JP2016223011A - Surface treatment agent of steel product, and surface treatment method of steel product - Google Patents

Surface treatment agent of steel product, and surface treatment method of steel product Download PDF

Info

Publication number
JP2016223011A
JP2016223011A JP2016103875A JP2016103875A JP2016223011A JP 2016223011 A JP2016223011 A JP 2016223011A JP 2016103875 A JP2016103875 A JP 2016103875A JP 2016103875 A JP2016103875 A JP 2016103875A JP 2016223011 A JP2016223011 A JP 2016223011A
Authority
JP
Japan
Prior art keywords
surface treatment
treatment agent
steel
carbon
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016103875A
Other languages
Japanese (ja)
Other versions
JP6194057B2 (en
Inventor
挺正 周
Teisei Shu
挺正 周
建▲ツン▼ 陳
Jian Tsung Chen
建▲ツン▼ 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2016223011A publication Critical patent/JP2016223011A/en
Application granted granted Critical
Publication of JP6194057B2 publication Critical patent/JP6194057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment agent of a steel product.SOLUTION: A surface treatment agent of a steel product contains a sodium silicate solution and at least one kind of metal compound selected from the group consisting of a metal oxide and a carbonate. A surface treatment method of a steel product using the surface treatment agent includes spraying the surface treatment agent onto the surface of the steel product, avoids oxidation and decarburization of the steel product in heat treatment of the steel product, and thus achieves carburization and surface hardening.SELECTED DRAWING: Figure 4

Description

本発明は、鋼材の表面処理剤および表面処理方法に関する。   The present invention relates to a steel material surface treatment agent and a surface treatment method.

熱処理は、機械の製造過程において極めて重要な一部であり、熱処理する際に、鋼材を高温に加熱する必要があるため、適切な保護策で対応しなければ、酸化、脱炭などの現象を引き起こし、ひいてはその使用寿命を減少させることになる。酸化、脱炭の発生を回避するために、鋼材の熱処理を工業的に実施する場合、よく用いられる加熱方法として、「1.真空中の加熱」、「2.塩浴中の加熱」、「3.制御雰囲気中の加熱」といった三つの方法がある。どの方法を採用しても、設備コストや環境汚染を増加させる。   Heat treatment is an extremely important part of the machine manufacturing process, and it is necessary to heat the steel to a high temperature during heat treatment. If appropriate measures are not taken, oxidation, decarburization and other phenomena will occur. Cause a reduction in its service life. In order to avoid the occurrence of oxidation and decarburization, when the heat treatment of steel materials is carried out industrially, the commonly used heating methods are “1. heating in a vacuum”, “2. heating in a salt bath”, “ 3. There are three methods such as “heating in a controlled atmosphere”. Whichever method is used, the equipment cost and environmental pollution are increased.

浸炭処理は、工業的によく用いられる表面処理方法であり、これにより、鋼材の表面硬度を向上させ、耐摩耗性を増加させ、精密さを確保し、使用寿命を延長させることができる。浸炭処理を実施するとき、通常は、鋼材を浸炭剤に置いて、高温に加熱し、浸炭剤における炭素を鋼材の表層に浸入させることにより、鋼材の表層における炭素含有量を高めて、焼き入れた後に、表面硬化の効果が達成される。一般的な浸炭方法は、固体浸炭法、液体浸炭法、ガス浸炭法などがある。   The carburizing treatment is a surface treatment method that is often used industrially, thereby improving the surface hardness of the steel material, increasing the wear resistance, ensuring the precision, and extending the service life. When carburizing treatment is performed, usually the steel is placed in a carburizing agent, heated to a high temperature, and carbon in the carburizing agent is infiltrated into the surface of the steel, thereby increasing the carbon content in the surface of the steel and quenching. After that, the effect of surface hardening is achieved. Common carburizing methods include solid carburizing, liquid carburizing, and gas carburizing.

固体浸炭法は、鋼材を浸炭容器内に置いて、固体浸炭剤を充填し、密封した後に加熱炉に入れて加熱し、固体浸炭剤を利用して、容器内の反応により生じた一酸化炭素(CO)に対して浸炭を行う。浸炭する際、一酸化炭素が鋼材の表面に分解され、発生期の炭素(nascent carbon)が得られ、得られた発生期の炭素が鋼材の表面から浸入して内部に拡散する。また、液体浸炭法は、溶融した液態の浸炭剤に鋼材を浸漬して加熱し、液態の浸炭剤の分解により生じた一酸化炭素を利用して、浸炭を行う。上記固体浸炭法および液体浸炭法は、設備費用が低いものの、大量生産に適せず、浸炭の品質を制御しにくい。さらに、ガス浸炭法は、ガス式浸炭および滴注式浸炭を含む。ガス式は、炭化水素系(例えば、CH4、C38、C410)ガスを主とする原料ガスと所定量の空気とを混合して、ガス発生器(gas generator)において高温のニッケル触媒の作用下で反応させ、一酸化炭素を含有するガスを生じ、生じた一酸化炭素を利用して浸炭を行う。滴注式は、熱分解しやすい有機液(例えば、メタノール)を炉に滴下して、高温分解により一酸化炭素を生じ、浸炭を行う。ガス浸炭法は、必要とする設備費用が高いものの、大量生産に適し、浸炭濃度を調整できるため、現在最も用いられている浸炭処理方法である。 In the solid carburizing method, a steel material is placed in a carburizing vessel, filled with a solid carburizing agent, sealed, placed in a heating furnace and heated, and carbon monoxide generated by the reaction in the vessel using the solid carburizing agent. Carburize (CO). When carburizing, carbon monoxide is decomposed on the surface of the steel material to obtain nascent carbon, and the obtained nascent carbon penetrates from the surface of the steel material and diffuses inside. In the liquid carburizing method, a steel material is immersed in a molten liquid carburizing agent and heated, and carburization is performed using carbon monoxide generated by decomposition of the liquid carburizing agent. The above-mentioned solid carburizing method and liquid carburizing method are low in equipment cost, but are not suitable for mass production and it is difficult to control the carburizing quality. Further, the gas carburizing method includes gas carburizing and drip carburizing. In the gas type, a raw material gas mainly composed of a hydrocarbon-based gas (for example, CH 4 , C 3 H 8 , C 4 H 10 ) and a predetermined amount of air are mixed and heated at a high temperature in a gas generator. The reaction is performed under the action of the nickel catalyst to generate a gas containing carbon monoxide, and carburization is performed using the generated carbon monoxide. In the dripping method, an organic liquid (for example, methanol) that is easily pyrolyzed is dropped into a furnace, carbon monoxide is generated by high-temperature decomposition, and carburization is performed. Although the gas carburizing method requires a high equipment cost, it is suitable for mass production and the carburizing concentration can be adjusted.

