JP2016223842A - 水処理装置及び原子力設備 - Google Patents

水処理装置及び原子力設備 Download PDF

Info

Publication number
JP2016223842A
JP2016223842A JP2015108625A JP2015108625A JP2016223842A JP 2016223842 A JP2016223842 A JP 2016223842A JP 2015108625 A JP2015108625 A JP 2015108625A JP 2015108625 A JP2015108625 A JP 2015108625A JP 2016223842 A JP2016223842 A JP 2016223842A
Authority
JP
Japan
Prior art keywords
water
cooling water
dissolved oxygen
pipe
hydrazines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015108625A
Other languages
English (en)
Other versions
JP6578134B2 (ja
Inventor
慎吾 山▲崎▼
Shingo Yamazaki
慎吾 山▲崎▼
前田 哲宏
Tetsuhiro Maeda
哲宏 前田
石原 伸夫
Nobuo Ishihara
伸夫 石原
雄一 志水
Yuichi Shimizu
雄一 志水
横山 裕
Yutaka Yokoyama
裕 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015108625A priority Critical patent/JP6578134B2/ja
Publication of JP2016223842A publication Critical patent/JP2016223842A/ja
Application granted granted Critical
Publication of JP6578134B2 publication Critical patent/JP6578134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】原子力設備の冷却水中の溶存酸素を安全に高い効率で低減することが可能な水処理装置及び原子力設備を提供すること。【解決手段】本発明の水処理装置60は、原子力設備1内の冷却水が流通する経路に、溶存酸素が除去された外部水を補給水として供給する補給水供給部61と、外部水中の溶存酸素を除去するヒドラジン類を外部水に供給する脱酸素剤供給部62と、ヒドラジン類と溶存酸素との反応を促進する白金族金属担持触媒に、ヒドラジン類が添加された外部水を通水して補給水とする脱酸素部63とを具備することを特徴とする。【選択図】図2

Description

本発明は、水処理装置及び原子力設備に関し、例えば、原子力発電プラントの系統水中の溶存酸素を除去する水処理装置及び原子力設備に関する。
従来、半導体製造産業などで用いられる溶存酸素除去水の製造方法が提案されている(例えば、特許文献1参照)。この溶存酸素除去水の製造方法では、酸素溶存水に水素を溶解させた後に酸素溶存水を白金族金属担持触媒と接触させるので、水素と溶存酸素とが効率良く反応して、酸素溶存水中の溶存酸素を高い効率で除去することができる。
特開2010−240642号公報
ところで、原子力発電プラントでは、プラント機器の腐食防止、放射能を含む腐食生成物の1次系統水中へ拡散抑制及び1次系系統水を脱塩する脱塩塔樹脂の劣化抑制のために、1次系統水及び2次系統水の脱酸素処理を実施している。しかしながら、特許文献1に記載の溶存酸素除去水の製造方法のように水素を用いた場合には、水素ガスの防爆対策が必要となると共に、装置構成が煩雑になる問題がある。
また、ヒドラジンを用いた1次系統水及び2次系統水の脱酸素処理も実施されているが、原子力発電プラントの運転時、停止後の機器保管時及び非常時には系統水に供給される補給水が室温となる。このため、補給水に添加された酸素とヒドラジンとの反応速度が遅く、補給水の脱酸素を効率良くできず、原子力設備の冷却水中の溶存酸素を効率良く除去できない場合がある。
本発明は、このような実情に鑑みてなされたものであり、原子力設備の冷却水中の溶存酸素を安全に高い効率で低減することが可能な水処理装置及び原子力設備を提供することを目的とする。
本発明の水処理装置は、原子力設備内の冷却水が流通する経路に、溶存酸素が除去された外部水を補給水として供給する補給水供給部と、前記外部水にヒドラジン類を供給する脱酸素剤供給部と、前記ヒドラジン類と前記溶存酸素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記外部水を通水して前記補給水とする脱酸素部とを具備することを特徴とする。
この水処理装置によれば、ヒドラジン類が添加された外部水を脱酸素部の白金族金属担持触媒に通水させて補給水とするので、外部水に含まれる溶存酸素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して補給水中の溶存酸素の濃度を速やかに低減することが可能となる。これにより、水処理装置は、原子力設備の冷却水に外部水を補給水として連続的に供給する場合であっても、原子力設備の冷却水に供給される補給水中の溶存酸素を安全に高い効率で除去することが可能となる。
本発明の水処理装置においては、前記外部水は、海水、河川水、湖沼水,純水及び地下水の少なくとも1種を含むことが好ましい。この構成により、水処理装置は、溶存酸素の濃度が異なる様々な外部水を補給水として使用することが可能となる。
本発明の原子力設備は、原子炉に一次冷却水が流通する経路を介して接続される蒸気発生器と、前記蒸気発生器の二次冷却水が流通する経路に供給する補給水の処理をする上記水処理装置とを備えたことを特徴とする。
この原子力設備によれば、ヒドラジン類が添加された外部水を脱酸素部の白金族金属担持触媒に通水させて補給水とするので、外部水に含まれる溶存酸素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して補給水中の溶存酸素の濃度を速やかに低減することが可能となる。これにより、原子力設備は、二次冷却水に外部水を補給水として連続的に供給する場合であっても、二次冷却水に供給される補給水中の溶存酸素を安全に高い効率で除去することが可能となる。
本発明の原子力設備は、使用済燃料の貯水ピットの循環経路を流れる冷却水中にヒドラジン類を供給する脱酸素剤供給部と、前記ヒドラジン類と前記溶存酸素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記冷却水を通水して前記冷却水中の溶存酸素を除去する脱酸素部とを備えたことを特徴とする。
この原子力設備によれば、ヒドラジン類が添加された冷却水を脱酸素部の白金族金属担持触媒に通水させるので、冷却水に含まれる溶存酸素及び過酸化水素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して、冷却水中の溶存酸素及び過酸化水素の濃度を速やかに低減することが可能となる。これにより、原子力設備は、冷却水を連続的に使用する場合であっても、冷却水に混入する溶存酸素及び過酸化水素を安全に高い効率で除去することが可能となる。
本発明の原子力設備は、原子炉の化学体積制御系の循環経路を流れる一次冷却水中にヒドラジン類を供給する脱酸素剤供給部と、前記ヒドラジン類と前記溶存酸素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記一次冷却水を通水して前記一次冷却水中の溶存酸素を除去する脱酸素部とを備えたことを特徴とする。
この原子力設備によれば、ヒドラジン類が添加された一次冷却水を脱酸素部の白金族金属担持触媒に通水させるので、一次冷却水に含まれる溶存酸素及び過酸化水素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して、一次冷却水中の溶存酸素及び過酸化水素の濃度を速やかに低減することが可能となる。これにより、原子力設備は、一次冷却水を連続的に使用する場合であっても、一次冷却水に混入する溶存酸素及び過酸化水素を安全に高い効率で除去することが可能となる。
本発明によれば、原子力設備の冷却水中の溶存酸素を安全に高い効率で低減することが可能な水処理装置及び原子力設備を実現できる。
図1は、本発明の実施の形態に係る原子力発電プラントを表す概略構成図である。 図2は、本発明の第1の実施の形態に係る水処理供給装置の概略図である。 図3は、本発明の第2の実施の形態に係る水処理供給装置の概略図である。 図4は、本発明の第3の実施の形態に係る水処理装置を備えた原子力設備の概略図である。 図5は、本発明の第4の実施の形態に係る水処理装置を備えた原子力設備の概略図である。
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下においては、本発明を原子力発電プラントに適用した例について説明するが、本発明は、原子力発電プラント以外の各種原子力設備に適用可能である。なお、本発明は、以下の各実施の形態に係る構成は適宜組み合わせて実施可能である。また、本発明は、以下の実施の形態に限定されるものではなく、適宜変更して実施可能である。
図1は、本発明の実施の形態に係る原子力設備(原子力発電プラント)1を表す概略構成図である。図1に示すように、この原子力設備1の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、軽水を炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。
原子力設備1は、原子炉格納容器11を備える。この原子炉格納容器11は、内部に加圧水型原子炉12及び蒸気発生器13が格納されており、この加圧水型原子炉12と蒸気発生器13とは配管14,15を介して連結されている。配管14には、加圧器16が設けられ、配管15には、一次冷却水ポンプ17が設けられている。原子力設備1では、減速材及び一次冷却水(冷却材)として軽水を用い、炉心部における一次冷却水の沸騰を抑制するために、一次冷却系統は加圧器16により150気圧以上160気圧以下程度の高圧状態を維持するように制御する。これにより、加圧水型原子炉12にて、燃料(原子燃料)として低濃縮ウラン又はMOXにより一次冷却水として軽水が加熱され、高温の一次冷却水が加圧器16により所定の高圧に維持した状態で配管14を通して蒸気発生器13に送られる。この蒸気発生器13では、高温高圧の一次冷却水と二次冷却水との間で熱交換が行われ、冷却された一次冷却水は配管15を通して加圧水型原子炉12に戻される。
蒸気発生器13は、配管18を介して蒸気タービン19と連結されており、この配管18に主蒸気隔離弁20が設けられている。蒸気タービン19は、高圧タービン21と低圧タービン22とを有すると共に、発電機(発電装置)23が接続されている。また、高圧タービン21と低圧タービン22との間には、湿分分離加熱器24が設けられており、配管18から分岐した冷却水分岐配管25が湿分分離加熱器24に連結される。また、高圧タービン21と湿分分離加熱器24が低温再熱管26により連結され、湿分分離加熱器24と低圧タービン22が高温再熱管27により連結されている。
蒸気タービン19の低圧タービン22は、復水器28を有している。この復水器28は、配管18からバイパス弁29を有するタービンバイパス配管30が接続されると共に、冷却水(例えば、海水)を給排する取水管31及び排水管32が連結されている。この取水管31は、循環水ポンプ33を有し、排水管32と共に他端部が海中に配置されている。
復水器28には、配管34が接続されている。配管34には、復水ポンプ35、グランドコンデンサ36、復水脱塩装置37、復水ブースタポンプ38、低圧給水加熱器39が接続されている。また、配管34は、脱気器40に連結されると共に、主給水ポンプ41、高圧給水加熱器42、主給水制御弁43が設けられている。
配管18は、主蒸気逃がし弁44を有する主蒸気逃がし配管45の一端部と、主蒸気安全弁46を有する主蒸気安全配管47の一端部が接続されている。各配管45,47の他端部は大気に開放している。また、配管34は、主給水制御弁43と蒸気発生器13との間に補助給水配管48の一端部が接続されている。この補助給水配管48は、水処理供給装置60に接続されている。また、配管18における主蒸気安全配管47と主蒸気隔離弁20との間から分岐した冷却水分岐配管51が水処理供給装置60に接続されている。
原子力設備1は、蒸気発生器13で高温高圧の一次冷却水と熱交換を行って生成された蒸気が、配管18を通して蒸気タービン19(高圧タービン21から低圧タービン22)に送られ、この蒸気により蒸気タービン19を駆動して発電機23により発電を行う。このとき、蒸気発生器13からの蒸気は、高圧タービン21を駆動した後、湿分分離加熱器24で蒸気に含まれる湿分が除去されると共に加熱されてから低圧タービン22を駆動する。そして、蒸気タービン19を駆動した蒸気は、復水器28で海水を用いて冷却されて復水となり、グランドコンデンサ36、復水脱塩装置37、低圧給水加熱器39、脱気器40、高圧給水加熱器42などを通して蒸気発生器13に戻される。
蒸気発生器13は、配管18,34を介して蒸気タービン19と連結されている。循環水ポンプ33、復水ポンプ35、復水ブースタポンプ38、主給水ポンプ41などにより冷却水(蒸気)が循環している。この各種ポンプ33,35,38,41などは、電源装置(プラント内交流電源、外部電源、非常用ディーゼル発電機、非常用バッテリ、いずれも図示略)からの給電により駆動するものであることから、津波や地震などによりこの電源装置の機能が喪失(原子炉及び蒸気発生器などのための全交流電源の喪失)したときには、これらを駆動して冷却水を循環することができず、加圧水型原子炉12や蒸気発生器13を冷却することが困難となる。
そのため、電源装置が喪失したとき、主蒸気逃がし弁44の開放などで、蒸気発生器13の蒸気(二次冷却水)を配管18から主蒸気逃がし配管45及び主蒸気安全配管47を通して大気に開放し、蒸気発生器13内の圧力を低下させて冷却している。また、配管18内の蒸気を冷却水分岐配管51から水処理供給装置60に供給することで、冷却水供給部61(図1において不図示、図2参照)によって復水タンク64(図1において不図示、図2参照)の復水を補助給水配管48から配管34を通して蒸気発生器13に供給し、この蒸気発生器13を冷却している。そして、この間に電源装置の復旧を行っている。
本実施の形態に係る原子力設備1は、非常用の冷却設備として、外部水源から取得した外部水としての海水を冷却水として二次冷却水の配管34に供給可能な水処理供給装置(水処理装置)60を備える。海水には、蒸気発生器13の伝熱管などの構造材の腐食要因となる腐食要素としての塩化物イオンなどの不純物及び溶存酸素が高濃度に含まれている。このため、蒸気発生器13の二次冷却水の配管34に海水を継続して供給した場合、蒸気発生器13の伝熱管の腐食が進行し、伝熱管が腐食で損傷するおそれがある。さらに、伝熱管の腐食は、塩化物イオンなどの不純物と溶存酸素とが共存することにより発生するので、これら不純物と溶存酸素との共存を防ぐことが望まれている。以下、本発明に係る水処理供給装置60の各実施の形態について説明する。なお、以下においては、海水を外部水としてを用いる例について説明するが、外部水としては、海水、河川水、湖沼水、純水及び地下水などの各種水源を用いることができる。
(第1の実施の形態)
図2は、本発明の第1の実施の形態に係る水処理供給装置60の概略図である。図2に示すように、本実施の形態に係る水処理供給装置60は、海水などの外部水を冷却水(補給水)として二次冷却水の配管34に供給する冷却水供給部(補給水供給部)61と、外部水に脱酸素剤としてのヒドラジン(N)類を供給する脱酸素剤供給部62と、ヒドラジン類が供給された海水を白金族金属担持触媒に通水して海水中の溶存酸素を除去する脱酸素部63とを備える。
冷却水供給部61は、蒸気発生器13と主給水弁43との間で、主給水管である配管34から分岐する補助給水管48を備える。この補助給水管48は、補助給水管48A,48Bに分岐されて復水タンク64に接続される。補助給水管48Aには、タービン駆動補助給水ポンプ611及び補助給水弁612が設けられている。また、補助給水管48Bは、2つに分岐されて電動駆動補助給水ポンプ613及び補助給水弁614がそれぞれ設けられている。この水処理給水装置60では、非常時には、仮設ポンプ(不図示)などを用いて、海水などの外部水が補給水として復水タンク64に汲み上げられて貯留される。
また、冷却水供給部61は、蒸気発生器13と主蒸気隔離弁20との間で、主蒸気管である配管18から分岐する冷却水分岐配管51に設けられた補助蒸気弁、冷却用蒸気タービン(不図示)を備える。この冷却用蒸気タービンは、タービン駆動補助給水ポンプ611及び電動駆動補助給水ポンプ612に連結されており、タービン駆動補助給水ポンプ611及び電動駆動補助給水ポンプ612を駆動する。これにより、電力供給が遮断した場合であっても、二次冷却水の配管34に海水を供給することが可能である。
脱酸素剤供給部62は、外部水中の溶存酸素を除去する脱酸素剤としてのヒドラジン類が貯留されタンク621と、このタンク621に設けられた供給管622とを備える。この供給管622は、手動によって開閉可能な開閉弁623を備え、後述する脱酸素部63の通水管631に接続されている。なお、供給管622は、並列に複数設けることにより、窒素ガスなどによって供給されるヒドラジン類の供給量を調整することができる。
タンク621は、密閉可能に構成される。このタンク621には、加圧管(不図示)を介して窒素ガス(N)などの不活性ガスを充填したガスボンベ(不図示)が接続されている。このガスボンベのバルブが開かれると、窒素ガスがタンク621に流入し、タンク621内に貯留されたヒドラジン類の液面を加圧する。これにより、開閉弁22を開くと、ヒドラジンが供給管622を通じて供給される。なお、本実施の形態では、電力供給が遮断した場合でも、ヒドラジン類の供給を可能とするためにガス圧を用いて供給する構成を説明したが、電動の供給ポンプを用いても良い。
ヒドラジン類は、海水中の溶存する酸素と下記反応式のように反応して、酸素を除去する。ヒドラジン類の供給量としては、例えば、25℃の海水中の溶存酸素の濃度である約8ppmに応じて海水中に8ppm以上添加し,例えば、5℃の海水中の溶存酸素の濃度である約12ppmに応じて海水中に12ppm以上添加することが好ましい。
+O→N+2H
ヒドラジン類としては、外部水の溶存酸素を除去できるものであれば特に制限はなく、ヒドラジン、一塩酸ヒドラジン、二塩酸ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン、二臭化水素酸ヒドラジン、リン酸ヒドラジン、メチルヒドラジン及びメチルヒドラジン硫酸塩からなる群から選択された少なくとも1種を用いることが可能である。これらのヒドラジン類は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、海水などの外部水中の溶存酸素を効率良く除去できる観点から、ヒドラジンが好ましい。
脱酸素部63における触媒層632と海水との接触温度としては、海水中の溶存酸素とヒドラジン類とが反応する温度であれば特に制限はなく、例えば、5℃以上60℃以下が好ましく、10℃以上50℃以下がより好ましく、20℃以上30℃以下が更に好ましい。
通水管631の海水の流れ方向における触媒層632の上流側には、タンク621からのヒドラジンの供給管622が接続される。また、通水管631には、補助給水管48Aとの間に手動によって開閉可能な開閉弁633Aが設けられ、補助給水管48Bとの間に手動によって開閉可能な開閉弁633Bが設けられている。これにより、補助給水管48Aに設けられた開閉弁VA及び開閉弁633Aの開閉と、補助給水管48Bに設けられた開閉弁VB及び開閉弁633Bの開閉とを切替えることにより、復水タンク64からタービン駆動ポンプ611側の補助給水管48A及び電動駆動ポンプ612側の補助排水管48Bにそれぞれ供給された海水を通水管631の触媒層632に流すことが可能となる。
以上、説明したように、本実施形態によれば、蒸気発生器13の二次冷却水の配管34に供給する冷却水として海水を供給する冷却水供給部61と、海水にヒドラジン類を供給する脱酸素剤供給部62と、ヒドラジン類が供給された海水を白金族金属担持触媒を有する触媒層632に通水する脱酸素部63を備えたので、二次冷却水の配管34に連続的に室温の海水を供給する場合であっても、海水に含まれる溶存酸素を除去することができる。これらにより、酸素量を低減した海水を蒸気発生器13に供給することができ、蒸気発生器13の伝熱管の腐食の進行を抑えることができる。
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。なお、以下の説明においては、上述した第1の実施の形態と重複する構成要素については同一の符号を付し、説明の重複を避ける。
図3は、本発明の第2の実施の形態に係る水処理供給装置600の概略図である。図3に示すように、本実施の形態に係る水処理供給装置600は、補助給水管48から分岐されて復水タンク64に接続された補助給水管48Cを備える。この補助給水管48Cは、例えば、復水タンク64と補助給水管48との間の仮設配管として設けられる。補助給水管48Cには、冷却水供給部610の電動駆動補助給水ポンプ615及び補助給水弁616が設けられている。
また、補助給水管48Cには、脱酸素脱酸素部630の通水管631の一端部と他端部とが補助給水弁616をバイパスして設けられる。通水管631には、一対の補助給水弁633Cが設けられ、この一対の補助給水弁633Cの間に触媒層632が設けられている。触媒層632は、通水管631を流れるヒドラジン類が供給された海水を通水することにより、補助給水管48Cを流れる海水の溶存酸素を除去する。その他の構成については、上述した第1の実施の形態に係る水処理供給装置60と同一であるので、説明を省略する。
このように、本実施の形態では、復水タンク64と補助給水管48との間に別途補助給水管48Cを設けると共に、補助給水管48Cに通水管631を接続してヒドラジン類が供給された海水を触媒層632に流す。これにより、本実施の形態では、既存の配管に脱酸素触媒部の設置が困難である場合であっても、別途設けた補助給水管48Cを介して海水を供給することにより、溶存酸素が低減された海水を蒸気発生器13に供給することが可能となる。
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。なお、以下の説明においては、上述した第1の実施の形態及び第2の実施の形態と重複する構成要素については同一の符号を付し、説明の重複を避ける。
図4は、本実施の形態に係る水処理装置602を備えた原子力設備2の概略図である。図4に示すように、本実施の形態に係る原子力設備2は、使用済燃料の貯水ピット101の循環給水管102を流れる冷却水中にヒドラジン類を供給する脱酸素剤供給部620と、ヒドラジン類と溶存酸素及び過酸化水素との反応を促進する白金族金属担持触媒を備え、ヒドラジン類が添加された冷却水を通水して冷却水中の溶存酸素を除去する脱酸素部630とを備える。
貯水ピット101は、原子炉設備2内の使用済燃料を収容する。貯水ピット101には、貯水ピット101に貯留された冷却水を循環させる循環給水管102が接続される。循環給水管102には、貯水ピット101側から、開閉弁103、循環給水管102内の冷却水を送液して循環させる循環ポンプ104、開閉弁105,106、循環給水管102内を流れる冷却水中の塩分を脱塩する脱塩塔107、脱塩後の冷却水を濾過して固形物を濾過する濾過部108がこの順に設けられている。
循環給水管102の開閉弁105と開閉弁106との間には、通水管631の一端が接続され、開閉弁106と脱塩塔107との間には、通水管631の他端が接続されている。この通水管631には、一対の開閉弁633Cが設けられ、この一対の開閉弁633Cの間に触媒層632が設けられている。
通水管631の一端側には、ヒドラジン類を貯留するタンク621に一端が接続された供給管622が接続されている。この供給管622には、手動で開閉可能な開閉弁623が設けられている。この供給管622を介して通水管631内にヒドラジン類が供給される。
このように、本実施の形態に係る原子力設備2によれば、ヒドラジン類が添加された冷却水を脱酸素部の白金族金属担持触媒に通水させて循環させるので、冷却水に含まれる溶存酸素及び過酸化水素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して補給水中の溶存酸素及び過酸化水素の濃度を速やかに低減することが可能となる。これにより、原子力設備2は、使用済燃料の貯水ピット101内に貯留される冷却水中の溶存酸素及び過酸化水素を安全に高い効率で除去することが可能となる。
(第4の実施の形態)
次に、本発明の第4の実施の形態について説明する。なお、以下の説明においては、上述した第1の実施の形態及び第2の実施の形態と重複する構成要素については同一の符号を付し、説明の重複を避ける。
図5は、本実施の形態に係る水処理装置602を備えた原子力設備3の概略図である。図5に示すように、本実施の形態に係る原子力設備3は、原子炉の冷却系統から一次冷却水を抜き出して浄化した後に、保有水量及びホウ酸濃度を調整して原子炉の冷却系統に戻す化学体積制御部(化学体積制御系)4を有する。この原子力設備3は、蒸気発生器11に一端が接続された配管15から分岐された一次冷却水取出配管15Aが接続される再生熱交換器200を備える。この再生熱交換器200には、一端が配管15に接続された一次冷却水戻し配管15Bが接続されている。また、再生熱交換器200には、一次冷却水取出配管15Aからによって取り出された一次冷却水を循環させる循環配管201が設けられている。この循環配管201には、非再生熱交換器202、開閉弁203、一次冷却水中の塩分を除去する脱塩塔204、塩分が除去された一次冷却水を濾過する濾過部205、一次冷却水を一時的に貯留する体積制御タンク206及び、循環配管201中の一次冷却水を循環させる循環ポンプ207がこの順に設けられている。
また、循環配管201には、送液ポンプ208によって循環配管201内を流れる一次冷却水に一次系純水を供給する供給配管208Aが接続されると共に、送液ポンプ209によって循環配管201内を流れる一次冷却水にホウ酸水を供給する供給配管209Aが接続される。本実施の形態では、原子炉の圧力容器内では一次冷却材の沸騰が発生せず、一次冷却材中に添加物を加えることができるので、一次冷却材中に原子炉の反応度を制御する中性子吸収材としてのホウ酸を添加できる。このホウ酸は、中性子吸収材であるホウ素原子を含むので、中性子をよく吸収し、一次冷却材中のホウ素濃度を調整により反応度を制御するケミカルシム制御が可能となる。
また、本実施の形態に係る原子力設備3は、循環配管201を流れる一次冷却水中にヒドラジン類を供給する脱酸素剤供給部620と、ヒドラジン類と溶存酸素及び過酸化水素との反応を促進する白金族金属担持触媒を備え、ヒドラジン類が添加された一次冷却水を通水して一次冷却水中の溶存酸素を除去する脱酸素部630とを備える。
循環配管201の非再生熱交換機202と開閉弁103との間には、通水管631の一端が接続され、開閉弁203と脱塩塔204との間には、通水管631の他端が接続されている。この通水管631には、一対の開閉弁633Cが設けられ、この一対の開閉弁633Cの間に触媒層632が設けられている。
通水管631の一端側には、ヒドラジン類を貯留するタンク621に一端が接続された供給管622が接続されている。この供給管622には、手動で開閉可能な開閉弁623が設けられている。この供給管622を介して通水管631内にヒドラジン類が供給される。
このように、本実施の形態に係る原子力設備3によれば、ヒドラジン類が添加された冷却水を脱酸素部の白金族金属担持触媒に通水させて循環させるので、一次冷却水に含まれる溶存酸素及び過酸化水素とヒドラジン類とが白金族金属担持触媒の触媒作用によって効率良く反応して補給水中の溶存酸素及び過酸化水素の濃度を速やかに低減することが可能となる。これにより、原子力設備3は、化学体積制御部4を流れる一次冷却水中の溶存酸素及び過酸化水素を安全に高い効率で除去することが可能となる。
1,2,3 原子力設備
4 化学体積制御部
11 原子炉格納容器
12 加圧水型原子炉
13 蒸気発生器
14,15,18,34,45,47 配管
15A 一次冷却水取出配管
15B 一次冷却水戻し配管
16 加圧器
17 一次冷却水ポンプ
19 蒸気タービン
20 主蒸気隔離弁
21 高圧タービン
22 低圧タービン
23 発電機(発電装置)
24 湿分分離加熱器
25 冷却水分岐配管
26 低温再熱管
27 高温再熱管
28 復水器
29 バイパス弁
30 タービンバイパス配管
31 取水管
32 排水管
33 循環水ポンプ
35 復水ポンプ
36 グランドコンデンサ
37 復水脱塩装置
38 復水ブースタポンプ
39 低圧給水加熱器
40 脱気器
41 主給水ポンプ
42 高圧給水加熱器
43 主給水制御弁
44 主蒸気逃がし弁
45 主蒸気逃がし配管(蒸気開放経路)
46 主蒸気安全弁
47 主蒸気安全配管
48,48A,48B,48C 補助給水配管
51 冷却水分岐配管
60 水処理供給装置
61 冷却水供給部
611 タービン駆動補助給水ポンプ
612 補助給水弁
613 電動駆動補助給水ポンプ
614 補助給水弁
615 電動駆動補助給水ポンプ
616 補助給水弁
62 脱酸素剤注入部
621 タンク
63 脱酸素部
622 供給管
623 開閉弁
631 通水管
632 触媒層
633A,633B,633C,633D 開閉弁
63 脱酸素部
64 復水タンク
101 貯水ピット
102 循環経路
103,105,106 開閉弁
104 循環ポンプ
107 脱塩塔
108 濾過部
200 再生熱交換器
201 循環配管
202 非再生熱交換器
203 開閉弁
204 脱塩塔204
205 濾過部
206 体積制御タンク
207 循環ポンプ
208,209 送液ポンプ
208A,208B 供給配管

Claims (5)

  1. 原子力設備内の冷却水が流通する経路に、溶存酸素が除去された外部水を補給水として供給する補給水供給部と、
    前記外部水にヒドラジン類を供給する脱酸素剤供給部と、
    前記ヒドラジン類と前記溶存酸素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記外部水を通水して前記補給水とする脱酸素部とを具備することを特徴とする水処理装置。
  2. 前記外部水は、海水、河川水、湖沼水,純水及び地下水の少なくとも1種を含むことを特徴とする請求項1に記載の水処理装置。
  3. 原子炉に一次冷却水が流通する経路を介して接続される蒸気発生器と、前記蒸気発生器の二次冷却水が流通する経路に供給する補給水の処理をする請求項1又は請求項2に記載の水処理装置とを備えたことを特徴とする原子力設備。
  4. 使用済燃料の貯水ピットの循環経路を流れる冷却水中にヒドラジン類を供給する脱酸素剤供給部と、
    前記ヒドラジン類と溶存酸素及び過酸化水素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記冷却水を通水して前記冷却水中の溶存酸素及び過酸化水素を除去する脱酸素部とを備えたことを特徴とする原子力設備。
  5. 原子炉の化学体積制御系の循環経路を流れる一次冷却水中にヒドラジン類を供給する脱酸素剤供給部と、
    前記ヒドラジン類と溶存酸素及び過酸化水素との反応を促進する白金族金属担持触媒に、前記ヒドラジン類が添加された前記一次冷却水を通水して前記一次冷却水中の溶存酸素及び過酸化水素を除去する脱酸素部とを備えたことを特徴とする原子力設備。
JP2015108625A 2015-05-28 2015-05-28 水処理装置及び原子力設備 Active JP6578134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108625A JP6578134B2 (ja) 2015-05-28 2015-05-28 水処理装置及び原子力設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108625A JP6578134B2 (ja) 2015-05-28 2015-05-28 水処理装置及び原子力設備

Publications (2)

Publication Number Publication Date
JP2016223842A true JP2016223842A (ja) 2016-12-28
JP6578134B2 JP6578134B2 (ja) 2019-09-18

Family

ID=57746652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108625A Active JP6578134B2 (ja) 2015-05-28 2015-05-28 水処理装置及び原子力設備

Country Status (1)

Country Link
JP (1) JP6578134B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107386195A (zh) * 2017-09-13 2017-11-24 中交第三航务工程局有限公司 一种排洪渠的清淤施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102482919B1 (ko) * 2021-02-02 2022-12-28 한국수력원자력 주식회사 수소 생산 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526414A (en) * 1978-08-15 1980-02-25 Mitsubishi Atomic Power Ind Method of protecting radioactive corrosion product from dissolving out
JPS55119491A (en) * 1979-03-05 1980-09-13 Mitsubishi Gas Chem Co Inc Removing method for hydrazine in dilute water solution
JPH03503805A (ja) * 1989-02-01 1991-08-22 コミッサレ・ア・レナジイ・アトミック 加圧水型原子炉の1次回路用補助容積制御および化学的回路
JP2002323596A (ja) * 2000-12-21 2002-11-08 General Electric Co <Ge> 加圧水型原子炉及び付随する高温水環境での腐食、浸食及び応力腐食割れを低減する貴金属触媒
WO2010104062A1 (ja) * 2009-03-10 2010-09-16 株式会社東芝 発電プラントの水質管理方法及びシステム
JP2013194274A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 原子力プラントの防食システム及び防食方法
JP2014001953A (ja) * 2012-06-15 2014-01-09 Toshiba Corp 原子炉圧力容器冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526414A (en) * 1978-08-15 1980-02-25 Mitsubishi Atomic Power Ind Method of protecting radioactive corrosion product from dissolving out
JPS55119491A (en) * 1979-03-05 1980-09-13 Mitsubishi Gas Chem Co Inc Removing method for hydrazine in dilute water solution
JPH03503805A (ja) * 1989-02-01 1991-08-22 コミッサレ・ア・レナジイ・アトミック 加圧水型原子炉の1次回路用補助容積制御および化学的回路
JP2002323596A (ja) * 2000-12-21 2002-11-08 General Electric Co <Ge> 加圧水型原子炉及び付随する高温水環境での腐食、浸食及び応力腐食割れを低減する貴金属触媒
WO2010104062A1 (ja) * 2009-03-10 2010-09-16 株式会社東芝 発電プラントの水質管理方法及びシステム
JP2013194274A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 原子力プラントの防食システム及び防食方法
JP2014001953A (ja) * 2012-06-15 2014-01-09 Toshiba Corp 原子炉圧力容器冷却装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107386195A (zh) * 2017-09-13 2017-11-24 中交第三航务工程局有限公司 一种排洪渠的清淤施工方法

Also Published As

Publication number Publication date
JP6578134B2 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
KR101447514B1 (ko) 해상 소형 원전용 안전 시스템
JP4898877B2 (ja) 炭素鋼部材の防食方法
KR101242746B1 (ko) 원자력 발전소의 격납건물 외부 통합피동안전계통 시스템
CA2870859C (en) Defense in depth safety paradigm for nuclear reactor
CN104733060A (zh) 一种船用核动力装置的非能动余热排出系统
KR102115043B1 (ko) 수중 전기 생산 모듈
JP6578134B2 (ja) 水処理装置及び原子力設備
JP2017067725A (ja) 非常用炉心冷却系の代替循環冷却方法および原子力発電所
KR102109991B1 (ko) 전기 생산 모듈
JP2013194274A (ja) 原子力プラントの防食システム及び防食方法
EP2614038B1 (en) Removal of dissolved gases in makeup water of a nuclear reactor
JP2011128090A (ja) カリーナサイクルを用いた原子力発電プラント
KR102097839B1 (ko) 침수 또는 수중 전기 생산 모듈
Tyapkov et al. Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system
KR101404646B1 (ko) 열담수화를 위한 고유안전 수냉각형 원자로 계통
JP4356012B2 (ja) 原子力プラント
KR102115044B1 (ko) 수중 전기 생산 모듈
JPS6375691A (ja) 自然循環型原子炉
JP5969355B2 (ja) 核燃料冷却方法及び核燃料冷却装置
RU2650504C2 (ru) Аварийная система охлаждения ядерного реактора
EP3955262A1 (en) Pressurized water-type nuclear power plant and method for operating pressurized water-type nuclear power plant
JP2013113653A (ja) 加圧水型原子炉及び炉心崩壊熱除去方法
JP6154989B2 (ja) 燃料プールにおける冷却水の処理装置
JP2017219525A (ja) 原子炉の放射能漏れを防ぐ装置
JP2015114203A (ja) アニュラス空気浄化装置及び原子力発電プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6578134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150