン化合物を添加する際には、タングステン化合物は水溶液の状態でも、粉末の状態のいずれでもよく、タングステン化合物をスラリーに添加して撹拌することにより、均一な混合物が得られる。
 使用するタングステン化合物に、水溶液の状態、あるいは水溶性化合物を用いると、水洗後の固液分離工程でスラリー中に溶解したタングステン化合物がスラリーの液成分とともに除去される。しかしながら、混合物中の水分に溶解しているタングステンにより、混合物中のタングステン量を充分なものとすることができる。
Further, when the tungsten compound is added during the washing step, the tungsten compound may be in an aqueous solution state or a powder state, and a uniform mixture can be obtained by adding the tungsten compound to the slurry and stirring. .
When a tungsten compound used is in the form of an aqueous solution or a water-soluble compound, the tungsten compound dissolved in the slurry is removed together with the liquid components of the slurry in the solid-liquid separation step after washing with water. However, the tungsten dissolved in the water in the mixture can make the amount of tungsten in the mixture sufficient.
 混合物中のタングステン量は、水洗条件や固液分離条件により、水分量とともに安定したものとなるので、予備試験により、タングステン化合物の種類、添加量とともにこれらの条件を決定すればよい。
 混合物中のタングステンに対する前記水分中とタングステン化合物中に含有される合計のリチウム量(以下、合計リチウム量という。)もタングステン量と同様に予備試験によって決定することができる。
The amount of tungsten in the mixture becomes stable along with the amount of water depending on the washing conditions and the solid-liquid separation conditions. Therefore, these conditions may be determined together with the type and amount of the tungsten compound by preliminary tests.
The total amount of lithium contained in the water and the tungsten compound relative to tungsten in the mixture (hereinafter referred to as the total amount of lithium) can also be determined by a preliminary test in the same manner as the amount of tungsten.
 水洗工程においてタングステン化合物を添加した際の混合物中のタングステン量は、ICP発光分光法によって求めることができる。また、混合物の水分に含まれるリチウム量は、水洗後に固液分離した液成分中のICP発光分光法によるリチウムの分析値と水分量から求めることができる。
 一方、混合物の固体分のタングステン化合物に含有されるリチウム量は、水洗後の液成分と同濃度の水酸化リチウム水溶液中にタングステン化合物を加えて水洗時と同条件で撹拌し、残渣として残るタングステン化合物の比率から混合物に固体分として残る量を算出し、固体分として残るタングステン化合物から求めることができる。
The amount of tungsten in the mixture when the tungsten compound is added in the water washing step can be determined by ICP emission spectroscopy. Further, the amount of lithium contained in the water of the mixture can be determined from the analysis value of lithium and the amount of water by ICP emission spectroscopy in the liquid component separated into solid and liquid after washing with water.
On the other hand, the amount of lithium contained in the solid tungsten compound is determined by adding the tungsten compound to a lithium hydroxide aqueous solution having the same concentration as the liquid component after water washing, stirring under the same conditions as in water washing, and remaining tungsten as a residue. The amount remaining as a solid content in the mixture can be calculated from the ratio of the compounds, and can be determined from the tungsten compound remaining as a solid content.
 また、固液分離工程後にタングステン化合物を添加した際の混合物に含まれるタングステン量は、添加するタングステン化合物量から求めることができる。一方、混合物の合計リチウム量は、水洗後に固液分離した液成分のICP発光分光法によるリチウムの分析値と水分量から求めた水分に含まれるリチウム量と、添加するタングステン化合物、もしくはタングステン化合物量およびリチウム化合物量から求めたリチウム量の和として算出すればよい。 Further, the amount of tungsten contained in the mixture when the tungsten compound is added after the solid-liquid separation step can be determined from the amount of the tungsten compound to be added. On the other hand, the total amount of lithium in the mixture is the amount of lithium contained in the moisture determined from the analysis value of lithium by ICP emission spectroscopy and the amount of moisture of the liquid component solid-liquid separated after washing with water, the amount of tungsten compound added, or the amount of tungsten compound And may be calculated as the sum of lithium amounts obtained from the lithium compound amount.
 固液分離工程後にタングステン化合物を水溶液として添加した際、水分量は今まで述べてきたように好ましくは20質量%を超えることがないように、水溶液を調整する必要があり、タングステン濃度を0.05~2mol/Lとすることが好ましい。
 これにより、混合物の水分を抑制しながら、必要なタングステン量を添加することができる。水分量が20質量%を超えた場合には、再度、固液分離して水分を調整すればよいが、除去した液成分のタングステン量とリチウム量を求め、混合物のLiモル比を確認することが必要となる。
When the tungsten compound is added as an aqueous solution after the solid-liquid separation step, it is necessary to adjust the aqueous solution so that the water content preferably does not exceed 20% by mass as described above. It is preferable that the concentration be 05 to 2 mol / L.
Thereby, the required amount of tungsten can be added while suppressing the moisture of the mixture. If the amount of water exceeds 20% by mass, the liquid may be adjusted again by solid-liquid separation, but the amount of tungsten and lithium in the removed liquid component should be determined to confirm the Li molar ratio of the mixture. Is required.
 混合物に含まれる水分量を2質量%以上とするため、固液分離工程後の混合は、50℃以下の温度で行うことが好ましい。50℃を超える温度とすると、混合中の乾燥により水分量が2質量%未満となることがある。 In order to make the amount of water contained in the mixture 2% by mass or more, the mixing after the solid-liquid separation step is preferably performed at a temperature of 50 ° C. or less. If the temperature exceeds 50 ° C., the moisture content may be less than 2% by mass due to drying during mixing.
 タングステン化合物との混合は、均一に混合可能な装置であれば限定されず、一般的な混合機を使用することができる。例えばシェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いてリチウム金属複合酸化物粒子の形骸が破壊されない程度でタングステン化合物と十分に混合してやればよい。 The mixing with the tungsten compound is not limited as long as it is a device capable of mixing uniformly, and a general mixer can be used. For example, the mixture may be sufficiently mixed with the tungsten compound using a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like so that the shape of the lithium metal composite oxide particles is not destroyed.
 本発明の製造方法においては、得られる正極活物質の組成は、母材とするリチウム金属複合酸化物から混合工程において添加して増加するタングステンと必要に応じて添加されるリチウム分のみであるため、母材のリチウム金属複合酸化物は、高容量と低反応抵抗の観点より、公知である組成が一般式LiNi1-x-yCo(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.25、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物を用いる。 In the production method of the present invention, the composition of the positive electrode active material obtained is only tungsten added and added in the mixing step from the lithium metal composite oxide as a base material and lithium added as necessary. , lithium-metal composite oxide as a base material, a high capacity and in view of the low reaction resistance, the composition is known formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 <x ≦ 0 .35, 0 ≦ y ≦ 0.35, 0.95 ≦ z ≦ 1.25, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) Lithium metal composite oxide is used.
 一方で、水洗する場合には、水洗時のリチウム溶出により、Li/Me(一般式におけるzに相当)が減少するため、予め予備試験によって減少量を確認しておき、水洗前の材料としてLi/Meを調整したリチウム金属複合酸化物を用いればよい。一般的な水洗条件によるLi/Meの減少量は0.03~0.08程度である。
 また、混合工程で水分を供給した際にも少量であるがリチウムが溶出する。したがって、母材のリチウム金属複合酸化物のLi/Meを示すzは、0.95≦z≦1.30とし、0.97≦z≦1.20とすることが好ましい。
On the other hand, in the case of washing with water, Li / Me (corresponding to z in the general formula) decreases due to lithium elution at the time of washing with water. A lithium metal composite oxide in which / Me is adjusted may be used. The decrease amount of Li / Me due to general water washing conditions is about 0.03 to 0.08.
In addition, even when a small amount of water is supplied in the mixing step, lithium elutes though a small amount. Therefore, z indicating Li / Me of the lithium metal composite oxide as a base material is preferably 0.95 ≦ z ≦ 1.30, and preferably 0.97 ≦ z ≦ 1.20.
 さらに、電解液との接触面積を多くすることが、出力特性の向上に有利であることから、一次粒子および一次粒子が凝集して形成された二次粒子から構成され、二次粒子に電解液の浸透可能な空隙および粒界を有するリチウム金属複合酸化物粉末を用いることが好ましい。 Furthermore, since it is advantageous for improving the output characteristics to increase the contact area with the electrolytic solution, the primary particles and secondary particles formed by agglomeration of the primary particles are formed. It is preferable to use a lithium metal composite oxide powder having voids and grain boundaries that can be penetrated.
[熱処理工程]
 熱処理工程は、作製した混合物を熱処理する工程である。
 これにより、混合物の水分に含まれるリチウムとタングステンからタングステン酸リチウムがリチウム金属複合酸化物の一次粒子表面に形成され、非水系電解質二次電池用正極活物質が得られる。
 LWOが形成されれば、その熱処理方法は特に限定されないが、非水系電解質二次電池用正極活物質として用いたときの電気特性の劣化を防止するため、雰囲気中の水分や炭酸との反応を避け、酸素雰囲気などのような酸化性雰囲気、あるいは真空雰囲気中で100~600℃の温度で熱処理することが好ましい。
[Heat treatment process]
The heat treatment step is a step of heat treating the produced mixture.
Thereby, lithium tungstate is formed on the primary particle surface of the lithium metal composite oxide from lithium and tungsten contained in the moisture of the mixture, and a positive electrode active material for a non-aqueous electrolyte secondary battery is obtained.
If LWO is formed, the heat treatment method is not particularly limited, but in order to prevent deterioration of electrical characteristics when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, a reaction with moisture or carbonic acid in the atmosphere is performed. Avoid heat treatment in an oxidizing atmosphere such as an oxygen atmosphere or in a vacuum atmosphere at a temperature of 100 to 600 ° C.
 熱処理温度が100℃未満では、水分の蒸発が十分ではなく、LWOが十分に形成されない場合がある。一方、熱処理温度が600℃を超えると、リチウム金属複合酸化物の一次粒子が焼結を起こすとともに一部のタングステンがリチウム金属複合酸化物の層状構造に固溶してしまうために、電池の充放電容量が低下することがある。 If the heat treatment temperature is less than 100 ° C., the evaporation of moisture is not sufficient and LWO may not be formed sufficiently. On the other hand, when the heat treatment temperature exceeds 600 ° C., primary particles of the lithium metal composite oxide are sintered and some tungsten is dissolved in the layered structure of the lithium metal composite oxide. The discharge capacity may decrease.
 一方、混合物に含まれるタングステン化合物が固形物として残存している場合、特に固液分離工程後にタングステン化合物を粉末として添加した場合は、溶解が十分に行われる間、例えば90℃を超えるまでは昇温速度を0.8~1.2℃/分とすることが好ましい。混合工程においてもタングステン化合物の粉末は混合物中の水分に溶解されるが、このような昇温速度とすることで、昇温中に固体のタングステン化合物を十分に溶解させ、二次粒子内部の一次粒子表面まで浸透させることができる。 On the other hand, when the tungsten compound contained in the mixture remains as a solid, particularly when the tungsten compound is added as a powder after the solid-liquid separation step, the temperature rises until the temperature exceeds, for example, 90 ° C. while the dissolution is sufficiently performed. The temperature rate is preferably 0.8 to 1.2 ° C./min. Even in the mixing step, the tungsten compound powder is dissolved in the water in the mixture. By setting the temperature increase rate, the solid tungsten compound is sufficiently dissolved during the temperature increase, and the primary particles inside the secondary particles. It can penetrate to the particle surface.
 固体のタングステン化合物を溶解させる場合には、溶解が十分に行われる間は水分が揮発しないよう密閉された容器内で熱処理することが好ましい。
 熱処理時間は、特に限定されないが、混合物中の水分を十分に蒸発させてLWOを形成するために3~20時間とすることが好ましく、5~15時間とすることがより好ましい。
When the solid tungsten compound is dissolved, it is preferable to perform heat treatment in a sealed container so that moisture does not volatilize while the dissolution is sufficiently performed.
The heat treatment time is not particularly limited, but is preferably 3 to 20 hours, and more preferably 5 to 15 hours in order to sufficiently evaporate the water in the mixture to form LWO.
(3)非水系電解質二次電池
 本発明の非水系電解質二次電池は、正極、負極および非水系電解液などからなり、一般の非水系電解質二次電池と同様の構成要素により構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
(3) Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and the like, and includes the same components as those of a general non-aqueous electrolyte secondary battery. The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention can be variously modified based on the knowledge of those skilled in the art based on the embodiment described in the present specification. It can be implemented in an improved form. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
(a)正極
 先に述べた非水系電解質二次電池用正極活物質を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
 まず、粉末状の正極活物質、導電材、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
その正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60~95質量部とし、導電材の含有量を1~20質量部とし、結着剤の含有量を1~20質量部とすることが望ましい。
(A) Positive electrode Using the positive electrode active material for a non-aqueous electrolyte secondary battery described above, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and, if necessary, a target solvent such as activated carbon and viscosity adjustment is added and kneaded to prepare a positive electrode mixture paste.
Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery, and the conductive material The content of is desirably 1 to 20 parts by mass, and the content of the binder is desirably 1 to 20 parts by mass.
 得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。
 このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。
The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density.
In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size or the like according to the target battery and used for battery production. However, the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.
 正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラック(登録商標)などのカーボンブラック系材料などを用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
 なお、必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。また
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black (registered trademark), and the like can be used.
The binder plays a role of anchoring the active material particles. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulosic resin, polyacrylic. An acid or the like can be used.
If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Also
(b)負極
 負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 その負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。
(B) Negative electrode A negative electrode mixture in which a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder and an appropriate solvent is added to the negative electrode. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
As the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or phenol resin, or a powdery carbon material such as coke can be used. In this case, a fluorine-containing resin such as PVDF can be used as the negative electrode binder, as in the case of the positive electrode, and a solvent for dispersing these active materials and the binder can be N-methyl-2-pyrrolidone or the like. Organic solvents can be used.
(c)セパレータ
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(C) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
(d)非水系電解液
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 その有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(D) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; -A single compound selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, or a mixture of two or more. Can be used.
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。
 さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤等を含んでいてもよい。
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
(e)電池の形状、構成
 以上、説明した正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
 いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
(E) Battery shape and configuration As described above, the shape of the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution described above is various, such as a cylindrical type and a laminated type. can do.
In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. The positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like and sealed in a battery case to complete a non-aqueous electrolyte secondary battery. .
(f)特性
 本発明の正極活物質を用いた非水系電解質二次電池は、高容量で高出力となる。
 特により好ましい形態で得られた本発明による正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、さらに高容量で高出力である。また、熱安定性が高く、安全性においても優れているといえる。
(F) Characteristics The nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high capacity and a high output.
The non-aqueous electrolyte secondary battery using the positive electrode active material according to the present invention obtained in a particularly preferred form is, for example, a high initial discharge capacity of 165 mAh / g or more and a low positive electrode when used for the positive electrode of a 2032 type coin battery. Resistance is obtained, and further, high capacity and high output. Moreover, it can be said that it has high thermal stability and is excellent in safety.
 なお、本発明における正極抵抗の測定方法は、電気化学的評価手法として一般的な交流インピーダンス法にて電池反応の周波数依存性について測定を行うと、溶液抵抗、負極抵抗と負極容量、および正極抵抗と正極容量に基づくナイキスト線図が図1のように得られる。 In addition, the measurement method of the positive electrode resistance in the present invention is a solution resistance, a negative electrode resistance and a negative electrode capacity, and a positive electrode resistance when the frequency dependence of the battery reaction is measured by a general AC impedance method as an electrochemical evaluation method. A Nyquist diagram based on the positive electrode capacity is obtained as shown in FIG.
 電極における電池反応は、電荷移動に伴う抵抗成分と電気二重層による容量成分とからなり、これらを電気回路で表すと抵抗と容量の並列回路となり、電池全体としては溶液抵抗と負極、正極の並列回路を直列に接続した等価回路で表される。この等価回路を用いて測定したナイキスト線図に対してフィッティング計算を行い、各抵抗成分、容量成分を見積もることができる。正極抵抗は、得られるナイキスト線図の低周波数側の半円の直径と等しい。
 以上のことから、作製される正極について、交流インピーダンス測定を行い、得られたナイキスト線図に対し等価回路でフィッティング計算することで、正極抵抗を見積もることができる。
The battery reaction at the electrode consists of a resistance component accompanying the charge transfer and a capacity component due to the electric double layer. When these are expressed as an electric circuit, it becomes a parallel circuit of resistance and capacity. It is represented by an equivalent circuit in which circuits are connected in series. Fitting calculation is performed on the Nyquist diagram measured using this equivalent circuit, and each resistance component and capacitance component can be estimated. The positive electrode resistance is equal to the diameter of the semicircle on the low frequency side of the obtained Nyquist diagram.
From the above, the positive electrode resistance can be estimated by performing AC impedance measurement on the manufactured positive electrode and performing fitting calculation on the obtained Nyquist diagram with an equivalent circuit.
 本発明により得られた正極活物質を用いた正極を有する二次電池について、その性能(初期放電容量、正極抵抗)を測定した。
 以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
About the secondary battery which has a positive electrode using the positive electrode active material obtained by this invention, the performance (initial stage discharge capacity, positive electrode resistance) was measured.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
(電池の製造および評価)
 正極活物質の初期放電容量および正極抵抗の評価には、図2に示す2032型コイン電池1(以下、コイン型電池と称す)を使用した。
 図2に示すように、コイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
 ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
(Battery manufacture and evaluation)
For the evaluation of the initial discharge capacity and the positive electrode resistance of the positive electrode active material, a 2032 type coin battery 1 (hereinafter referred to as a coin type battery) shown in FIG. 2 was used.
As shown in FIG. 2, the coin-type battery 1 is composed of a case 2 and an electrode 3 accommodated in the case 2.
The case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a. When the negative electrode can 2b is disposed in the opening of the positive electrode can 2a, A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a. The electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order. The positive electrode 3a contacts the inner surface of the positive electrode can 2a, and the negative electrode 3b contacts the inner surface of the negative electrode can 2b. As shown in FIG.
 なお、ケース2はガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が非接触の状態を維持するように相対的な移動が固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封してケース2内と外部との間を気密液密に遮断する機能も有している。 The case 2 includes a gasket 2c, and relative movement is fixed by the gasket 2c so as to maintain a non-contact state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b to block the inside and outside of the case 2 in an airtight and liquid tight manner.
 図2に示すコイン型電池1は、以下のようにして製作した。
 まず、非水系電解質二次電池用正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。その作製した正極3aを真空乾燥機中120℃で12時間乾燥した。
 この正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、図2に示すコイン型電池1を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
The coin type battery 1 shown in FIG. 2 was manufactured as follows.
First, 52.5 mg of a positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed, and press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa. A positive electrode 3a was produced. The produced positive electrode 3a was dried in a vacuum dryer at 120 ° C. for 12 hours.
Using the positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolyte, the coin-type battery 1 shown in FIG. 2 was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C.
 なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。
 セパレータ3cには膜厚25μmのポリエチレン多孔膜を用いた。
 電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
As the negative electrode 3b, a negative electrode sheet in which graphite powder having an average particle diameter of about 20 μm punched into a disk shape with a diameter of 14 mm and polyvinylidene fluoride were applied to a copper foil was used.
As the separator 3c, a polyethylene porous film having a film thickness of 25 μm was used.
As the electrolytic solution, an equivalent mixed solution (manufactured by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte was used.
 製造したコイン型電池1の性能を示す初期放電容量、正極抵抗は、以下のように評価した。
 初期放電容量は、コイン型電池1を製作してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。
The initial discharge capacity and positive electrode resistance showing the performance of the manufactured coin battery 1 were evaluated as follows.
The initial discharge capacity is left for about 24 hours after the coin-type battery 1 is manufactured, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4 The capacity when the battery was charged to 3 V, discharged after a pause of 1 hour to a cutoff voltage of 3.0 V was defined as the initial discharge capacity.
 正極抵抗は、コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン社製、1255B)を使用して交流インピーダンス法により測定すると、図1に示すナイキストプロットが得られる。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出した。 The positive electrode resistance is a Nyquist plot shown in FIG. 1 when the coin-type battery 1 is charged at a charging potential of 4.1 V and measured by an AC impedance method using a frequency response analyzer and a potentiogalvanostat (Solartron, 1255B). Is obtained. Since this Nyquist plot is represented as the sum of the solution resistance, the negative electrode resistance and its capacity, and the characteristic curve indicating the positive electrode resistance and its capacity, the fitting calculation was performed using an equivalent circuit based on this Nyquist plot, and the positive resistance The value of was calculated.
 また、正極活物質のガス発生量の評価には、図4の概略説明図に示すラミネートセル4を使用した。
 ラミネートセル4の作製は、アルミニウム製集電箔(厚さ0.02mm)に、正極活物質をペースト化し、外部と接続する導電部を残して塗布し、乾燥させ、正極活物質の目付が7mg/cmの正極活物質層が形成された正極シート5を作製した。
 また、銅製集電箔(厚さ0.02mm)に負極活物質としてカーボン粉(アセチレンブラック)をペースト化し、同様にして負極活物質の目付が5mg/cmの負極活物質層が形成された負極シート6を作製した。
Moreover, the lamination cell 4 shown in the schematic explanatory drawing of FIG. 4 was used for evaluation of the gas generation amount of a positive electrode active material.
The laminate cell 4 is manufactured by pasting a positive electrode active material on an aluminum current collector foil (thickness: 0.02 mm), leaving a conductive portion connected to the outside, and drying, so that the basis weight of the positive electrode active material is 7 mg. A positive electrode sheet 5 on which a positive electrode active material layer of / cm 2 was formed was produced.
Also, carbon powder (acetylene black) was pasted as a negative electrode active material on a copper current collector foil (thickness 0.02 mm), and a negative electrode active material layer having a negative electrode active material weight of 5 mg / cm 2 was formed in the same manner. A negative electrode sheet 6 was produced.
 作製された正極シート5および負極シート6の間に、ポリプロピレン製微多孔膜(厚さ20.7μm、空孔率密度43.9%)からなるセパレータ7を介挿して積層シートを形成した。そして、この積層シートを2枚のアルミラミネートシート8(厚さ0.05mm)によって挟み、アルミラミネートシートの3辺を熱融着して密封し、図4に示すような構成のラミネートセルを組み立てた。 A laminated sheet was formed between the produced positive electrode sheet 5 and negative electrode sheet 6 with a separator 7 made of a polypropylene microporous film (thickness 20.7 μm, porosity density 43.9%) interposed. Then, this laminated sheet is sandwiched between two aluminum laminate sheets 8 (thickness 0.05 mm), and the three sides of the aluminum laminate sheet are heat-sealed and sealed to assemble a laminate cell having a structure as shown in FIG. It was.
 その後、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとの混合溶媒(容量比3:3:4)にLiPF(1mol/L)とシクロヘキシルベンゼン(2wt%)を溶解した宇部興産株式会社製の電解液を260μl注入し、残りの一辺を熱融着して、図4に示すガス発生量を評価するガス発生試験用のラミネートセル4を作製した。作製したラミネートセル4のサイズは、縦60mm、幅90mmであった。 Thereafter, an electrolytic solution manufactured by Ube Industries Co., Ltd., in which LiPF 6 (1 mol / L) and cyclohexylbenzene (2 wt%) were dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (volume ratio 3: 3: 4). 260 μl was injected, and the remaining one side was heat-sealed to produce a gas generation test laminate cell 4 for evaluating the gas generation amount shown in FIG. The size of the produced laminate cell 4 was 60 mm long and 90 mm wide.
(ガス発生試験)
 作製したラミネートセル4を25℃に設定された日立アプライアンス株式会社製の恒温槽(コスモピア)に12時間保存した。
 12時間保存した後、恒温槽内に収容した状態のまま、充放電装置(北斗電工株式会社製:HJ1001SD8)を用いて、3.0-4.3Vの範囲で、0.2Cの一定電流モードで3回充放電させた。充放電の後に、4.6Vまで1Cの一定電流モードで充電したのち、恒温槽内に72時間放置して、ガスをラミネートセル4内に発生させた。
 この際、ラミネートセル4は一対の板状部材(ステンレス製)の間に挟んで保持し、一対の板状部材からラミネートセルの端から幅1cm分を露出させて露出部とした。
(Gas generation test)
The produced laminate cell 4 was stored for 12 hours in a constant temperature bath (Cosmo Pier) manufactured by Hitachi Appliances, Ltd. set at 25 ° C.
After storing for 12 hours, using a charge / discharge device (Hokuto Denko Co., Ltd .: HJ1001SD8) while being housed in a thermostatic chamber, a constant current mode of 0.2 C in the range of 3.0 to 4.3 V The battery was charged and discharged three times. After charging and discharging, the battery was charged in a constant current mode of 1 C up to 4.6 V, and then left in a constant temperature bath for 72 hours to generate gas in the laminate cell 4.
At this time, the laminate cell 4 was sandwiched and held between a pair of plate-like members (made of stainless steel), and an exposed portion was formed by exposing a width of 1 cm from the end of the laminate cell from the pair of plate-like members.
(発生したガス量の評価)
 ガス発生試験を終えたガス発生試験済ラミネートセル(以下、試験済ラミネートセルと称す)4aを恒温槽から取り出して、試験済ラミネートセル4aの端から幅1cm分の所に油性マジックでマーキングを行った。
 その後、図5のガス発生量の評価方法の概略説明図に示すように試験済ラミネートセル4aを、手動油圧プレス機PA4(エヌピーエーシステム株式会社製:型番TB-50H)のテーブルT上に載せて、この試験済ラミネートセル4aの上に、その端から幅1cm分(マーキングした部分から試験済ラミネートセル4aの端までの部分、幅Lの非加圧部UPA)を残して、加圧部材PPとなる直方体の押さえ板(ステンレス製)を置いた。
 また、非加圧部UPAには、載置部材MPとして直方体の測定板(ステンレス製)を配置し、測定板における一端部(非加圧部に載せられている部分)の上面にダイヤルゲージGa(CITIZEN社製:2A-104)を設置した。
(Evaluation of the amount of gas generated)
The gas generation test-laminated laminate cell (hereinafter referred to as a “tested laminate cell”) 4a is taken out of the thermostatic bath, and marking is performed with an oil-based magic at a position 1 cm wide from the end of the tested laminate cell 4a. It was.
Thereafter, as shown in the schematic explanatory diagram of the gas generation amount evaluation method in FIG. 5, the tested laminate cell 4a is placed on the table T of the manual hydraulic press machine PA4 (manufactured by NPA Corporation: model number TB-50H). Te, on the post-test laminate cell 4a, (part of the portion marked to the end of the post-test laminate cell 4a, the non-pressing portion UPA width L 1) width 1cm minutes from the end leaving a pressurized A rectangular parallelepiped pressing plate (made of stainless steel) to be the member PP was placed.
In addition, a rectangular parallelepiped measurement plate (made of stainless steel) is disposed in the non-pressurized portion UPA as the mounting member MP, and a dial gauge Ga is formed on the upper surface of one end portion (portion placed on the non-pressurized portion) of the measurement plate. (CITIZEN, Inc .: 2A-104) was installed.
 その後、図5示すように手動油圧プレス機PAによって加圧部材PPをプレスして4kNの圧力を試験済ラミネートセル4aに掛け、試験済ラミネートセル4a内のガスは非加圧部UPAに集められ、集められたガスにより非加圧部UPAが膨らみ、載置部材MPにおける一端部が上方に移動した。
 最後に、ダイヤルゲージGaの値を読んで、載置部材MPの一端部の移動量を測定し、発生ガス量を評価した。
After that, as shown in FIG. 5, the pressure member PP is pressed by the manual hydraulic press machine PA and a pressure of 4 kN is applied to the tested laminate cell 4a, and the gas in the tested laminate cell 4a is collected in the non-pressurized part UPA. The non-pressurized part UPA was swollen by the collected gas, and one end part of the mounting member MP was moved upward.
Finally, the value of the dial gauge Ga was read, the amount of movement of one end of the mounting member MP was measured, and the amount of generated gas was evaluated.
 なお、本実施例では、複合水酸化物製造、正極活物質および二次電池の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。 In this example, each reagent-grade sample manufactured by Wako Pure Chemical Industries, Ltd. was used for producing composite hydroxide, producing a positive electrode active material, and a secondary battery.
 Niを主成分とする酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られたLi1.030Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物粒子の粉末を母材とした。このリチウム金属複合酸化物粉末の平均粒径は12.4μmであり、比表面積は0.3m/gであった。なお、平均粒径はレーザー回折散乱法における体積積算平均値を用い、比表面積は窒素ガス吸着によるBET法を用いて評価した。 A lithium metal composite represented by Li 1.030 Ni 0.82 Co 0.15 Al 0.03 O 2 obtained by a known technique of mixing and baking oxide powder containing Ni as a main component and lithium hydroxide A powder of oxide particles was used as a base material. This lithium metal composite oxide powder had an average particle size of 12.4 μm and a specific surface area of 0.3 m 2 / g. In addition, the average particle diameter was evaluated using the volume integrated average value in the laser diffraction scattering method, and the specific surface area was evaluated using the BET method based on nitrogen gas adsorption.
 100mlの純水に5.6gの水酸化リチウム(LiOH)を溶解した水溶液中に、15.6gの酸化タングステン(WO)を添加して撹拌することにより、タングステン化合物の水溶液を得た。 An aqueous solution of a tungsten compound was obtained by adding and stirring 15.6 g of tungsten oxide (WO 3 ) in an aqueous solution in which 5.6 g of lithium hydroxide (LiOH) was dissolved in 100 ml of pure water.
 次に、母材とするリチウム金属複合酸化物粉末75gを前記水溶液に浸漬し、さらに10分間攪拌することで十分に混合すると同時にリチウム金属複合酸化物粉末を水洗した。その後、ヌッチェを用いて吸引ろ過することで固液分離し、リチウム金属複合酸化物粒子と、液成分と、タングステン化合物からなるタングステン混合物を得た。 Next, 75 g of lithium metal composite oxide powder as a base material was immersed in the aqueous solution and further mixed by stirring for 10 minutes, and at the same time, the lithium metal composite oxide powder was washed with water. Then, it solid-liquid-separated by carrying out suction filtration using Nutsche, and obtained the tungsten mixture which consists of lithium metal complex oxide particle | grains, a liquid component, and a tungsten compound.
 この混合物を乾燥させ、乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.6質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は2.62mol/L、混合物のタングステン含有量は0.0039molであり、Liモル比は3.9であった。
This mixture was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 7.6% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 2.62 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 3.9.
 得られた混合物を、ステンレス(SUS)製焼成容器に入れ、真空雰囲気中において、昇温速度2.8℃/分で210℃まで昇温して13時間熱処理し、その後室温まで炉冷した。
 最後に目開き38μmの篩にかけ解砕することにより、一次粒子表面にタングステン酸リチウムを有する正極活物質を得た。
The obtained mixture was put into a stainless steel (SUS) firing container, heated in a vacuum atmosphere at a heating rate of 2.8 ° C./min to 210 ° C. and heat-treated for 13 hours, and then cooled to room temperature.
Finally, the mixture was pulverized through a sieve having an aperture of 38 μm to obtain a positive electrode active material having lithium tungstate on the primary particle surfaces.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、Ni:Co:Alは、原子数比で82:15:3であり、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.5原子%の組成であることが確認され、そのLi/Meは0.994であり、芯材のLi/Meは0.992であった。
 Li/Meは、水洗時と同濃度のLiを含む水酸化リチウム溶液を用い、同条件で水洗したリチウム金属複合酸化物粉末をICP発光分光法により分析することにより求めた。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, Ni: Co: Al was an atomic ratio of 82: 15: 3, and the tungsten content was Ni, Co. And it was confirmed that the composition was 0.5 atomic% with respect to the total number of atoms of M, the Li / Me was 0.994, and the Li / Me of the core material was 0.992.
Li / Me was determined by analyzing a lithium metal composite oxide powder washed with water under the same conditions by ICP emission spectroscopy using a lithium hydroxide solution containing Li at the same concentration as in washing with water.
[タングステン酸リチウムおよび余剰リチウム分析]
 得られた正極活物質中のタングステン酸リチウムの存在状態について、正極活物質から溶出してくるLiを滴定することにより評価した。得られた正極活物質に純水を加えて一定時間攪拌後、ろ過したろ液のpHを測定しながら塩酸を加えていくことにより出現する中和点から溶出するリチウムの化合物状態を評価したところ、タングステン酸リチウム中にはLiWOの存在が確認され、含まれるLiWOの存在比率を算出したところ、60mol%であった。
[Analysis of lithium tungstate and surplus lithium]
The presence state of lithium tungstate in the obtained positive electrode active material was evaluated by titrating Li eluted from the positive electrode active material. After adding pure water to the obtained positive electrode active material and stirring for a certain period of time, when evaluating the compound state of lithium eluted from the neutralization point that appears by adding hydrochloric acid while measuring the pH of the filtered filtrate The presence of Li 4 WO 5 was confirmed in lithium tungstate, and the abundance ratio of Li 4 WO 5 contained was calculated to be 60 mol%.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(3.9)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は60mol%であり、LiWOの存在比率は40mol%であると考えられた。また、余剰リチウムは、正極活物質の全量に対して0.03質量%であった。 On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (3.9) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, in the lithium tungstate in the positive electrode active material, the abundance ratio of Li 4 WO 5 is 60 mol%, and the abundance ratio of Li 2 WO 4 is It was thought to be 40 mol%. Moreover, the excess lithium was 0.03 mass% with respect to the whole quantity of a positive electrode active material.
[タングステン酸リチウムの形態分析]
 得られた正極活物質を、樹脂に埋め込み、クロスセクションポリッシャ加工を行い観察用試料を作製した。その試料を用いて倍率を5000倍としたSEMによる断面観察を行ったところ、一次粒子および一次粒子が凝集して形成された二次粒子からなり、一次粒子表面にタングステン酸リチウムの微粒子が形成されていることが確認され、微粒子の粒子径は20~145nmであった。
 また、一次粒子表面にタングステン酸リチウムが形成されている二次粒子は、観察した二次粒子数の90%であり、二次粒子間で均一にタングステン酸リチウムが形成されていることが確認された。
[Morphological analysis of lithium tungstate]
The obtained positive electrode active material was embedded in a resin and subjected to a cross section polisher to prepare an observation sample. When the cross section was observed by SEM using the sample at a magnification of 5000 times, the primary particles and secondary particles formed by agglomeration of the primary particles were formed, and fine particles of lithium tungstate were formed on the primary particle surface. It was confirmed that the particle diameter of the fine particles was 20 to 145 nm.
In addition, secondary particles with lithium tungstate formed on the primary particle surface account for 90% of the observed number of secondary particles, and it was confirmed that lithium tungstate was uniformly formed between the secondary particles. It was.
 さらに、得られた正極活物質の一次粒子の表面付近を透過型電子顕微鏡(TEM)により観察したところ、一次粒子の表面に膜厚2~85nmのタングステン酸リチウムの被膜が形成され、被覆はタングステン酸リチウムであることを確認した。 Further, when the vicinity of the surface of the primary particles of the obtained positive electrode active material was observed with a transmission electron microscope (TEM), a lithium tungstate film having a thickness of 2 to 85 nm was formed on the surface of the primary particles, and the coating was made of tungsten. It was confirmed to be lithium acid lithium.
[電池評価]
 得られた正極活物質を使用して作製された正極を有する図2に示すコイン型電池1の電池特性を評価した。なお、正極抵抗は実施例1を100とした相対値を評価値とした。初期放電容量は204.6mAh/gであった。
[Battery evaluation]
The battery characteristics of the coin-type battery 1 shown in FIG. 2 having a positive electrode produced using the obtained positive electrode active material were evaluated. In addition, the positive electrode resistance used the relative value which set Example 1 as 100 as the evaluation value. The initial discharge capacity was 204.6 mAh / g.
[ガス発生量の評価]
 得られた正極活物質を正極材として用いてラミネートセル4を作製し、ガス発生試験を行い、そのガス発生量を評価した。評価は、実施例1を100とした相対値にて、ガスの発生量を評価した。
[Evaluation of gas generation]
A laminate cell 4 was prepared using the obtained positive electrode active material as a positive electrode material, a gas generation test was performed, and the amount of gas generated was evaluated. In the evaluation, the amount of gas generated was evaluated as a relative value with Example 1 as 100.
 以下、実施例2~6および比較例1~5については、上記実施例1と変更した物質、条件のみを示す。
 測定した実施例1~6および比較例1~5のタングステン酸リチウムの形態分析結果及び初期放電容量および正極抵抗の評価値を表1に示す。
Hereinafter, for Examples 2 to 6 and Comparative Examples 1 to 5, only the substances and conditions changed from those in Example 1 are shown.
Table 1 shows the morphological analysis results of the lithium tungstates of Examples 1 to 6 and Comparative Examples 1 to 5, and the evaluation values of the initial discharge capacity and the positive electrode resistance.
 用いたLiOHを3.5g、WOを10.5gとした以外は実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。
 固液分離後のタングステン混合物を乾燥後、その乾燥前後における質量から求めたリチウム金属複合酸化物粒子に対する水分量は6.8質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は1.74mol/L、タングステン混合物のタングステン含有量は0.0023molであり、Liモル比は3.8であった。
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 3.5 g of LiOH and 10.5 g of WO 3 were used.
The tungsten mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 6.8% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 1.74 mol / L, the tungsten content of the tungsten mixture was 0.0023 mol, and the Li molar ratio was 3.8.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.3原子%の組成であることを確認し、そのLi/Meは0.994であり、芯材のLi/Meは0.992であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、60mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.3 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.994 and the core material Li / Me was 0.992.
Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated. Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(3.8)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は60mol%であり、LiWOの存在比率は40mol%であると考えられた。
 さらに、余剰リチウムは、正極活物質の全量に対して0.02質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (3.8) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, in the lithium tungstate in the positive electrode active material, the abundance ratio of Li 4 WO 5 is 60 mol%, and the abundance ratio of Li 2 WO 4 is It was thought to be 40 mol%.
Furthermore, the excess lithium was 0.02 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
 用いたLiOHを7.0g、WOを19.3gとした以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。
 固液分離後のタングステン混合物を乾燥後、その乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.3質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は3.19mol/L、混合物のタングステン含有量は0.0046molであり、Liモル比は3.8であった。
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 7.0 g of LiOH and 19.3 g of WO 3 were used.
The tungsten mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.3% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 3.19 mol / L, the tungsten content of the mixture was 0.0046 mol, and the Li molar ratio was 3.8.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.6原子%の組成であることを確認し、そのLi/Meは0.995であり、芯材のLi/Meは0.993であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、60mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.6 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.995 and the Li / Me of the core material was 0.993.
Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated. Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(3.8)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は60mol%であり、LiWOの存在比率は40mol%であると考えられた。
 さらに、余剰リチウムは、正極活物質の全量に対して0.04質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (3.8) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, in the lithium tungstate in the positive electrode active material, the abundance ratio of Li 4 WO 5 is 60 mol%, and the abundance ratio of Li 2 WO 4 is It was thought to be 40 mol%.
Furthermore, the excess lithium was 0.04 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
 400mlの純水に母材とするリチウム金属複合酸化物粉末300gを浸漬して水洗したこと、固液分離後、水酸化リチウム(LiOH)4.6g、酸化タングステン(WO)1.44gを添加してシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて30℃で十分に混合し、タングステン混合物を得たこと、及び熱処理工程において混合物の温度が90℃になるまで1℃/分で昇温したこと以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。 300 g of lithium metal composite oxide powder as a base material was immersed in 400 ml of pure water and washed with water. After solid-liquid separation, 4.6 g of lithium hydroxide (LiOH) and 1.44 g of tungsten oxide (WO 3 ) were added. Using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willy et Bacofen (WAB)), the mixture was sufficiently mixed at 30 ° C. to obtain a tungsten mixture, and until the temperature of the mixture reached 90 ° C. in the heat treatment step. A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that the temperature was raised at 1 ° C./min.
 タングステン混合物を乾燥させ、乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.5質量%であった。
 また、ICP発光分光法により分析したところ、固液分離時の液成分のLi濃度は0.31mol/L、混合物のタングステン含有量は0.062molであり、Liモル比は3.2であった。
The tungsten mixture was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 7.5% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component during solid-liquid separation was 0.31 mol / L, the tungsten content of the mixture was 0.062 mol, and the Li molar ratio was 3.2. .
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して2.0原子%の組成であることが確認され、そのLi/Meは0.990であり、芯材のLi/Meは0.988であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、55mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 2.0 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.990 and the Li / Me of the core material was 0.988.
Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 55 mol%. Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(3.2)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は55mol%であり、LiWOの存在比率は45mol%であると考えられた。また、余剰リチウムは、正極活物質の全量に対して0.03質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (3.2) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, in the lithium tungstate in the positive electrode active material, the abundance ratio of Li 4 WO 5 is 55 mol%, and the abundance ratio of Li 2 WO 4 is It was thought to be 45 mol%. Moreover, the excess lithium was 0.03 mass% with respect to the whole quantity of a positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
 400mlの純水に母材とするリチウム金属複合酸化物粉末300gを浸漬して水洗したこと、固液分離後、そのまま吸引ろ過しながら400mlの純水に31.2gのタングステン酸リチウム(LiWO)を溶解した水溶液を添加し、タングステン混合物を得たこと以外は実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。 300 g of lithium metal composite oxide powder as a base material was immersed in 400 ml of pure water and washed with water. After solid-liquid separation, 31.2 g of lithium tungstate (Li 4 WO A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that an aqueous solution in which 5 ) was dissolved was added to obtain a tungsten mixture.
 タングステン混合物を乾燥させ、乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は6.4質量%であった。
 また、ICP発光分光法により分析したところ、タングステン酸リチウムを添加した後の固液分離時の液成分のLi濃度は1.36mol/L、その混合物のタングステン含有量は0.0065molであり、Liモル比は4.0であった。
The tungsten mixture was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 6.4% by mass.
Further, when analyzed by ICP emission spectroscopy, the Li concentration of the liquid component at the time of solid-liquid separation after addition of lithium tungstate was 1.36 mol / L, the tungsten content of the mixture was 0.0065 mol, Li The molar ratio was 4.0.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.2原子%の組成であることを確認し、そのLi/Meは0.992であり、芯材のLi/Meは0.989であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、75mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.2 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.992 and the core material Li / Me was 0.989.
Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 75 mol%. Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(4.0)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は75mol%であり、LiWOの存在比率は25mol%であると考えられた。
 さらに、余剰リチウムは、正極活物質の全量に対して0.02質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (4.0) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, the lithium tungstate in the positive electrode active material had an abundance ratio of Li 4 WO 5 of 75 mol%, and the abundance ratio of Li 2 WO 4 was It was thought to be 25 mol%.
Furthermore, the excess lithium was 0.02 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
 NiとCoおよびMnからなる酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られた平均粒径が5.6μmであり、比表面積が0.7m/gであり、Li1.175Ni0.34Co0.33Mn0.33で表されるリチウム金属複合酸化物粒子の粉末を母材とした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得た。固液分離後の混合物を乾燥させ、乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.8質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は2.24mol/L、混合物のタングステン含有量は0.0039molであり、Liモル比は3.8であった。
The average particle size obtained by a known technique of mixing and firing oxide powder composed of Ni, Co and Mn and lithium hydroxide is 5.6 μm, the specific surface area is 0.7 m 2 / g, Li 1 .175 For non-aqueous electrolyte secondary batteries in the same manner as in Example 1 except that the powder of lithium metal composite oxide particles represented by Ni 0.34 Co 0.33 Mn 0.33 O 2 was used as a base material. A positive electrode active material was obtained. The mixture after solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after drying was 7.8% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 2.24 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 3.8.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.5原子%の組成であることが確認され、そのLi/Meは1.146であり、芯材のLi/Meは1.144であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOとLiWOの存在が確認され、タングステン酸リチウム中に含まれるLiWOの存在比率を算出したところ、LiWOの存在比率は60mol%であり、LiWOの存在比率は40mol%であると考えられた。
 さらに、余剰リチウムは、正極活物質の全量に対して0.02質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 1.146, and the core material Li / Me was 1.144.
Moreover, when the obtained positive electrode active material was titrated and analyzed, the presence of Li 4 WO 5 and Li 2 WO 4 was confirmed in the lithium tungstate, and the abundance ratio of Li 2 WO 4 contained in the lithium tungstate was determined. When calculated, the abundance ratio of Li 4 WO 5 was 60 mol%, and the abundance ratio of Li 2 WO 4 was considered to be 40 mol%.
Furthermore, the excess lithium was 0.02 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
(比較例1)
 タングステン化合物の水溶液を純水に変更して水洗したこと以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。
 得られた正極活物質のLi/MeをICP発光分光法により分析したところ、Li/Meは0.991であった。余剰リチウムは、正極活物質の全量に対して0.03質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
(Comparative Example 1)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that the aqueous solution of the tungsten compound was changed to pure water and washed.
When Li / Me of the obtained positive electrode active material was analyzed by ICP emission spectroscopy, Li / Me was 0.991. Excess lithium was 0.03% by mass relative to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
(比較例2)
 用いたLiOHを9.5g、WOを15.6gとした以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。
 固液分離後のタングステン混合物を乾燥後、その乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.6質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は4.22mol/L、混合物のタングステン含有量は0.0039molであり、Liモル比は6.3であった。
(Comparative Example 2)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that 9.5 g of LiOH and 15.6 g of WO 3 were used.
The tungsten mixture after the solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.6% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 4.22 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 6.3.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.5原子%の組成であることを確認し、そのLi/Meは0.996であり、芯材のLi/Meは0.993であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、95mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.996 and the core material Li / Me was 0.993.
Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 95 mol%. Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(6.3)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は95mol%であり、LiWOの存在比率は0mol%であると考えられた。
 さらに、余剰リチウムは、正極活物質の全量に対して0.08質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (6.3) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 was confirmed, the lithium tungstate in the positive electrode active material had an abundance ratio of Li 4 WO 5 of 95 mol% and an abundance ratio of Li 2 WO 4 of 0 mol%. it was thought.
Furthermore, the excess lithium was 0.08 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
(比較例3)
 用いたLiOHを4.0g、WOを15.6gとした以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。
 固液分離後のタングステン混合物を乾燥後、その乾燥前後の質量から求めたリチウム金属複合酸化物粒子に対する水分量は7.6質量%であった。
 また、ICP発光分光法により分析したところ、液成分のLi濃度は1.95mol/L、混合物のタングステン含有量は0.0039molであり、Liモル比は2.9であった。
(Comparative Example 3)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1, except that 4.0 g of LiOH and 15.6 g of WO 3 were used.
The tungsten mixture after the solid-liquid separation was dried, and the water content with respect to the lithium metal composite oxide particles determined from the mass before and after the drying was 7.6% by mass.
When analyzed by ICP emission spectroscopy, the Li concentration of the liquid component was 1.95 mol / L, the tungsten content of the mixture was 0.0039 mol, and the Li molar ratio was 2.9.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.5原子%の組成であることを確認し、そのLi/Meは0.994であり、芯材のLi/Meは0.992であった。
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、そのタングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、35mol%であった。
When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.994 and the core material Li / Me was 0.992.
Moreover, when the obtained positive electrode active material was subjected to titration analysis, the presence of Li 4 WO 5 was confirmed in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 35 mol. %Met.
 一方、酸化タングステン中のWと水酸化リチウム中のLiが同じLiモル比(2.9)になるように混合してタングステン酸リチウムを生成させ、X線回折で生成したタングステン酸リチウムを確認したところ、LiWOとLiWOのみが確認されたことから、正極活物質中のタングステン酸リチウムは、LiWOの存在比率は35mol%であり、LiWOの存在比率は65mol%であると考えられた。
 また、余剰リチウムは、正極活物質の全量に対して0.02質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
On the other hand, W in tungsten oxide and Li in lithium hydroxide were mixed so as to have the same Li molar ratio (2.9) to produce lithium tungstate, and the lithium tungstate produced by X-ray diffraction was confirmed. However, since only Li 4 WO 5 and Li 2 WO 4 were confirmed, in the lithium tungstate in the positive electrode active material, the abundance ratio of Li 4 WO 5 is 35 mol%, and the abundance ratio of Li 2 WO 4 is It was thought to be 65 mol%.
Moreover, the excess lithium was 0.02 mass% with respect to the whole quantity of a positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
(比較例4)
 タングステン化合物の水溶液を純水に変更して水洗し、固液分離し、乾燥させたこと、乾燥後に15.1gのタングステン酸リチウム(LiWO)を添加してシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合し撹拌し、熱処理したこと以外は、実施例1と同様の条件にて、非水系電解質二次電池用正極活物質を得た。固液分離し、乾燥した後の水分量は1.0質量%未満であった。
(Comparative Example 4)
The aqueous solution of the tungsten compound was changed to pure water, washed with water, separated into solid and liquid, and dried. After drying, 15.1 g of lithium tungstate (Li 4 WO 5 ) was added, and the shaker mixer apparatus (Willy et al. -A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained under the same conditions as in Example 1 except that the mixture was thoroughly mixed, stirred and heat-treated using TURBULA Type T2C manufactured by Bacofen (WAB). The water content after solid-liquid separation and drying was less than 1.0% by mass.
 得られた正極活物質のタングステン含有量およびLi/MeをICP発光分光法により分析したところ、タングステン含有量はNi、CoおよびMの原子数の合計に対して0.5原子%の組成であることを確認し、そのLi/Meは0.992であり、芯材のLi/Meは0.991であった。 When the tungsten content and Li / Me of the obtained positive electrode active material were analyzed by ICP emission spectroscopy, the tungsten content was a composition of 0.5 atomic% with respect to the total number of Ni, Co and M atoms. It was confirmed that the Li / Me was 0.992, and the Li / Me of the core material was 0.991.
 また、得られた正極活物質について滴定分析したところ、タングステン酸リチウム中にはLiWOの存在が確認され、タングステン酸リチウムに含まれるLiWOの存在比率を算出したところ、98mol%であり、余剰リチウムは、正極活物質の全量に対して0.03質量%であった。 Moreover, when the obtained positive electrode active material was subjected to titration analysis, it was confirmed that Li 4 WO 5 was present in the lithium tungstate, and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate was calculated to be 98 mol%. The excess lithium was 0.03% by mass relative to the total amount of the positive electrode active material.
 SEMおよびTEMの観察により、タングステン酸リチウムは、正極活物質粒子の表面のみに付着しており、内部の一次粒子表面には存在しないことが確認された。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
Observation by SEM and TEM confirmed that lithium tungstate was attached only to the surface of the positive electrode active material particles and was not present on the surface of the primary particles inside.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
(比較例5)
 タングステン化合物の水溶液を使用せずに、純水に変更して水洗したこと以外は、実施例6と同様にして、非水系電解質二次電池用正極活物質を得た。
 得られた正極活物質のLi/MeをICP発光分光法により分析したところ、Li/Meは1.138であった。
 余剰リチウムは、正極活物質の全量に対して0.04質量%であった。
 実施例1と同様にタングステン酸リチウムの形態分析や評価を行い、その評価結果を電池特性とともに表1に示す。
(Comparative Example 5)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 6 except that it was changed to pure water and washed without using an aqueous solution of a tungsten compound.
When Li / Me of the obtained positive electrode active material was analyzed by ICP emission spectroscopy, Li / Me was 1.138.
Excess lithium was 0.04 mass% with respect to the total amount of the positive electrode active material.
The morphology analysis and evaluation of lithium tungstate were performed in the same manner as in Example 1, and the evaluation results are shown in Table 1 together with the battery characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価]
 表1から明らかなように、実施例1~6の正極活物質は、本発明に従って製造されたため、正極抵抗が低く、タングステン酸リチウムが形成されていない比較例1および5に比べて初期放電容量も高いものとなっており、優れた特性を有した電池となっている。
 また、図3に本発明の実施例で得られた正極活物質の走査顕微鏡による断面観察結果の一例を示すが、得られた正極活物質は一次粒子および一次粒子が凝集して構成された二次粒子からなり、一次粒子表面にタングステン酸リチウムを含む微粒子が形成されていることが確認された。タングステン酸リチウムを含む微粒子を図3において矢印で示す。
[Evaluation]
As is apparent from Table 1, since the positive electrode active materials of Examples 1 to 6 were manufactured according to the present invention, the initial discharge capacity was lower than those of Comparative Examples 1 and 5 in which the positive electrode resistance was low and lithium tungstate was not formed. Therefore, the battery has excellent characteristics.
FIG. 3 shows an example of a cross-sectional observation result of the positive electrode active material obtained in the example of the present invention using a scanning microscope. The obtained positive electrode active material is composed of primary particles and primary particles aggregated. It was confirmed that fine particles containing lithium tungstate were formed on the primary particle surface. The fine particles containing lithium tungstate are indicated by arrows in FIG.
 比較例1は、一次粒子表面にタングステン酸リチウムが形成されていないため、正極抵抗が大幅に高く、高出力化の要求に対応することは困難である。
 比較例2および3では、正極活物質に含まれるNi、CoおよびMの原子数に対するタングステンの量が実施例1と同程度であるが、比較例2はLiWOの割合が多いため、正極抵抗は実施例と同程度であるが、ガス発生量が多くなっている。一方、比較例3はLiWOの割合少ないため、ガス発生量は少ないが、正極抵抗が高くなっている。
 比較例4は、乾燥状態でタングステン化合物と混合したため、タングステン酸リチウムが二次粒子内部の一次粒子表面に形成されず、正極抵抗が高く、また、タングステン酸リチウムがLiWOであるため、ガス発生量も多くなっているのが判る。
 比較例5は、一次粒子表面にタングステン酸リチウムが形成されていないため、正極抵抗が大幅に高く、高出力化の要求に対応することは困難である。
In Comparative Example 1, since lithium tungstate is not formed on the primary particle surfaces, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
In Comparative Examples 2 and 3, the amount of tungsten with respect to the number of Ni, Co, and M atoms contained in the positive electrode active material is similar to that in Example 1, but Comparative Example 2 has a large proportion of Li 4 WO 5 . The positive electrode resistance is about the same as that of the example, but the amount of gas generation is increased. On the other hand, since the ratio of Li 4 WO 5 is small in Comparative Example 3, the amount of gas generation is small, but the positive electrode resistance is high.
Since Comparative Example 4 was mixed with the tungsten compound in a dry state, lithium tungstate was not formed on the surface of the primary particles inside the secondary particles, the positive electrode resistance was high, and the lithium tungstate was Li 4 WO 5 . It can be seen that the amount of gas generation is also increasing.
In Comparative Example 5, since lithium tungstate is not formed on the primary particle surface, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
 本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。
 また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。なお、本発明は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
The non-aqueous electrolyte secondary battery of the present invention is suitable for a power source of a small portable electronic device (such as a notebook personal computer or a mobile phone terminal) that always requires a high capacity, and an electric vehicle battery that requires a high output. Also suitable.
In addition, the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output, and thus is suitable as a power source for an electric vehicle subject to restrictions on mounting space. The present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.
 1  コイン型電池
 2  ケース
 2a 正極缶
 2b 負極缶
 2c ガスケット
 3  電極
 3a 正極
 3b 負極
 3c セパレータ
 4  ラミネートセル
 4a ガス発生試験済ラミネートセル
 5  正極シート
 6  負極シート
 7  セパレータ
 8  アルミラミネートシート
 PA  手動油圧プレス機
 UPA  非加圧部
 L  (非加圧部の)幅
 PP  加圧部材
 MP  載置部材
 Ga  ダイヤルゲージ
 T   テーブル
 
DESCRIPTION OF SYMBOLS 1 Coin type battery 2 Case 2a Positive electrode can 2b Negative electrode can 2c Gasket 3 Electrode 3a Positive electrode 3b Negative electrode 3c Separator 4 Laminate cell 4a Gas generation tested laminate cell 5 Positive electrode sheet 6 Negative electrode sheet 7 Separator 8 Aluminum laminate sheet PA Manual hydraulic press machine UPA Non-pressurizing part L 1 (non-pressurizing part) width PP pressure member MP mounting member Ga dial gauge T table

Claims (15)

  1.  一般式:LiNi1-x-yCo(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物粉末と、リチウム金属複合酸化物粉末に対して2質量%以上の水分と、タングステン化合物もしくはタングステン化合物およびリチウム化合物とのタングステン混合物であり、
      含有されるタングステン量に対する前記水分と固体分のタングステン化合物、もしくは前記水分と固体分のタングステン化合物およびリチウム化合物に含有される合計のリチウム量のモル比が3~5であるタングステン混合物を得る混合工程と、
      得られた前記タングステン混合物を熱処理して、前記リチウム金属複合酸化物の一次粒子表面に、タングステン酸リチウムを形成させる熱処理工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法。
    General formula: Li z Ni 1-x- y Co x M y O 2 ( however, 0 <x ≦ 0.35,0 ≦ y ≦ 0.35,0.95 ≦ z ≦ 1.30, M is, Mn , V, Mg, Mo, Nb, Ti, and Al), and a layered crystal structure composed of secondary particles formed by aggregation of primary particles. A lithium metal composite oxide powder, a moisture of 2% by mass or more based on the lithium metal composite oxide powder, and a tungsten compound or a tungsten mixture of a tungsten compound and a lithium compound,
    Mixing step of obtaining a tungsten mixture in which the molar ratio of the total amount of lithium contained in the moisture and solid tungsten compound or the total amount of lithium contained in the moisture and solid tungsten compound and the lithium compound with respect to the contained tungsten amount When,
    Producing a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by having a heat treatment step of heat-treating the obtained tungsten mixture to form lithium tungstate on the primary particle surface of the lithium metal composite oxide Method.
  2.  前記請求項1記載の非水系電解質二次電池用正極活物質の製造方法において、前記リチウム金属複合酸化物粉末を水と混合してスラリーを形成して、前記リチウム金属複合酸化物粉末を水洗する水洗工程と、次いで、前記水洗工程後に固液分離する固液分離工程を前記混合工程の前工程として備えることを特徴とする非水系電解質二次電池用正極活物質の製造方法。 2. The method of manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium metal composite oxide powder is mixed with water to form a slurry, and the lithium metal composite oxide powder is washed with water. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a water washing step and a solid-liquid separation step of solid-liquid separation after the water washing step as a pre-step of the mixing step.
  3.  前記スラリーに含まれるリチウム金属複合酸化物粉末の濃度が、水1Lに対して200~5000gであることを特徴とする請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。 3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the concentration of the lithium metal composite oxide powder contained in the slurry is 200 to 5000 g with respect to 1 L of water.
  4.  前記請求項2及び3に記載の非水系電解質二次電池用正極活物質の製造方法において、タングステン化合物を少なくとも前記水洗工程中、もしくは固液分離工程後に添加して前記タングステン混合物を得ることを特徴とする非水系電解質二次電池用正極活物質の製造方法。 4. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2 or 3, wherein a tungsten compound is added at least during the water washing step or after the solid-liquid separation step to obtain the tungsten mixture. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
  5.  前記水洗工程は、リチウム金属複合酸化物粉末を、タングステン化合物の水溶液と混合したスラリーを形成することを特徴とする請求項4に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the water washing step forms a slurry in which lithium metal composite oxide powder is mixed with an aqueous solution of a tungsten compound.
  6.  前記タングステン化合物が粉末状態であることを特徴とする請求項4に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the tungsten compound is in a powder state.
  7.  前記熱処理を100~600℃で行うことを特徴とする請求項1~6のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the heat treatment is performed at 100 to 600 ° C.
  8.  前記タングステン混合物に含まれるタングステン量を、前記リチウム金属複合酸化物粒子に含まれるNi、CoおよびMの原子数の合計に対して、0.05~2.0原子%とすることを特徴とする請求項1~7のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。 The amount of tungsten contained in the tungsten mixture is 0.05 to 2.0 atomic% with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide particles. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7.
  9.  一次粒子および一次粒子が凝集して形成された二次粒子から構成された層状構造の結晶構造を有するリチウム金属複合酸化物粉末からなる非水系電解質二次電池用正極活物質であって、
     一般式:LiNi1-x-yCo2+α(ただし、0<x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、前記リチウム金属複合酸化物の一次粒子表面にタングステン酸リチウムを有し、前記タングステン酸リチウムに含まれるLiWOの存在比率が50~90mol%であることを特徴とする非水系電解質二次電池用正極活物質。
    A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium metal composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of primary particles,
    General formula: Li z Ni 1-x- y Co x M y W a O 2 + α ( although, 0 <x ≦ 0.35,0 ≦ y ≦ 0.35,0.95 ≦ z ≦ 1.30,0 < a ≦ 0.03, 0 ≦ α ≦ 0.15, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), and the lithium metal composite oxide A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that it has lithium tungstate on the surface of primary particles and the abundance ratio of Li 4 WO 5 contained in the lithium tungstate is 50 to 90 mol%.
  10.  前記リチウム金属複合酸化物の表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量が、正極活物質全量に対して0.08質量%以下であることを特徴とする請求項9に記載の非水電解質二次電池用正極活物質。 The amount of lithium contained in a lithium compound other than lithium tungstate present on the surface of the lithium metal composite oxide is 0.08% by mass or less based on the total amount of the positive electrode active material. The positive electrode active material for nonaqueous electrolyte secondary batteries as described.
  11.  前記タングステン酸リチウムに含有されるタングステン量が、リチウム金属複合酸化物に含まれるNi、CoおよびMの原子数の合計に対してWの原子数が0.05~2.0原子%であることを特徴とする請求項9及び10に記載の非水系電解質二次電池用正極活物質。 The amount of tungsten contained in the lithium tungstate is 0.05 to 2.0 atomic% of W atoms with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. The positive electrode active material for non-aqueous electrolyte secondary batteries according to claim 9 and 10.
  12.  前記タングステン酸リチウムが、粒子径1~200nmの微粒子として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項9~11のいずれか1項に記載の非水系電解質二次電池用正極活物質。 The non-aqueous electrolyte secondary according to any one of claims 9 to 11, wherein the lithium tungstate is present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 200 nm. Positive electrode active material for batteries.
  13.  前記タングステン酸リチウムが、膜厚1~150nmの被膜として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項9~11のいずれか1項に記載の非水系電解質二次電池用正極活物質。 The non-aqueous electrolyte secondary according to any one of claims 9 to 11, wherein the lithium tungstate is present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 150 nm. Positive electrode active material for batteries.
  14.  前記タングステン酸リチウムが、粒子径1~200nmの微粒子及び膜厚1~150nmの被膜の両形態として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項9~11のいずれか1項に記載の非水系電解質二次電池用正極活物質。 12. The lithium metal composite oxide according to claim 9, wherein the lithium tungstate is present on the primary particle surface of the lithium metal composite oxide in both forms of fine particles having a particle diameter of 1 to 200 nm and a film having a thickness of 1 to 150 nm. The positive electrode active material for non-aqueous electrolyte secondary batteries according to claim 1.
  15.  請求項9~14のいずれか1項に記載の非水系電解質二次電池用正極活物質を含む正極を有することを特徴とする非水系電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 9 to 14.
PCT/JP2015/083368 2014-11-28 2015-11-27 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used WO2016084931A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15862689.5A EP3226330B1 (en) 2014-11-28 2015-11-27 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used
CN201580074697.XA CN107210441B (en) 2014-11-28 2015-11-27 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method, and used the non-aqueous electrolyte secondary battery of the positive active material
US15/531,595 US11171326B2 (en) 2014-11-28 2015-11-27 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014241788 2014-11-28
JP2014-241788 2014-11-28
JP2015212399A JP6090609B2 (en) 2014-11-28 2015-10-28 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2015-212399 2015-10-28

Publications (1)

Publication Number Publication Date
WO2016084931A1 true WO2016084931A1 (en) 2016-06-02

Family

ID=56074478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083368 WO2016084931A1 (en) 2014-11-28 2015-11-27 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used

Country Status (1)

Country Link
WO (1) WO2016084931A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171081A1 (en) * 2015-04-24 2016-10-27 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
US10797302B2 (en) 2015-04-24 2020-10-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
CN112242506A (en) * 2019-07-18 2021-01-19 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112242509A (en) * 2019-07-18 2021-01-19 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029111A1 (en) * 2007-08-31 2009-03-05 Midwest Research Institute Thin-film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials
WO2012105048A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material
JP2013084395A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium ion secondary battery manufacturing method
JP2013125732A (en) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029111A1 (en) * 2007-08-31 2009-03-05 Midwest Research Institute Thin-film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials
WO2012105048A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material
JP2013084395A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium ion secondary battery manufacturing method
JP2013125732A (en) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171081A1 (en) * 2015-04-24 2016-10-27 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
US10797302B2 (en) 2015-04-24 2020-10-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
US11056681B2 (en) 2015-04-24 2021-07-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
CN112242506A (en) * 2019-07-18 2021-01-19 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112242509A (en) * 2019-07-18 2021-01-19 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
CN112242509B (en) * 2019-07-18 2024-04-09 丰田自动车株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6090609B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6090608B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6777081B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP6210439B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP6651789B2 (en) Positive active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2016111000A5 (en)
JP6818225B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary batteries
JP2016110999A5 (en)
WO2012043783A1 (en) Positive electrode active material for use in nonaqueous electrolyte secondary cells, manufacturing method thereof, and nonaqueous electrolyte secondary cell using said positive electrode active material
JP6978182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6998107B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each
JP7055587B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP6724361B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2016207635A5 (en)
WO2016084930A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and producing method therefor, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2016104305A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
WO2016084931A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used
WO2016171081A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
WO2016140207A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same
JP7069534B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2020140778A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15531595

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015862689

Country of ref document: EP