しかしながら、上記の浸炭処理方法は、鋼材に全体的な浸炭処理を行って、すなわち、鋼材の表面の全てに浸炭を行う。このため、鋼材に選択的な表面処理(例えば、一部浸炭)を行おうとする場合、表面処理を行おうとしない部位に浸透防止処理(例えば、塗上浸炭防止剤或鍍銅、鍍ニッケル等)をあらかじめ行う必要があり、その工程が非常に煩雑である。したがって、表面を選択的に処理できる鋼材の表面処理剤および方法を開発する必要がある。   However, the carburizing method described above performs the entire carburizing process on the steel material, that is, carburizes all the surfaces of the steel material. Therefore, when selective surface treatment (for example, partial carburization) is performed on the steel material, penetration prevention treatment (for example, coating carburizing inhibitor or copper, copper nickel, etc.) is applied to the portion where the surface treatment is not performed. Must be performed in advance, and the process is very complicated. Therefore, it is necessary to develop a steel surface treatment agent and method capable of selectively treating the surface.

従来技術の様々な問題を踏まえて、本発明は、鋼材(例えば、鋼鉄材料または機械部品)の表面に直接スプレー塗装することができる表面処理剤であって、ケイ酸ナトリウム溶液と、金属酸化物および炭酸塩からなる群から選ばれる少なくとも一種の金属化合物とを含む表面処理剤を提供する。   In view of various problems in the prior art, the present invention is a surface treatment agent that can be directly spray-coated on the surface of a steel material (for example, a steel material or a machine part). And a surface treatment agent comprising at least one metal compound selected from the group consisting of carbonates.

さらに、本発明は、鋼材の表面に上記の表面処理剤をスプレー塗装することを含み、前記鋼材を熱処理するときに、前記鋼材の酸化を回避できるか、あるいは硬化層を形成できる、上記の表面処理剤を使用する鋼材の表面処理方法を提供する。   Furthermore, the present invention includes spraying the surface treatment agent on the surface of the steel material, and when the steel material is heat-treated, oxidation of the steel material can be avoided or a hardened layer can be formed. Provided is a steel surface treatment method using a treatment agent.

本発明の表面処理剤において、前記ケイ酸ナトリウム溶液の使用量は、前記金属化合物を均一に混合しやすくすること、および鋼材の表面に便利にスプレー塗装することを原則とする。熱処理の期間において鋼材の酸化の発生を回避し、鋼材を熱処理の所定の目標に達成させるために、使用上の必要に応じて、前記の表面処理剤における金属化合物の成分、組成、重量比率を変更してもよく、あるいは、さらに炭素粉末を添加してもよい。   In the surface treatment agent of the present invention, the amount of the sodium silicate solution used is, in principle, to facilitate uniform mixing of the metal compound and to conveniently spray-coat on the surface of the steel material. In order to avoid the occurrence of oxidation of the steel material during the heat treatment period and to achieve the predetermined target of the heat treatment of the steel material, the component, composition, and weight ratio of the metal compound in the surface treatment agent are set as necessary for use. It may be changed, or carbon powder may be further added.

鋼材の一部領域に浸炭を行う必要がある場合、従来技術では、鋼材の表面処理を行おうとしない部位に浸透防止処理工程を行うことを必須とする。本発明の表面処理剤は、浸炭を行おうとする部位の鋼材の表面に直接塗装することができるため、加熱反応を経た後、選択的な浸炭という目的を達成することができ、別途の浸透防止処理を行う必要がなく、浸炭コストを大幅に削減し、浸炭の効率を向上させることができる。   When it is necessary to carburize a partial region of the steel material, in the conventional technique, it is essential to perform a permeation prevention treatment process at a site where the surface treatment of the steel material is not performed. Since the surface treatment agent of the present invention can be directly applied to the surface of the steel material where the carburization is to be performed, the purpose of selective carburization can be achieved after a heating reaction, and separate penetration prevention There is no need to perform the treatment, so that the carburizing cost can be greatly reduced and the carburizing efficiency can be improved.

図1は、表面に表面処理剤1がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図である。FIG. 1 is a view showing the microstructure of the surface layer after S50C carbon steel having the surface treatment agent 1 spray-coated on the surface thereof is heated at 950 ° C. for 1 hour and cooled in a furnace. 図2は、表面に表面処理剤2がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図である。FIG. 2 is a view showing the microstructure of the surface layer after S50C carbon steel with the surface treatment agent 2 spray-coated on the surface is heated at 950 ° C. for 1 hour and cooled in the furnace. 図3は、表面に表面処理剤3がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図である。FIG. 3 is a view showing the microstructure of the surface layer after S50C carbon steel with the surface treatment agent 3 spray-coated on the surface is heated at 950 ° C. for 1 hour and cooled in the furnace. 図4は、表面に表面処理剤4がスプレー塗装されたSKD61合金工具鋼を、1030℃で2時間加熱して、強制空冷した後の表層の硬度分布を示す図である。FIG. 4 is a view showing the hardness distribution of the surface layer after the SKD61 alloy tool steel having the surface treatment agent 4 spray-coated on the surface is heated at 1030 ° C. for 2 hours and forcedly cooled. 図5は、表面に表面処理剤5がスプレー塗装されたSKD61合金工具鋼を、1030℃で2時間加熱して、強制空冷した後の表層の硬度分布を示す図である。FIG. 5 is a diagram showing the hardness distribution of the surface layer after the SKD61 alloy tool steel having the surface treatment agent 5 spray-coated on the surface is heated at 1030 ° C. for 2 hours and forcedly cooled. 図6は、表面に表面処理剤6がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水冷した後の表層の硬度分布を示す図である。FIG. 6 is a diagram showing the hardness distribution of the surface layer after S50C carbon steel with the surface treatment agent 6 spray-coated on the surface is heated at 930 ° C. for 2 hours and cooled with water. 図7は、表面に表面処理剤7がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水冷した後の表層の硬度分布を示す図である。FIG. 7 is a view showing the hardness distribution of the surface layer after S50C medium carbon steel having the surface treatment agent 7 spray-coated on its surface is heated at 930 ° C. for 2 hours and cooled with water. 図8は、表面に表面処理剤8がスプレー塗装されたS50C中炭素鋼を、1030℃で1時間加熱して、水冷した後の表層の硬度分布を示す図である。FIG. 8 is a diagram showing the hardness distribution of the surface layer after S50C carbon steel with the surface treatment agent 8 spray-coated on the surface is heated at 1030 ° C. for 1 hour and cooled with water. 図9は、表面に表面処理剤9がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水冷した後の表層の硬度分布を示す図である。FIG. 9 is a diagram showing the hardness distribution of the surface layer after S50C medium carbon steel having the surface treatment agent 9 spray-coated on the surface is heated at 930 ° C. for 2 hours and water-cooled. 図10は、表面に表面処理剤10がスプレー塗装されたS50C中炭素鋼を、1030℃で1時間加熱して、水冷した後の表層の硬度分布を示す図である。FIG. 10 is a diagram showing the hardness distribution of the surface layer after S50C carbon steel with the surface treatment agent 10 spray-coated on the surface is heated at 1030 ° C. for 1 hour and cooled with water.

以下、特定の具体的な実施例により、本発明を実施するための形態を説明する。本技術分野に習熟した者は、本明細書に記載された内容によって簡単に本発明の利点や効果を理解することができる。本発明は、他の異なる具体的な実施形態によって施行または応用することもでき、本明細書における各項の詳しい内容も、異なる観点と応用に基づいて、本発明の趣旨を逸脱しない範囲で、異なる修正と変更を施すことができる。   Hereinafter, the form for implementing this invention by a specific specific Example is demonstrated. Those skilled in the art can easily understand the advantages and effects of the present invention according to the contents described in this specification. The present invention can be implemented or applied by other different specific embodiments, and the detailed contents of each section in the present specification are based on different viewpoints and applications without departing from the spirit of the present invention. Different modifications and changes can be made.

明細書および特許請求の範囲において、特に説明しない限り、用いられる単数形式である「その」および「前記の」は複数の個体の場合を含み、用語である「や」は「および/または」の定義を含む。   In the description and in the claims, the singular form “the” and “above” includes the plural case and the term “ya” is “and / or” unless stated otherwise. Includes definitions.

本発明は、適切な比率で、ケイ酸ナトリウム溶液(または水ガラスと称す)と、金属酸化物および炭酸塩からなる群から選ばれる少なくとも一種の金属化合物とを混合して、鋼材の表面処理剤を製造する。本発明の表面処理剤は、処理しようとする鋼材の表面に直接塗布することができ、鋼材の熱処理の過程において、ケイ酸ナトリウム溶液が、鋼材の表面にガスバリア膜を形成して、鋼材の酸化または脱炭を防止することができ、炭酸塩および金属酸化物からなる群から選ばれる少なくとも一種の金属化合物が、さらに鋼材において保護層または硬化層を形成することができる。   In the present invention, a surface treatment agent for steel is prepared by mixing a sodium silicate solution (or water glass) and at least one metal compound selected from the group consisting of metal oxides and carbonates at an appropriate ratio. Manufacturing. The surface treatment agent of the present invention can be directly applied to the surface of the steel material to be treated, and in the process of heat treatment of the steel material, the sodium silicate solution forms a gas barrier film on the surface of the steel material to oxidize the steel material. Alternatively, decarburization can be prevented, and at least one metal compound selected from the group consisting of carbonates and metal oxides can further form a protective layer or a hardened layer in the steel material.

本発明において、鋼材を熱処理する過程は、鋼材を加熱して1〜2時間保温した後に鋼材を冷却することを含んでおり、そのうち、鋼材の加熱温度の範囲が600〜1300℃であり、鋼材の冷却方式が炉冷、空冷および水冷を含む。   In the present invention, the process of heat-treating the steel material includes cooling the steel material after heating the steel material for 1 to 2 hours, of which the range of the heating temperature of the steel material is 600 to 1300 ° C. These cooling methods include furnace cooling, air cooling and water cooling.

また、本発明は、炭素粉末と炭酸塩とケイ酸ナトリウム溶液とを含有する表面処理剤をさらに提供し、当該表面処理剤が、鋼材において浸炭層または硬化層を形成し、鋼材の酸化を防止することができる。前記炭素粉末は、木炭粉末、竹炭粉末、コークス粉末およびグラファイト粉末から選ばれるものである。前記炭酸塩は、炭酸ナトリウム、炭酸カルシウムおよび炭酸バリウムからなる群から選ばれる少なくとも一つである。炭酸バリウムを配合した炭素粉末を例として挙げると、炭酸バリウムと炭素粉末とを含有する表面処理剤で処理された鋼材において、前記鋼材の表層が浸炭層を形成する。   In addition, the present invention further provides a surface treatment agent containing carbon powder, carbonate and sodium silicate solution, and the surface treatment agent forms a carburized layer or a hardened layer in the steel material to prevent oxidation of the steel material. can do. The carbon powder is selected from charcoal powder, bamboo charcoal powder, coke powder and graphite powder. The carbonate is at least one selected from the group consisting of sodium carbonate, calcium carbonate, and barium carbonate. Taking carbon powder mixed with barium carbonate as an example, in a steel material treated with a surface treating agent containing barium carbonate and carbon powder, the surface layer of the steel material forms a carburized layer.

以下、金属化合物と炭素粉末とを含有する表面処理剤の具体的な実施例により、鋼材に表面浸炭処理を行うことについて説明する。   Hereinafter, performing a surface carburizing process on a steel material according to a specific example of a surface treatment agent containing a metal compound and carbon powder will be described.

本発明の表面処理剤は、鋼材の表面浸炭に応用されており、その浸炭の原理は、下記の反応式のように、高温環境下で炭酸塩の分解により二酸化炭素ガス(CO2)を生じさせ、当該二酸化炭素ガスが炭素粉末における炭素(C)と反応して一酸化炭素ガス(CO)を生成させ、さらに一酸化炭素ガスを鋼材と接触させ浸炭作用を引き起こし、炭素を鋼材に浸入させる。 The surface treatment agent of the present invention is applied to surface carburization of steel materials, and the principle of carburization is that carbon dioxide gas (CO 2 ) is generated by decomposition of carbonate under a high temperature environment as shown in the following reaction formula. The carbon dioxide gas reacts with carbon (C) in the carbon powder to generate carbon monoxide gas (CO), and the carbon monoxide gas is brought into contact with the steel material to cause a carburizing action so that the carbon enters the steel material. .

式(1)において、MCO3が炭酸塩を示し、Mが金属、例えば、ナトリウム(Na2)、カルシウム(Ca)およびバリウム(Ba)を示す。 In the formula (1), MCO 3 represents a carbonate, and M represents a metal such as sodium (Na 2 ), calcium (Ca), and barium (Ba).

上記の式(3)は、一酸化炭素ガスが高温の鋼材(γFe)に浸炭作用を起こし、浸炭された鋼材の表面が、炭素を含むオーステナイト(austenite、γFe[C])となり、オーステナイトが、焼き入れた後に形態変化して高硬度のマルテンサイト(martensite)となることを表す。式(3)のオーステナイトの炭素含有量は、一酸化炭素ガスおよび二酸化炭素ガスの濃度と関連しており、一酸化炭素ガスの濃度が高まって二酸化炭素ガスの濃度が低下すると、反応が、炭素を含むオーステナイトγFe[C]を生成する(すなわち、鋼材の炭素含有量を高める)向きに進む。逆に、一酸化炭素ガスの濃度が低下して二酸化炭素ガスの濃度が高まると、反応が、鋼材から炭素が脱離する(すなわち、鋼材の炭素含有量を低下させる)向きに進む。上記の式(1)〜(3)から、一酸化炭素ガスおよび二酸化炭素ガスの濃度が、炭素粉末、炭酸塩の比率および使用量によって決められることがわかり、言い換えれば、炭素粉末、炭酸塩などの成分比率、使用量、加熱温度などの条件を制御すれば、鋼材の浸炭量を制御することができる。金属酸化物を添加することにより、保護層を形成できることに加えて、炭素粉末および炭酸塩を希釈する機能を有し、表面の浸炭処理が完成した後に、鋼材の表面から表面処理剤を除去しやすくさせる。   In the above formula (3), carbon monoxide gas causes carburizing action on high-temperature steel (γFe), and the surface of the carburized steel becomes austenite containing carbon (austenite, γFe [C]), and austenite is It represents that the shape changes after quenching and becomes martensite with high hardness. The carbon content of the austenite of formula (3) is related to the concentration of carbon monoxide gas and carbon dioxide gas, and when the concentration of carbon monoxide gas increases and the concentration of carbon dioxide gas decreases, the reaction becomes carbon The process proceeds to produce austenite γFe [C] containing (that is, increase the carbon content of the steel material). Conversely, when the concentration of carbon monoxide gas decreases and the concentration of carbon dioxide gas increases, the reaction proceeds in a direction in which carbon is desorbed from the steel material (that is, the carbon content of the steel material is reduced). From the above formulas (1) to (3), it can be seen that the concentration of carbon monoxide gas and carbon dioxide gas is determined by the ratio and amount of carbon powder and carbonate, in other words, carbon powder, carbonate, etc. The amount of carburization of the steel can be controlled by controlling conditions such as the component ratio, amount used, and heating temperature. In addition to being able to form a protective layer by adding a metal oxide, it has the function of diluting carbon powder and carbonate, and after the carburizing treatment of the surface is completed, the surface treatment agent is removed from the surface of the steel material. Make it easier.

実施例1〜5
表1に示されるように、酸化アルミニウム粉末、酸化チタン粉末、グラファイト粉末、炭酸ナトリウムを所定の比率で均一に混合した後、1kgの粉末と1500mLのケイ酸ナトリウム溶液とを混合する比率で表面処理剤1〜5を調製した。そのうち、表面処理剤1〜3は、それぞれS50C中炭素鋼の表面(塗布層の厚さが約1.5mm)に塗布され、950℃に加熱して1時間保温した後、炉において冷却され、表層の微細構造から、鋼材が浸炭または脱炭したか否かを判断した。表面処理剤4、5は、それぞれSKD61合金鋼の表面(塗布層の厚さが約1.5mm)に塗布され、焼き入れ処理を行って、すなわち、その焼き入れ温度1030℃に加熱して2時間保温した後、1秒あたり7℃の冷却速度で強制空冷を実施し、表層の硬度分布から、鋼材が表面硬化したか否かを判断した。
Examples 1-5
As shown in Table 1, aluminum oxide powder, titanium oxide powder, graphite powder, and sodium carbonate are uniformly mixed at a predetermined ratio, and then surface treatment is performed at a ratio of mixing 1 kg of powder and 1500 mL of sodium silicate solution. Agents 1-5 were prepared. Among them, the surface treatment agents 1 to 3 are each applied to the surface of carbon steel in S50C (the thickness of the coating layer is about 1.5 mm), heated to 950 ° C. and kept warm for 1 hour, and then cooled in a furnace, Whether the steel material was carburized or decarburized was judged from the microstructure of the surface layer. The surface treatment agents 4 and 5 are respectively applied to the surface of the SKD61 alloy steel (the thickness of the coating layer is about 1.5 mm) and subjected to quenching treatment, that is, heated to a quenching temperature of 1030 ° C. After keeping the temperature for a time, forced air cooling was performed at a cooling rate of 7 ° C. per second, and it was judged from the hardness distribution of the surface layer whether the steel material was surface hardened.

本発明の表面処理剤は、異なる成分および重量割合の組成により、表面処理剤のカーボンポテンシャル(carbon potential)を変化させ、加熱した後の鋼材を、浸炭、脱炭、あるいは浸炭しない・脱炭しない・酸化もしないといった予期目標を達成させることができることを特徴の一つとしている。   The surface treatment agent of the present invention changes the carbon potential of the surface treatment agent depending on the composition of different components and weight ratios, and does not carburize, decarburize, or carburize / decarburize the steel after heating.・ One of the features is that the expected goal of not oxidizing can be achieved.

図1は、表面に表面処理剤1がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図であった。図において、白色の部分がフェライト(ferrite)であり、黒色の部分がパーライト(pearlite)であった。図面から、表面近傍のフェライトが、中心部より多いことがわかった。これは、表面処理剤1は、S50C中炭素鋼に対して酸化を防止できるが、脱炭効果が生じることを示した。   FIG. 1 is a diagram showing the microstructure of the surface layer after S50C carbon steel with the surface treatment agent 1 spray-coated on the surface is heated at 950 ° C. for 1 hour and cooled in the furnace. In the figure, the white part was ferrite and the black part was pearlite. From the drawing, it was found that there were more ferrite near the surface than at the center. This indicated that the surface treatment agent 1 can prevent oxidation of the S50C medium carbon steel, but has a decarburizing effect.

図2は、表面に表面処理剤2がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図であった。実験結果から、表層の微細構造が中心部の微細構造と類似し、表面近傍のパーライトの含有量が中心部とほぼ同じであることを発見した。これは、表面処理剤2はカーボンポテンシャルがS50C中炭素鋼元々の炭素含有量とほぼ同じく、S50C中炭素鋼に対して浸炭も脱炭もせず、かつ、その表面が酸化しない輝く状態を保つことを示した。   FIG. 2 is a view showing the fine structure of the surface layer after heating the steel in S50C with the surface treatment agent 2 spray-coated on the surface at 950 ° C. for 1 hour and cooling in the furnace. From the experimental results, it was discovered that the microstructure of the surface layer was similar to that of the central part, and the pearlite content near the surface was almost the same as that of the central part. This is because the surface treatment agent 2 has a carbon potential that is almost the same as the original carbon content of the S50C medium carbon steel, does not carburize or decarburize the S50C medium carbon steel, and keeps its surface shining without oxidation. showed that.

図3は、表面に表面処理剤3がスプレー塗装されたS50C中炭素鋼を、950℃で1時間加熱して、炉冷した後の表層の微細構造を示す図であった。表面近傍のパーライトが明らかに中心部のパーライトより多かった。これは、表面処理剤3は浸炭能力が強く、S50C中炭素鋼に対して顕著な浸炭作用を生じることを示した。   FIG. 3 is a view showing the microstructure of the surface layer after S50C carbon steel with the surface treatment agent 3 spray-coated on the surface is heated at 950 ° C. for 1 hour and cooled in the furnace. There was clearly more pearlite near the surface than pearlite in the center. This indicates that the surface treatment agent 3 has a strong carburizing ability and produces a remarkable carburizing action on the S50C medium carbon steel.

表層浸炭された鋼材は、表層に顕著な硬化を示すために、オーステナイトの状態から急冷して、マルテンサイトに形態変化させることが必要である。炭素鋼は、硬化能が小さいため、マルテンサイトに形態変化させるために、水冷が必要である。合金鋼は、硬化能が大きいため、油冷または強制空冷を採用すれば、マルテンサイトに形態変化させることができる。   In order to show remarkable hardening in the surface layer, the steel material subjected to surface layer carburization needs to be rapidly cooled from the austenite state and changed into martensite. Since carbon steel has a small hardening ability, water cooling is required to change the form to martensite. Since alloy steel has a high hardening ability, it can be transformed into martensite by adopting oil cooling or forced air cooling.

図4は、表面に表面処理剤4がスプレー塗装されたSKD61合金工具鋼を、1030℃で2時間加熱した後、1秒あたり7℃の冷却速度で強制空冷を実施して、得られた表層の硬度分布曲線を示す図であった。図面から、鋼材の表層が顕著な硬化を示し、表面近傍の硬度が約800HV程度と極めて高く、また、硬度が外から内へ徐々に減り650HVまで低下するが、それ以下には低下しないことがわかり、これにより、中心部の硬度が約650HV程度であり、全ての硬化層の厚さが約1000μm程度であることがわかった。これは、表面処理剤4は、SKD61合金工具鋼に対して顕著な浸炭作用が生じるため、焼き入れた後の表層の硬度が顕著に高まることを示した。   FIG. 4 shows the surface layer obtained by subjecting the SKD61 alloy tool steel, whose surface treatment agent 4 is spray-coated on the surface, to forced air cooling at a cooling rate of 7 ° C. per second after heating at 1030 ° C. for 2 hours. It was a figure which shows the hardness distribution curve of this. From the drawing, the surface layer of the steel material shows remarkable hardening, the hardness in the vicinity of the surface is as high as about 800 HV, and the hardness gradually decreases from the outside to the inside and decreases to 650 HV, but it does not decrease below that. From this, it was found that the hardness of the central portion was about 650 HV, and the thickness of all the hardened layers was about 1000 μm. This indicates that the surface treatment agent 4 has a remarkable carburizing action on the SKD61 alloy tool steel, so that the hardness of the surface layer after quenching is significantly increased.

図5は、表面に表面処理剤5がスプレー塗装されたSKD61合金工具鋼を、1030℃で2時間加熱して、強制空冷した後の表層の硬度分布を示す図であった。表層の硬度は中心部より高く、最も高い硬度が約720HV程度であった。これは、表面処理剤5は、SKD61合金工具鋼に対して浸炭効果を示すが、その浸炭能力が表面処理剤4より低いため、その硬化効果も表面処理剤4より低いことを示した。   FIG. 5 is a diagram showing the hardness distribution of the surface layer after the SKD61 alloy tool steel having the surface treatment agent 5 spray-coated on the surface is heated at 1030 ° C. for 2 hours and forced-air cooled. The hardness of the surface layer was higher than that of the central portion, and the highest hardness was about 720 HV. This indicates that the surface treatment agent 5 has a carburizing effect on the SKD61 alloy tool steel, but its carburizing ability is lower than that of the surface treatment agent 4, so that its hardening effect is also lower than that of the surface treatment agent 4.

実施例6〜10
表2に示されるように、酸化アルミニウム粉末、酸化チタン粉末、木炭粉末、炭酸バリウムを所定の比率で均一に混合した後、1kgの粉末と1500mLのケイ酸ナトリウム溶液とを混合する比率で表面処理剤6〜10を調製した。そのうち、表面処理剤6、7、9は、それぞれS50C中炭素鋼の表面(塗布層の厚さが約1.5mm)に塗布され、930℃に加熱して2時間保温した後、水焼き入れを実施した。表面処理剤8、10は、それぞれS50C中炭素鋼の表面(塗布層の厚さが約1.5mm)に塗布され、1030℃に加熱して1時間保温した後、水焼き入れを実施した。各サンプルを焼き入れた後、その表面の硬化効果を知るために、それぞれマイクロビッカース硬さ試験機でその表層の硬度分布を測定した。
Examples 6-10
As shown in Table 2, after aluminum oxide powder, titanium oxide powder, charcoal powder, and barium carbonate are uniformly mixed at a predetermined ratio, surface treatment is performed at a ratio of mixing 1 kg of powder and 1500 mL of sodium silicate solution. Agents 6-10 were prepared. Of these, surface treatment agents 6, 7, and 9 were each applied to the surface of S50C carbon steel (the thickness of the coating layer was about 1.5 mm), heated to 930 ° C. and kept warm for 2 hours, and then water-quenched Carried out. Surface treatment agents 8 and 10 were respectively applied to the surface of S50C carbon steel (the thickness of the coating layer was about 1.5 mm), heated to 1030 ° C. and kept warm for 1 hour, and then subjected to water quenching. After quenching each sample, the hardness distribution of the surface layer was measured with a micro Vickers hardness tester in order to know the hardening effect of the surface.

図6は、表面に表面処理剤6がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水焼き入れを実施した後の表層の硬度分布を示す図であった。中心部の硬度が約700HV程度であり、表層と中心部とを比べると、表層の硬度が顕著に低下し、表面近傍の硬度は300HV程度まで低下した。これは、表面処理剤6は、カーボンポテンシャルが低く、S50C中炭素鋼に対して浸炭を行うことができないだけでなく、脱炭も発生させるため、焼き入れた後の表層の硬度が顕著に低いことを示した。   FIG. 6 is a view showing the hardness distribution of the surface layer after the S50C carbon steel with the surface treatment agent 6 spray-coated on the surface is heated at 930 ° C. for 2 hours and subjected to water quenching. The hardness of the central portion is about 700 HV, and when the surface layer and the central portion are compared, the hardness of the surface layer is remarkably reduced, and the hardness in the vicinity of the surface is reduced to about 300 HV. This is because the surface treatment agent 6 has a low carbon potential and cannot carburize the carbon steel in S50C, but also generates decarburization, so the hardness of the surface layer after quenching is remarkably low. Showed that.

図7は、表面に表面処理剤7がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水焼き入れを実施した後の表層の硬度分布を示す図であった。図面から、表層の硬度と中心部の硬度とが近く、表面の硬度が中心部の硬度より僅かに増加するだけであることがわかった。これは、表面処理剤7は、カーボンポテンシャルが高くなく、930℃ではS50C中炭素鋼に対して浸炭を軽く行うことしかできないことを示した。   FIG. 7 is a view showing the hardness distribution of the surface layer after the S50C carbon steel with the surface treatment agent 7 spray-coated on the surface is heated at 930 ° C. for 2 hours and subjected to water quenching. From the drawing, it was found that the hardness of the surface layer and the hardness of the central portion are close to each other, and the hardness of the surface is only slightly increased from the hardness of the central portion. This indicated that the surface treatment agent 7 did not have a high carbon potential, and at 930 ° C., it was only possible to lightly carburize the carbon steel in S50C.

図8は、表面に表面処理剤8がスプレー塗装されたS50C中炭素鋼を、1030℃で1時間加熱して、水焼き入れを実施した後の表層の硬度分布を示す図であった。表層と中心部とがほぼ同じ硬度を維持した。これは、表面処理剤8は、1030℃におけるカーボンポテンシャルが約0.5%C程度であって、S50C中炭素鋼の元々の炭素含有量と同じであり、S50C中炭素鋼に対して浸炭も脱炭もせず、焼き入れた後の表層と中心部とが同じ硬度を保って、かつ、その表面が酸化しない状態を保つことを示した。   FIG. 8 is a diagram showing the hardness distribution of the surface layer after the S50C medium steel with the surface treatment agent 8 spray-coated on the surface is heated at 1030 ° C. for 1 hour and subjected to water quenching. The surface layer and the central part maintained almost the same hardness. This is because the surface treatment agent 8 has a carbon potential at about 1030 ° C. of about 0.5% C, which is the same as the original carbon content of the S50C medium carbon steel. It was shown that the surface layer and the center part after quenching were not decarburized and kept the same hardness and the surface was not oxidized.

図9は、表面に表面処理剤9がスプレー塗装されたS50C中炭素鋼を、930℃で2時間加熱して、水焼き入れを実施した後の表層の硬度分布を示す図であった。表層の硬度が中心部の硬度より高かった。これは、表面処理剤9は、930℃においてS50C中炭素鋼に対して浸炭作用が生じ、表層の炭素含有量を高め、焼き入れた後の表層の硬度を増加させることができることを示した。   FIG. 9 is a diagram showing the hardness distribution of the surface layer after the S50C carbon steel with the surface treatment agent 9 spray-coated on the surface is heated at 930 ° C. for 2 hours and subjected to water quenching. The hardness of the surface layer was higher than the hardness of the central part. This indicated that the surface treatment agent 9 can carburize the S50C medium carbon steel at 930 ° C., increase the carbon content of the surface layer, and increase the hardness of the surface layer after quenching.

図10は、表面に表面処理剤10がスプレー塗装されたS50C中炭素鋼を、1030℃で1時間加熱して、水焼き入れを実施した後の表層の硬度分布を示す図であった。表層の硬度と中心部の硬度とを比べると、表層の硬度が顕著に高くなり、表面近傍の硬度は850HV程度と高かった。これは、表面処理剤10は、カーボンポテンシャルが高く、S50C中炭素鋼に対して顕著な浸炭作用を生じることができ、表層の炭素含有量を著しく高めて、焼き入れた後に顕著な表面硬化効果に達することを示した。図6、7、8、9、10の実験結果を比較すると、炭素粉末の添加量を増加することにより、表面処理剤のカーボンポテンシャルを有効に高めることができることがわかった。   FIG. 10 is a diagram showing the hardness distribution of the surface layer after the S50C carbon steel with the surface treatment agent 10 spray-coated on the surface is heated at 1030 ° C. for 1 hour and subjected to water quenching. When the hardness of the surface layer and the hardness of the central portion were compared, the hardness of the surface layer was remarkably high, and the hardness near the surface was as high as about 850 HV. This is because the surface treatment agent 10 has a high carbon potential and can produce a remarkable carburizing action on the carbon steel in S50C, significantly increasing the carbon content of the surface layer, and a remarkable surface hardening effect after quenching. Showed that 6, 7, 8, 9, and 10, it was found that the carbon potential of the surface treatment agent can be effectively increased by increasing the amount of carbon powder added.

上記の内容から、本発明の表面処理剤は、その成分組成および重量比率を変化させることにより、表面処理剤の浸炭能力またはカーボンポテンシャルを変化させることができ、浸炭された後の鋼材の表層に異なる浸炭量を与え、焼き入れた後に異なる程度の表面硬化効果を達成させ、異なる状況の要求を満足できることがわかった。   From the above contents, the surface treatment agent of the present invention can change the carburizing ability or carbon potential of the surface treatment agent by changing the composition and weight ratio of the surface treatment agent, and on the surface layer of the steel material after carburizing. It was found that different carburizing amounts were given and different degree of surface hardening effect was achieved after quenching to satisfy different situation requirements.

本発明の表面処理剤は、鋼材を熱処理する際の酸化の発生を防止する機能を有することに加えて、脱炭をも防止するため、鋼材の浸炭処理にも応用することができる。よって、本発明の表面処理剤は、例えば、構造用炭素鋼、構造用合金鋼、浸炭用鋼、炭素工具鋼、合金工具鋼、金型用鋼、高速度鋼、軸受鋼、ばね鋼などの様々な鋼材に適用される。本発明の表面処利剤の適用温度は、各鋼材の熱処理の温度であり、特に、焼き入れの温度である。   The surface treatment agent of the present invention has a function of preventing the occurrence of oxidation when heat-treating a steel material, and also prevents decarburization, and therefore can be applied to a carburizing treatment of a steel material. Therefore, the surface treatment agent of the present invention is, for example, structural carbon steel, structural alloy steel, carburizing steel, carbon tool steel, alloy tool steel, mold steel, high speed steel, bearing steel, spring steel, etc. Applicable to various steel materials. The application temperature of the surface treatment agent of the present invention is the temperature of heat treatment of each steel material, and in particular, the quenching temperature.

上記の内容をまとめると、従来技術に比べて、本発明の表面処理剤およびその鋼材熱処理での応用は、下記の有利点を有する:
(1)鋼材の表面に直接塗布して表面処理を行うことができ、操作しやすいこと、
(2)従来の浸炭処理の設備を省略できること、
(3)鋼材の一部領域を選択して表面浸炭処理を行って、焼き入れた後の鋼材の表面の一部を硬化する効果を達成できること、
(4)表面処理剤の成分組成および重量割合を変化させることにより、異なるカーボンポテンシャル(carbon potential)を有する表面処理剤を製造して、使用者に選択させることができること、および
(5)同時に異なるカーボンポテンシャルを有する表面処理剤を選んで用いて同じ鋼材の異なる部位にスプレー塗装することにより、異なる程度の表面硬化効果を生じさせ、使用上の要求を満足させることができること。
In summary, the surface treatment agent of the present invention and its application in steel heat treatment have the following advantages over the prior art:
(1) It can be applied directly to the surface of the steel material for surface treatment and is easy to operate.
(2) The conventional carburizing equipment can be omitted,
(3) It is possible to achieve an effect of hardening a part of the surface of the steel material after quenching by selecting a partial region of the steel material and performing a surface carburization treatment;
(4) By changing the component composition and weight ratio of the surface treatment agent, it is possible to produce a surface treatment agent having different carbon potential and allow the user to select it, and (5) different simultaneously By selecting and using a surface treatment agent having a carbon potential and spray-coating on different parts of the same steel material, different surface hardening effects can be produced and the usage requirements can be satisfied.

上記の実施例は、例示的に本発明の鋼材の表面処理剤およびその表面処理剤を用いる鋼材の表面処理方法ならびに効果を述べるものに過ぎず、本発明を限定するものではない。本技術分野に習熟した者は、本発明の趣旨および範囲から逸脱しない限り、上記の実施例に各種変更と修正を施すことができる。したがって、本発明の主張する権利範囲は、特許請求の範囲に記載される。   The above-described examples are merely illustrative of the surface treatment agent for steel according to the present invention and the surface treatment method and effect of the steel using the surface treatment agent, and do not limit the present invention. Those skilled in the art can make various changes and modifications to the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of rights claimed by the present invention is described in the claims.

Claims (6)

ケイ酸ナトリウム溶液と、金属酸化物および炭酸塩からなる群から選ばれる少なくとも一種の金属化合物とを含む、鋼材の表面処理剤。   A surface treatment agent for steel, comprising a sodium silicate solution and at least one metal compound selected from the group consisting of metal oxides and carbonates. 前記金属酸化物が、酸化アルミニウムおよび酸化チタンからなる群から選ばれる少なくとも一つである請求項1に記載の表面処理剤。   The surface treatment agent according to claim 1, wherein the metal oxide is at least one selected from the group consisting of aluminum oxide and titanium oxide. 前記炭酸塩が、炭酸ナトリウム、炭酸カルシウムおよび炭酸バリウムからなる群から選ばれる少なくとも一つである請求項1に記載の表面処理剤。   The surface treatment agent according to claim 1, wherein the carbonate is at least one selected from the group consisting of sodium carbonate, calcium carbonate, and barium carbonate. さらに炭素粉末を含む請求項1に記載の表面処理剤。   Furthermore, the surface treating agent of Claim 1 containing carbon powder. 前記炭素粉末が、木炭粉末、竹炭粉末、コークス粉末およびグラファイト粉末からなる群から選ばれる少なくとも一つである請求項4に記載の表面処理剤。   The surface treatment agent according to claim 4, wherein the carbon powder is at least one selected from the group consisting of charcoal powder, bamboo charcoal powder, coke powder, and graphite powder. 請求項1に記載の表面処理剤を鋼材の表面にスプレー塗装することを含む、鋼材の表面処理方法。   The surface treatment method of steel materials including spray-coating the surface treating agent of Claim 1 on the surface of steel materials.
JP2016103875A 2015-05-26 2016-05-25 Surface treatment agent for steel and surface treatment method for steel Expired - Fee Related JP6194057B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104116764A TWI582267B (en) 2015-05-26 2015-05-26 Surface treament agents for steel articles and surface treament methods for steel by using the same
TW104116764 2015-05-26

Publications (2)

Publication Number Publication Date
JP2016223011A true JP2016223011A (en) 2016-12-28
JP6194057B2 JP6194057B2 (en) 2017-09-06

Family

ID=57747457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103875A Expired - Fee Related JP6194057B2 (en) 2015-05-26 2016-05-25 Surface treatment agent for steel and surface treatment method for steel

Country Status (2)

Country Link
JP (1) JP6194057B2 (en)
TW (1) TWI582267B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508766A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP2021508765A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP2021508767A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP2022000540A (en) * 2017-06-08 2022-01-04 日本精工株式会社 Carburization method of steel part and manufacturing method of steel part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279631A4 (en) 2021-01-14 2023-11-22 NSK Ltd. Method for carburizing steel member, steel component, and carburizing agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115249A (en) * 1999-10-20 2001-04-24 Nisshin Steel Co Ltd Carburizing treatment method
JP2008019282A (en) * 2004-10-01 2008-01-31 Baham Giken Corp Aqueous suspension composition, aqueous coating composition and coated article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010235A1 (en) * 2003-07-29 2005-02-03 Jfe Steel Corporation Surface-treated steel sheet and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115249A (en) * 1999-10-20 2001-04-24 Nisshin Steel Co Ltd Carburizing treatment method
JP2008019282A (en) * 2004-10-01 2008-01-31 Baham Giken Corp Aqueous suspension composition, aqueous coating composition and coated article

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000540A (en) * 2017-06-08 2022-01-04 日本精工株式会社 Carburization method of steel part and manufacturing method of steel part
JP7397029B2 (en) 2017-06-08 2023-12-12 日本精工株式会社 Carburizing method for steel parts and method for manufacturing steel parts
JP2021508766A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP2021508765A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP2021508767A (en) * 2017-12-19 2021-03-11 アルセロールミタル Covered steel base material
JP7063996B2 (en) 2017-12-19 2022-05-09 アルセロールミタル Covered steel base material
JP7063997B2 (en) 2017-12-19 2022-05-09 アルセロールミタル Covered steel base material
JP7162663B2 (en) 2017-12-19 2022-10-28 アルセロールミタル coated steel substrate

Also Published As

Publication number Publication date
TW201641721A (en) 2016-12-01
TWI582267B (en) 2017-05-11
JP6194057B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6194057B2 (en) Surface treatment agent for steel and surface treatment method for steel
US3885995A (en) Process for carburizing high alloy steels
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
Edenhofer et al. Carburizing of steels
US7794551B1 (en) Carburization of metal articles
JP2007046088A (en) Nitrided quenched part, and method for producing the same
US8425691B2 (en) Stainless steel carburization process
JP2012062494A (en) Iron steel member having nitrogen compound layer and process for production thereof
KR100899578B1 (en) Method for surface hardening by high temperature nitriding in vacuum
JP7397029B2 (en) Carburizing method for steel parts and method for manufacturing steel parts
Mirjani et al. Plasma and gaseous nitrocarburizing of C60W steel for tribological applications
CN102051572A (en) Surface boronizing treatment method of steel piece
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
CN113122797A (en) Nitrocarburizing process and carburized layer modification method thereof
JP5798463B2 (en) Carburizing method and carburizing apparatus
KR20200087817A (en) Method for pre-oxidation of strip steel in a reaction chamber placed in a furnace chamber
AU2012285581A1 (en) Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
SENATORSKI et al. Wear resistance characteristics of thermo-chemically treated structural steels
JP2009108411A (en) Method for hardening surface of work piece made of stainless steel, and molten salt bath for realizing the method
JP4806722B2 (en) Metal salt bath nitriding method and metal produced by the method
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
CN105369193B (en) A kind of high-carbon steel piece surface processing method
CN106319439A (en) Modification method for steel component
CN109295411A (en) A kind of automobile transmission gear under Q&P&T technique
CN101775605B (en) Method and device for preventing iron screw rods from rusting

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6194057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees