JP2013152866A - Positive electrode active material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and nonaqueous electrolytic secondary battery with the positive electrode active material - Google Patents

Positive electrode active material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and nonaqueous electrolytic secondary battery with the positive electrode active material Download PDF

Info

Publication number
JP2013152866A
JP2013152866A JP2012013346A JP2012013346A JP2013152866A JP 2013152866 A JP2013152866 A JP 2013152866A JP 2012013346 A JP2012013346 A JP 2012013346A JP 2012013346 A JP2012013346 A JP 2012013346A JP 2013152866 A JP2013152866 A JP 2013152866A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
composite oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012013346A
Other languages
Japanese (ja)
Other versions
JP5772626B2 (en
Inventor
Hiroko Oshita
寛子 大下
Rei Komon
▲礼▼ 小門
Kensaku Mori
建作 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012013346A priority Critical patent/JP5772626B2/en
Publication of JP2013152866A publication Critical patent/JP2013152866A/en
Application granted granted Critical
Publication of JP5772626B2 publication Critical patent/JP5772626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolytic secondary battery which allows a high capacity and high output to be achieved when it is used as a positive electrode material.SOLUTION: The method of manufacturing a positive electrode active material for a nonaqueous electrolytic secondary battery comprises: a first step in which a tungsten acid compound solution with a W compound dissolved therein is added to and mixed with Li metal complex oxide powder including primary particles expressed by a general formula of LiNiCoMO(where 0.10≤x≤0.35, 0≤y≤0.35, 0.97≤z≤1.20, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), and secondary particles each composed of an agglomeration of the primary particles, thereby distributing W over the surfaces of the primary particles; and a second step in which a heat treatment is performed on the resultant mixture of the tungsten acid compound solution and the Li metal complex oxide powder, thereby forming fine particles including W and Li on the surfaces of the primary particles.

Description

本発明は、非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池に関するものである。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。
このような要求を満たす二次電池として、リチウムイオン二次電池がある。このリチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質は、リチウムを脱離および挿入することの可能な材料が用いられている。
このリチウムイオン二次電池は、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
In recent years, with the widespread use of portable electronic devices such as mobile phones and laptop computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. In addition, development of a high output secondary battery is strongly desired as a battery for electric vehicles including hybrid vehicles.
As a secondary battery satisfying such requirements, there is a lithium ion secondary battery. This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode.
This lithium ion secondary battery is currently under active research and development. Among them, a lithium ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode material is 4V class. As a battery having a high energy density is being put into practical use, a high voltage can be obtained.

これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
このうちリチウムニッケル複合酸化物およびリチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良く、低抵抗で高出力が得られる材料として注目されており、近年では高出力化に必要な低抵抗化が重要視されている。
The materials mainly proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel. Examples thereof include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and lithium manganese composite oxide (LiMn 2 O 4 ) using manganese.
Among these, lithium nickel composite oxide and lithium nickel cobalt manganese composite oxide are attracting attention as materials that have good cycle characteristics and can provide high output with low resistance. In recent years, it is important to reduce resistance required for high output. Is being viewed.

そこで、その低抵抗化を実現する方法として、異元素の添加が用いられており、とりわけW、Mo、Nb、Ta、Reなどの高価数をとることができる遷移金属が有用とされている。
例えば、特許文献1には、Mo、W、Nb、Ta及びReから選ばれる1種以上の元素が、Mn、Ni及びCoの合計モル量に対して0.1〜5モル%含有されているリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が提案され、一次粒子の表面部分のLi並びにMo、W、Nb、Ta及びRe以外の金属元素の合計に対するMo、W、Nb、Ta及びReの合計の原子比が、一次粒子全体の該原子比の5倍以上であることが好ましいとされている。
Therefore, the addition of foreign elements is used as a method for realizing the low resistance, and transition metals that can take high numbers such as W, Mo, Nb, Ta, and Re are particularly useful.
For example, Patent Document 1 contains one or more elements selected from Mo, W, Nb, Ta, and Re in an amount of 0.1 to 5 mol% with respect to the total molar amount of Mn, Ni, and Co. Lithium transition metal compound powder for a lithium secondary battery positive electrode material has been proposed, and Mo, W, Nb, Ta, and Li in the surface portion of primary particles and the total of metal elements other than Mo, W, Nb, Ta, and Re The total atomic ratio of Re is preferably 5 times or more of the atomic ratio of the entire primary particle.

この提案によれば、リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の低コスト化及び高安全性化と高負荷特性、粉体取り扱い性向上の両立を図ることができるとされている。しかし、このリチウム遷移金属系化合物粉体は、原料を液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥し、得られた噴霧乾燥体を焼成することで得ている。そのため、Mo、W、Nb、Ta及びReなどの異元素の一部が層状に配置されているNiと置換してしまい、電池の容量やサイクル特性などの電池特性が低下してしまう問題があった。   According to this proposal, it is said that it is possible to achieve both low cost and high safety of lithium transition metal-based compound powder for lithium secondary battery positive electrode material, high load characteristics, and improved powder handleability. . However, the lithium transition metal-based compound powder is obtained by pulverizing raw materials in a liquid medium, spray-drying a slurry in which these are uniformly dispersed, and firing the resulting spray-dried body. Therefore, a part of different elements such as Mo, W, Nb, Ta, and Re is replaced with Ni arranged in a layer, and there is a problem that battery characteristics such as battery capacity and cycle characteristics are deteriorated. It was.

また、特許文献2には、少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解質二次電池用正極活物質であって、そのリチウム遷移金属複合酸化物は、一次粒子およびその凝集体である二次粒子の一方または両方からなる粒子の形態で存在し、その粒子の少なくとも表面に、モリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種を備える化合物を有する非水電解質二次電池用正極活物質が提案されている。   Patent Document 2 discloses a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a layered lithium transition metal composite oxide, the lithium transition metal composite oxide being composed of primary particles and aggregates thereof. A non-aqueous electrolyte having a compound which is present in the form of a particle composed of one or both of secondary particles and has at least one selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine on at least the surface of the particle A positive electrode active material for a secondary battery has been proposed.

この提案では、より一層厳しい使用環境下においても優れた電池特性を有する非水電解質二次電池用正極活物質が得られるとされ、特に、粒子の表面にモリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種を有する化合物を有することにより、熱安定性、負荷特性および出力特性の向上を損なうことなく、初期特性が向上するとしている。
しかしながら、モリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種の添加元素による効果は、初期特性、すなわち初期放電容量および初期効率の向上にあるとされ、出力特性に言及したものではない。また、開示されている製造方法によれば、添加元素をリチウム化合物と同時に熱処理した水酸化物と混合して焼成するため、添加元素の一部が層状に配置されているニッケルと置換してしまい電池特性の低下を招く問題があった。
In this proposal, it is said that a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent battery characteristics even under a more severe use environment can be obtained, and in particular, molybdenum, vanadium, tungsten, boron and fluorine are used on the particle surface. By having a compound having at least one selected from the group, the initial characteristics are improved without impairing the improvement of thermal stability, load characteristics and output characteristics.
However, the effect of at least one additive element selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine is considered to be an improvement in initial characteristics, that is, initial discharge capacity and initial efficiency, and refers to output characteristics. is not. Further, according to the disclosed manufacturing method, since the additive element is mixed with the hydroxide that has been heat-treated at the same time as the lithium compound and fired, a part of the additive element is replaced with nickel arranged in layers. There was a problem that caused the battery characteristics to deteriorate.

さらに、特許文献3には、正極活物質の周りにTi、Al、Sn、Bi、Cu、Si、Ga、W、Zr、B、Moから選ばれた少なくとも一種を含む金属及びまたはこれら複数個の組み合わせにより得られる金属間化合物、及びまたは酸化物を被覆した正極活物質が提案されている。
このような被覆により、酸素ガスを吸収させ安全性を確保できるとしているが、出力特性に関しては全く開示されていない。また、開示されている製造方法は、遊星ボールミルを用いて被覆するものであり、このような被覆方法では、正極活物質に物理的なダメージを与えてしまい、電池特性が低下してしまう。
Further, Patent Document 3 discloses a metal including at least one selected from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, and Mo around the positive electrode active material and / or a plurality of these. A positive electrode active material coated with an intermetallic compound and / or oxide obtained by a combination has been proposed.
Such a coating can absorb oxygen gas and ensure safety, but no output characteristics are disclosed. Further, the disclosed manufacturing method is a method of coating using a planetary ball mill, and such a coating method causes physical damage to the positive electrode active material, resulting in deterioration of battery characteristics.

また、特許文献4には、ニッケル酸リチウムを主体とする複合酸化物粒子にタングステン酸化合物を被着させて加熱処理を行ったもので、炭酸イオンの含有量が0.15重量%以下である正極活物質が提案されている。
この提案によれば、正極活物質の表面にタングステン酸化合物またはタングステン酸化合物の分解物が存在し、充電状態における複合酸化物粒子表面の酸化活性を抑制するため、非水電解液等の分解によるガス発生を抑制することができるとしているが、出力特性に関しては全く開示されていない。
In Patent Document 4, a composite oxide particle mainly composed of lithium nickelate is subjected to heat treatment by adhering a tungstic acid compound, and the content of carbonate ions is 0.15% by weight or less. A positive electrode active material has been proposed.
According to this proposal, there is a tungstic acid compound or a decomposition product of the tungstic acid compound on the surface of the positive electrode active material, and the oxidation activity on the surface of the composite oxide particles in a charged state is suppressed. Although gas generation can be suppressed, the output characteristics are not disclosed at all.

さらに、開示されている製造方法は、好ましくは被着成分を溶解した溶液の沸点以上に加熱した複合酸化物粒子に、タングステン酸化合物とともに硫酸化合物、硝酸化合物、ホウ酸化合物またはリン酸化合物を被着成分として溶媒に溶解した溶液を被着させるものであり、溶媒を短時間で除去するため、複合酸化物粒子表面にタングステン化合物が十分に分散されず、均一に被着されているとは言い難いものである。   Furthermore, the disclosed production method preferably comprises a composite oxide particle heated to a boiling point or higher of a solution in which an adherent component is dissolved, and a sulfuric acid compound, a nitric acid compound, a boric acid compound, or a phosphoric acid compound as well as a tungstate compound. A solution dissolved in a solvent is applied as an adsorbing component. Since the solvent is removed in a short time, the tungsten compound is not sufficiently dispersed on the surface of the composite oxide particles and is uniformly applied. It is difficult.

また、特許文献5には、Liイオンの吸蔵および放出が可能なリチウム複合酸化物粉末の表面に、少なくともMo、Wからなる群から選ばれる1種以上の元素とLiとを含む表面層を有するリチウム二次電池用正極活物質が提案されている。
この提案によれば、高い初期放電容量を大きく劣化させずに、従来提案されている正極活物質より熱的な安定性が良好なリチウム二次電池用正極活物質を提供できるとしているが、出力特性に関しては全く開示されていない。
さらに、開示されている製造方法は、リチウム複合酸化物粉末と、MoおよびWからなる群から選ばれる少なくとも1種の元素とLiとを含む複合酸化物との混合物を、約650〜約950℃の温度で熱処理するものであり、固体同士の混合であるため、均一に添加元素をリチウム複合酸化物粉表面に分散させることが困難である。
Patent Document 5 has a surface layer containing at least one element selected from the group consisting of Mo and W and Li on the surface of the lithium composite oxide powder capable of inserting and extracting Li ions. A positive electrode active material for a lithium secondary battery has been proposed.
According to this proposal, a positive electrode active material for a lithium secondary battery having better thermal stability than a conventionally proposed positive electrode active material can be provided without greatly degrading a high initial discharge capacity. No properties are disclosed at all.
Further, the disclosed manufacturing method is a method in which a mixture of a lithium composite oxide powder and a composite oxide containing Li and at least one element selected from the group consisting of Mo and W is about 650 to about 950 ° C. Since the heat treatment is performed at a temperature of 5 ° C. and the solids are mixed with each other, it is difficult to uniformly disperse the additive element on the surface of the lithium composite oxide powder.

また、Wのリチウム複合酸化物粉末への添加方法としては、例えば、特許文献6には、スピネル型リチウムマンガン複合酸化物から成る活物質本体粉末を用意する一方、鉄、バナジウム、タングステン、モリブデン、レニウムおよびアルカリ金属元素から選択される少なくとも1種の元素を含む化合物を溶媒中に溶解して溶液を調製し、この溶液中に上記活物質本体粉末を添加して混合し、得られた混合体を乾燥した後に熱処理する正極活物質の製造方法が提案されている。
この提案は、初期容量の低下を最小限に抑制でき、かつ高温度での充放電サイクルの進行に伴う容量の低下を効果的に抑制することを目的としたものであり、出力特性に関しては全く開示されていない。さらに、開示されている製造方法は、溶液と活物質本体粉末を混合するものであるが、活物質から溶媒中へのリチウムの溶出による電池特性の劣化については全く考慮されていない。
In addition, as a method for adding W to the lithium composite oxide powder, for example, Patent Document 6 provides an active material main body powder made of spinel type lithium manganese composite oxide, while iron, vanadium, tungsten, molybdenum, A compound containing at least one element selected from rhenium and an alkali metal element is dissolved in a solvent to prepare a solution, and the active material body powder is added to and mixed in the solution, and the resulting mixture is obtained. A method for producing a positive electrode active material that is heat-treated after drying is proposed.
This proposal aims to minimize the decrease in initial capacity and to effectively suppress the decrease in capacity accompanying the progress of charge / discharge cycles at high temperatures. Not disclosed. Furthermore, the disclosed manufacturing method is a method in which a solution and an active material body powder are mixed, but no consideration is given to deterioration of battery characteristics due to elution of lithium from the active material into the solvent.

以上のように、高い初期放電容量と良好なサイクル特性を維持した状態で、出力特性が改善されたリチウム金属複合酸化物は開示されておらず、その開発が望まれている。   As described above, a lithium metal composite oxide having improved output characteristics while maintaining a high initial discharge capacity and good cycle characteristics is not disclosed, and its development is desired.

特開2009‐289726号公報JP 2009-289726 A 特開2005‐251716号公報JP 2005-251716 A 特開平11‐16566号公報Japanese Patent Laid-Open No. 11-16566 特開2010‐40383号公報JP 2010-40383 A 特開2002‐75367号公報JP 2002-75367 A 特開2000‐149948号公報JP 2000-149948 A

本発明はかかる問題点に鑑み、正極材に用いられた場合に高容量とともに高出力が得られる非水系電解質二次電池用正極活物質を提供することを目的とする。   In view of such problems, the present invention has an object to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that, when used as a positive electrode material, provides high capacity and high output.

本発明者らは、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられているリチウム金属複合酸化物の粉体特性、および電池の正極抵抗に対する影響について鋭意研究したところ、リチウム金属複合酸化物粉末を構成する一次粒子表面に、タングステン酸リチウム及びその水和物を形成させることで、電池の正極抵抗を低減して出力特性を向上させることが可能であることを見出した。   In order to solve the above problems, the present inventors have conducted intensive research on the powder properties of lithium metal composite oxides used as the positive electrode active material for non-aqueous electrolyte secondary batteries and the effect on the positive electrode resistance of the battery. And found that it is possible to reduce the positive electrode resistance of the battery and improve the output characteristics by forming lithium tungstate and its hydrate on the surface of the primary particles constituting the lithium metal composite oxide powder. It was.

さらに、その製造方法として、正極活物質に含まれるリチウムと反応しうるタングステン酸化合物溶液とリチウム金属複合酸化物を混合して熱処理することで、一次粒子表面全体にタングステン酸リチウムを形成させることが可能であることを見出し、本発明を完成させるに至ったものである。   Furthermore, as a manufacturing method thereof, lithium tungstate can be formed on the entire primary particle surface by mixing and heat-treating a tungstic acid compound solution capable of reacting with lithium contained in the positive electrode active material and a lithium metal composite oxide. It has been found that this is possible, and the present invention has been completed.

すなわち、本発明の第1の発明は、非水系電解質二次電池用正極活物質の製造方法であって、一般式LiNi1-x-yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン酸化合物溶液を添加し、混合することにより、リチウム金属複合酸化物粉末の一次粒子の表面にタングステン酸化合物を分散させ第1工程と、前記タングステン酸化合物を分散させたリチウム金属複合酸化物粉体を、熱処理することによりタングステン酸リチウムを、リチウム金属複合酸化物粉体の一次粒子の表面に結晶成長させ形成する第2工程を有することを特徴とする。 That is, the first invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, the general formula Li z Ni 1-x-y Co x M y O 2 ( where 0.10 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) The primary particles of the lithium metal composite oxide powder are prepared by adding a tungstic acid compound solution to the lithium metal composite oxide powder composed of the primary particles and the secondary particles formed by aggregation of the primary particles. The first step in which a tungstic acid compound is dispersed on the surface of the particles, and the lithium metal composite oxide powder in which the tungstic compound is dispersed are heat-treated to convert lithium tungstate into one of the lithium metal composite oxide powders. And having a second step of forming by crystal growth on the surface of the particles.

本発明の第2の発明に係る製造方法は、第1の発明における第1工程を行う前に、リチウム金属複合酸化物粉末を水洗する工程を有することを特徴とする。   The manufacturing method according to the second invention of the present invention is characterized by having a step of washing the lithium metal composite oxide powder with water before performing the first step in the first invention.

本発明の第3の発明は、第1及び第2の発明におけるタングステン酸化合物溶液に含まれるタングステン量が、そのタングステン酸化合物溶液と混合するリチウム金属複合酸化物粉末に含まれるNi、CoおよびMの原子数の合計に対して、0.1〜3.0mol%であり、そのタングステン酸化合物溶液中のタングステン濃度が、0.05〜4mol/Lであることを特徴とする。   According to a third aspect of the present invention, the amount of tungsten contained in the tungstic acid compound solution in the first and second inventions includes Ni, Co and M contained in the lithium metal composite oxide powder mixed with the tungstic acid compound solution. The total number of atoms is 0.1 to 3.0 mol%, and the tungsten concentration in the tungstic acid compound solution is 0.05 to 4 mol / L.

本発明の第4の発明は、第1から第3の発明におけるタングステン酸化合物溶液が、水溶性タングステン酸化合物の水溶液であり、さらに、その水溶性タングステン酸化合物の水溶液は、メタタングステン酸アンモニウム水溶液、パラタングステン酸アンモニウム水溶液、タングステン酸アンモニウム水溶液、リンタングステン酸水溶液から選択される少なくとも1種であることを特徴とする。   According to a fourth aspect of the present invention, the tungstic acid compound solution according to the first to third aspects is an aqueous solution of a water-soluble tungstic acid compound, and the aqueous solution of the water-soluble tungstic acid compound is an aqueous solution of ammonium metatungstate. , At least one selected from an aqueous solution of ammonium paratungstate, an aqueous solution of ammonium tungstate, and an aqueous solution of phosphotungstic acid.

本発明の第5の発明は、第1から第4の発明における第2工程の熱処理が、酸素雰囲気および真空雰囲気中での100〜900℃の熱処理温度で行うものであることを特徴とするものである。   The fifth invention of the present invention is characterized in that the heat treatment of the second step in the first to fourth inventions is performed at a heat treatment temperature of 100 to 900 ° C. in an oxygen atmosphere and a vacuum atmosphere. It is.

本発明の第6の発明は、非水系電解質二次電池用正極活物質が、一般式LiNi1−x−yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子、およびその一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末の一次粒子の表面に、層状あるいは島状のタングステン酸リチウムまたはその水和物を有することを特徴とするものである。 Sixth aspect of the present invention, the positive electrode active material for a non-aqueous electrolyte secondary battery, the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.10 ≦ x ≦ 0.35, Primary particles represented by 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), And a layered or island-shaped lithium tungstate or a hydrate thereof on the surface of the primary particle of the lithium metal composite oxide powder composed of secondary particles formed by aggregation of the primary particles It is.

本発明の第7の発明は、第6の発明におけるタングステン酸リチウム化合物中に含有されるタングステン量が、リチウム金属複合酸化物粉末に含まれるNi、CoおよびMの原子数の合計に対してWの原子数が0.1〜3.0mol%であることを特徴とするものである。   In a seventh aspect of the present invention, the amount of tungsten contained in the lithium tungstate compound according to the sixth aspect is W relative to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder. The number of atoms is 0.1 to 3.0 mol%.

さらに、本発明の第8の発明は、第6および第7の発明におけるタングステン酸リチウムの形態が、LiWO、LiWO、LiWO、Li13、Li、Li、Li、Li16、Li1955、Li1030、Li1815、またはこれらの水和物から選択される少なくとも1種の形態で存在することを特徴とする。 Furthermore, according to an eighth aspect of the present invention, the form of lithium tungstate in the sixth and seventh aspects is Li 2 WO 4 , Li 4 WO 5 , Li 6 WO 6 , Li 2 W 4 O 13 , Li 2. W 2 O 7 , Li 6 W 2 O 9 , Li 2 W 2 O 7 , Li 2 W 5 O 16 , Li 9 W 19 O 55 , Li 3 W 10 O 30 , Li 18 W 5 O 15 , or these It is present in at least one form selected from hydrates.

本発明の第9の発明は、非水系電解質二次電池が、第6から第8の発明のいずれかの正極活物質を含む正極を有することを特徴とするものである。   According to a ninth aspect of the present invention, a non-aqueous electrolyte secondary battery has a positive electrode containing the positive electrode active material according to any one of the sixth to eighth aspects.

本発明によれば、電池の正極材に用いた場合、高容量と共に高出力が実現可能な非水系電解質二次電池用正極活物質が得られる。
さらに、その製造方法は、容易で工業的規模での生産に適したものであり、その工業的価値は極めて大きい。
ADVANTAGE OF THE INVENTION According to this invention, when used for the positive electrode material of a battery, the positive electrode active material for nonaqueous electrolyte secondary batteries which can implement | achieve high output with a high capacity | capacitance is obtained.
Furthermore, the manufacturing method is easy and suitable for production on an industrial scale, and its industrial value is extremely large.

インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。It is a schematic explanatory drawing of the measurement example of impedance evaluation, and the equivalent circuit used for analysis. 本発明のリチウム金属複合酸化物の断面SEM写真(観察倍率5,000倍)である。It is a cross-sectional SEM photograph (observation magnification 5000 times) of the lithium metal complex oxide of this invention. 電池評価に使用したコイン型電池1の概略断面図である。It is a schematic sectional drawing of the coin-type battery 1 used for battery evaluation.

以下、本発明について、まず本発明の正極活物質について説明した後、その製造方法と本発明による正極活物質を用いた非水系電解質二次電池について説明する。
(1)正極活物質
本発明の非水系電解質二次電池用正極活物質は、一般式LiNi1−x−yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および、その一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末の一次粒子の表面に、層状あるいは島状のタングステン酸リチウムあるいはその水和物を有することを特徴とするものである。
Hereinafter, after describing the positive electrode active material of the present invention, the non-aqueous electrolyte secondary battery using the production method and the positive electrode active material according to the present invention will be described.
(1) the positive electrode active material the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.10 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) The surface of the primary particles of the lithium metal composite oxide powder composed of secondary particles formed by agglomeration of the primary particles has layered or island-shaped lithium tungstate or a hydrate thereof. It is.

本発明においては、母材として一般式LiNi1−x−yCo((ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物を用いることにより、高い充放電容量を得るものである。さらに、リチウム金属複合酸化物粉末の一次粒子の表面に層状あるいは島状に形成されたタングステン酸リチウムあるいはその水和物により、充放電容量を維持しながら出力特性を向上させるものである。 In the present invention, the general formula Li z Ni 1-x-y Co x M y O 2 as the base material ((where, 0.10 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, where M is a lithium metal composite oxide represented by (at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al). In addition, lithium tungstate or hydrates formed in layers or islands on the surface of primary particles of lithium metal composite oxide powder improve output characteristics while maintaining charge / discharge capacity. It is.

一般的に、正極活物質の表面が異種化合物により完全に被覆されてしまうと、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウムニッケル複合酸化物の持つ高容量という長所が消されてしまう。
対して、本発明においては、リチウム金属複合酸化物粉末の一次粒子の表面にタングステン酸リチウムあるいはその水和物(以下、表面形成物と記載することがある)を形成させているが、この表面形成物は、リチウムイオン伝導率が高く、リチウムイオンの移動を促す効果がある。このため、リチウム金属複合酸化物粉末の一次粒子の表面に上記化合物を島状あるいは極めて薄い層状に形成させることで、電解液との界面でリチウムイオンの伝導パスを確保し、活物質の反応抵抗を低減して出力特性を向上させるものである。
In general, when the surface of the positive electrode active material is completely covered with a different compound, the movement (intercalation) of lithium ions is greatly limited, resulting in a high capacity of the lithium nickel composite oxide. The advantages are erased.
On the other hand, in the present invention, lithium tungstate or a hydrate thereof (hereinafter sometimes referred to as surface formation) is formed on the surface of the primary particles of the lithium metal composite oxide powder. The formed material has a high lithium ion conductivity and has an effect of promoting the movement of lithium ions. Therefore, by forming the above compounds in the form of islands or extremely thin layers on the surface of the primary particles of the lithium metal composite oxide powder, a lithium ion conduction path is secured at the interface with the electrolyte, and the reaction resistance of the active material To improve the output characteristics.

このような表面形成物は、その形状が島状をなす場合は、粒子径が1〜100nmであることが好ましい。層をなす場合は、層の厚みが1〜30nmであることが望ましい。
粒子径が1nm未満では、表面形成物が十分なリチウムイオン伝導度を有しない場合がある。また、粒子径が100nmを超えると、表面形成物による被覆率が低下し、反応抵抗の低減効果が十分に得られない場合があるためである。
層状に形成させる場合は、層厚が1nm未満では十分なリチウムイオン伝導度を有しない場合があり、30nmを超えると粒子全体の比表面積を低下させてしまい、電解液との反応面積が十分に取れずに特性が低下することがある。
表面形成物が、このような形状をなすことで、高容量を維持しながら活物質の反応抵抗を低減して十分に出力特性を向上させることができる。
When such a surface formed product has an island shape, the particle diameter is preferably 1 to 100 nm. When forming a layer, the thickness of the layer is desirably 1 to 30 nm.
If the particle diameter is less than 1 nm, the surface formation may not have sufficient lithium ion conductivity. Further, when the particle diameter exceeds 100 nm, the coverage with the surface-formed product is lowered, and the reaction resistance reduction effect may not be sufficiently obtained.
In the case of forming in a layered form, if the layer thickness is less than 1 nm, the lithium ion conductivity may not be sufficient, and if it exceeds 30 nm, the specific surface area of the whole particle is reduced, and the reaction area with the electrolyte is sufficient. The characteristics may deteriorate without being removed.
By forming such a shape of the surface formed product, the reaction resistance of the active material can be reduced while maintaining a high capacity, and the output characteristics can be sufficiently improved.

さらに、電解液との接触は、一次粒子の表面(以下、一次粒子表面と記載する場合がある)で起こるため、一次粒子表面にタングステン酸リチウム、あるいはその水和物が形成されていることが重要である。
ここで、本発明における一次粒子表面とは、二次粒子の外面で露出している一次粒子表面と二次粒子外部と通じて電解液が浸透可能な二次粒子の表面近傍および内部の空隙に露出している一次粒子表面を含むものである。さらに、一次粒子間の粒界であっても一次粒子の結合が不完全で電解液が浸透可能な状態となっていれば含まれるものである。
Furthermore, since the contact with the electrolytic solution occurs on the surface of the primary particles (hereinafter sometimes referred to as the primary particle surface), lithium tungstate or a hydrate thereof may be formed on the primary particle surface. is important.
Here, the primary particle surface in the present invention refers to the primary particle surface exposed on the outer surface of the secondary particle and the void in the vicinity of the inner surface of the secondary particle through which the electrolyte solution can penetrate through the outer surface of the secondary particle. It includes exposed primary particle surfaces. Furthermore, even a grain boundary between primary particles is included as long as the primary particles are not completely bonded and the electrolyte solution can penetrate.

この電解液との接触は、一次粒子が凝集して構成された二次粒子の外面のみでなく、上記二次粒子の表面近傍および内部の空隙、さらには上記不完全な粒界でも生じるため、上記一次粒子表面にもタングステン酸リチウムあるいはその水和物を形成させ、リチウムイオンの移動を促すことが必要である。したがって、一次粒子表面にタングステン酸リチウムあるいはその水和物を形成させることで、リチウム金属複合酸化物粒子の反応抵抗をより一層低減させることが可能となる。   This contact with the electrolytic solution occurs not only on the outer surface of the secondary particles constituted by aggregation of primary particles, but also in the vicinity of the surface of the secondary particles and in the internal voids, and also on the incomplete grain boundaries. It is necessary to promote lithium ion migration by forming lithium tungstate or a hydrate thereof on the surface of the primary particles. Therefore, by forming lithium tungstate or a hydrate thereof on the primary particle surface, it becomes possible to further reduce the reaction resistance of the lithium metal composite oxide particles.

なお、タングステン酸リチウム、あるいはその水和物は完全に一次粒子の全表面において形成されている必要はなく、点在して島状になっている状態でもよく、部分的に層状に形成された状態でもよい。点在している状態でも、リチウム金属複合酸化物粒子の外面および内部の空隙に露出している一次粒子表面にタングステン酸リチウムあるいはその水和物が形成されていれば、反応抵抗の低減効果が得られる。特に上記粒子径あるいは層厚の範囲であればより大きな効果が得られる。   Note that the lithium tungstate or its hydrate need not be completely formed on the entire surface of the primary particles, and may be in the form of islands scattered or partially formed in layers. It may be in a state. Even if the lithium metal composite oxide particles are scattered, the reaction resistance can be reduced if lithium tungstate or its hydrate is formed on the outer surfaces of the lithium metal composite oxide particles and the primary particle surfaces exposed on the internal voids. can get. In particular, a greater effect can be obtained if the particle diameter or the layer thickness is within the above range.

このようなリチウム金属複合酸化物粉末の一次粒子表面の性状は、例えば、電界放射型走査電子顕微鏡で観察することにより判断でき、本発明の非水系電解質二次電池用正極活物質については、リチウム金属複合酸化物からなる粉末の一次粒子表面にタングステン酸リチウムあるいはその水和物が形成されていることを確認している。
一方、リチウム金属複合酸化物粉末間で不均一にタングステン酸リチウムあるいはその水和物が形成された場合は、リチウム金属複合酸化物粉末間でのリチウムイオンの移動が不均一となるため、特定のリチウム金属複合酸化物粉末に負荷がかかり、サイクル特性の悪化や反応抵抗の上昇を招きやすい。したがって、リチウム金属複合酸化物粉末間においても均一にタングステン酸リチウムあるいはその水和物が形成されていることが好ましい。
The property of the primary particle surface of such a lithium metal composite oxide powder can be judged by observing with a field emission scanning electron microscope, for example. For the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, lithium It has been confirmed that lithium tungstate or a hydrate thereof is formed on the primary particle surface of the powder made of the metal composite oxide.
On the other hand, when lithium tungstate or its hydrate is formed non-uniformly between lithium metal composite oxide powders, the movement of lithium ions between lithium metal composite oxide powders becomes non-uniform. A load is applied to the lithium metal composite oxide powder, which tends to deteriorate cycle characteristics and increase reaction resistance. Therefore, it is preferable that lithium tungstate or a hydrate thereof is uniformly formed between the lithium metal composite oxide powders.

タングステン酸リチウムあるいはその水和物を形成させたリチウム金属複合酸化物に含まれるタングステン量は、リチウム金属複合酸化物に含まれるNi、CoおよびMの原子数の合計に対して、0.1〜3.0原子%とすることが好ましい。これにより、高い充放電容量と出力特性を両立することができる。
タングステン量が0.1原子%未満では、出力特性の改善効果が十分に得られない場合があり、タングステン量が3.0原子%を超えると、形成される上記タングステン酸リチウムあるいはその水和物が多くなり過ぎてリチウム金属複合酸化物と電解液のリチウム伝導が阻害され、充放電容量が低下することがある。
The amount of tungsten contained in the lithium metal composite oxide formed with lithium tungstate or its hydrate is 0.1 to 0.1 with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. It is preferable to set it as 3.0 atomic%. Thereby, it is possible to achieve both high charge / discharge capacity and output characteristics.
When the amount of tungsten is less than 0.1 atomic%, the effect of improving the output characteristics may not be sufficiently obtained. When the amount of tungsten exceeds 3.0 atomic%, the lithium tungstate formed or hydrate thereof is formed. As a result, the lithium conduction between the lithium metal composite oxide and the electrolyte may be inhibited, and the charge / discharge capacity may be reduced.

タングステン酸リチウムあるいはその水和物は、特に限定されるものではないが、LiWO、LiWO、LiWO、Li13、Li、Li、Li、Li16、Li1955、Li1030、Li1815またはこれらの水和物から選択される少なくとも1種の形態であることが好ましい。これらの形態のタングステン酸リチウムあるいはその水和物は、リチウムイオン伝導率が高く、高容量を維持しながら活物質の反応抵抗を十分に低減することができる。 Tungstic acid lithium or hydrates thereof, but are not particularly limited, Li 2 WO 4, Li 4 WO 5, Li 6 WO 6, Li 2 W 4 O 13, Li 2 W 2 O 7, Li 6 At least selected from W 2 O 9 , Li 2 W 2 O 7 , Li 2 W 5 O 16 , Li 9 W 19 O 55 , Li 3 W 10 O 30 , Li 18 W 5 O 15 or a hydrate thereof. One form is preferred. These forms of lithium tungstate or its hydrate have high lithium ion conductivity, and can sufficiently reduce the reaction resistance of the active material while maintaining a high capacity.

また、正極活物質全体のリチウム量が、正極活物質中のNi、CoおよびMoの原子数の和(M)とLiの原子数との比「Li/M」が、0.95〜1.20であることが好ましい。そのLi/Mが0.95未満であると、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Mが1.20を超えると、正極活物質の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。通常、リチウム金属複合酸化物の表面には余剰リチウムが存在し、タングステン酸化合物溶液との混合した後の熱処理時に、その余剰リチウムによりタングステン酸リチウムを形成させることができるが、「Li/M」を上記範囲とすることで、十分なタングステン酸リチウムを形成させ、リチウムイオン伝導度の向上効果が得られる。   Further, the total amount of lithium in the positive electrode active material is such that the ratio “Li / M” of the number of atoms of Ni, Co and Mo in the positive electrode active material (M) to the number of Li atoms is 0.95 to 1. 20 is preferable. When the Li / M is less than 0.95, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases. On the other hand, if Li / M exceeds 1.20, the initial discharge capacity of the positive electrode active material is reduced and the reaction resistance of the positive electrode is also increased. Usually, surplus lithium is present on the surface of the lithium metal composite oxide, and during the heat treatment after mixing with the tungstate compound solution, lithium tungstate can be formed by the surplus lithium. “Li / M” By making the above range, sufficient lithium tungstate can be formed, and the effect of improving lithium ion conductivity can be obtained.

本発明の正極活物質は、リチウム金属複合酸化物粉末の一次粒子表面にタングステン酸リチウムあるいはその水和物を形成させて出力特性を改善したものであり、正極活物質としての粒径、タップ密度などの粉体特性は、通常に用いられる正極活物質の範囲内であればよい。
リチウム金属複合酸化物粉末の一次粒子表面に、タングステン酸リチウムあるいはその水和物を形成させることによる効果は、たとえば、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物などの粉末、さらに本発明で掲げた正極活物質だけでなく一般的に使用されるリチウム二次電池用正極活物質にも適用できる。
The positive electrode active material of the present invention has improved output characteristics by forming lithium tungstate or a hydrate thereof on the primary particle surface of the lithium metal composite oxide powder. The particle size and tap density as the positive electrode active material The powder characteristics such as may be within the range of a positive electrode active material usually used.
The effect of forming lithium tungstate or its hydrate on the primary particle surface of the lithium metal composite oxide powder is, for example, lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel cobalt manganese composite The present invention can be applied not only to powders such as oxides, but also to positive electrode active materials for lithium secondary batteries that are generally used as well as the positive electrode active materials listed in the present invention.

(2)正極活物質の製造方法
以下、本発明の非水系電解質二次電池用正極活物質の製造方法を工程ごとに詳細に説明する。
[第1工程]
第1工程は、一次粒子および一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末にタングステン酸化合物溶液を添加して混合する工程である。
この工程により、電解液と接触可能なリチウム金属複合酸化物粉末の一次粒子表面に、タングステン酸化合物をリチウム金属複合酸化物粉末間で均一に分散させることができる。
用いるタングステン酸化合物溶液は、水溶性タングステン酸化合物の水溶液であることが好ましく、メタタングステン酸アンモニウム水溶液、パラタングステン酸アンモニウム水溶液、タングステン酸アンモニウム水溶液、リンタングステン酸水溶液から選択される少なくとも1種であることがより好ましいが、メタタングステン酸アンモニウム水溶液が特に好ましい。
(2) Method for Producing Positive Electrode Active Material Hereinafter, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention will be described in detail for each step.
[First step]
The first step is a step of adding and mixing a tungstic acid compound solution to a lithium metal composite oxide powder composed of primary particles and secondary particles formed by aggregation of the primary particles.
By this step, the tungstic acid compound can be uniformly dispersed between the lithium metal composite oxide powders on the primary particle surfaces of the lithium metal composite oxide powder that can come into contact with the electrolytic solution.
The tungstic acid compound solution used is preferably an aqueous solution of a water-soluble tungstic acid compound, and is at least one selected from an aqueous solution of ammonium metatungstate, an aqueous solution of ammonium paratungstate, an aqueous solution of ammonium tungstate, and an aqueous solution of phosphotungstic acid. More preferred is an aqueous ammonium metatungstate solution.

このタングステン酸化合物溶液に含まれるタングステン量は、混合するリチウム金属複合酸化物に含まれるニッケル、コバルトおよびMの原子数の合計に対して、0.1〜3.0mol%とすることが好ましい。
また、タングステン酸化合物溶液のタングステン濃度は、0.05〜4mol/Lであることが好ましい。0.05mol/L未満では、タングステン濃度が低く溶液が大量に必要となるため、リチウム金属複合酸化物と混合する際にスラリー化してしまう。スラリー化することによりリチウム金属複合酸化物の結晶構造中に含まれるLiが溶出してしまい、そのため、電池特性の低下を招いてしまうため好ましくない。一方、タングステン濃度が4mol/Lを超えると、溶液が少なく、上記一次粒子表面にタングステン酸化合物を均一に分散できないことがある。
The amount of tungsten contained in the tungstic acid compound solution is preferably 0.1 to 3.0 mol% with respect to the total number of nickel, cobalt and M atoms contained in the lithium metal composite oxide to be mixed.
Moreover, it is preferable that the tungsten concentration of a tungstic acid compound solution is 0.05-4 mol / L. If it is less than 0.05 mol / L, since the tungsten concentration is low and a large amount of solution is required, it is slurried when mixed with the lithium metal composite oxide. Slurry causes the elution of Li contained in the crystal structure of the lithium metal composite oxide, which leads to a decrease in battery characteristics. On the other hand, if the tungsten concentration exceeds 4 mol / L, the solution may be small and the tungstic acid compound may not be uniformly dispersed on the primary particle surface.

リチウム金属複合酸化物と混合する上記タングステン酸化合物溶液の液量は、リチウム金属複合酸化物粉末100gに対して0.5〜150ml、好ましくは2〜150ml、より好ましくは3〜100ml、さらに好ましくは5〜60mlであり、タングステン酸化合物が溶解可能な液量とすればよい。タングステン酸化合物溶液がリチウム金属複合酸化物粉末100gに対して0.5ml未満では、溶液量が少なく、上記一次粒子表面にタングステン酸化合物を均一に分散できない。
一方、タングステン酸化合物溶液が150mlを超えると、溶液量が多くなりすぎリチウム金属複合酸化物と混合する際にスラリー化してしまう。スラリー化することによりリチウム金属複合酸化物の層状格子に含まれるLiが溶出してしまい、そのため、電池特性の低下を招く。そこで、タングステン酸化合物溶液をリチウム金属複合酸化物粉末100gに対して0.5〜150mlとすることで、上記層状格子に含まれるLiの溶出を抑制するとともに上記一次粒子表面にタングステン酸化合物を均一に分散させることができる。
The amount of the tungstic acid compound solution to be mixed with the lithium metal composite oxide is 0.5 to 150 ml, preferably 2 to 150 ml, more preferably 3 to 100 ml, and still more preferably 100 g of the lithium metal composite oxide powder. What is necessary is just to set it as the liquid quantity which is 5-60 ml and can dissolve a tungstic acid compound. If the tungstic acid compound solution is less than 0.5 ml with respect to 100 g of the lithium metal composite oxide powder, the amount of the solution is small and the tungstic acid compound cannot be uniformly dispersed on the surface of the primary particles.
On the other hand, when the tungstic acid compound solution exceeds 150 ml, the amount of the solution becomes too large and becomes a slurry when mixed with the lithium metal composite oxide. When the slurry is formed, Li contained in the layered lattice of the lithium metal composite oxide is eluted, which causes a decrease in battery characteristics. Therefore, by setting the tungstic acid compound solution to 0.5 to 150 ml with respect to 100 g of the lithium metal composite oxide powder, the elution of Li contained in the layered lattice is suppressed and the tungstic acid compound is uniformly formed on the surface of the primary particles. Can be dispersed.

本発明の製造方法においては、得られる正極活物質の組成の変化は、母材とするリチウム金属複合酸化物の組成からタングステン酸化合物溶液として添加するタングステン分の増加のみである。そのため、用いる母材のリチウム金属複合酸化物としては、高容量と低反応抵抗の観点より、公知である一般式LiNi1−x−yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウム金属複合酸化物を用いる。
また、電解液との接触面積を多くすることが、出力特性の向上に有利であることから、一次粒子および一次粒子が凝集して構成された二次粒子からなり、二次粒子に電解液の浸透可能な空隙および粒界を有するリチウム金属複合酸化物粉末を用いることが好ましい。
In the production method of the present invention, the change in the composition of the positive electrode active material obtained is only an increase in the amount of tungsten added as a tungstate compound solution from the composition of the lithium metal composite oxide as the base material. Therefore, the lithium-metal composite oxide as a base material used, from the viewpoint of high capacity and low reaction resistance, generally known type Li z Ni 1-x-y Co x M y O 2 ( however, 0.10 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.97 ≦ z ≦ 1.20, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) The lithium metal composite oxide represented is used.
In addition, increasing the contact area with the electrolytic solution is advantageous for improving the output characteristics. Therefore, the primary particles and the secondary particles are formed by agglomeration of the primary particles. It is preferable to use a lithium metal composite oxide powder having voids and grain boundaries that can penetrate.

次に、リチウム金属複合酸化物粉末にタングステン酸化合物溶液を添加して粉末粒子表面にタングステン酸化合物を分散させる。その分散を均一にするために、添加後に十分に混合する、粉体を撹拌しながらタングステン酸化合物溶液を噴霧する、粉体を流動させながらタングステン酸化合物溶液を噴霧するなどの方法を用いることができる。   Next, a tungstic acid compound solution is added to the lithium metal composite oxide powder to disperse the tungstic acid compound on the surface of the powder particles. In order to make the dispersion uniform, methods such as mixing well after addition, spraying the tungstate compound solution while stirring the powder, spraying the tungstate compound solution while flowing the powder, etc. may be used. it can.

その十分な混合により分散させる場合、一般的な混合機を使用することができる。例えばシェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いて、リチウム金属複合酸化物粉体とタングステン酸化合物溶液とを十分に混合してやればよい。また、流動層コーティング装置を用いることもできる。これらにより、タングステン酸化合物を、リチウム金属複合酸化物粉末の一次粒子表面に均一に分散させることができる。   In the case of dispersing by sufficient mixing, a general mixer can be used. For example, the lithium metal composite oxide powder and the tungstic acid compound solution may be sufficiently mixed using a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like. A fluidized bed coating apparatus can also be used. As a result, the tungstic acid compound can be uniformly dispersed on the primary particle surface of the lithium metal composite oxide powder.

さらに、本発明の製造方法においては、正極活物質の電池容量および安全性を向上させるために、第1工程の前に、母材であるリチウム金属複合酸化物粉体を水洗しても良い。
この水洗は、公知の方法および条件でよく、リチウム金属複合酸化物粉体から過度にリチウムが溶出して電池特性が劣化しない範囲で行えばよい。水洗した場合には、乾燥させてからタングステン酸化合物溶液と混合しても、固液分離のみで乾燥せずにタングステン酸化合物溶液と混合しても、いずれの方法でもよいが、固液分離のみの場合は、上記スラリー化によるLiの溶出が抑制できるようにタングステン酸化合物溶液量を調製する必要がある。
Furthermore, in the production method of the present invention, in order to improve the battery capacity and safety of the positive electrode active material, the lithium metal composite oxide powder as a base material may be washed with water before the first step.
This washing with water may be performed by a known method and conditions as long as lithium is not excessively eluted from the lithium metal composite oxide powder and the battery characteristics are not deteriorated. In the case of washing with water, either the method of mixing with the tungstic acid compound solution after drying or the method of mixing with the tungstic acid compound solution without drying only by solid-liquid separation may be used. In this case, it is necessary to adjust the amount of the tungstic acid compound solution so that the elution of Li due to the slurrying can be suppressed.

[第2工程]
第2工程は、タングステン酸化合物溶液を表面に分散させたリチウム金属複合酸化物粉体を熱処理する工程である。
これにより、タングステン酸化合物溶液より供給されたタングステン酸化合物とリチウム金属複合酸化物に含まれるリチウムイオンの反応が促進されてリチウム金属複合酸化物粉末の一次粒子表面に上記表面形成物を形成させることができる。また、熱処理直後の表面形成物は、タングステン酸リチウムであるが、その後の水分吸着により、水和物を含むものとなることがある。
[Second step]
The second step is a step of heat-treating the lithium metal composite oxide powder in which the tungstic acid compound solution is dispersed on the surface.
As a result, the reaction between the tungstic acid compound supplied from the tungstic acid compound solution and the lithium ions contained in the lithium metal composite oxide is promoted to form the surface formation on the primary particle surface of the lithium metal composite oxide powder. Can do. Moreover, although the surface formation immediately after heat processing is a lithium tungstate, it may become a thing containing a hydrate by subsequent water | moisture-content adsorption | suction.

その熱処理方法は特に限定されないが、非水系電解質二次電池用正極活物質として用いたときの電気特性の劣化を防止するため、酸素雰囲気あるいは真空雰囲気中で100〜900、より好ましくは800℃、さらに好ましくは750℃の温度で熱処理することが好ましい。
熱処理温度が100℃未満では、水分の蒸発が十分ではなく、上記表面形成物が十分に形成されない場合がある。一方、熱処理温度が900℃を超えると、リチウム金属複合酸化物の一次粒子が焼結を起こすとともにタングステンイオンが過度にリチウム金属複合酸化物の層状構造に固溶してしまうために、電池の充放電容量が低下することがある。
熱処理時の雰囲気は、雰囲気中の水分や炭酸との反応を避けるため、酸素雰囲気などのような酸化性雰囲気あるいは真空雰囲気とすることが好ましい。
熱処理時間は、特に限定されないが、溶液の水分を十分に蒸発させて上記表面形成物を形成するために5〜15時間とすることが好ましい。
The heat treatment method is not particularly limited, but in order to prevent deterioration of electrical characteristics when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, 100 to 900, more preferably 800 ° C. in an oxygen atmosphere or a vacuum atmosphere. More preferably, heat treatment is preferably performed at a temperature of 750 ° C.
When the heat treatment temperature is less than 100 ° C., the evaporation of moisture is not sufficient, and the surface formed product may not be sufficiently formed. On the other hand, when the heat treatment temperature exceeds 900 ° C., primary particles of the lithium metal composite oxide are sintered and tungsten ions are excessively dissolved in the layered structure of the lithium metal composite oxide. The discharge capacity may decrease.
The atmosphere during the heat treatment is preferably an oxidizing atmosphere such as an oxygen atmosphere or a vacuum atmosphere in order to avoid a reaction with moisture or carbonic acid in the atmosphere.
The heat treatment time is not particularly limited, but it is preferably 5 to 15 hours in order to sufficiently evaporate the water in the solution to form the surface formation product.

(3)非水系電解質二次電池
本発明の非水系電解質二次電池は、正極、負極および非水系電解液などからなり、一般の非水系電解質二次電池と同様の構成要素により構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
(3) Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and the like, and includes the same components as those of a general non-aqueous electrolyte secondary battery. The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention can be variously modified based on the knowledge of those skilled in the art based on the embodiment described in the present specification. It can be implemented in an improved form. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.

(a)正極
先に述べた非水系電解質二次電池用正極活物質を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
まず、粉末状の正極活物質、導電材、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
その正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60〜95質量部とし、導電材の含有量を1〜20質量部とし、結着剤の含有量を1〜20質量部とすることが望ましい。
(A) Positive electrode Using the positive electrode active material for a non-aqueous electrolyte secondary battery described above, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and, if necessary, a target solvent such as activated carbon and viscosity adjustment is added and kneaded to prepare a positive electrode mixture paste.
Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery, and the conductive material It is desirable to set the content of 1 to 20 parts by mass and the content of the binder to 1 to 20 parts by mass.

得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。   The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size or the like according to the target battery and used for battery production. However, the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.

正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
なお、必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used.
The binder plays a role of anchoring the active material particles. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulosic resin, polyacrylic. An acid or the like can be used.
If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.

(b)負極
負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(B) Negative electrode A negative electrode mixture in which a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder and an appropriate solvent is added to the negative electrode. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.

負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。   As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as PVDF can be used as in the case of the positive electrode, and as a solvent for dispersing these active materials and the binder, N-methyl-2-pyrrolidone or the like can be used. Organic solvents can be used.

(c)セパレータ
正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(C) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.

(d)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤等を含んでいてもよい。
(D) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.

(e)電池の形状、構成
以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
(E) Battery shape and configuration The shape of the non-aqueous electrolyte secondary battery of the present invention composed of the positive electrode, negative electrode, separator and non-aqueous electrolyte described above can be various, such as a cylindrical type and a laminated type. Can be.
In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. The positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like and sealed in a battery case to complete a non-aqueous electrolyte secondary battery. .

(f)特性
本発明の正極活物質を用いた非水系電解質二次電池は、高容量で高出力となる。
特により好ましい形態で得られた本発明による正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、さらに高容量で高出力である。また、熱安定性が高く、安全性においても優れているといえる。
(F) Characteristics The nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high capacity and a high output.
The non-aqueous electrolyte secondary battery using the positive electrode active material according to the present invention obtained in a particularly preferred form is, for example, a high initial discharge capacity of 165 mAh / g or more and a low positive electrode when used for the positive electrode of a 2032 type coin battery. Resistance is obtained, and further, high capacity and high output. Moreover, it can be said that it has high thermal stability and is excellent in safety.

なお、本発明における正極抵抗の測定方法を例示すれば、次のようになる。電気化学的評価手法として一般的な交流インピーダンス法にて電池反応の周波数依存性について測定を行うと、溶液抵抗、負極抵抗と負極容量、および正極抵抗と正極容量に基づくナイキスト線図が図1のように得られる。
電極における電池反応は、電荷移動に伴う抵抗成分と電気二重層による容量成分とからなり、これらを電気回路で表すと抵抗と容量の並列回路となり、電池全体としては溶液抵抗と負極、正極の並列回路を直列に接続した等価回路で表される。この等価回路を用いて測定したナイキスト線図に対してフィッティング計算を行い、各抵抗成分、容量成分を見積もることができる。正極抵抗は、得られるナイキスト線図の低周波数側の半円の直径と等しい。
In addition, if the measuring method of the positive electrode resistance in this invention is illustrated, it will become as follows. When the frequency dependence of the battery reaction is measured by a general AC impedance method as an electrochemical evaluation method, the Nyquist diagram based on the solution resistance, the negative electrode resistance and the negative electrode capacity, and the positive electrode resistance and the positive electrode capacity is shown in FIG. Is obtained as follows.
The battery reaction at the electrode consists of a resistance component accompanying the charge transfer and a capacity component due to the electric double layer. When these are expressed as an electric circuit, it becomes a parallel circuit of resistance and capacity. It is represented by an equivalent circuit in which circuits are connected in series. Fitting calculation is performed on the Nyquist diagram measured using this equivalent circuit, and each resistance component and capacitance component can be estimated. The positive electrode resistance is equal to the diameter of the semicircle on the low frequency side of the obtained Nyquist diagram.

以上のことから、作製される正極について、交流インピーダンス測定を行い、得られたナイキスト線図に対し等価回路でフィッティング計算することで、正極抵抗を見積もることができる。   From the above, the positive electrode resistance can be estimated by performing AC impedance measurement on the manufactured positive electrode and performing fitting calculation on the obtained Nyquist diagram with an equivalent circuit.

本発明により得られた正極活物質を用いた正極を有する二次電池について、その性能(初期放電容量、正極抵抗)を測定した。
以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
About the secondary battery which has a positive electrode using the positive electrode active material obtained by this invention, the performance (initial stage discharge capacity, positive electrode resistance) was measured.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(電池の製造および評価)
正極活物質の評価には、図3に示す2032型コイン電池1(以下、コイン型電池と称す)を使用した。
図3に示すように、コイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
(Battery manufacture and evaluation)
For the evaluation of the positive electrode active material, a 2032 type coin battery 1 (hereinafter referred to as a coin type battery) shown in FIG. 3 was used.
As shown in FIG. 3, the coin battery 1 includes a case 2 and an electrode 3 accommodated in the case 2.
The case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a. When the negative electrode can 2b is disposed in the opening of the positive electrode can 2a, A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a.
The electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order. The positive electrode 3a contacts the inner surface of the positive electrode can 2a, and the negative electrode 3b contacts the inner surface of the negative electrode can 2b. As shown in FIG.

なお、ケース2はガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が非接触の状態を維持するように相対的な移動が固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封してケース2内と外部との間を気密液密に遮断する機能も有している。   The case 2 includes a gasket 2c, and relative movement is fixed by the gasket 2c so as to maintain a non-contact state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b to block the inside and outside of the case 2 in an airtight and liquid tight manner.

図3に示すコイン型電池1は、以下のようにして製作した。
まず、非水系電解質二次電池用正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを真空乾燥機中120℃で12時間乾燥した。
The coin battery 1 shown in FIG. 3 was manufactured as follows.
First, 52.5 mg of a positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed, and press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa. A positive electrode 3a was produced. The produced positive electrode 3a was dried at 120 ° C. for 12 hours in a vacuum dryer.

この正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、上述したコイン型電池1を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。
なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。
セパレータ3cには膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
Using the positive electrode 3a, the negative electrode 3b, the separator 3c, and the electrolytic solution, the coin-type battery 1 described above was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C.
As the negative electrode 3b, a negative electrode sheet in which graphite powder having an average particle diameter of about 20 μm punched into a disk shape with a diameter of 14 mm and polyvinylidene fluoride were applied to a copper foil was used.
As the separator 3c, a polyethylene porous film having a film thickness of 25 μm was used. As the electrolytic solution, an equivalent mixed solution (manufactured by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte was used.

製造したコイン型電池1の性能を示す初期放電容量、正極抵抗は、以下に示す方法により評価した。
初期放電容量は、コイン型電池1を製作してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。
The initial discharge capacity and positive electrode resistance showing the performance of the manufactured coin-type battery 1 were evaluated by the following methods.
The initial discharge capacity is left for about 24 hours after the coin-type battery 1 is manufactured, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4 The capacity when the battery was charged to 3 V, discharged after a pause of 1 hour to a cutoff voltage of 3.0 V was defined as the initial discharge capacity.

正極抵抗は、コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により測定して図1に示すナイキストプロットを得た。このナイキストプロットは、溶液抵抗、負極抵抗とその容量、および、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出した。
なお、本実施例では、複合水酸化物製造、正極活物質および二次電池の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。
The positive electrode resistance was measured by the AC impedance method using a frequency response analyzer and a potento-galvanostat (manufactured by Solartron, 1255B) after charging the coin-type battery 1 at a charging potential of 4.1 V, and the Nyquist plot shown in FIG. Obtained. Since this Nyquist plot is represented as the sum of the solution resistance, the negative electrode resistance and its capacity, and the characteristic curve indicating the positive electrode resistance and its capacity, the fitting calculation was performed using an equivalent circuit based on this Nyquist plot, and the positive resistance The value of was calculated.
Note that, in this example, Wako Pure Chemical Industries, Ltd. reagent grade samples were used for the production of composite hydroxide, the production of the positive electrode active material, and the secondary battery.

Niを主成分とする酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られたLi1.060Ni0.76Co0.14Al0.03で表されるリチウム金属複合酸化物粉末を母材とした。このリチウム金属複合酸化物粉末の平均粒径は11μmであり、比表面積は0.3m/gであった。なお、平均粒径はレーザー回折散乱法における体積積算平均値を用い、比表面積は窒素ガス吸着によるBET法を用いて評価した。 A lithium metal composite represented by Li 1.060 Ni 0.76 Co 0.14 Al 0.03 O 2 obtained by a known technique of mixing and baking oxide powder containing Ni as a main component and lithium hydroxide Oxide powder was used as a base material. The lithium metal composite oxide powder had an average particle size of 11 μm and a specific surface area of 0.3 m 2 / g. In addition, the average particle diameter was evaluated using the volume integrated average value in the laser diffraction scattering method, and the specific surface area was evaluated using the BET method based on nitrogen gas adsorption.

母材とするリチウム金属複合酸化物粉末50gに、メタタングステン酸アンモニウム溶液(日本無機化学工業社製、MW−2)中のタングステン濃度が3.88mol/Lのメタタングステン酸アンモニウム溶液0.68mlを添加し、さらに、あわとり錬太郎(シンキー社製、ARE−250)を用いて十分に混合して、メタタングステン酸アンモニウム溶液とリチウム金属複合酸化物粉末の混合物を得た。
得られた混合物を、マグネシア製焼成容器に入れ、真空雰囲気において、200℃で14時間熱処理し、その後室温まで炉冷した。
最後に目開き38μmの篩にかけ解砕することにより、一次粒子表面にタングステン酸リチウムを有する正極活物質を作製した。
To 50 g of lithium metal composite oxide powder used as a base material, 0.68 ml of ammonium metatungstate solution having a tungsten concentration of 3.88 mol / L in an ammonium metatungstate solution (MW-2, manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) The mixture was further mixed well using Awatori Rentaro (Shinky Corp., ARE-250) to obtain a mixture of ammonium metatungstate solution and lithium metal composite oxide powder.
The obtained mixture was put in a magnesia baking vessel, heat-treated in a vacuum atmosphere at 200 ° C. for 14 hours, and then cooled to room temperature.
Finally, a positive active material having lithium tungstate on the primary particle surface was prepared by crushing through a sieve having an opening of 38 μm.

その正極活物質のタングステン含有量、およびLi/MをICP法により分析したところ、タングステン含有量は0.50mol%であり、Li/Mは、1.018であった。これより、メタタングステン酸アンモニウム溶液とリチウム金属複合酸化物粉末の混合物と、その熱処理後の組成が同等であることを確認した。   When the tungsten content and Li / M of the positive electrode active material were analyzed by the ICP method, the tungsten content was 0.50 mol% and Li / M was 1.018. From this, it was confirmed that the mixture of the ammonium metatungstate solution and the lithium metal composite oxide powder and the composition after the heat treatment were equivalent.

[電池評価]
次に、実施例1の正極活物質を使用した正極を有する図3に示すコイン型電池1を作製し、その電池特性を評価した。なお、正極抵抗は実施例1を100とした相対値を評価値とした。初期放電容量は191.2mAh/gであった。
以下、実施例2〜11および比較例1については、上記実施例1と変更した物質、条件のみを示す。また、実施例1〜11および比較例1の初期放電容量および正極抵抗の評価値を表1に示す。
[Battery evaluation]
Next, a coin-type battery 1 shown in FIG. 3 having a positive electrode using the positive electrode active material of Example 1 was produced, and its battery characteristics were evaluated. In addition, the positive electrode resistance used the relative value which set Example 1 as 100 as the evaluation value. The initial discharge capacity was 191.2 mAh / g.
Hereinafter, for Examples 2 to 11 and Comparative Example 1, only the substances and conditions changed from those in Example 1 are shown. Table 1 shows the initial discharge capacity and positive electrode resistance evaluation values of Examples 1 to 11 and Comparative Example 1.

用いたメタタングステン酸アンモニウム溶液を1.36mlとした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and the battery characteristics were evaluated in the same manner as in Example 1 except that the ammonium metatungstate solution used was changed to 1.36 ml. Table 1 shows the results. .

用いたメタタングステン酸アンモニウム溶液中のタングステン濃度を0.78mol/Lとし、その添加量を3.40mlとした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   A positive electrode active material for a nonaqueous electrolyte secondary battery is obtained in the same manner as in Example 1 except that the tungsten concentration in the used ammonium metatungstate solution is 0.78 mol / L and the addition amount is 3.40 ml. In addition, the battery characteristics were evaluated, and the results are shown in Table 1.

用いたメタタングステン酸アンモニウム溶液中のタングステン濃度を0.10mol/Lとし、その添加量を26.4mlとした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   A positive electrode active material for a nonaqueous electrolyte secondary battery is obtained in the same manner as in Example 1 except that the tungsten concentration in the ammonium metatungstate solution used is 0.10 mol / L and the addition amount is 26.4 ml. In addition, the battery characteristics were evaluated, and the results are shown in Table 1.

母材として組成がLi1.060Ni0.82Co0.15Al0.10で表され、平均粒径が5.0μmであり、比表面積が0.9m/gであるリチウム金属複合酸化物粉末を用いた以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。 Lithium metal having a composition represented by Li 1.060 Ni 0.82 Co 0.15 Al 0.10 O 2 as a base material, an average particle size of 5.0 μm, and a specific surface area of 0.9 m 2 / g A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the composite oxide powder was used, and the battery characteristics were evaluated. The results are shown in Table 1.

母材として組成がLi1.060Ni0.34Co0.33Mn0.33で表され、平均粒径が4.1μmであり、比表面積が1.0m/gであるリチウム金属複合酸化物粉末を用いた以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。 Lithium metal having a composition represented by Li 1.060 Ni 0.34 Co 0.33 Mn 0.33 O 2 as a base material, an average particle diameter of 4.1 μm, and a specific surface area of 1.0 m 2 / g A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the composite oxide powder was used, and the battery characteristics were evaluated. The results are shown in Table 1.

混合後の熱処理を、100%酸素気流中において、昇温2.8℃/分で700℃まで昇温して10時間熱処理したこと以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   The non-aqueous electrolyte secondary battery was treated in the same manner as in Example 1 except that the heat treatment after mixing was performed in a 100% oxygen stream at a temperature rise of 2.8 ° C./min up to 700 ° C. and heat-treated for 10 hours. A positive electrode active material was obtained and the battery characteristics were evaluated. The results are shown in Table 1.

母材となるリチウム金属複合酸化物をタングステン酸化合物溶液との混合前に純水と1.5g/ccの濃度のスラリーとして1分間撹拌して固液分離後、200℃で真空乾燥させて水洗した以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   Lithium metal composite oxide as a base material is stirred for 1 minute as a slurry of 1.5 g / cc concentration with pure water before mixing with the tungstic acid compound solution, solid-liquid separated, then vacuum dried at 200 ° C. and washed with water The positive electrode active material for non-aqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the battery characteristics were evaluated, and the results are shown in Table 1.

用いたメタタングステン酸アンモニウム溶液を4.76mlとした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained and the battery characteristics were evaluated in the same manner as in Example 1 except that the ammonium metatungstate solution used was changed to 4.76 ml. The results are shown in Table 1. .

用いたメタタングステン酸アンモニウム溶液の濃度を0.04mol/Lとし、その添加量を129mlとした以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the concentration of the ammonium metatungstate solution used was 0.04 mol / L and the addition amount was 129 ml. Evaluation was performed and the results are shown in Table 1.

混合後の熱処理を、100%酸素気流中において、昇温2.8℃/分で900℃まで昇温して10時間熱処理したこと以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに電池特性の評価を行い、その結果を表1に示す。   The non-aqueous electrolyte secondary battery was treated in the same manner as in Example 1 except that the heat treatment after mixing was performed in a 100% oxygen stream at a temperature increase of 2.8 ° C./minute up to 900 ° C. for 10 hours. A positive electrode active material was obtained and the battery characteristics were evaluated. The results are shown in Table 1.

(比較例1)
実施例1で母材として用いたリチウム金属複合酸化物を比較例1として、タングステン酸リチウムを形成せずに用いて、その電池特性の評価を行った。その結果を表1に示す。
(Comparative Example 1)
The lithium metal composite oxide used as a base material in Example 1 was used as Comparative Example 1 without forming lithium tungstate, and the battery characteristics were evaluated. The results are shown in Table 1.

(従来例)
特許文献4に開示される実施例と同様の方法を用いて、硫酸ニッケルと硫酸コバルトとアルミン酸ナトリウムとを水中に溶解し、さらに十分に攪拌させながら水酸化ナトリウム溶液を加えて、NiとCoとAlとのモル比がNi:Co:Al=77:20:3となるようにして生成したニッケル−コバルト−アルミニウム複合共沈水酸化物の共沈物を水洗、乾燥させた後、水酸化リチウム一水和塩を加え、モル比がLi:(Ni+Co+Al)=105:100となるように調整して前駆体を作製した。
(Conventional example)
Using a method similar to the example disclosed in Patent Document 4, nickel sulfate, cobalt sulfate, and sodium aluminate are dissolved in water, and a sodium hydroxide solution is added to the mixture while stirring sufficiently. The nickel-cobalt-aluminum composite coprecipitated hydroxide coprecipitate produced so that the molar ratio of Al to Al was Ni: Co: Al = 77: 20: 3 was washed with water and dried, and then lithium hydroxide was added. A precursor was prepared by adding a monohydrate salt and adjusting the molar ratio to be Li: (Ni + Co + Al) = 105: 100.

次に、それらの前駆体を酸素気流中、700℃で10時間焼成し、室温まで冷却した後に粉砕して組成式Li1.03Ni0.77Co0.20Al0.03で表されるニッケル酸リチウムを主体とした複合酸化物粒子を作製した。
この複合酸化物粒子100重量部に、パラタングステン酸アンモニウム((NH101241・5HO)を、1.632重量部を加え、乳鉢で十分混合した混合物を、酸素気流中、700℃で4時間焼成して室温まで冷却した後、取り出して粉砕し、従来例の正極活物質を作製した。
Next, these precursors were calcined at 700 ° C. for 10 hours in an oxygen stream, cooled to room temperature, and then pulverized to be represented by the composition formula Li 1.03 Ni 0.77 Co 0.20 Al 0.03 O 2 . Composite oxide particles mainly composed of lithium nickelate were prepared.
This composite oxide particles 100 parts by weight of ammonium paratungstate and ((NH 4) 10 W 12 O 41 · 5H 2 O), added 1.632 parts by weight, the mixture was thoroughly mixed in a mortar, oxygen stream After firing at 700 ° C. for 4 hours and cooling to room temperature, it was taken out and pulverized to produce a conventional positive electrode active material.

得られた正極活物質を使用して作製された正極を有する図3に示すコイン型電池1の電池特性を評価した。その結果を表1に示す。   The battery characteristics of the coin-type battery 1 shown in FIG. 3 having a positive electrode produced using the obtained positive electrode active material were evaluated. The results are shown in Table 1.

[評価]
表1から明らかなように、実施例1〜11の複合水酸化物粒子および正極活物質は、本発明に従って製造されたため、従来例に比べて初期放電容量が高く、正極抵抗も低いものとなっており、優れた特性を有した電池となっている。
特に、添加したタングステン量、タングステン酸化合物溶液のタングステン濃度、熱処理温度を好ましい条件で実施した実施例1〜8は、初期放電容量と正極抵抗がさら良好であり、非水系電解質二次電池用正極活物質として一層好適なものとなっている。
[Evaluation]
As is clear from Table 1, the composite hydroxide particles and positive electrode active materials of Examples 1 to 11 were manufactured according to the present invention, and therefore, the initial discharge capacity was higher and the positive electrode resistance was lower than that of the conventional example. Thus, the battery has excellent characteristics.
In particular, Examples 1 to 8, which were carried out under the preferable conditions of the added tungsten amount, the tungsten concentration of the tungstate compound solution, and the heat treatment temperature, had even better initial discharge capacity and positive electrode resistance, and positive electrode for non-aqueous electrolyte secondary battery. It is more suitable as an active material.

また、図2に本発明の実施例で得られた正極活物質の断面SEM観察(倍率:5,000倍)結果の一例を示すが、得られた正極活物質は一次粒子および一次粒子が凝集して構成された二次粒子からなり、一次粒子表面に「矢印」で指し示すような島状あるいは層状のタングステン酸リチウム(LiWO)が形成されていることがX線回折分析の結果から確認された。 FIG. 2 shows an example of the result of cross-sectional SEM observation (magnification: 5,000 times) of the positive electrode active material obtained in the example of the present invention. In the obtained positive electrode active material, primary particles and primary particles are aggregated. From the results of X-ray diffraction analysis, it was confirmed that island-shaped or layered lithium tungstate (Li 4 WO 5 ) as indicated by “arrows” was formed on the primary particle surface. confirmed.

なお、添加したタングステン量が多い実施例9では、形成されたタングステン酸リチウム化合物が多くなっている。このため、実施例1〜8と比較すると初期放電容量が低下し、正極抵抗が高くなっている。
実施例10では、添加量は本発明の範囲であるが、メタタングステン酸アンモニウム溶液濃度が低くいため、用いた液量が多く、リチウム金属複合酸化物中のリチウムが溶出したと考えられ、実施例1〜8と比較すると正極抵抗が高くなっている。
また、実施例11では、タングステン酸化合物溶液とリチウム金属複合酸化物の混合後の熱処理温度が900℃と高いため、正極活物質の層状構造のニッケルサイトにタングステンが固溶したと考えられ、初期放電容量、正極抵抗が実施例1〜8より低下している。
In Example 9 where the amount of added tungsten is large, the amount of lithium tungstate compound formed is large. For this reason, compared with Examples 1-8, initial stage discharge capacity falls and positive electrode resistance is high.
In Example 10, although the addition amount is within the range of the present invention, the concentration of the ammonium metatungstate solution is low, so the amount of liquid used is large, and it is considered that lithium in the lithium metal composite oxide was eluted. Compared with 1-8, the positive electrode resistance is higher.
Moreover, in Example 11, since the heat treatment temperature after mixing the tungstate compound solution and the lithium metal composite oxide was as high as 900 ° C., it is considered that tungsten was dissolved in the nickel site of the layered structure of the positive electrode active material. The discharge capacity and the positive electrode resistance are lower than those in Examples 1-8.

比較例1は、一次粒子表面に本発明に係るWとLiを含む微粒子が形成されていないため、正極抵抗が大幅に高く、高出力化の要求に対応することは困難である。
従来例は、固体のタングステン化合物と混合したため、Wの分散が十分でないことと微粒子中へのLiの供給がないため、正極抵抗が大幅に高い結果となった。
In Comparative Example 1, since the fine particles containing W and Li according to the present invention are not formed on the surface of the primary particles, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output.
Since the conventional example was mixed with a solid tungsten compound, the dispersion of W was not sufficient and the supply of Li into the fine particles was not achieved, resulting in a significantly high positive electrode resistance.

以上の結果より、本発明の正極活物質を用いた非水系電解質二次電池は、初期放電容量が高く、正極抵抗も低いものとなり、優れた特性を有した電池となることが確認できる。   From the above results, it can be confirmed that the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high initial discharge capacity and a low positive electrode resistance, and is a battery having excellent characteristics.

本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。   The non-aqueous electrolyte secondary battery of the present invention is suitable for a power source of a small portable electronic device (such as a notebook personal computer or a mobile phone terminal) that always requires a high capacity, and an electric vehicle battery that requires a high output. Also suitable.

また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。なお、本発明は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。   In addition, the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output, and thus is suitable as a power source for an electric vehicle subject to restrictions on mounting space. The present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

1 コイン型電池
2 ケース
2a 正極缶
2b 負極缶
2c ガスケット
3 電極
3a 正極
3b 負極
3c セパレータ
DESCRIPTION OF SYMBOLS 1 Coin type battery 2 Case 2a Positive electrode can 2b Negative electrode can 2c Gasket 3 Electrode 3a Positive electrode 3b Negative electrode 3c Separator

Claims (11)

一般式LiNi1−x−yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物粉末に、タングステン酸化合物溶液を添加し、混合することにより、前記リチウム金属複合酸化物粉体の一次粒子の表面にタングステン酸化合物を分散させる第1工程と、
前記タングステン酸化合物を分散させたリチウム金属複合酸化物粉体を、熱処理することによりタングステン酸リチウムを前記リチウム金属複合酸化物粉体の一次粒子の表面に結晶成長させ形成する第2工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法。
Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.10 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is Lithium metal composite oxide powder comprising primary particles represented by (Mn, V, Mg, Mo, Nb, Ti and Al) and secondary particles formed by aggregation of the primary particles First step of dispersing the tungstic acid compound on the surface of the primary particles of the lithium metal composite oxide powder by adding and mixing the tungstic acid compound solution,
The lithium metal composite oxide powder in which the tungstic acid compound is dispersed has a second step of heat-treating and forming lithium tungstate on the surface of the primary particles of the lithium metal composite oxide powder. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
前記第1工程を行う前に、前記リチウム金属複合酸化物粉体を水洗する工程を有することを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, further comprising a step of washing the lithium metal composite oxide powder with water before performing the first step. 前記タングステン酸化合物溶液に含まれるタングステン量が、混合するリチウム金属複合酸化物粉体に含まれるNi、CoおよびMの原子数の合計に対して、0.1〜3.0mol%とすることを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質の製造方法。   The amount of tungsten contained in the tungstic acid compound solution is 0.1 to 3.0 mol% with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide powder to be mixed. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 1 or 2 characterized by the above-mentioned. 前記タングステン酸化合物溶液中のタングステン濃度が、0.05〜4mol/Lであることを特徴とする請求項1〜3のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。   4. The production of a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the tungsten concentration in the tungstic acid compound solution is 0.05 to 4 mol / L. 5. Method. 前記タングステン酸化合物溶液が、水溶性タングステン酸化合物の水溶液であることを特徴とする請求項1〜4のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the tungstic acid compound solution is an aqueous solution of a water-soluble tungstic acid compound. 前記水溶性タングステン酸化合物の水溶液が、メタタングステン酸アンモニウム水溶液、パラタングステン酸アンモニウム水溶液、タングステン酸アンモニウム水溶液、リンタングステン酸水溶液から選択される少なくとも1種であることを特徴とする請求項1〜5のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。   6. The aqueous solution of the water-soluble tungstic acid compound is at least one selected from an aqueous solution of ammonium metatungstate, an aqueous solution of ammonium paratungstate, an aqueous solution of ammonium tungstate, and an aqueous solution of phosphotungstic acid. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of any one of these. 前記第2工程における熱処理が、酸素雰囲気あるいは真空雰囲気中での100〜900℃の熱処理温度で行うものであることを特徴とする請求項1〜6のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。   The non-aqueous electrolyte 2 according to any one of claims 1 to 6, wherein the heat treatment in the second step is performed at a heat treatment temperature of 100 to 900 ° C in an oxygen atmosphere or a vacuum atmosphere. A method for producing a positive electrode active material for a secondary battery. 一般式LiNi1−x−yCo(ただし、0.10≦x≦0.35、0≦y≦0.35、0.97≦z≦1.20、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表される一次粒子および前記一次粒子が凝集して構成された二次粒子からなるリチウム金属複合酸化物であって、
前記リチウム金属複合酸化物の一次粒子の表面に、層状あるいは島状のタングステン酸リチウム化合物あるいはその水和物を有することを特徴とする非水系電解質二次電池用正極活物質。
Formula Li z Ni 1-x-y Co x M y O 2 ( however, 0.10 ≦ x ≦ 0.35,0 ≦ y ≦ 0.35,0.97 ≦ z ≦ 1.20, M is A lithium metal composite oxide comprising primary particles represented by at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and secondary particles formed by aggregation of the primary particles. There,
A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a layered or island-shaped lithium tungstate compound or a hydrate thereof on the surface of primary particles of the lithium metal composite oxide.
前記タングステン酸リチウム化合物中に含有されるタングステン量が、リチウム金属複合酸化物に含まれるNi、CoおよびMの原子数の合計に対してWの原子数が0.1〜3.0mol%であることを特徴とする請求項8に記載の非水系電解質二次電池用正極活物質。   The amount of tungsten contained in the lithium tungstate compound is 0.1 to 3.0 mol% of W atoms with respect to the total number of Ni, Co and M atoms contained in the lithium metal composite oxide. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 8. 前記タングステン酸リチウムが、LiWO、LiWO、LiWO、Li13、Li、Li、Li、Li16、Li1955、Li1030、Li1815またはその水和物から選択される少なくとも1種の形態で存在することを特徴とする請求項8又は9に記載の非水系電解質二次電池用正極活物質。 The lithium tungstate is Li 2 WO 4 , Li 4 WO 5 , Li 6 WO 6 , Li 2 W 4 O 13 , Li 2 W 2 O 7 , Li 6 W 2 O 9 , Li 2 W 2 O 7 , Li The present invention exists in at least one form selected from 2 W 5 O 16 , Li 9 W 19 O 55 , Li 3 W 10 O 30 , Li 18 W 5 O 15 or a hydrate thereof. The positive electrode active material for non-aqueous electrolyte secondary batteries according to 8 or 9. 請求項8〜10のいずれか1項に記載の非水系電解質二次電池用正極活物質を含む正極を有することを特徴とする非水系電解質二次電池。   It has a positive electrode containing the positive electrode active material for nonaqueous electrolyte secondary batteries of any one of Claims 8-10, The nonaqueous electrolyte secondary battery characterized by the above-mentioned.
JP2012013346A 2012-01-25 2012-01-25 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material Active JP5772626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013346A JP5772626B2 (en) 2012-01-25 2012-01-25 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013346A JP5772626B2 (en) 2012-01-25 2012-01-25 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Publications (2)

Publication Number Publication Date
JP2013152866A true JP2013152866A (en) 2013-08-08
JP5772626B2 JP5772626B2 (en) 2015-09-02

Family

ID=49049063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013346A Active JP5772626B2 (en) 2012-01-25 2012-01-25 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material

Country Status (1)

Country Link
JP (1) JP5772626B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110166A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Negative electrode active material and lithium battery
WO2015163273A1 (en) * 2014-04-25 2015-10-29 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery manufactured using said positive electrode active material
JP2016091626A (en) * 2014-10-30 2016-05-23 旭硝子株式会社 Positive electrode active material, method for manufacturing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016110999A (en) * 2014-11-28 2016-06-20 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2016104305A1 (en) * 2014-12-26 2016-06-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP2016127004A (en) * 2014-12-26 2016-07-11 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
WO2016140207A1 (en) * 2015-03-03 2016-09-09 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same
JP2016167439A (en) * 2015-03-03 2016-09-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing the same
JP2016183090A (en) * 2015-03-25 2016-10-20 住友金属鉱山株式会社 Manufacturing method of lithium tungstate, manufacturing method of cathode active material for non-aqueous electrolyte secondary battery using lithium tungstate
WO2016171081A1 (en) * 2015-04-24 2016-10-27 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP2016207479A (en) * 2015-04-23 2016-12-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2016207635A (en) * 2015-04-24 2016-12-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2016225277A (en) * 2015-05-29 2016-12-28 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery using the positive electrode material
WO2017018099A1 (en) * 2015-07-30 2017-02-02 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery positive electrode active material and nonaqueous electrolyte secondary battery
JP2017050056A (en) * 2015-08-31 2017-03-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2017063003A (en) * 2015-09-25 2017-03-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
JPWO2015141179A1 (en) * 2014-03-17 2017-04-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2017090378A1 (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode material for non-aqueous electrolyte secondary battery and method for manufacturing same, positive electrode composite paste, and non-aqueous electrolyte secondary battery
JP2017117766A (en) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2017134996A (en) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
CN107210441A (en) * 2014-11-28 2017-09-26 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacture method, and used the non-aqueous electrolyte secondary battery of the positive active material
JP2017188312A (en) * 2016-04-06 2017-10-12 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
CN108352526A (en) * 2015-10-28 2018-07-31 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method, non-aqueous electrolyte secondary battery anode composite material paste and non-aqueous electrolyte secondary battery
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20180315997A1 (en) * 2017-05-01 2018-11-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2019040675A (en) * 2017-08-22 2019-03-14 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous secondary battery, and transition metal compound
CN109768271A (en) * 2018-12-29 2019-05-17 桂林电器科学研究院有限公司 Modified LiNi0.7Co0.1Mn0.2O2The preparation method and product and battery of tertiary cathode material
CN110036512A (en) * 2016-12-07 2019-07-19 住友化学株式会社 The manufacturing method of positive active material for lithium secondary battery
WO2019230829A1 (en) 2018-05-31 2019-12-05 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN111868990A (en) * 2018-03-13 2020-10-30 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2020198261A (en) * 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of positive electrode plate, and manufacturing method of lithium ion secondary battery, and wet mixture, positive electrode plate, and lithium ion secondary battery
JP2020198260A (en) * 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of coated lithium-containing positive electrode active material particles, and manufacturing method of lithium ion secondary battery, wet mixture, coated lithium-containing positive electrode active material particles, and lithium ion secondary battery
JP2020202193A (en) * 2020-09-18 2020-12-17 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
KR20200143778A (en) 2019-06-17 2020-12-28 주식회사 엘 앤 에프 Cathode Active Material for Lithium Secondary Battery
WO2020262264A1 (en) 2019-06-25 2020-12-30 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2021018896A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US11063257B2 (en) 2015-10-28 2021-07-13 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
US11152617B2 (en) 2017-02-28 2021-10-19 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
CN114079043A (en) * 2020-08-11 2022-02-22 厦门厦钨新能源材料股份有限公司 High-nickel positive electrode material, lithium ion battery and preparation method of high-nickel positive electrode material
US11283071B2 (en) 2016-05-09 2022-03-22 Toyota Jidosha Kabushiki Kaisha Cathode active material and lithium ion secondary battery comprising the same
US11811052B2 (en) 2018-03-29 2023-11-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075367A (en) * 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2006351379A (en) * 2005-06-16 2006-12-28 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2010040383A (en) * 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
JP2012079464A (en) * 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using positive electrode active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075367A (en) * 2000-09-04 2002-03-15 Mitsui Chemicals Inc Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2006351379A (en) * 2005-06-16 2006-12-28 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2010040383A (en) * 2008-08-06 2010-02-18 Sony Corp Method of manufacturing positive electrode active material, and positive electrode active material
JP2012079464A (en) * 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using positive electrode active material

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110166A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Negative electrode active material and lithium battery
US10511021B2 (en) 2014-03-17 2019-12-17 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JPWO2015141179A1 (en) * 2014-03-17 2017-04-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015216105A (en) * 2014-04-25 2015-12-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
CN106256036A (en) * 2014-04-25 2016-12-21 住友金属矿山株式会社 Non-water system electrolyte secondary battery positive active material and its manufacture method and use the non-water system electrolyte secondary battery of this positive active material
US10177373B2 (en) * 2014-04-25 2019-01-08 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery manufactured using said positive electrode active material
WO2015163273A1 (en) * 2014-04-25 2015-10-29 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery manufactured using said positive electrode active material
CN106256036B (en) * 2014-04-25 2019-06-07 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
JP2016091626A (en) * 2014-10-30 2016-05-23 旭硝子株式会社 Positive electrode active material, method for manufacturing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016110999A (en) * 2014-11-28 2016-06-20 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
CN107210441A (en) * 2014-11-28 2017-09-26 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacture method, and used the non-aqueous electrolyte secondary battery of the positive active material
US11171326B2 (en) 2014-11-28 2021-11-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR101852737B1 (en) 2014-11-28 2018-04-27 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
WO2016104305A1 (en) * 2014-12-26 2016-06-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
CN107112529B (en) * 2014-12-26 2019-02-19 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method and the non-aqueous electrolyte secondary battery for having used the positive active material
US10497936B2 (en) 2014-12-26 2019-12-03 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR101878113B1 (en) * 2014-12-26 2018-07-12 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
US11108043B2 (en) 2014-12-26 2021-08-31 Sumitomo Metal Mining Co., Ltd. Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2016127004A (en) * 2014-12-26 2016-07-11 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
US20170352885A1 (en) * 2014-12-26 2017-12-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
CN107112529A (en) * 2014-12-26 2017-08-29 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacture method and the non-aqueous electrolyte secondary battery for having used the positive active material
KR102034270B1 (en) 2015-03-03 2019-10-18 스미토모 긴조쿠 고잔 가부시키가이샤 Positive Electrode Active Material for Non-Aqueous Electrolyte Secondary Battery and Manufacturing Method Thereof
US10854873B2 (en) 2015-03-03 2020-12-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
US11329274B2 (en) 2015-03-03 2022-05-10 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof
KR20170125074A (en) * 2015-03-03 2017-11-13 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same
WO2016140207A1 (en) * 2015-03-03 2016-09-09 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same
JP2016167439A (en) * 2015-03-03 2016-09-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing the same
JP2016183090A (en) * 2015-03-25 2016-10-20 住友金属鉱山株式会社 Manufacturing method of lithium tungstate, manufacturing method of cathode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP2016207479A (en) * 2015-04-23 2016-12-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
US11056681B2 (en) 2015-04-24 2021-07-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR20200013081A (en) * 2015-04-24 2020-02-05 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
WO2016171081A1 (en) * 2015-04-24 2016-10-27 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
CN107534144B (en) * 2015-04-24 2021-01-01 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
CN107534144A (en) * 2015-04-24 2018-01-02 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacture method and the non-aqueous electrolyte secondary battery for having used the positive active material
KR102364783B1 (en) 2015-04-24 2022-02-18 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
JP2016207635A (en) * 2015-04-24 2016-12-08 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
US10797302B2 (en) 2015-04-24 2020-10-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP6998107B2 (en) 2015-05-29 2022-01-18 住友金属鉱山株式会社 Positive electrode material for non-aqueous electrolyte secondary battery, positive electrode mixture, and non-aqueous electrolyte secondary battery using each
JP2016225277A (en) * 2015-05-29 2016-12-28 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery using the positive electrode material
JPWO2017018099A1 (en) * 2015-07-30 2018-05-17 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN107851793A (en) * 2015-07-30 2018-03-27 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery
US11018338B2 (en) 2015-07-30 2021-05-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107851793B (en) * 2015-07-30 2021-11-09 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20180226646A1 (en) * 2015-07-30 2018-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20180023993A (en) 2015-07-30 2018-03-07 스미토모 긴조쿠 고잔 가부시키가이샤 Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery
WO2017018099A1 (en) * 2015-07-30 2017-02-02 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery positive electrode active material and nonaqueous electrolyte secondary battery
JP2017050056A (en) * 2015-08-31 2017-03-09 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2017063003A (en) * 2015-09-25 2017-03-30 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material
JP7055587B2 (en) 2015-09-25 2022-04-18 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
US11063257B2 (en) 2015-10-28 2021-07-13 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP7013871B2 (en) 2015-10-28 2022-02-01 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN108352526A (en) * 2015-10-28 2018-07-31 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method, non-aqueous electrolyte secondary battery anode composite material paste and non-aqueous electrolyte secondary battery
JPWO2017073238A1 (en) * 2015-10-28 2018-08-16 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, non-aqueous electrolyte secondary battery positive electrode mixture paste, and non-aqueous electrolyte secondary battery
US11411214B2 (en) 2015-10-28 2022-08-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2017090378A1 (en) * 2015-11-27 2018-09-13 住友金属鉱山株式会社 A positive electrode material for a non-aqueous electrolyte secondary battery and a manufacturing method thereof, a positive electrode mixture paste, and a non-aqueous electrolyte secondary battery.
WO2017090378A1 (en) * 2015-11-27 2017-06-01 住友金属鉱山株式会社 Positive electrode material for non-aqueous electrolyte secondary battery and method for manufacturing same, positive electrode composite paste, and non-aqueous electrolyte secondary battery
US11121368B2 (en) 2015-11-27 2021-09-14 Sumitomo Metal Mining Co., Ltd. Positive electrode material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode composite material paste, and nonaqueous electrolyte secondary battery
JP2017117766A (en) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2017134996A (en) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery including the positive electrode active material
JP2017188312A (en) * 2016-04-06 2017-10-12 住友金属鉱山株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
US11283071B2 (en) 2016-05-09 2022-03-22 Toyota Jidosha Kabushiki Kaisha Cathode active material and lithium ion secondary battery comprising the same
CN110036512B (en) * 2016-12-07 2022-11-04 住友化学株式会社 Method for producing positive electrode active material for lithium secondary battery
CN110036512A (en) * 2016-12-07 2019-07-19 住友化学株式会社 The manufacturing method of positive active material for lithium secondary battery
JP7159535B2 (en) 2017-01-27 2022-10-25 住友金属鉱山株式会社 Lithium tungstate, method for producing lithium tungstate, apparatus for producing lithium tungstate, positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018120831A (en) * 2017-01-27 2018-08-02 住友金属鉱山株式会社 Lithium tungstate, method for manufacturing lithium tungstate, device for manufacturing lithium tungstate, positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11152617B2 (en) 2017-02-28 2021-10-19 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
US11532815B2 (en) 2017-02-28 2022-12-20 Lg Energy Solution, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
US20180315997A1 (en) * 2017-05-01 2018-11-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US10784500B2 (en) * 2017-05-01 2020-09-22 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2019040675A (en) * 2017-08-22 2019-03-14 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for nonaqueous secondary battery, and transition metal compound
JP7056035B2 (en) 2017-08-22 2022-04-19 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for non-aqueous secondary batteries and transition metal compounds
CN111868990B (en) * 2018-03-13 2024-06-11 松下新能源株式会社 Nonaqueous electrolyte secondary battery
CN111868990A (en) * 2018-03-13 2020-10-30 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US11811052B2 (en) 2018-03-29 2023-11-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery
WO2019230829A1 (en) 2018-05-31 2019-12-05 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11967713B2 (en) 2018-05-31 2024-04-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery comprising tungsten coating film, and non-aqueous electrolyte secondary battery
CN109768271B (en) * 2018-12-29 2022-06-21 桂林电器科学研究院有限公司 Modified LiNi0.7Co0.1Mn0.2O2Preparation method of ternary cathode material, product and battery
CN109768271A (en) * 2018-12-29 2019-05-17 桂林电器科学研究院有限公司 Modified LiNi0.7Co0.1Mn0.2O2The preparation method and product and battery of tertiary cathode material
JP2020198261A (en) * 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of positive electrode plate, and manufacturing method of lithium ion secondary battery, and wet mixture, positive electrode plate, and lithium ion secondary battery
JP7092093B2 (en) 2019-06-05 2022-06-28 トヨタ自動車株式会社 Wet Mixture, Positive Electrode Plate, and Method for Manufacturing Lithium Ion Secondary Battery, Wet Mixture, Positive Electrode Plate, and Lithium Ion Secondary Battery
JP2020198260A (en) * 2019-06-05 2020-12-10 トヨタ自動車株式会社 Manufacturing method of wet mixture, manufacturing method of coated lithium-containing positive electrode active material particles, and manufacturing method of lithium ion secondary battery, wet mixture, coated lithium-containing positive electrode active material particles, and lithium ion secondary battery
JP7163872B2 (en) 2019-06-05 2022-11-01 トヨタ自動車株式会社 Wet mixture, coated lithium-containing positive electrode active material particles, and method for producing lithium-ion secondary battery, wet mixture, coated lithium-containing positive electrode active material particles, and lithium-ion secondary battery
KR20200143778A (en) 2019-06-17 2020-12-28 주식회사 엘 앤 에프 Cathode Active Material for Lithium Secondary Battery
WO2020262264A1 (en) 2019-06-25 2020-12-30 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2021018896A (en) * 2019-07-18 2021-02-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7057325B2 (en) 2019-07-18 2022-04-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN114079043A (en) * 2020-08-11 2022-02-22 厦门厦钨新能源材料股份有限公司 High-nickel positive electrode material, lithium ion battery and preparation method of high-nickel positive electrode material
JP7069534B2 (en) 2020-09-18 2022-05-18 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2020202193A (en) * 2020-09-18 2020-12-17 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Also Published As

Publication number Publication date
JP5772626B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5772626B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5822708B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5035712B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6210439B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP6777081B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP5370515B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
JP6555636B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6818225B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary batteries
JP2012079464A5 (en)
JP6978182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2016167439A5 (en)
JP2013171785A5 (en)
JP7055587B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2016207635A5 (en)
JP2017117766A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP2016183090A (en) Manufacturing method of lithium tungstate, manufacturing method of cathode active material for non-aqueous electrolyte secondary battery using lithium tungstate
WO2016104305A1 (en) Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing said material, and nonaqueous electrolyte secondary cell in which said material is used
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
JP2017188312A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP6819859B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
WO2016171081A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing same, and non-aqueous electrolyte secondary battery using said positive electrode active material
WO2016140207A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same
JP6819860B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP6919175B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150