JP2019012654A - Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material - Google Patents

Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material Download PDF

Info

Publication number
JP2019012654A
JP2019012654A JP2017129284A JP2017129284A JP2019012654A JP 2019012654 A JP2019012654 A JP 2019012654A JP 2017129284 A JP2017129284 A JP 2017129284A JP 2017129284 A JP2017129284 A JP 2017129284A JP 2019012654 A JP2019012654 A JP 2019012654A
Authority
JP
Japan
Prior art keywords
positive electrode
powder
lithium
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017129284A
Other languages
Japanese (ja)
Inventor
好治 栗原
Koji Kurihara
好治 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017129284A priority Critical patent/JP2019012654A/en
Publication of JP2019012654A publication Critical patent/JP2019012654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a positive electrode material for a nonaqueous electrolyte secondary battery capable of obtaining a high output while suppressing a decrease in capacity when used for a positive electrode.SOLUTION: In a positive electrode material for a nonaqueous electrolyte secondary battery containing a mixture of a powder of a positive electrode active material composed of primary particles and/or secondary particles of lithium metal composite oxide and preferably having a specific surface area of 0.5 to 2.0 m/g, a powder of lithium nitride phosphate preferably having a median diameter D50 of 0.01 to 0.50 μm, and nonaqueous organic solvent, 20 to 40 parts by mass of the nonaqueous organic solvent is contained relative to 100 parts by mass of the powder of the positive electrode active material, and preferably 0.1 to 2.0 parts by mass of the powder of the lithium nitride phosphate is contained in 100 parts by mass of the powder of the positive electrode active material.SELECTED DRAWING: None

Description

本発明は、非水系電解質二次電池用正極材料及びその製造方法並びに該正極材料を用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode material.

近年の携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車をはじめとする電気自動車用の電池として高出力の二次電池の開発も強く望まれている。このような要求を満たす二次電池として、負極及び正極の活物質にリチウムイオンの脱離及び挿入が可能な材料を用いたリチウムイオン二次電池が注目されており、現在盛んに研究開発が行われている。上記のリチウムイオン二次電池の中でも、層状又はスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。   With the recent popularization of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. In addition, development of a high-power secondary battery is strongly desired as a battery for electric vehicles such as hybrid vehicles. As a secondary battery that satisfies these requirements, a lithium ion secondary battery using a material capable of desorption and insertion of lithium ions as an active material for a negative electrode and a positive electrode has been attracting attention, and research and development is actively conducted at present. It has been broken. Among the lithium ion secondary batteries described above, a lithium ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode material can obtain a high voltage of 4V, and therefore has a high energy density. Practical use is progressing.

これまでに提案されている活物質材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)やリチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などが挙げられる。これらのうち、リチウムニッケル複合酸化物及びリチウムニッケルコバルトマンガン複合酸化物はサイクル特性が良く、低抵抗で高出力が得られるので、電池特性に優れた材料として注目されている。近年、正極材料の活物質にはさらなる特性の向上が求められており、様々な技術が提案されている。 Examples of active material materials proposed so far include lithium cobalt composite oxide (LiCoO 2 ) that is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel that is cheaper than cobalt, and lithium nickel. Examples thereof include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, and the like. Among these, lithium nickel composite oxide and lithium nickel cobalt manganese composite oxide are attracting attention as materials having excellent battery characteristics because they have good cycle characteristics and low resistance and high output. In recent years, the active material of the positive electrode material has been required to further improve the characteristics, and various techniques have been proposed.

例えば、特許文献1には、正極化活物質としてのリチウムコバルト系複合酸化物にZr化合物を被覆することで表面改質を行い、これにより電池特性、特に負荷特性、サイクル特性、及び安定性に優れた正極活物質を提供する技術が開示されている。また、特許文献2には、コバルト酸リチウム粒子粉末とZr原料とLi原料とを混合した後、600〜1000℃の高温で焼成することによってコバルト酸リチウム粒子表面にZr化合物を被覆させ、これにより負荷特性、サイクル特性、及び熱安定性に優れた正極活物質を提供する技術が開示されている。更に、特許文献3には、4V級の正極活物質(A)の粒子の表面に、5V級の正極活物質(B)と、特定の酸化物(C)又は固体電解質(D)とが付着した複合粒子からなることを特徴とするリチウム二次電池正極材料、及び本発明のリチウム二次電池用正極材料を用いた正極を有することを特徴とするリチウム二次電池が開示されている。   For example, in Patent Document 1, surface modification is performed by coating a lithium cobalt-based composite oxide as a positive electrode active material with a Zr compound, thereby improving battery characteristics, particularly load characteristics, cycle characteristics, and stability. A technique for providing an excellent positive electrode active material is disclosed. In Patent Document 2, after lithium cobaltate particles powder, Zr raw material and Li raw material are mixed, the surface of lithium cobaltate particles is coated with a Zr compound by firing at a high temperature of 600 to 1000 ° C. A technique for providing a positive electrode active material excellent in load characteristics, cycle characteristics, and thermal stability is disclosed. Furthermore, in Patent Document 3, a 5V-grade positive electrode active material (B) and a specific oxide (C) or a solid electrolyte (D) are attached to the surface of particles of a 4V-grade positive electrode active material (A). There is disclosed a lithium secondary battery positive electrode material comprising a composite particle, and a lithium secondary battery comprising a positive electrode using the positive electrode material for a lithium secondary battery of the present invention.

特開2003−221234号公報JP 2003-221234 A 特許第5482977号公報Japanese Patent No. 5482977 特開2015−060767号公報Japanese Patent Laying-Open No. 2015-060767

しかしながら、特許文献1のように正極活物質の表面が異種化合物により被覆されると、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウム複合酸化物の持つ高容量という長所が損なわれてしまうおそれがある。また、リチウム複合酸化物中に異種元素を固溶させる場合も容量の低下を招きやすい。一方、特許文献2に記載の600〜1000℃の高温での焼成等の熱処理は、正極活物質の材質によっては変質し、電池特性が劣化するおそれがある。更に、特許文献3では、メカノフュージョン処理を行う必要があり、数千万円から数億円規模の設備投資のほか、イニシャルコスト以外にも、工程が増えることによるランニングコスト上昇や時間ロスが大きな問題となる。本発明は上記した従来の問題点に鑑みてなされたものであり、正極に用いた場合に容量が低下するのを抑制しながら高出力が得られる非水系電解質二次電池用正極材料を提供することを目的とする。   However, when the surface of the positive electrode active material is coated with a different compound as in Patent Document 1, the movement (intercalation) of lithium ions is greatly limited, and as a result, the lithium composite oxide has a high capacity. The advantages may be lost. Further, when a different element is dissolved in the lithium composite oxide, the capacity is likely to decrease. On the other hand, the heat treatment such as baking at a high temperature of 600 to 1000 ° C. described in Patent Document 2 may change depending on the material of the positive electrode active material, and the battery characteristics may be deteriorated. Furthermore, in Patent Document 3, it is necessary to perform a mechanofusion process. In addition to capital investment of tens of millions of yen to hundreds of millions of yen, in addition to the initial cost, there is a large increase in running cost and time loss due to increased processes. It becomes a problem. The present invention has been made in view of the above-described conventional problems, and provides a positive electrode material for a non-aqueous electrolyte secondary battery that can obtain a high output while suppressing a decrease in capacity when used in a positive electrode. For the purpose.

上記目的を達成するため、本発明の非水系電解質二次電池用正極材料は、リチウム金属複合酸化物の一次粒子及び/又は二次粒子からなる正極活物質の粉末と、窒化リン酸リチウムの粉末と、非水系有機溶剤との混合物を含む非水系電解質二次電池用正極材料であって、前記正極活物質の粉末100質量部に対して前記非水系有機溶剤が20〜40質量部含まれていることを特徴としている。   In order to achieve the above object, a positive electrode material for a non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode active material powder comprising primary particles and / or secondary particles of a lithium metal composite oxide, and a lithium nitride phosphate powder. And a non-aqueous electrolyte secondary battery positive electrode material containing a mixture of a non-aqueous organic solvent, the non-aqueous organic solvent being contained in an amount of 20 to 40 parts by mass with respect to 100 parts by mass of the positive electrode active material powder. It is characterized by being.

また、本発明の非水系電解質二次電池用正極材料の製造方法は、リチウム金属複合酸化物の一次粒子及び/又は二次粒子からなる正極活物質の粉末と、窒化リン酸リチウムの粉末と、前記正極活物質の粉末100質量部に対して20〜40質量部の非水系有機溶剤とを混合する工程を含むことを特徴としている。   Moreover, the method for producing a positive electrode material for a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode active material powder composed of primary particles and / or secondary particles of a lithium metal composite oxide, a lithium nitride phosphate powder, It includes a step of mixing 20 to 40 parts by mass of a non-aqueous organic solvent with respect to 100 parts by mass of the positive electrode active material powder.

本発明によれば、高容量で且つ高出力の電池特性を有する非水系電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity and high output battery characteristics.

本発明の実施形態に係る正極材料を用いた電極のインピーダンススペクトルの測定結果を示す模式図である。It is a schematic diagram which shows the measurement result of the impedance spectrum of the electrode using the positive electrode material which concerns on embodiment of this invention. 解析に使用した等価回路の説明図である。It is explanatory drawing of the equivalent circuit used for the analysis. 本発明の実施形態に係る正極材料を使用した電池の部分断面正面図である。It is a partial cross section front view of the battery using the positive electrode material which concerns on embodiment of this invention.

本発明の実施形態の正極材料は、リチウム金属複合酸化物の一次粒子若しくは該一次粒子が凝集した構造の二次粒子、又はこれら一次粒子及び二次粒子の混合物(以降、簡単のためリチウム金属複合酸化物の一次粒子及び/又は二次粒子とも称する)からなる粉末と、好ましくは中位径D50が0.01〜0.50μmの窒化リン酸リチウムの粉末と、非水系有機溶剤との混合物を含むことを特徴としている。以下、かかる正極材料及びその構成要素並びに該正極材料を用いた非水系電解質二次電池及びその製造方法について詳細に説明する。   The positive electrode material of the embodiment of the present invention includes primary particles of a lithium metal composite oxide, secondary particles having a structure in which the primary particles are aggregated, or a mixture of these primary particles and secondary particles (hereinafter referred to as lithium metal composite for simplicity. A mixture of a powder composed of an oxide primary particle and / or a secondary particle), preferably a lithium nitride phosphate powder having a median diameter D50 of 0.01 to 0.50 μm, and a non-aqueous organic solvent. It is characterized by including. Hereinafter, the positive electrode material, its constituent elements, the non-aqueous electrolyte secondary battery using the positive electrode material, and the manufacturing method thereof will be described in detail.

(1)正極材料
本発明の実施形態の非水系電解質二次電池用正極材料は、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは添加元素であり、Mn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物の一次粒子及び/又は二次粒子からなる粉末と、好ましくは中位径D50が0.01〜0.50μmの窒化リン酸リチウムの粉末と、非水系有機溶剤との混合物を含んでおり、ペーストの形態を有している。
(1) positive electrode material for a nonaqueous electrolyte secondary battery of the embodiment of the positive electrode material the invention is represented by the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35 , 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is an additive element and is represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) A powder composed of primary particles and / or secondary particles of a lithium metal composite oxide, preferably a lithium nitride phosphate powder having a median diameter D50 of 0.01 to 0.50 μm, and a non-aqueous organic solvent. Contains the mixture and has the form of a paste.

このように正極材料に非水系有機溶剤を含有させてペースト状にすることで、微粒子で構成される窒化リン酸リチウム粉末の凝集が抑制され、後段の正極の作成時に非水系有機溶剤を更に添加する際により均一な混合が可能となり、正極中での窒化リン酸リチウムの分散性が極めて高くなる。上記の非水系有機溶剤の具体的な組成としては、電池特性に悪影響を及ぼさないのであれば特に限定はないが、コストや異物混入の可能性を抑えうる点を考慮すれば、後述する正極の作成時に使用する非水系有機溶剤と同じものを用いるのが好ましく、例えばN−メチル−2−ピロリジノンを挙げることができる。本発明の実施形態の正極材料では、この非水系有機溶剤が正極活物質100質量部に対して20〜40質量部含まれるようにする。   In this way, the non-aqueous organic solvent is added to the positive electrode material to form a paste, thereby suppressing aggregation of the lithium nitride phosphate powder composed of fine particles, and further adding a non-aqueous organic solvent when creating the subsequent positive electrode In this case, uniform mixing becomes possible, and the dispersibility of the lithium lithium phosphate in the positive electrode becomes extremely high. The specific composition of the non-aqueous organic solvent is not particularly limited as long as it does not adversely affect the battery characteristics. However, in consideration of the possibility of suppressing the cost and the possibility of contamination, the positive electrode described later is used. It is preferable to use the same non-aqueous organic solvent used at the time of preparation, for example, N-methyl-2-pyrrolidinone. In the positive electrode material according to the embodiment of the present invention, the non-aqueous organic solvent is contained in an amount of 20 to 40 parts by mass with respect to 100 parts by mass of the positive electrode active material.

上記のように、正極材料の母材となる正極活物質に上記一般式で表されるリチウム金属複合酸化物を用いることにより、高い充放電容量が得られる。更に、上記のリチウム金属複合酸化物の一次粒子や二次粒子からなる粉末に中位径D50が0.01〜0.50μmの範囲内にある窒化リン酸リチウム粉末を混合することにより、充放電容量の低下を抑制しながら出力特性を向上させることができる。このように電池の出力特性が向上する理由は、LiPON、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO、LiWO、LiMoO、LiZrO、LiTiOなどのリチウム化合物は、リチウムイオンの伝導性を促進する高リチウム伝導性物質であるからである。すなわち、上記のリチウム化合物はリチウムイオン伝導率が高いため、正極活物質の表面にこのような高リチウム伝導性物質が存在することによりリチウムイオンの移動が促進され、正極活物質の表面におけるリチウムイオンのインターカレーションが促進される。 As described above, a high charge / discharge capacity can be obtained by using the lithium metal composite oxide represented by the above general formula for the positive electrode active material serving as a base material of the positive electrode material. Furthermore, charging and discharging is performed by mixing lithium nitride phosphate powder having a median diameter D50 in the range of 0.01 to 0.50 μm with the powder composed of primary particles and secondary particles of the above lithium metal composite oxide. Output characteristics can be improved while suppressing a decrease in capacity. The reason why the output characteristics of the battery are thus improved is that LiPON, Li 3 PO 4 , Li 3 BO 3 , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4 , Li 2 WO 4 , Li 2 MoO 4 This is because lithium compounds such as Li 2 ZrO 3 and Li 2 TiO 3 are highly lithium conductive materials that promote the conductivity of lithium ions. That is, since the lithium compound has a high lithium ion conductivity, the presence of such a high lithium conductive material on the surface of the positive electrode active material promotes the movement of lithium ions, and the lithium ion on the surface of the positive electrode active material. Intercalation is promoted.

上記の高リチウム伝導性物質の中でも特に窒化リン酸リチウム(LiPON)は極めて高いリチウムイオン伝導率を有する化合物であるため、この窒化リン酸リチウムの粉末を非水系有機溶剤の存在下で単にリチウム金属複合酸化物の粉末と混合してリチウム金属複合酸化物の粒子間に分散状態で存在させるだけで、リチウム金属複合酸化物の高容量特性を損なうことなく正極抵抗を大幅に低減することができる。このように、窒化リン酸リチウム粉末が正極材料中に均一に存在することで出力特性が向上するメカニズムは、窒化リン酸リチウム粒子が活物質表面に接触することで電解液及び正極活物質に作用し、電解液と正極活物質界面との間でのリチウムイオンの伝導パスが形成されることによるものであり、これにより、活物質の反応抵抗が低減する。なお、この窒化リン酸リチウムは、例えばリン酸リチウムLiPOの一部又は全部を窒化することで作成することができる。 Among the above high lithium conductive materials, lithium nitride phosphate (LiPON) is a compound having extremely high lithium ion conductivity. Therefore, this lithium nitride phosphate powder is simply obtained by using lithium metal in the presence of a non-aqueous organic solvent. The positive electrode resistance can be greatly reduced without impairing the high capacity characteristics of the lithium metal composite oxide simply by mixing with the composite oxide powder and allowing it to exist in a dispersed state between the particles of the lithium metal composite oxide. As described above, the mechanism in which the output characteristics are improved by the uniform presence of the lithium nitride phosphate powder in the positive electrode material is that the lithium nitride phosphate particles are in contact with the active material surface and thus act on the electrolyte and the positive electrode active material. This is because a lithium ion conduction path is formed between the electrolyte solution and the positive electrode active material interface, thereby reducing the reaction resistance of the active material. In addition, this lithium nitride phosphate can be prepared by nitriding a part or all of lithium phosphate Li 3 PO 4 , for example.

上記のように、リチウムイオンの伝導パスを形成するために窒化リン酸リチウムの粉末を正極材料内に均一に分散させており、逆にこの正極材料内での窒化リン酸リチウム粉末の分散が不均一になると、リチウム金属複合酸化物の粒子間でリチウムイオンの移動が不均一になる。その結果、特定のリチウム金属複合酸化物粒子に負荷がかかり、サイクル特性の悪化や反応抵抗の上昇を招きやすい。このように、正極材料内において均一に窒化リン酸リチウム粉末を分布させるため、窒化リン酸リチウム粉末の中位径D50を0.01〜0.50μmの範囲内にするのが好ましい。   As described above, the lithium nitride phosphate powder is uniformly dispersed in the positive electrode material in order to form a lithium ion conduction path. Conversely, the dispersion of the lithium nitride phosphate powder in the positive electrode material is not dispersed. When uniform, the movement of lithium ions between the particles of the lithium metal composite oxide becomes non-uniform. As a result, a load is applied to the specific lithium metal composite oxide particles, which tends to deteriorate cycle characteristics and increase reaction resistance. Thus, in order to uniformly distribute the lithium nitride phosphate powder in the positive electrode material, the median diameter D50 of the lithium nitride phosphate powder is preferably in the range of 0.01 to 0.50 μm.

上記の窒化リン酸リチウム粉末の中位径D50が0.01μm未満では、十分なリチウムイオン伝導度を有しない微細な窒化リン酸リチウムの粒子が過多に含まれることになるので、このような微細な粒子が多く存在する部分では上記効果が得られにくくなり、結果的に不均一に分散された場合と同様にサイクル特性の悪化や反応抵抗の上昇が起きるおそれがある。加えて、粉砕コストがかかり過ぎることがある。逆に上記の中位径D50が0.50μmを超えると、正極材料内に窒化リン酸リチウム粉末を均一に分散させにくくなり、反応抵抗の低減効果が十分に得られなくなるおそれがある。   When the median diameter D50 of the lithium nitride phosphate powder is less than 0.01 μm, fine lithium nitride phosphate particles having insufficient lithium ion conductivity are excessively contained. In a portion where a lot of fine particles are present, the above effect is difficult to obtain, and as a result, the cycle characteristics may be deteriorated and the reaction resistance may be increased as in the case of non-uniform dispersion. In addition, the grinding cost may be too high. On the other hand, when the median diameter D50 exceeds 0.50 μm, it becomes difficult to uniformly disperse the lithium nitride phosphate powder in the positive electrode material, and the effect of reducing the reaction resistance may not be sufficiently obtained.

上記の中位径D50は、測定対象となる粉末に対してレーザー回折散乱法を用いて測定することで得た各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の50%となる粒径を意味している。なお、粒径が上記範囲を外れる場合には、混合前に粉砕したり篩分けしたりすることで上記位範囲内にすることができる。   The median diameter D50 is obtained by accumulating the number of particles in each particle diameter obtained by measuring the powder to be measured using a laser diffraction scattering method from the smaller particle diameter side, and the accumulated volume is It means a particle size that is 50% of the total volume of the particles. In addition, when a particle size remove | deviates from the said range, it can be made into the said range by grind | pulverizing or sieving before mixing.

本発明の実施形態の正極材料では、リチウム金属複合酸化物の粉末100質量部に対して、上記の窒化リン酸リチウム粉末が0.1〜2.0質量部が含まれるように混合することが好ましい。これにより、高い充放電容量と優れた出力特性とを両立することができる。この窒化リン酸リチウム粉末の量が0.1質量部未満では、出力特性の改善効果が十分に得られない場合があり、逆に2.0質量部を超えると、窒化リン酸リチウム粉末が多くなり過ぎてリチウム金属複合酸化物と電解液のリチウム伝導が阻害され、充放電容量、特に正極材料の単位質量あたりの充放電容量が低下することがある。   In the positive electrode material according to the embodiment of the present invention, mixing may be performed so that the lithium nitride phosphate powder includes 0.1 to 2.0 parts by mass with respect to 100 parts by mass of the lithium metal composite oxide powder. preferable. Thereby, it is possible to achieve both high charge / discharge capacity and excellent output characteristics. If the amount of the lithium nitride phosphate powder is less than 0.1 parts by mass, the effect of improving the output characteristics may not be sufficiently obtained. Conversely, if the amount exceeds 2.0 parts by mass, the amount of lithium nitride phosphate powder is large. Thus, the lithium conduction between the lithium metal composite oxide and the electrolytic solution may be hindered, and the charge / discharge capacity, particularly the charge / discharge capacity per unit mass of the positive electrode material may be reduced.

上記の本発明の実施形態の正極材料に含まれるリチウム金属複合酸化物は、そのニッケル(Ni)、コバルト(Co)及びMの原子数の和(Me)に対するリチウム(Li)の原子数の比(Li/Me)が0.97以上1.20以下であるのが好ましい。このLi/Meの値が0.97未満であると、上記正極材量を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなるおそれがある。逆に、このLi/Meの値が1.20を超えると、正極活材料の放電容量が低下したり、正極の反応抵抗が増加したりするおそれがある。このLi/Meの値はより大きな放電容量を得るために、1.10以下であることがより好ましい。   The lithium metal composite oxide contained in the positive electrode material according to the embodiment of the present invention is a ratio of the number of atoms of lithium (Li) to the sum of the number of atoms of nickel (Ni), cobalt (Co) and M (Me). (Li / Me) is preferably 0.97 or more and 1.20 or less. If the Li / Me value is less than 0.97, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the amount of the positive electrode material is increased, which may reduce the battery output. On the other hand, if the Li / Me value exceeds 1.20, the discharge capacity of the positive electrode active material may decrease, or the reaction resistance of the positive electrode may increase. The value of Li / Me is more preferably 1.10 or less in order to obtain a larger discharge capacity.

Co及び添加元素Mは、サイクル特性や出力特性などの電池特性を向上させるために添加するものであり、これらの添加量をそれぞれ示すx及びyが0.35を超えると、Redox反応に貢献するNiが減少するため、電池容量が低下するおそれがある。一方、Coの添加量を示すxが0.01未満になると、サイクル特性や熱安定性が十分に得られなくなるおそれがある。したがって、電池に用いたときに十分な電池容量を得るためには、Mの添加量を示すyを0.15以下とすることがより好ましい。また、電解液との接触面積を多くすることが、出力特性の向上に有利であることから、一次粒子及び/又は二次粒子からなるリチウム金属複合酸化物粒子を用いる。   Co and additive element M are added to improve battery characteristics such as cycle characteristics and output characteristics, and when x and y indicating these addition amounts exceed 0.35, they contribute to the Redox reaction. Since Ni decreases, the battery capacity may decrease. On the other hand, if x indicating the amount of Co added is less than 0.01, the cycle characteristics and thermal stability may not be sufficiently obtained. Therefore, in order to obtain a sufficient battery capacity when used in a battery, it is more preferable that y indicating the amount of addition of M is 0.15 or less. Further, since increasing the contact area with the electrolytic solution is advantageous for improving the output characteristics, lithium metal composite oxide particles composed of primary particles and / or secondary particles are used.

この一次粒子及び/又は二次粒子からなるリチウム金属複合酸化物の粉末は、比表面積が0.5〜2.0m/gであることが好ましい。この比表面積が0.5m/g未満では、電解液との接触が十分に得られず、出力特性や電池容量が低下することがある。逆に、この比表面積が2.0m/gを超えると、電解液の分解が促進されて熱安定性が低下することがある。すなわち、比表面積を0.5〜2.0m/gの範囲内にすることにより、電解液との接触を高めて出力特性や電池容量をより良好なものとすると共に、熱安定性も確保することができる。 The lithium metal composite oxide powder composed of primary particles and / or secondary particles preferably has a specific surface area of 0.5 to 2.0 m 2 / g. When the specific surface area is less than 0.5 m 2 / g, sufficient contact with the electrolytic solution may not be obtained, and output characteristics and battery capacity may be reduced. On the other hand, when the specific surface area exceeds 2.0 m 2 / g, decomposition of the electrolytic solution is promoted and thermal stability may be lowered. That is, by making the specific surface area within the range of 0.5 to 2.0 m 2 / g, the contact with the electrolytic solution is enhanced, the output characteristics and the battery capacity are improved, and the thermal stability is also ensured. can do.

上記のリチウム金属複合酸化物の製造方法については特に限定はなく、公知の製造方法で生成することができる。なお、リチウム金属複合酸化物の粒径、タップ密度などの粉体特性は、通常に用いられる正極活物質の範囲内であればよいが、中位径D50が4.0〜15.0μmの範囲内にあるのが好ましい。この中位径D50は、例えばマイクロトラック・ベル株式会社製のマイクロトラックMT3300EXIIによって測定することができる。この測定装置は測定対象の粉末に液体を添加して得たスラリーを循環しながらレーザー回折散乱法を用いて粒径を測定するものであり、循環するスラリーには超音波が当てられて二次粒子の解砕が行われるので、測定される粒子はほぼ一次粒子になる。   There is no limitation in particular about the manufacturing method of said lithium metal complex oxide, It can produce | generate with a well-known manufacturing method. The powder properties such as the particle size and tap density of the lithium metal composite oxide may be in the range of the positive electrode active material that is usually used, but the median diameter D50 is in the range of 4.0 to 15.0 μm. Preferably within. The median diameter D50 can be measured by, for example, Microtrack MT3300EXII manufactured by Microtrack Bell Co., Ltd. This measuring device measures the particle size using the laser diffraction scattering method while circulating the slurry obtained by adding a liquid to the powder to be measured. Since the particles are crushed, the particles to be measured are almost primary particles.

上記した本発明の実施形態の正極材料では、正極活物質としてリチウムニッケルコバルト系複合酸化物を用いる場合について説明したが、本発明の正極材料はこれに限定されるものではなく、例えば、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物などを用いた場合であっても同様の効果が期待できる。   In the above-described positive electrode material according to the embodiment of the present invention, the case where the lithium nickel cobalt composite oxide is used as the positive electrode active material has been described. However, the positive electrode material of the present invention is not limited to this, for example, lithium cobalt Similar effects can be expected even when a lithium-based composite oxide, a lithium-manganese-based composite oxide, a lithium-nickel-cobalt-manganese-based composite oxide, or the like is used.

(2)正極材料の製造方法
次に、上記した本発明の実施形態の非水系電解質二次電池用正極材料の製造方法について説明する。先ず、母材となる正極活物質として、一般式LiNi1−x−yCo(ただし、0.01≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)の一次粒子及び/又は二次粒子からなるリチウム金属複合酸化物粉末と、高リチウム伝導性物質としての窒化リン酸リチウム粉末と、非水系有機溶剤とを用意する。
(2) Method for Producing Positive Electrode Material Next, a method for producing the positive electrode material for a non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described. First, as the positive electrode active material comprising a base material, the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0. 97 ≦ z ≦ 1.20, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) Lithium metal composite oxide powder comprising primary particles and / or secondary particles And lithium nitride phosphate powder as a high lithium conductive material and a non-aqueous organic solvent are prepared.

そして、これらリチウム金属複合酸化物粉末と窒化リン酸リチウム粉末とを、非水系有機溶剤が添加された状態で十分に混合する。これにより、窒化リン酸リチウム粉末の凝集を抑制しながら、正極活物質の粒子間に高リチウム伝導性物質である窒化リン酸リチウムの微粒子を均一に分散させると共に該微粒子を正極活物質の表面に接触させることができる。なお、非水系有機溶剤としては、例えばN−メチル−2−ピロリジノンを挙げることができるが、前述したようにこれに限定するものではない。   Then, the lithium metal composite oxide powder and the lithium nitride phosphate powder are sufficiently mixed with the non-aqueous organic solvent added. As a result, while suppressing aggregation of the lithium nitride phosphate powder, the fine particles of lithium nitride phosphate, which is a high lithium conductive material, are uniformly dispersed between the positive electrode active material particles, and the fine particles are spread on the surface of the positive electrode active material. Can be contacted. Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, but are not limited thereto as described above.

上記の混合には、一般的な混合機を使用することができ、例えば、シェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用い、リチウム金属複合酸化物の粉末に対してその一次粒子が破壊されない程度の条件で、窒化リン酸リチウムを十分に混合してやればよい。これにより、窒化リン酸リチウムの微粒子を、リチウム金属複合酸化物の粉末の表面にほぼ均一に分布させることができる。   For the above mixing, a general mixer can be used. For example, using a shaker mixer, a Roedige mixer, a Julia mixer, a V blender, etc., primary particles of the lithium metal composite oxide powder are used. It is sufficient that lithium nitride nitride is sufficiently mixed under such a condition that is not destroyed. Thereby, the fine particles of lithium nitride phosphate can be distributed substantially uniformly on the surface of the lithium metal composite oxide powder.

正極材料の製造方法では、上記の混合工程の前に、正極材料の電池容量及び熱安定性を向上させるため、リチウム金属複合酸化物粉末を水洗する工程を設けてもよい。この水洗工程は、リチウム金属複合酸化物粉末から過度にリチウムが溶出して電池特性が劣化しないのであれば、公知の水洗方法や水洗条件を採用することができる。この水洗後のリチウム金属複合酸化物粉末は、窒化リン酸リチウムとの混合前に乾燥処理を施してもよいし、固液分離のみで乾燥せずに窒化リン酸リチウムと混合してから乾燥処理を施してもよい。いずれの場合においても、この乾燥処理にはリチウム金属複合酸化物の電池特性が劣化しないのであれば公知の乾燥法や乾燥条件を採用することができる。   In the method for producing the positive electrode material, a step of washing the lithium metal composite oxide powder with water may be provided before the mixing step in order to improve the battery capacity and thermal stability of the positive electrode material. As long as lithium is not excessively eluted from the lithium metal composite oxide powder and the battery characteristics are not deteriorated in this water washing step, a known water washing method or water washing conditions can be employed. The lithium metal composite oxide powder after washing with water may be subjected to a drying treatment before mixing with lithium nitride phosphate, or after being mixed with lithium nitride phosphate without being dried only by solid-liquid separation. May be applied. In any case, a known drying method or drying condition can be used for this drying treatment as long as the battery characteristics of the lithium metal composite oxide do not deteriorate.

(3)非水系電解質二次電池
上記した本発明の実施形態の正極材料を用いた正極と、一般的な非水系電解質二次電池に使用される負極、セパレータ、及び非水系電解液などの構成要素とから非水系電解質二次電池を構成することができる。以下、かかる非水系電解質二次電池及びその構成要素の一具体例について説明を行うが、本発明は以下の一具体例に限定されるものではなく、当業者の知識に基づいて種々の変更例や代替例を実施することができる。また、本発明の実施形態の正極材料を用いた非水系電解質二次電池の用途についても特に限定するものではない。
(3) Non-aqueous electrolyte secondary battery A positive electrode using the positive electrode material according to the above-described embodiment of the present invention, and a negative electrode, a separator, a non-aqueous electrolyte, and the like used in a general non-aqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery can be constructed from the elements. Hereinafter, specific examples of the non-aqueous electrolyte secondary battery and its constituent elements will be described. However, the present invention is not limited to the following specific examples, and various modifications based on the knowledge of those skilled in the art. And alternatives can be implemented. Moreover, it does not specifically limit about the use of the non-aqueous electrolyte secondary battery using the positive electrode material of embodiment of this invention.

(a)正極
上記した本発明の実施形態の正極材料を用いて、例えば以下の方法で非水系電解質二次電池の正極を作製することができる。すなわち、先ず上記したペースト状の正極材料(第1ペースト)に、導電材及び活物質粒子をつなぎ止める役割を担う結着剤を添加し、必要に応じて電気二重層容量を増加させるために活性炭を添加した後、これら正極活物質や導電材等を分散させると共に結着剤の溶解や粘度調整等の目的を有する有機溶剤を添加して混練する。これによりペースト状の正極合材が得られる(第2ペースト)。
(A) Positive electrode Using the positive electrode material of the above-described embodiment of the present invention, for example, a positive electrode of a nonaqueous electrolyte secondary battery can be produced by the following method. That is, first, to the above-described paste-like positive electrode material (first paste), a binder that plays a role of connecting the conductive material and the active material particles is added, and activated carbon is added to increase the electric double layer capacity as necessary. After the addition, these positive electrode active materials, conductive materials and the like are dispersed, and an organic solvent having the purpose of dissolving the binder and adjusting the viscosity is added and kneaded. Thereby, a paste-like positive electrode mixture is obtained (second paste).

この第2ペーストの正極合材中の構成要素の混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。そのため、有機溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様に、正極活物質の含有量が60〜95質量部の範囲内にあり、導電材の含有量が1〜20質量部の範囲内にあり、結着剤の含有量が1〜20質量部の範囲内にあることが望ましい。なお、上記の第2ペーストの正極合材中に含まれる有機溶剤の含有率は20〜60質量%の範囲内にあるのが好ましく、30〜50質量%がより好ましい。   The mixing ratio of the constituent elements in the positive electrode mixture of the second paste is also an important factor that determines the performance of the non-aqueous electrolyte secondary battery. Therefore, when the total mass of the solid content of the positive electrode mixture excluding the organic solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery. It is desirable that the content of the conductive material is in the range of 1 to 20 parts by mass and the content of the binder is in the range of 1 to 20 parts by mass. In addition, it is preferable that the content rate of the organic solvent contained in the positive electrode compound material of said 2nd paste exists in the range of 20-60 mass%, and 30-50 mass% is more preferable.

上記にて得たペースト状の正極合材を、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥処理を行って有機溶剤を飛散させる。これにより、シート状の正極を作製することができる。なお上記乾燥処理後に必要に応じてロールプレス等により圧縮することで電極密度を高めてもよい。上記にて作製したシート状の正極は、最終製品となる二次電池に合わせて裁断等により適当な形状に成形された後、該二次電池に組み込まれる。   The paste-like positive electrode mixture obtained above is applied to the surface of a current collector made of, for example, an aluminum foil, and subjected to a drying treatment to scatter the organic solvent. Thereby, a sheet-like positive electrode can be produced. In addition, you may raise an electrode density by compressing with a roll press etc. as needed after the said drying process. The sheet-shaped positive electrode produced as described above is formed into an appropriate shape by cutting or the like in accordance with the secondary battery as the final product, and then incorporated into the secondary battery.

上記の導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)、アセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、上記結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。また、有機溶剤としては、例えば、N−メチル−2−ピロリドン等を用いることができる。   Examples of the conductive agent include carbon black materials such as graphite (natural graphite, artificial graphite, expanded graphite, etc.), acetylene black, and ketjen black. Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, and polyacrylic acid. . Moreover, as an organic solvent, N-methyl-2-pyrrolidone etc. can be used, for example.

(b)負極
上記の正極の対極となる負極には、リチウムイオンを吸蔵及び脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布して乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用することができる。上記の負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができ、評価用の場合は金属リチウムやリチウム金属を用いてもよい。また、結着剤としては、正極と同様のPVDF等の含フッ素樹脂等を用いることができ、これら負極活物質及び結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
(B) Negative electrode In the negative electrode serving as the counter electrode of the positive electrode, a negative electrode mixture prepared by mixing a negative electrode active material capable of inserting and extracting lithium ions with a binder and adding a suitable solvent to form a paste is used. It can be applied to the surface of a metal foil current collector, etc., dried, and compressed to increase the electrode density as necessary. As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as a phenol resin, or a powdery carbon material such as coke can be used. May be used. Further, as the binder, a fluorine-containing resin such as PVDF similar to that of the positive electrode can be used, and as a solvent for dispersing the negative electrode active material and the binder, organic solvents such as N-methyl-2-pyrrolidone are used. A solvent can be used.

(c)セパレータ
上記の正極と負極との間に挟み込んだ状態で配置されるセパレータは、正極と負極との間で短絡が起こらないように隔離すると共に、電解質やイオンを通過させる役割を担っている。このセパレータの材質には、微細孔を無数に有するポリエチレン、ポリプロピレン等の薄い膜を用いることができる。
(C) Separator The separator disposed in a state of being sandwiched between the positive electrode and the negative electrode is isolated so as not to cause a short circuit between the positive electrode and the negative electrode, and has a role of allowing electrolytes and ions to pass therethrough. Yes. As the material of the separator, a thin film such as polyethylene or polypropylene having countless fine holes can be used.

(d)非水系電解液
非水系電解液は、上記の正極と負極との間を移動するイオンの輸送媒体の役割を担っており、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、更に、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、及びそれらの複合塩を用いることができる。非水系電解液は、更にラジカル捕捉剤、界面活性剤及び難燃剤等を含んでいてもよい。
(D) Non-aqueous electrolyte solution The non-aqueous electrolyte solution serves as a transport medium for ions moving between the positive electrode and the negative electrode, and uses a solution obtained by dissolving a lithium salt as a supporting salt in an organic solvent. be able to. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to. As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used. The nonaqueous electrolytic solution may further contain a radical scavenger, a surfactant, a flame retardant, and the like.

(e)非水系電解質二次電池の形態及び製造方法
上記において説明した正極、負極、セパレータ及び非水系電解液で主に構成される非水系電解質二次電池は、円筒型、積層型等の種々の形態にすることができる。いずれの場合であっても、その製造方法では、セパレータを挟んで正極及び負極を積層させて電極体とし、この電極体に非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、及び負極集電体と外部に通ずる負極端子との間を集電用リード等を用いてそれぞれ接続し、電池ケースに密閉することが行われ、これにより非水系電解質二次電池を完成させることができる。
(E) Form and manufacturing method of non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery mainly composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above has various types such as a cylindrical type and a laminated type. It can be in the form of In any case, in the manufacturing method, a positive electrode and a negative electrode are laminated with a separator interposed therebetween to form an electrode body, and the electrode body is impregnated with a non-aqueous electrolyte, and the positive electrode terminal communicates with the positive electrode current collector. And between the negative electrode current collector and the negative electrode terminal communicating with the outside using a current collecting lead or the like, and sealing in a battery case, whereby a non-aqueous electrolyte secondary battery is Can be completed.

(f)特性
上記の本発明の実施形態の正極材料を用いた非水系電解質二次電池は、高容量で且つ高出力の電池特性を有している。例えば、2032型コイン電池の正極に本発明の実施形態の正極材料を用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、高容量で且つ高出力である。また、熱安定性が高く、よって安全性においても優れている。
(F) Characteristics The non-aqueous electrolyte secondary battery using the positive electrode material according to the above-described embodiment of the present invention has a high capacity and high output battery characteristics. For example, when the positive electrode material of the embodiment of the present invention is used for the positive electrode of a 2032 type coin battery, a high initial discharge capacity of 165 mAh / g or more and a low positive electrode resistance are obtained, and a high capacity and a high output are obtained. In addition, it has high thermal stability, and thus is excellent in safety.

上記した本発明の実施形態の正極材料を用いた非水系電解質二次電池は、常に高容量を要求されるノート型パーソナルコンピュータや携帯電話端末などの小型携帯電子機器の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。特に、本発明の実施形態の正極材料を用いた非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。更に、本発明の実施形態の正極材料を用いた非水系電解質二次電池は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。   The non-aqueous electrolyte secondary battery using the positive electrode material according to the above-described embodiment of the present invention is suitable for a power source of a small portable electronic device such as a notebook personal computer or a mobile phone terminal that always requires a high capacity. It is also suitable for batteries for electric vehicles that require output. In particular, the non-aqueous electrolyte secondary battery using the positive electrode material according to the embodiment of the present invention has excellent safety, and can be downsized and increased in output. It is suitable as a power source for use. Furthermore, the non-aqueous electrolyte secondary battery using the positive electrode material according to the embodiment of the present invention is used not only for a power source for an electric vehicle that is driven purely by electric energy but also for a so-called combustion engine such as a gasoline engine or a diesel engine. It can also be used as a power source for hybrid vehicles.

本発明の実施例及び比較例の正極材料を調製し、これらを用いた正極をそれぞれ有する非水系電解質二次電池を作製してそれらの正極界面抵抗を評価した。なお、正極活物質の粉末及び窒化リン酸リチウムの粉末の中位径D50は、マイクロトラック・ベル株式会社製のレーザー回折散乱法による粒度分布測定装置であるマイクロトラックMT3300EXIIを用いて想定した。正極活物質の粉末の比表面積は、窒素ガス吸着脱離流動法による比表面積測定装置である株式会社マウンテックのマックソーブ1200シリーズを用いて測定した。リチウムイオン複合酸化物の組成はICP法による測定装置であるアジレント・テクノロジー株式会社製のICP−OESであるAgilent730−ESを用いて分析した。   The positive electrode material of the Example of this invention and the comparative example was prepared, the non-aqueous electrolyte secondary battery which each has a positive electrode using these was produced, and those positive electrode interface resistances were evaluated. The median diameter D50 of the positive electrode active material powder and the lithium nitride phosphate powder was assumed using Microtrac MT3300EXII, which is a particle size distribution measuring apparatus using a laser diffraction scattering method manufactured by Microtrac Bell. The specific surface area of the powder of the positive electrode active material was measured using a Maxsorb 1200 series manufactured by Mountec Co., Ltd., which is a specific surface area measuring apparatus using a nitrogen gas adsorption / desorption flow method. The composition of the lithium ion composite oxide was analyzed using Agilent 730-ES, which is an ICP-OES manufactured by Agilent Technologies, which is a measuring device by the ICP method.

(実施例1)
ニッケルを主成分とする酸化物と水酸化リチウムを混合して焼成する公知の技術で得られたLi1.02Ni0.82Co0.15Al0.03で表されるリチウム金属複合酸化物の粉末を用意し、その1.5gに対して水1mlの割合で常温の水を加えて撹拌することで水洗処理を行った後、脱水及び乾燥して正極材料の母材となる正極活物質とした。この正極活物質は、比表面積が1.35m/g、中位径D50が8.7μmであった。
Example 1
Lithium metal composite represented by Li 1.02 Ni 0.82 Co 0.15 Al 0.03 O 2 obtained by a known technique in which an oxide containing nickel as a main component and lithium hydroxide are mixed and fired Prepare a powder of oxide, wash water by adding water at room temperature at a rate of 1 ml of water to 1.5 g of the powder and stir, then dehydrate and dry to form a cathode of the cathode material The active material was used. This positive electrode active material had a specific surface area of 1.35 m 2 / g and a median diameter D50 of 8.7 μm.

次に、添加材料である窒化リン酸リチウム粉末を用意し、これを自転・公転ミキサーを用いて十分に粉砕することで、中位径D50が0.16μmの窒化リン酸リチウム粉末を得た。上記の正極活物質としてのリチウム金属複合酸化物粉末20gに、この窒化リン酸リチウム粉末0.020gを添加し(正極活物質100質量部に対して0.1質量部に相当する)、さらにN−メチル−2−ピロリドンを6.0g加えて自転・公転ミキサーを用いて30分間混練することでペースト状の正極材料(第1ペースト)を調製した。   Next, lithium nitride phosphate powder as an additive material was prepared, and this was sufficiently pulverized using a rotation / revolution mixer to obtain lithium nitride phosphate powder having a median diameter D50 of 0.16 μm. To 20 g of the lithium metal composite oxide powder as the positive electrode active material, 0.020 g of this lithium nitride phosphate powder is added (corresponding to 0.1 part by mass with respect to 100 parts by mass of the positive electrode active material), and N -A paste-like positive electrode material (first paste) was prepared by adding 6.0 g of methyl-2-pyrrolidone and kneading for 30 minutes using a rotation / revolution mixer.

(電池の作製)
上記方法で調製した正極材料を用いて正極を形成した後、これを用いて図3に示すようなコイン型二次電池10を組み立ててその電池特性を後述する方法で評価した。具体的には、先ず上記の第1ペーストの形態の正極材料26.02gに、5.72gのアセチレンブラックと、2.86gのポリテトラフッ化エチレン樹脂(PTFE)と、10.0gのN−メチル−2−ピロリドンとを加えて自転・公転ミキサーを用いて30分間混練することで第2ペーストを調製した。このペーストを目視にて確認したところ、良好に混合されていた。
(Production of battery)
After forming a positive electrode using the positive electrode material prepared by the above method, a coin-type secondary battery 10 as shown in FIG. 3 was assembled using the positive electrode material, and the battery characteristics were evaluated by a method described later. Specifically, first, 26.02 g of the positive electrode material in the form of the first paste was added to 5.72 g of acetylene black, 2.86 g of polytetrafluoroethylene resin (PTFE), and 10.0 g of N-methyl- A second paste was prepared by adding 2-pyrrolidone and kneading for 30 minutes using a rotation / revolution mixer. When this paste was visually confirmed, it was well mixed.

この第2ペーストをアルミニウム箔製の集電体の表面に塗布し、真空乾燥機中において雰囲気温度120℃で12時間乾燥処理した。乾燥処理後、100MPaの圧力で厚み100μmにプレスし、更に、直径11mmに打ち抜き、正極(評価用電極)1を作製した。なお、上記の塗布の際の厚みを微調整することによって、打ち抜き後に所望の重量を確保した。次に作製した正極1を露点が−80℃に管理されたAr雰囲気のグローブボックス内において、これら乾燥処理した正極(評価用電極)1と、負極2と、セパレータ3と、電解液とをコイン形状の正極缶4と負極缶5との内側に収めて、図3に示すようなコイン型電池10を作製した。   This second paste was applied to the surface of a current collector made of aluminum foil and dried in an vacuum dryer at an ambient temperature of 120 ° C. for 12 hours. After the drying treatment, the film was pressed to a thickness of 100 μm at a pressure of 100 MPa, and further punched out to a diameter of 11 mm to produce a positive electrode (evaluation electrode) 1. In addition, the desired weight was ensured after the punching by finely adjusting the thickness at the time of application. Next, in the glove box of Ar atmosphere in which the dew point was controlled at −80 ° C., the produced positive electrode 1 was subjected to dry treatment of the positive electrode (evaluation electrode) 1, the negative electrode 2, the separator 3, and the electrolytic solution. A coin-type battery 10 as shown in FIG. 3 was prepared by placing the positive electrode can 4 and the negative electrode can 5 inside.

なお、負極2には平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを直径14mmの円盤状に打ち抜いたものを用い、電解液には1MのLiPFを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(宇部興産株式会社製)を用い、セパレータ3には膜厚25μmのポリエチレン多孔膜を用いた。また、正極缶4と負極缶5との接合部にはガスケット6を設け、負極2の上面はウェーブワッシャー7で固定した。 The negative electrode 2 is a negative electrode sheet obtained by punching a negative electrode sheet in which a graphite powder having an average particle diameter of about 20 μm and polyvinylidene fluoride are applied to a copper foil into a disk shape having a diameter of 14 mm, and 1M LiPF 6 is supported as an electrolyte An equal volume mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (manufactured by Ube Industries) was used as the electrolyte, and a 25 μm thick polyethylene porous film was used for the separator 3. A gasket 6 was provided at the joint between the positive electrode can 4 and the negative electrode can 5, and the upper surface of the negative electrode 2 was fixed with a wave washer 7.

(実施例2)
正極活物質としてのリチウム金属複合酸化物粉末20gに対する窒化リン酸リチウム粉末の添加量を0.020gに代えて0.060g(正極活物質100質量部に対して0.3質量部に相当する)にした以外は上記実施例1と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 2)
Instead of 0.020 g, the amount of lithium nitride phosphate powder added to 20 g of lithium metal composite oxide powder as the positive electrode active material is 0.060 g (corresponding to 0.3 parts by mass with respect to 100 parts by mass of the positive electrode active material). Except for the above, a coin-type secondary battery 10 was produced in the same manner as in Example 1, and the battery evaluation was performed by the method described later.

(実施例3)
正極活物質としてのリチウム金属複合酸化物粉末20gに対するに窒化リン酸リチウム粉末の添加量を0.020gに代えて0.20g(正極活物質100質量部に対して1.0質量部に相当する)にした以外は上記実施例1と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 3)
Instead of 0.020 g of lithium nitride phosphate powder added to 20 g of lithium metal composite oxide powder as the positive electrode active material, 0.20 g (corresponding to 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material). The coin-type secondary battery 10 was produced in the same manner as in Example 1 except that the battery evaluation was performed, and the battery evaluation was performed by the method described later.

(実施例4)
正極活物質としてのリチウム金属複合酸化物粉末20gに対するに窒化リン酸リチウム粉末の添加量を0.020gに代えて0.40g(正極活物質100質量部に対して2.0質量部に相当する)にした以外は上記実施例1と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 4)
Instead of 0.020 g of lithium nitride phosphate powder added to 20 g of lithium metal composite oxide powder as the positive electrode active material, 0.40 g (corresponding to 2.0 parts by mass with respect to 100 parts by mass of the positive electrode active material). The coin-type secondary battery 10 was produced in the same manner as in Example 1 except that the battery evaluation was performed, and the battery evaluation was performed by the method described later.

(実施例5)
第1ペーストの調製時に添加したN−メチル−2−ピロリドンの量を6.0g加えて4.0gとし、第2ペーストの調整時に添加したN−メチル−2−ピロリドンの量を10.0gに加えて12.0gにした以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 5)
The amount of N-methyl-2-pyrrolidone added during preparation of the first paste is 6.0 g to 4.0 g, and the amount of N-methyl-2-pyrrolidone added during preparation of the second paste is 10.0 g. In addition, a coin-type secondary battery 10 was prepared in the same manner as in Example 3 except that the amount was 12.0 g, and the battery evaluation was performed by the method described later.

(実施例6)
第1ペーストの調製時に添加したN−メチル−2−ピロリドンの量を6.0g加えて8.0gとし、第2ペーストの調整時に添加したN−メチル−2−ピロリドンの量を10.0gに加えて8.0gにした以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 6)
The amount of N-methyl-2-pyrrolidone added during the preparation of the first paste is 6.0 g to be 8.0 g, and the amount of N-methyl-2-pyrrolidone added during the preparation of the second paste is 10.0 g. In addition, a coin-type secondary battery 10 was produced in the same manner as in Example 3 except that the amount was 8.0 g, and the battery evaluation was performed by the method described later.

(実施例7)
中位径D50が0.16μmの窒化リン酸リチウム粉末に代えて該中位径D50が0.013μmの窒化リン酸リチウム粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 7)
A coin-type secondary battery in the same manner as in Example 3 except that the lithium phosphate phosphor powder having a median diameter D50 of 0.013 μm was used instead of the lithium nitride phosphate powder having a median diameter D50 of 0.16 μm. 10 was produced, and the battery evaluation was performed by the method described later.

(実施例8)
中位径D50が0.16μmの窒化リン酸リチウム粉末に代えて該中位径D50が0.49μmの窒化リン酸リチウム粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 8)
A coin-type secondary battery in the same manner as in Example 3 except that lithium nitride phosphate powder having a median diameter D50 of 0.49 μm was used instead of the lithium nitride phosphate powder having a median diameter D50 of 0.16 μm. 10 was produced, and the battery evaluation was performed by the method described later.

(実施例9)
正極活物質に、中位径D50が8.7μm、比表面積が1.35m/gのリチウム金属複合酸化物粉末に代えて中位径D50が14.8μm、比表面積が0.52m/gのリチウム金属複合酸化物粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
Example 9
The positive electrode active material, median diameter D50 of 8.7 .mu.m, median diameter D50 specific surface area in place of the lithium metal composite oxide powder of 1.35 m 2 / g is 14.8Myuemu, specific surface area of 0.52 m 2 / A coin-type secondary battery 10 was produced in the same manner as in Example 3 except that g lithium metal composite oxide powder was used, and the battery evaluation was performed by the method described later.

(実施例10)
正極活物質に、中位径D50が8.7μm、比表面積が1.35m/gのリチウム金属複合酸化物粉末に代えて中位径D50が4.2μm、比表面積が1.97m/gのリチウム金属複合酸化物粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 10)
The positive electrode active material, median diameter D50 of 8.7 .mu.m, median diameter D50 specific surface area in place of the lithium metal composite oxide powder of 1.35 m 2 / g is 4.2 .mu.m, specific surface area of 1.97m 2 / A coin-type secondary battery 10 was produced in the same manner as in Example 3 except that g lithium metal composite oxide powder was used, and the battery evaluation was performed by the method described later.

(実施例11)
中位径D50が0.16μmの窒化リン酸リチウム粉末に代えて該中位径D50が0.005μmの窒化リン酸リチウム粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 11)
A coin-type secondary battery in the same manner as in Example 3 except that lithium nitride phosphate powder having a median diameter D50 of 0.005 μm was used instead of the lithium nitride phosphate powder having a median diameter D50 of 0.16 μm. 10 was produced, and the battery evaluation was performed by the method described later.

(実施例12)
中位径D50が0.16μmの窒化リン酸リチウム粉末に代えて該中位径D50が0.72μmの窒化リン酸リチウム粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 12)
A coin-type secondary battery in the same manner as in Example 3 except that the lithium nitride phosphate powder having a median diameter D50 of 0.72 μm was used instead of the lithium nitride phosphate powder having a median diameter D50 of 0.16 μm. 10 was produced, and the battery evaluation was performed by the method described later.

(実施例13)
正極活物質に、中位径D50が8.7μm、比表面積が1.35m/gのリチウム金属複合酸化物粉末に代えて中位径D50が16.2μm、比表面積が0.38m/gのリチウム金属複合酸化物粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 13)
The positive electrode active material, median diameter D50 of 8.7 .mu.m, median diameter D50 specific surface area in place of the lithium metal composite oxide powder of 1.35 m 2 / g is 16.2, a specific surface area of 0.38 m 2 / A coin-type secondary battery 10 was produced in the same manner as in Example 3 except that g lithium metal composite oxide powder was used, and the battery evaluation was performed by the method described later.

(実施例14)
正極活物質に、中位径D50が8.7μm、比表面積が1.35m/gのリチウム金属複合酸化物粉末に代えて中位径D50が2.5μm、比表面積が2.64m/gのリチウム金属複合酸化物粉末を用いた以外は上記実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(比較例1)
窒化リン酸リチウム粉末の添加を行わなかったことと、第1ペーストを経ずに正極活物質としてのリチウム金属複合酸化物粉末20gと、アセチレンブラック5.72gと、ポリテトラフッ化エチレン樹脂(PTFE)2.86gと、N−メチル−2−ピロリドン16.0gとを一度に加えてペーストを調製したこと以外は実施例1と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Example 14)
The positive electrode active material, median diameter D50 of 8.7 .mu.m and a specific surface area of 1.35 m 2 / g of lithium metal composite oxide powder having a median diameter D50 of 2.5μm instead of a specific surface area of 2.64 M 2 / A coin-type secondary battery 10 was produced in the same manner as in Example 3 except that g lithium metal composite oxide powder was used, and the battery evaluation was performed by the method described later.
(Comparative Example 1)
No lithium nitride phosphate powder was added, 20 g of lithium metal composite oxide powder as a positive electrode active material without passing through the first paste, 5.72 g of acetylene black, and polytetrafluoroethylene resin (PTFE) 2 A coin-type secondary battery 10 was produced in the same manner as in Example 1 except that .86 g and 16.0 g of N-methyl-2-pyrrolidone were added at a time to prepare a paste, and the battery evaluation will be described later. Went in the way.

(比較例2)
第1ペーストを経ずに正極活物質としてのリチウム金属複合酸化物粉末20gと、窒化リン酸リチウム粉末0.020gと、アセチレンブラック5.72gと、ポリテトラフッ化エチレン樹脂(PTFE)2.86gと、N−メチル−2−ピロリドン16.0gとを一度に加えてペーストを調製したこと以外は実施例1と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Comparative Example 2)
20 g of lithium metal composite oxide powder as the positive electrode active material without passing through the first paste, 0.020 g of lithium nitride phosphate powder, 5.72 g of acetylene black, 2.86 g of polytetrafluoroethylene resin (PTFE), A coin-type secondary battery 10 was produced in the same manner as in Example 1 except that 16.0 g of N-methyl-2-pyrrolidone was added at a time to prepare a paste, and the battery evaluation was performed by the method described later. .

(比較例3)
第1ペーストを経ずに正極活物質としてのリチウム金属複合酸化物粉末20gと、窒化リン酸リチウム粉末0.20gと、アセチレンブラック5.72gと、ポリテトラフッ化エチレン樹脂(PTFE)2.86gと、N−メチル−2−ピロリドン16.0gとを一度に加えてペーストを調製したこと以外は実施例3と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Comparative Example 3)
20 g of lithium metal composite oxide powder as a positive electrode active material without passing through the first paste, 0.20 g of lithium nitride phosphate powder, 5.72 g of acetylene black, 2.86 g of polytetrafluoroethylene resin (PTFE), A coin-type secondary battery 10 was produced in the same manner as in Example 3 except that 16.0 g of N-methyl-2-pyrrolidone was added at a time to prepare a paste, and the battery evaluation was performed by the method described later. .

(比較例4)
第1ペーストを経ずに正極活物質としてのリチウム金属複合酸化物粉末20gと、窒化リン酸リチウム粉末0.40gと、アセチレンブラック5.72gと、ポリテトラフッ化エチレン樹脂(PTFE)2.86gと、N−メチル−2−ピロリドン16.0gとを一度に加えてペーストを調製したこと以外は実施例4と同様にしてコイン型二次電池10を作製し、その電池評価を後述する方法で行った。
(Comparative Example 4)
20 g of lithium metal composite oxide powder as the positive electrode active material without passing through the first paste, 0.40 g of lithium nitride phosphate powder, 5.72 g of acetylene black, 2.86 g of polytetrafluoroethylene resin (PTFE), A coin-type secondary battery 10 was produced in the same manner as in Example 4 except that 16.0 g of N-methyl-2-pyrrolidone was added at a time to prepare a paste, and the battery evaluation was performed by the method described later. .

(評価)
上記にて製造した実施例1〜14及び比較例1〜4のコイン型二次電池10の正極界面抵抗について下記の方法で評価した。すなわち、各コイン型電池10を充電電位4.0Vで充電して、周波数応答アナライザ及びポテンショガルバノスタット(ソーラトロン社製、1255B)を使用して交流インピーダンス法により図1に示すインピーダンススペクトルを得た。得られたインピーダンススペクトルには、高周波領域と中間周波領域とに2つの半円が観測され、低周波領域に直線が観察されていることから、図2に示す等価回路モデルを組んで正極界面抵抗を解析した。ここで、Rsはバルク抵抗、R1は正極被膜抵抗、Rctは電解液/正極界面抵抗(界面のLi+移動抵抗)、Wはワーブルグ成分、CPE1、CPE2は定相要素を示す。なお、表1に記載の「正極界面抵抗比」は、比較例1(LiPON無添加)の抵抗値を1として規格化した場合の「抵抗比」である。
(Evaluation)
The positive electrode interface resistances of the coin-type secondary batteries 10 of Examples 1 to 14 and Comparative Examples 1 to 4 manufactured above were evaluated by the following methods. That is, each coin-type battery 10 was charged at a charging potential of 4.0 V, and the impedance spectrum shown in FIG. In the obtained impedance spectrum, two semicircles are observed in the high frequency region and the intermediate frequency region, and a straight line is observed in the low frequency region. Therefore, the equivalent interface model shown in FIG. Was analyzed. Here, Rs is a bulk resistance, R1 is a positive electrode film resistance, Rct is an electrolyte / positive electrode interface resistance (Li + movement resistance at the interface), W is a Warburg component, and CPE1 and CPE2 are constant phase elements. The “positive electrode interface resistance ratio” shown in Table 1 is a “resistance ratio” when the resistance value of Comparative Example 1 (without adding LiPON) is normalized to 1.

Figure 2019012654
Figure 2019012654

実施例1〜14の非水系電解質の二次電池は、初期放電容量が比較例1〜4に比べて大きく、また正極界面抵抗も比較例1〜4に比べて低くなっており、優れた特性を有する電池が得られることが確認できた。一方、比較例1の二次電池は、正極界面抵抗が高くなっており、これは窒化リン酸リチウムが混合されていないことによるものと考えられ、また、第1ペーストを経ずに原料全部を一度に混合したので、正極の作製時に目視にて分かる程度に十分に混合されておらず、よってリチウムイオンの伝導パスが良好に形成されなかったことによるものと考えられる。比較例2〜4も第1ペーストを経ずに原料全部を一度に混合したので、正極の作製時に目視にて分かる程度に混合されていない箇所が見られた。以上の結果より、本発明の正極材料を用いた非水系電解質二次電池は正極界面抵抗が低くなり、よって優れた特性を有する二次電池が得られることが確認できた。   The non-aqueous electrolyte secondary batteries of Examples 1 to 14 have an initial discharge capacity larger than that of Comparative Examples 1 to 4, and a positive electrode interface resistance that is lower than that of Comparative Examples 1 to 4, and excellent characteristics. It was confirmed that a battery having On the other hand, the secondary battery of Comparative Example 1 has a high positive electrode interface resistance, which is considered to be due to the fact that lithium nitride phosphate is not mixed, and the entire raw material is not passed through the first paste. Since they were mixed at the same time, they were not sufficiently mixed to the extent that they could be visually observed at the time of producing the positive electrode, and it is considered that the lithium ion conduction path was not formed well. In Comparative Examples 2 to 4, since all the raw materials were mixed at once without passing through the first paste, portions that were not mixed to the extent that they could be visually observed during the production of the positive electrode were observed. From the above results, it was confirmed that the non-aqueous electrolyte secondary battery using the positive electrode material of the present invention has a low positive electrode interface resistance, and thus a secondary battery having excellent characteristics can be obtained.

なお、実施例11〜14は実施例3に比べて正極界面抵抗が高くなっており、その理由は、実施例12及び13では正極活物質又は窒化リン酸リチウムの粒径が実施例3のものに比べて顕著に大きいため、互いの接触面積が狭くなったことによるものと考えられる。逆に実施例11及び14では正極活物質又は窒化リン酸リチウムの粒径が実施例3のものに比べて顕著に小さいため、リチウムイオンの伝導パスの形成が不十分になって正極界面抵抗が高くなったと考えられる。   In addition, Examples 11 to 14 have higher positive electrode interface resistance than Example 3, because in Examples 12 and 13, the particle size of the positive electrode active material or lithium nitride phosphate is that of Example 3. This is considered to be due to the fact that the contact area with each other became narrower. On the other hand, in Examples 11 and 14, the particle diameter of the positive electrode active material or lithium nitride phosphate is significantly smaller than that in Example 3, so that the formation of the lithium ion conduction path becomes insufficient, and the positive electrode interface resistance is low. Probably higher.

1 正極(評価用電極)
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 ガスケット
7 ウェーブワッシャー
10 コイン型電池
1 Positive electrode (Evaluation electrode)
2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Gasket 7 Wave washer 10 Coin-type battery

Claims (7)

リチウム金属複合酸化物の一次粒子及び/又は二次粒子からなる正極活物質の粉末と、窒化リン酸リチウムの粉末と、非水系有機溶剤との混合物を含む非水系電解質二次電池用正極材料であって、前記正極活物質の粉末100質量部に対して前記非水系有機溶剤が20〜40質量部含まれていることを特徴とする非水系電解質二次電池用正極材料。   A positive electrode material for a non-aqueous electrolyte secondary battery comprising a mixture of a positive electrode active material powder comprising primary particles and / or secondary particles of a lithium metal composite oxide, a lithium nitride phosphate powder, and a non-aqueous organic solvent. A positive electrode material for a non-aqueous electrolyte secondary battery, wherein the non-aqueous organic solvent is contained in an amount of 20 to 40 parts by mass with respect to 100 parts by mass of the positive electrode active material powder. 前記正極活物質の粉末100質量部に対して、前記窒化リン酸リチウムの粉末が0.1〜2.0質量部含まれていることを特徴とする、請求項1に記載の非水系電解質二次電池用正極材料。   2. The non-aqueous electrolyte 2 according to claim 1, wherein 0.1 to 2.0 parts by mass of the lithium nitride phosphate powder is included with respect to 100 parts by mass of the positive electrode active material powder. Positive electrode material for secondary batteries. 前記窒化リン酸リチウムの粉末の中位径D50が0.01〜0.50μmであり、前記一次粒子及び/又は二次粒子からなる正極活物質の粉末の比表面積が0.5〜2.0m/gであることを特徴とする、請求項1又は2に記載の非水系電解質二次電池用正極材料。 The median diameter D50 of the lithium nitride phosphate powder is 0.01 to 0.50 μm, and the specific surface area of the powder of the positive electrode active material composed of the primary particles and / or secondary particles is 0.5 to 2.0 m. The positive electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the positive electrode material is 2 / g. 請求項1〜3のいずれか1項に記載の非水系電解質二次電池用正極材料を含む正極を有することを特徴とする非水系電解質二次電池。   It has a positive electrode containing the positive electrode material for nonaqueous electrolyte secondary batteries of any one of Claims 1-3, The nonaqueous electrolyte secondary battery characterized by the above-mentioned. リチウム金属複合酸化物の一次粒子及び/又は二次粒子からなる正極活物質の粉末と、窒化リン酸リチウムの粉末と、前記正極活物質の粉末100質量部に対して20〜40質量部の非水系有機溶剤とを混合する工程を含むことを特徴とする非水系電解質二次電池用正極材料の製造方法。   20-40 parts by mass of positive electrode active material powder composed of primary particles and / or secondary particles of lithium metal composite oxide, lithium nitride phosphate powder, and 100 parts by mass of the positive electrode active material powder The manufacturing method of the positive electrode material for non-aqueous electrolyte secondary batteries characterized by including the process of mixing an aqueous organic solvent. 前記混合する工程の前に前記正極活物質の粉末を水洗する工程を含むことを特徴とする、請求項5に記載の非水系電解質二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a non-aqueous electrolyte secondary battery according to claim 5, comprising a step of washing the powder of the positive electrode active material with water before the step of mixing. 前記正極活物質の粉末100質量部に対して、前記窒化リン酸リチウムの粉末を0.1〜2.0質量部混ぜることを特徴とする、請求項5又は6に記載の非水系電解質二次電池用正極材料の製造方法。   The non-aqueous electrolyte secondary according to claim 5, wherein 0.1 to 2.0 parts by mass of the lithium nitride phosphate powder is mixed with 100 parts by mass of the positive electrode active material powder. A method for producing a positive electrode material for a battery.
JP2017129284A 2017-06-30 2017-06-30 Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material Pending JP2019012654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017129284A JP2019012654A (en) 2017-06-30 2017-06-30 Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017129284A JP2019012654A (en) 2017-06-30 2017-06-30 Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material

Publications (1)

Publication Number Publication Date
JP2019012654A true JP2019012654A (en) 2019-01-24

Family

ID=65227484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017129284A Pending JP2019012654A (en) 2017-06-30 2017-06-30 Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material

Country Status (1)

Country Link
JP (1) JP2019012654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116352A (en) * 2019-01-29 2020-08-06 株式会社三洋物産 Game machine
JP2020116353A (en) * 2019-01-29 2020-08-06 株式会社三洋物産 Game machine
JP2020120696A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine
JP2020120697A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine
JP2020120700A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116352A (en) * 2019-01-29 2020-08-06 株式会社三洋物産 Game machine
JP2020116353A (en) * 2019-01-29 2020-08-06 株式会社三洋物産 Game machine
JP2020120696A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine
JP2020120697A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine
JP2020120700A (en) * 2019-01-29 2020-08-13 株式会社三洋物産 Game machine

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP5370515B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
JP6090608B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6998107B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each
JP2013171785A5 (en)
JP2016111000A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2019012654A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery using positive electrode material
JP2017117766A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7135282B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2016104305A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP7027928B2 (en) Positive active material for non-aqueous electrolyte secondary battery, manufacturing method of positive positive active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP6730777B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
WO2016084931A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell in which said positive electrode active material is used
JP6848199B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP6819859B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP7167420B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20220123295A1 (en) Method of manufacturing positive electrode active material for lithium ion secondary battery
JP6819860B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP6919175B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2020149901A (en) Manufacturing method of positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, manufacturing method of positive electrode mixture for lithium ion secondary battery, and lithium ion secondary battery
WO2020171089A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP6819861B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
US20220135429A1 (en) Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery