JP2016221603A - Manufacturing method for functional precision component and functional precision component - Google Patents

Manufacturing method for functional precision component and functional precision component Download PDF

Info

Publication number
JP2016221603A
JP2016221603A JP2015108330A JP2015108330A JP2016221603A JP 2016221603 A JP2016221603 A JP 2016221603A JP 2015108330 A JP2015108330 A JP 2015108330A JP 2015108330 A JP2015108330 A JP 2015108330A JP 2016221603 A JP2016221603 A JP 2016221603A
Authority
JP
Japan
Prior art keywords
functional
processing
functional material
precision component
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015108330A
Other languages
Japanese (ja)
Other versions
JP6551833B2 (en
Inventor
和人 山内
Kazuto Yamauchi
和人 山内
宙治 桐野
Chuji Kirino
宙治 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Crystal Optics Inc
Original Assignee
Osaka University NUC
Crystal Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Crystal Optics Inc filed Critical Osaka University NUC
Priority to JP2015108330A priority Critical patent/JP6551833B2/en
Publication of JP2016221603A publication Critical patent/JP2016221603A/en
Application granted granted Critical
Publication of JP6551833B2 publication Critical patent/JP6551833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which enables the efficient manufacture of a functional precision component where a functional material is formed only in a recess of an uneven microstructure over a range of 10 nm-1 mm provided in a base body surface by using a chemical machining process basically using only water with no use of a polishing agent or abrasive grains, and a functional precision component manufactured by the manufacturing method.SOLUTION: A manufacturing method for a functional precision component where a functional material is formed only in a recess 3 of an uneven microstructure over a range of 10 nm-1 mm provided in a base body 1 surface comprises a stop layer forming step for forming a stop layer 4 with a predetermined thickness unprocessable by a machining process comprising Water-CARE over the whole surface of the base body by using a machining process, a functional material stacking step for forming a functional material 5 processable by the machining process by stacking on the stop layer, and a machining process for removing the functional material outside the recess by the machining process.SELECTED DRAWING: Figure 1

Description

本発明は、機能性精密部品の製造方法及び機能性精密部品に係わり、更に詳しくは表面にサブμmオーダーの微細構造が形成された機能性精密部品の製造方法及び機能性精密部品に関するものである。   The present invention relates to a method for manufacturing a functional precision component and a functional precision component, and more particularly, to a method for manufacturing a functional precision component having a sub-μm order microstructure formed on the surface and a functional precision component. .

従来から、被加工物の表面を平坦化加工若しくは研磨する方法は各種提供されている。代表的には、CMP(Chemical Mechanical Polishing)があり、最近では本発明者によってCARE(CAtalyst-Referred Etching)が提案されている。   Conventionally, various methods for flattening or polishing the surface of a workpiece are provided. Typically, there is CMP (Chemical Mechanical Polishing), and recently, the present inventor has proposed CARE (CAtalyst-Referred Etching).

CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。一般には、研磨対象物をキャリアと呼ばれる部材で保持し、研磨布または研磨パッドを張った平板(ラップ)に押し付けて、各種化学成分および硬質の微細な砥粒を含んだスラリーを流しながら、一緒に相対運動させることで研磨を行う。化学成分が研磨対象物の表面を変化させることで、研磨剤単体で研磨する場合に比べて加工速度を向上することができる。また、研磨剤単体で研磨する場合に残る表面の微細な傷や表面付近に残る加工変質層が極めて少なくなり、理想的な平滑面を得ることができる。ここで、CMP用の研磨剤には、主に酸化セリウム(CeO2)若しくはランタンを含む酸化セリウムの微粒子を用いている。 CMP increases the mechanical polishing (surface removal) effect due to the relative movement of the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of chemical components contained in the polishing liquid. This is a technique for obtaining a smooth polished surface. Generally, an object to be polished is held by a member called a carrier, pressed against a flat plate (lap) with a polishing cloth or polishing pad, and a slurry containing various chemical components and hard fine abrasive grains is allowed to flow together. Polishing is performed by making the relative movement. By changing the surface of the object to be polished by the chemical component, the processing speed can be improved as compared with the case of polishing with a single abrasive. In addition, the fine scratches on the surface remaining when polishing with a single abrasive and the work-affected layer remaining in the vicinity of the surface are extremely reduced, and an ideal smooth surface can be obtained. Here, fine particles of cerium oxide mainly containing cerium oxide (CeO 2 ) or lanthanum are used as the polishing agent for CMP.

それに対して、CAREは、特許文献1に記載されているように、酸素を介して1種又は2種以上の元素が結合した固体酸化物、あるいは複数の酸化物からなる多成分系の固体酸化物を被加工物とし、該被加工物の表面を平坦化加工又は任意曲面に加工する加工方法であって、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去する、研磨剤や砥粒を全く使用しない加工方法である。この加工方法は、基本的に水のみを用いるので、Water−CAREと呼ばれている。 On the other hand, as described in Patent Document 1, CARE is a solid oxide in which one or two or more elements are bonded via oxygen, or a multicomponent solid oxide composed of a plurality of oxides. A processing method in which an object is a workpiece and the surface of the workpiece is flattened or processed into an arbitrary curved surface, in which water molecules are dissociated to form a solid oxide and back bonds of oxygen elements and other elements A catalytic substance that assists in the production of decomposition products by hydrolysis as a processing reference surface, and in the presence of water, the workpiece and the processing reference surface are placed in close contact or in close proximity, The potential of the machining reference surface is set to a range that includes a natural potential and H 2 and O 2 are not generated, and the workpiece and the machining reference surface are moved relative to each other to remove the decomposition products from the workpiece surface. , A processing method that uses no abrasives or abrasive grains It is. Since this processing method basically uses only water, it is called Water-CARE.

iPS細胞に代表される再生医療の分野やマイクロ化学工学の分野では、スライドガラス上で部分的に細胞を培養する細胞テンプレートや、化学反応場となるマイクロリアクターといった製品の需要が拡大すると期待され、製造技術に関して今現在も多くの研究開発が行われている。これらの製品が普及するための絶対条件として、第一に安価で製造することがあげられ、加えて重要な機能として液相反応であるため濡れ性を制御することが求められる。細胞テンプレートでは1枚で複数種の細胞を培養するようなケースがあり、マイクロリアクターであれば流路内でのみ液を輸送する必要があるためである。μmオーダーの世界では液の持つ表面張力の影響が相対的に大きくなるため、物理的な凹凸だけでは液の制御は難しく、濡れ性の制御、具体的には凸部を撥水性、凹部を親水性にする必要がある。   In the field of regenerative medicine typified by iPS cells and the field of microchemical engineering, the demand for products such as cell templates for partially culturing cells on glass slides and microreactors that serve as chemical reaction fields is expected to increase. Much research and development is still in progress regarding manufacturing technology. As an absolute condition for the spread of these products, firstly, production at a low cost is mentioned, and in addition, since the liquid phase reaction is an important function, it is required to control wettability. This is because there are cases in which a plurality of types of cells are cultured in one cell template, and in the case of a microreactor, it is necessary to transport the liquid only in the flow path. In the world of μm order, the influence of the surface tension of the liquid becomes relatively large, so it is difficult to control the liquid only with physical unevenness, control of wettability, specifically water repellency on the convex part and hydrophilic on the concave part It is necessary to make sex.

再表2013/084934号公報Table 2013/084934

細胞テンプレートやマイクロリアクター等は。表面に微細構造が形成され、部分的に親水性、撥水性といった機能性表面を形成する必要がある。これら目的に合致した製品を開発するため、機械加工やレーザー加工、エッチングといった微細加工技術と、機能性薄膜を組み合わせた手法が検討されているが、特に安価で製造するといった量産技術が最大のネックとなっており、早急な開発が望まれている。特に、表面の微細構造はサブμmオーダー、その表面に形成される機能性層の厚さはnmオーダーとなるので、従来の機械加工や研磨技術では、加工速度の精密な制御が困難であるため適用できない。更に、砥粒などを使用する場合、砥粒や研磨屑等のパーティクルが凹部に付着すると、その除去、洗浄が難しい。また、加工プロセスや洗浄プロセスに化学薬品を使用する場合には、その残留が問題となることもある。   What about cell templates and microreactors? A fine structure is formed on the surface, and it is necessary to partially form a functional surface such as hydrophilicity and water repellency. In order to develop products that meet these objectives, microfabrication technologies such as machining, laser processing, and etching, and methods combining functional thin films have been studied, but mass production technology such as manufacturing at low cost is the biggest bottleneck. Therefore, rapid development is desired. In particular, since the surface microstructure is on the order of sub-μm and the thickness of the functional layer formed on the surface is on the order of nm, it is difficult to precisely control the processing speed with conventional machining and polishing techniques. Not applicable. Furthermore, when using abrasive grains or the like, if particles such as abrasive grains or polishing scraps adhere to the recesses, it is difficult to remove and clean them. In addition, when chemicals are used in the processing process and the cleaning process, the residue may be a problem.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、研磨剤や砥粒を一切使用せず、また基本的に水のみを用いる化学的な加工プロセスを用い、基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成した機能性精密部品を効率的に製造可能な製造方法及びそれにより製造された機能性精密部品を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem by providing a chemical processing process that uses only water and does not use any abrasive or abrasive grains, and is provided on the surface of the substrate. Another object of the present invention is to provide a manufacturing method capable of efficiently manufacturing a functional precision component in which a functional material is formed only in a recess having an uneven microstructure having a range of 10 nm to 1 mm, and a functional precision component manufactured thereby. .

本発明は、前述の課題解決のために、基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成した機能性精密部品の製造方法であって、水分子が解離して被加工物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を用い、水の存在下で、前記被加工物と触媒物質とを接触若しくは極接近させて配し、前記触媒物質の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と触媒物質とを相対運動させて、前記分解生成物を被加工物表面から除去する加工プロセスを用い、前記基体の表面全体に、前記加工プロセスによって加工不能な所定厚さのストッパー層を形成するストッパー層形成工程、前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を積層形成する機能性材料積層工程、前記加工プロセスによって前記凹部外の機能性材料を除去する加工工程、とよりなる機能性精密部品の製造方法を構成した。 In order to solve the above-mentioned problems, the present invention is a method for producing a functional precision component in which a functional material is formed only in the concave portion of the concave-convex microstructure having a range of 10 nm to 1 mm provided on the substrate surface. Using a catalytic substance that aids in the generation of decomposition products by hydrolysis by cutting back bonds between oxygen elements and other elements that dissociate from the molecules and adsorbing back bonds of the other elements, the workpiece is processed in the presence of water. The catalyst material is placed in contact with or in close proximity to each other, the potential of the catalyst material is within a range that includes a natural potential and H 2 and O 2 are not generated, and the workpiece and the catalyst material are moved relative to each other. A stopper layer forming step of forming a stopper layer having a predetermined thickness that cannot be processed by the processing process on the entire surface of the substrate using a processing process for removing the decomposition product from the surface of the workpiece; above And a functional material laminating step for laminating and forming functional materials that can be processed by the processing process, and a processing step for removing the functional material outside the recesses by the processing process. did.

ここで、機能性材料積層工程が、前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を凹部構造が塞がらない厚さに積層形成して機能性層を形成する工程であり、前記基体の凹部内面のみに所定厚さの機能性層を有することが好ましい。   Here, the functional material laminating step is a step of forming a functional layer on the stopper layer by laminating a functional material that can be processed by the processing process to a thickness that does not block the recess structure, It is preferable that a functional layer having a predetermined thickness is provided only on the inner surface of the concave portion of the substrate.

そして、前記機能性材料がSiO2であること、また前記ストッパー層の材料が炭素であることも好ましい。更に、前記基体がシクロオレフィンポリマー(COP)樹脂であることがより好ましい。 It is also preferable that the functional material is SiO 2 and that the material of the stopper layer is carbon. Furthermore, the substrate is more preferably a cycloolefin polymer (COP) resin.

また本発明は、前述の機能性精密部品の製造方法によって製造し、基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成したことを特徴とする機能性精密部品を構成した。   Further, the present invention is a method characterized in that the functional material is formed only in the concave portion of the concave and convex fine structure in the range of 10 nm to 1 mm provided on the surface of the base body, which is manufactured by the above-described manufacturing method of the functional precision component. High precision parts.

以上にしてなる本発明の機能性精密部品の製造方法及び機能性精密部品は、基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成した機能性精密部品の製造方法であって、水分子が解離して被加工物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を用い、水の存在下で、前記被加工物と触媒物質とを接触若しくは極接近させて配し、前記触媒物質の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と触媒物質とを相対運動させて、前記分解生成物を被加工物表面から除去する加工プロセスを用い、前記基体の表面全体に、前記加工プロセスによって加工不能な所定厚さのストッパー層を形成するストッパー層形成工程、前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を積層形成する機能性材料積層工程、前記加工プロセスによって前記凹部外の機能性材料を除去する加工工程、とよりなるので、次のような効果を奏する。砥粒を一切使用せず、基本的に水のみを用いる化学的な加工プロセス(Water−CARE)であるので、加工変質層を導入することなく、サブμmオーダーの凹凸微細構造有する基体表面でも凹部外の機能性材料をのみを精度よく除去して、凹部内のみに機能性材料を有する機能性精密部品を製造でき、更に凹部内に砥粒やスラリー等のパーティクルや化学成分が残留することがないので、洗浄工程を簡単且つ低コストで行なうことができる。 The functional precision component manufacturing method and the functional precision component according to the present invention as described above are functional precision components in which a functional material is formed only in the concave portion of the concave-convex microstructure in the range of 10 nm to 1 mm provided on the surface of the substrate. A method of manufacturing a part, which uses a catalytic substance that dissociates water molecules and adsorbs by cutting back bonds between oxygen elements and other elements constituting the workpiece and helps to generate decomposition products by hydrolysis. In the presence of water, the workpiece and the catalytic material are arranged in contact with or in close proximity to each other, and the potential of the catalytic material is set within a range that includes natural potential and does not generate H 2 and O 2 . A stopper layer having a predetermined thickness that cannot be processed by the processing process is formed on the entire surface of the substrate by using a processing process in which the decomposition product is removed from the surface of the workpiece by relatively moving the catalyst material and the catalyst material. stopper A layer forming step, a functional material laminating step of laminating and forming a functional material that can be processed by the processing process on the stopper layer, a processing step of removing the functional material outside the recess by the processing process, and more Therefore, the following effects are produced. Since it is a chemical processing process (Water-CARE) that basically uses only water and does not use any abrasive grains, it is not necessary to introduce a work-affected layer. It is possible to accurately remove only the outside functional material and to manufacture a functional precision part having the functional material only in the recess, and particles and chemical components such as abrasive grains and slurry may remain in the recess. Therefore, the cleaning process can be performed easily and at low cost.

そして、機能性材料積層工程が、前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を凹部構造が塞がらない厚さに積層形成して機能性層を形成する工程であり、前記基体の凹部内面のみに所定厚さの機能性層を有することにより、凹部を機能性凹部として利用することができる。本発明が最も効果を発揮するのは、サブμmオーダーの微細凹凸構造の表面に、nmオーダーのストッパー層を形成し、その上に機能性材料をnmオーダーの厚さに積層形成し、前記基体の凹部内面のみにnmオーダーの厚さの機能性層を有する場合である。   Then, the functional material laminating step is a step of forming a functional layer on the stopper layer by laminating a functional material that can be processed by the processing process to a thickness that does not block the concave structure, By having a functional layer having a predetermined thickness only on the inner surface of the concave portion of the substrate, the concave portion can be used as a functional concave portion. The present invention is most effective when a stopper layer of nm order is formed on the surface of a fine concavo-convex structure of the order of sub-μm, and a functional material is laminated and formed thereon with a thickness of nm order. This is a case where a functional layer having a thickness on the order of nm is provided only on the inner surface of the recess.

また、前記機能性材料がSiO2であると凹部内を親水性とし、また前記ストッパー層の材料が炭素であると凹部外を撥水性とすることができる。炭素は、基体の表面の凹凸微細構造の表面に蒸着によりnmオーダーで薄く均一に成膜することができ、またWater−CAREによって殆ど加工されないので、良好なストッパー層となり、加工プロセスによる加工工程を精度良く制御でき、工程の効率化にも寄与する。また、SiO2薄膜も蒸着によって簡単に成膜することができ、酸化物であるので安定し、またWater−CAREによって簡単に加工することができる。 Further, when the functional material is SiO 2 , the inside of the recess can be made hydrophilic, and when the material of the stopper layer is carbon, the outside of the recess can be made water repellent. Carbon can be deposited thinly and uniformly on the order of nm on the surface of the uneven microstructure on the surface of the substrate, and it is hardly processed by Water-CARE, so it becomes a good stopper layer, and the processing process by the processing process It can be controlled with high accuracy and contributes to process efficiency. Also, the SiO 2 thin film can be easily formed by vapor deposition, is stable because it is an oxide, and can be easily processed by Water-CARE.

更に、基体がシクロオレフィンポリマー(COP)樹脂であると、表面の凹凸微細構造を形状転写方式により高効率で形成することができ、吸湿性も小さく、形状安定性にも優れているので、精密部品に適している。   Furthermore, if the substrate is a cycloolefin polymer (COP) resin, it is possible to form an uneven microstructure on the surface with high efficiency by a shape transfer method, low hygroscopicity, and excellent shape stability. Suitable for parts.

本発明による機能性精密部品の製造工程を示し、(a)は基体の表面にストッパー層を形成した状態の断面図、(b)はストパー層の上に機能性層を形成した状態の断面図、(c)は加工プロセスを実行している状態の断面図、(d)は凸部の機能性層のみを除去した完成状態の断面図をそれぞれ示している。The manufacturing process of the functional precision component by this invention is shown, (a) is sectional drawing of the state in which the stopper layer was formed on the surface of a base | substrate, (b) is sectional drawing of the state in which the functional layer was formed on the stopper layer (C) is sectional drawing of the state which is performing the processing process, (d) has shown sectional drawing of the completion state which removed only the functional layer of the convex part, respectively. 他の形態の機能性精密部品の製造工程を示し、(a)は機能性材料積層工程において凹部を埋め尽くすように機能性材料を積層した状態の断面図、(b)は凸部のストッパー層が露出するまで加工プロセスを実行して機能性材料を除去した完成状態の断面図を示している。The manufacturing process of the functional precision component of another form is shown, (a) is sectional drawing of the state which laminated | stacked the functional material so that a recessed part might be filled up in a functional material lamination process, (b) is a stopper layer of a convex part FIG. 4 is a cross-sectional view of a completed state in which a functional process is performed until the functional material is removed by exposing the functional material. 平面転写方式の基体成形方法の説明図である。It is explanatory drawing of the base | substrate shaping | molding method of a plane transfer system. ロール転写方式の基体成形方法の説明図である。It is explanatory drawing of the base transfer method of a roll transfer system. 石英ガラスの平坦化加工前後の表面の干渉顕微鏡像とAFM像を示す。The interference microscope image and AFM image of the surface before and after the flattening processing of quartz glass are shown. 表面にうねりのある基体を触媒の加工基準面を備えたCAREで加工する場合を示し、(a)は加工前の断面図、(b)はうねりの山部のみが加工された状態の断面図である。A case where a substrate having undulation on the surface is processed by CARE having a processing reference surface of the catalyst is shown, (a) is a cross-sectional view before processing, and (b) is a cross-sectional view in a state where only a ridge portion of the undulation is processed. It is. うねりの山部のみが加工された基体を触媒の加工基準面を備えたCAREで更に加工する場合を示し、(a)は加工前の断面図、(b)はうねりの山部の微細構造が消失するまで加工された状態の断面図である。The case where the substrate on which only the undulation peaks are processed is further processed with CARE having a catalyst processing reference surface, (a) is a sectional view before processing, and (b) is the microstructure of the undulation peaks. It is sectional drawing of the state processed until it lose | disappears. 表面にうねりのある基体を工作物表面基準のCAREで加工する場合を示し、(a)は加工前の断面図、(b)はうねりの山部と谷部が加工された状態の断面図である。A case where a substrate having a undulation on the surface is processed by CARE based on the workpiece surface is shown, (a) is a cross-sectional view before processing, and (b) is a cross-sectional view in a state where ridges and valleys of the undulation are processed. is there.

次に、本発明の実施形態を添付図面に基づいて詳細に説明する。本発明の機能性精密部品の量産製造技術は、樹脂の構造転写技術と薄膜形成技術及び超精密加工技術を組み合わせたものである。対象とする凹凸微細構は10nm〜1mmの範囲であるが、より好ましくは100nm〜100μmの範囲である。本実施形態では、図1に示すように、基体1の表面に、100μmピッチで、100μm角、高さ100μmの微細構造角柱構造を形成し、凸部2を撥水性、凹部3を親水性とした機能性精密部品Aを製造する手順を説明する。超精密加工技術(加工プロセス)としては、Water−CARE(Water-CAtalyst-Referred Etching)を用いる。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The mass production technology for functional precision parts of the present invention is a combination of resin structure transfer technology, thin film formation technology and ultra-precision machining technology. The target irregular fine structure is in the range of 10 nm to 1 mm, more preferably in the range of 100 nm to 100 μm. In this embodiment, as shown in FIG. 1, a fine structure prismatic structure having a 100 μm square and a height of 100 μm is formed on the surface of the substrate 1 at a pitch of 100 μm, the convex part 2 is made water repellent and the concave part 3 is made hydrophilic. A procedure for manufacturing the functional precision component A will be described. Water-CARE (Water-CAtalyst-Referred Etching) is used as an ultraprecision machining technique (machining process).

先ず、表面に10nm〜1mmの範囲の凹凸微細構造を形成した合成樹脂製の基体1を用意する。ここで、前記基体1の素材として、シクロオレフィンポリマー(COP)樹脂を用いたが、目的用途に応じてその他の合成樹脂、あるいはガラス等を利用できる。次に、前記基体1の表面全体に、前記加工プロセスによって加工不能なnmオーダーの厚さのストッパー層4を形成するストッパー層形成工程(図1(a)参照)、前記ストッパー層4の上に、前記加工プロセスによって加工可能な機能性材料からなる機能性層5を積層形成する機能性材料積層工程(図1(b)参照)、前記加工プロセスによって前記凹部3外の機能性材料を除去する加工工程(図1(c)参照)、を経て機能性精密部品Aを製造する(図1(d)参照)。   First, a base 1 made of a synthetic resin having a concavo-convex microstructure in a range of 10 nm to 1 mm on the surface is prepared. Here, a cycloolefin polymer (COP) resin is used as the material of the substrate 1, but other synthetic resins, glass, or the like can be used depending on the intended use. Next, a stopper layer forming step (see FIG. 1A) for forming a stopper layer 4 having a thickness on the order of nm that cannot be processed by the processing process on the entire surface of the substrate 1, and on the stopper layer 4 A functional material laminating step (see FIG. 1B) for laminating and forming a functional layer 5 made of a functional material that can be processed by the processing process, and the functional material outside the recess 3 is removed by the processing process. A functional precision component A is manufactured through a processing step (see FIG. 1C) (see FIG. 1D).

本実施形態では、前記ストッパー層4は、厚さ30nm程度の炭素薄膜であり、撥水性を備え、本加工プロセスによっては殆ど加工されない性質を有する。一方、前記機能性層5は、厚さ150〜180nmのSiO2薄膜であり、親水性を備え、本加工プロセスによって容易に加工される性質を有する。そして、触媒を加工基準面に用いた加工ヘッド6を用いて、水中で前記基体1の表面に本加工プロセスを実行すると、凸部2に位置するSiO2薄膜が加工の進行とともに除去され、その厚さが薄くなるが、前記炭素薄膜が露出すると、加工速度は急激に低下する。前記凸部2のSiO2薄膜が完全に除去された後、本加工プロセスを停止する。この際、本加工プロセスは、触媒に接触した近傍のみで機能するものであるので、該触媒から離れた前記凹部3内に位置するSiO2薄膜は全く加工されない。このように、サブμmオーダーの凹部であっても、nmオーダーの薄膜を形成することにより、内壁面が機能性層5で覆われた機能性凹部7を形成することができる。 In the present embodiment, the stopper layer 4 is a carbon thin film having a thickness of about 30 nm, has water repellency, and has a property of being hardly processed by this processing process. On the other hand, the functional layer 5 is a SiO 2 thin film having a thickness of 150 to 180 nm, has a hydrophilic property, and has a property of being easily processed by this processing process. Then, when the machining process is performed on the surface of the substrate 1 in water using the machining head 6 using the catalyst as a machining reference surface, the SiO 2 thin film located on the convex portion 2 is removed as the machining progresses. Although the thickness is reduced, when the carbon thin film is exposed, the processing speed rapidly decreases. After the SiO 2 thin film of the convex portion 2 is completely removed, the present processing process is stopped. At this time, since this processing process functions only in the vicinity in contact with the catalyst, the SiO 2 thin film positioned in the recess 3 away from the catalyst is not processed at all. Thus, even if it is a submicrometer order recessed part, the functional recessed part 7 by which the inner wall face was covered with the functional layer 5 can be formed by forming a thin film of nm order.

一方、図2に示すように、機能性材料積層工程(図2(a)参照)において、前記凹部3を埋め尽くすように、機能性材料8を積層形成した場合には、その後の加工工程(図2(b)参照)によって、前記ストッパー層4のレベルまで加工が進行した後、本加工プロセスを停止すると、凸部2が撥水性で、凹部3が機能性材料8で埋まった形態の機能性精密部品Bを製造することができる。   On the other hand, as shown in FIG. 2, in the functional material laminating step (see FIG. 2A), when the functional material 8 is laminated so as to fill the concave portion 3, the subsequent processing steps ( When the processing is stopped after the processing has progressed to the level of the stopper layer 4 according to FIG. 2 (b)), the convex portion 2 is water-repellent and the concave portion 3 is filled with the functional material 8. Precision component B can be manufactured.

前記基体1の表面に凹凸微細構造を形成するには、金型を用いた樹脂の射出成型もしくは転写技術で形成する。これらの転写技術は、安価な量産製造技術としてこれまでに数多くの報告と実績があり、半導体微細回路の形成にもナノインプリントリソグラフィーとして実用化されつつあり、nmオーダーの構造にも対応可能である。図3は、平面転写方式を示し、平面型9の上に基体材料を置き、上方から微細凹凸パターンが形成された転写型10を所定温度で加圧して、基体1の表面に凹凸微細構造を転写するものである。図4は、ロール転写方式を示し、円筒ロール11と外周に微細凹凸パターンが形成された転写ロール12との間に、シート状の連続基体1を繰り送り、円筒ロール11の微細凹凸パターンを基体1の表面に繰り返し転写するものである。特に、ロール転写方式を採用すれば、より安価な製造技術として期待できる。   In order to form the concavo-convex microstructure on the surface of the substrate 1, it is formed by resin injection molding or transfer technology using a mold. These transfer technologies have been reported and proven so far as inexpensive mass-production manufacturing technologies, are being put into practical use as formation of semiconductor microcircuits and nanoimprint lithography, and can be applied to structures on the order of nm. FIG. 3 shows a planar transfer method, in which a base material is placed on a planar mold 9 and a transfer mold 10 on which a fine uneven pattern is formed is pressed from above at a predetermined temperature to form an uneven microstructure on the surface of the substrate 1. Transcript. FIG. 4 shows a roll transfer system, in which a sheet-like continuous substrate 1 is fed between a cylindrical roll 11 and a transfer roll 12 having a fine concavo-convex pattern formed on the outer periphery, and the fine concavo-convex pattern of the cylindrical roll 11 is transferred to the substrate. 1 is repeatedly transferred to the surface of 1. In particular, if a roll transfer system is adopted, it can be expected as a cheaper manufacturing technique.

前記基体1の素材として用いたシクロオレフィンポリマー(COP)樹脂は、プラスチックの中でも最小の吸水性と高湿度下でも寸法安定性に優れ、また成形品の反り、変形がほとんどないため、精密成形に優れ、更に高流動性を備えているので、転写性に優れている。そのため、COPは、半導体容器、バイオチップ、バイオプレート、輸液バッグ、多層フィルム等の精密部品に使用されている。   The cycloolefin polymer (COP) resin used as the material of the substrate 1 is excellent in dimensional stability even under the minimum water absorption and high humidity among plastics, and has almost no warpage or deformation of the molded product, so that it can be used for precision molding. Excellent transferability due to excellent fluidity. Therefore, COP is used for precision parts such as semiconductor containers, biochips, bioplates, infusion bags, and multilayer films.

前記ストッパー層4は、撥水性である必要はなく、本加工プロセスによって加工不能若しくは難加工材料で形成する。通常の機械的な研磨であれば、nmオーダーの厚さの薄膜は一瞬で除去され、基体1の凸部2まで大きく除去されて所望の凹凸微細構造を維持できなくなる。本加工プロセスは、水分子が介在する加工原理であるので、撥水性の材料は加工できないので、好ましく採用できる。また、本加工プロセスは、固体酸化物の加工に適しており、親水性材料として代表的なSiO2薄膜は最も加工に適した機能性材料である。 The stopper layer 4 does not need to be water-repellent and is formed of a material that cannot be processed or is difficult to process by this processing process. With ordinary mechanical polishing, a thin film having a thickness on the order of nm is removed in an instant, and the protrusion 1 of the substrate 1 is largely removed, making it impossible to maintain a desired uneven microstructure. Since this processing process is based on a processing principle involving water molecules, a water-repellent material cannot be processed and can be preferably used. In addition, this processing process is suitable for processing solid oxide, and a SiO 2 thin film, which is a typical hydrophilic material, is the functional material most suitable for processing.

次に、本発明で使用する加工プロセス(Water−CARE)の詳細を、主に固体酸化物を加工対象とする場合について説明する。Water−CAREでは、水分子が解離して固体酸化物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を加工基準面として用い、水の存在下で、前記被加工物と加工基準面とを接触若しくは極接近させて配し、前記加工基準面の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と加工基準面とを相対運動させて、前記分解生成物を被加工物表面から除去して加工するものである。 Next, the details of the processing process (Water-CARE) used in the present invention will be described mainly in the case of using a solid oxide as a processing target. Water-CARE uses a catalytic substance as a processing reference surface that dissociates water molecules and adsorbs by cutting back bonds between oxygen and other elements constituting the solid oxide, and helps to generate decomposition products by hydrolysis. In the presence of water, the workpiece and the machining reference surface are arranged in contact with or in close proximity to each other, and the potential of the machining reference surface is set to a range that includes a natural potential and does not generate H 2 and O 2 , The workpiece and the machining reference surface are moved relative to each other, and the decomposition product is removed from the workpiece surface for processing.

ここで、前記触媒物質として、遷移金属元素を含み、遷移金属元素の電子のd軌道がフェルミレベル近傍の触媒物質表面を用いることが好ましい。本加工プロセスでは、金属元素と反応性のある溶液は使用しないので、各種の遷移金属元素を用いることができるが、中でも仕事関数の大きなPtをはじめ、Pd、Ru、Ni、Co、Cr、Mo等を用いることが好ましい。更に、加工基準面となる触媒物質は、金属元素単体でも、複数の金属元素からなる合金でもよい。現実的には、Pt、Ru、Ni、Crを加工基準面に用いることが好ましい。ここで、前記触媒物質は、バルクである必要はなく、安価で形状安定性のよい母材の表面に、金属、あるいは遷移金属を蒸着、スパッタリング、電気めっき等によって形成した薄膜でも良い。また、前記触媒物質を表面に成膜する母材は、硬質の弾性材でも良く、例えばフッ素系ゴム材を用いることができる。触媒物質が導電性である場合には、外部から加工基準面の電位を制御して加工速度を制御することができる。また、遷移金属元素含む化合物で絶縁性の触媒物質でも、遷移金属元素の電子のd軌道がフェルミレベル近傍の触媒物質であれば良好に使用できるが、この場合、加工基準面の電位は自然電位のままとする。   Here, it is preferable to use a catalyst material surface containing a transition metal element as the catalyst material and having an electron d orbit of the transition metal element in the vicinity of the Fermi level. In this processing process, since a solution reactive with a metal element is not used, various transition metal elements can be used. Among them, Pt, Ru, Ni, Co, Cr, and Mo including Pt having a large work function can be used. Etc. are preferably used. Further, the catalyst material serving as the processing reference surface may be a metal element alone or an alloy composed of a plurality of metal elements. Practically, it is preferable to use Pt, Ru, Ni, Cr for the processing reference surface. Here, the catalyst material does not need to be a bulk, and may be a thin film formed by vapor deposition, sputtering, electroplating or the like of a metal or a transition metal on the surface of a base material that is inexpensive and has good shape stability. The base material on which the catalyst material is deposited may be a hard elastic material, and for example, a fluorine rubber material can be used. When the catalyst material is conductive, the processing speed can be controlled by controlling the potential of the processing reference surface from the outside. Further, even a compound containing a transition metal element and an insulating catalyst material can be used satisfactorily if the d-orbit of electrons of the transition metal element is a catalyst material in the vicinity of the Fermi level. In this case, the potential of the processing reference plane is a natural potential. Leave as it is.

また、前記水は、不純物が少なく特性が一定である純水又は超純水を用いることが、清純な加工環境を実現し、加工条件の正確な制御において必要である。一般的に、純水は電気抵抗率が1〜10MΩ・cm程度、超純水は電気抵抗率が15MΩ・cm以上とされているが、両者に境界があるわけではない。また、本加工プロセスでは、純水又は超純水に水素をパージした水素水を用い、前記加工基準面の触媒物質に水素を吸着させた状態で加工を行うことが好ましい場合もある。そして、また、前記水は、純水又は超純水に分解生成物の溶解を助ける錯体を混合したものを用いることも好ましい。ここで、前記錯体は、分解生成物の溶解を促進するとともに、錯イオンを作り水中で安定に維持する作用をする。また、水(加工液)のpHは、2〜12の範囲で調整することが好ましい。pHがこの範囲よりも小さく(強酸性)ても、大きく(強アルカリ性)ても加工速度が小さくなる。加工対象の酸化物の性質は多様であり、加工過程で生成する分解生成物も多様であるので、それに応じてpHを調整することが望ましい。pHの調整には、例えば酸性領域はHNO3の添加、アルカリ性領域はKOHの添加で行う。勿論、加工液のpHを7(中性:水のまま)としても差し支えなく、その場合、種々の酸化物の加工に汎用的に適用できる。 In addition, it is necessary to use pure water or ultrapure water, which has few impurities and constant characteristics, in order to realize a pure processing environment and to accurately control processing conditions. Generally, pure water has an electrical resistivity of about 1 to 10 MΩ · cm, and ultrapure water has an electrical resistivity of 15 MΩ · cm or more, but there is no boundary between them. Further, in this processing process, it may be preferable to perform processing while using hydrogen water purged with pure water or ultrapure water and adsorbing hydrogen to the catalyst material on the processing reference surface. In addition, it is also preferable to use water in which pure water or ultrapure water is mixed with a complex that aids dissolution of decomposition products. Here, the complex acts to promote the dissolution of the decomposition product and to form a complex ion and maintain it stably in water. Moreover, it is preferable to adjust pH of water (working liquid) in the range of 2-12. Even if the pH is smaller (strongly acidic) or larger (strongly alkaline) than this range, the processing speed is reduced. Since the properties of oxides to be processed are diverse and decomposition products generated in the processing process are various, it is desirable to adjust the pH accordingly. For adjusting the pH, for example, HNO 3 is added in the acidic region and KOH is added in the alkaline region. Of course, the pH of the processing liquid may be 7 (neutral: water remains), and in that case, it can be applied to various oxide processing in general.

Water−CAREの加工メカニズムは、現象論的には以下のようであると考える。固体酸化物の表面に、少なくとも表面にd電子軌道がフェルミレベル近傍にある触媒物質を有する加工基準面が接触若しくは極接近すると、つまり固体酸化物の表面近傍にd電子軌道が近づくことになる。d電子は、水分子の解離や、酸化物のバックボンドがルーズになる際の両方の現象に対して反応の障壁を下げる作用をする。現象論的には、該触媒物質が酸化物に近づくと、酸化物を構成する酸素元素と他の元素とのバックボンドの結合力が弱くなり、水分子が解離して酸化物の酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を生成する。そして、分解生成物を加工液中に溶出させるという原理である。ここで、固体酸化物の表面に該触媒物質を有する加工基準面を接触させて擦ることにより、分解生成物に機械的な力を与えることで、水中への溶出を促進させるのである。また、固体酸化物の表面と加工基準面が接触しなくても、両者の相対運動によって生じる水の流動によって分解生成物の水中への溶出を促進する作用がある。   The processing mechanism of Water-CARE is considered as follows from a phenomenological viewpoint. When a processing reference surface having a catalytic material having at least a d-electron orbit near the Fermi level contacts or comes close to the surface of the solid oxide, that is, the d-electron orbit approaches the surface of the solid oxide. The d electrons act to lower the barrier of reaction against both the dissociation of water molecules and the phenomenon when the oxide backbond becomes loose. Phenomenologically, when the catalyst material approaches the oxide, the bonding force of the back bond between the oxygen element constituting the oxide and the other element weakens, and the water molecules dissociate and the oxygen element of the oxide The back bonds of other elements are cut and adsorbed to produce decomposition products by hydrolysis. And it is a principle that a decomposition product elutes in a processing liquid. Here, the processing reference surface having the catalyst substance is brought into contact with the surface of the solid oxide and rubbed to give a mechanical force to the decomposition product, thereby promoting elution into water. Further, even if the surface of the solid oxide and the processing reference surface do not contact each other, there is an action of promoting the elution of the decomposition product into the water by the flow of water caused by the relative movement of both.

また、加工基準面を形成する該触媒物質が導電性材料であれば、該触媒物質の電位を調整することにより、加工速度を制御することができる。酸化還元電位は、導電性物質(例えばPt)表面が酸化物側から電子を「抜く」、「与える」性質を変えるものである。導電性物質の電位は、最終的に目指したい精度に応じて最適な加工速度に変えるためのパラメータになる。しかし、導電性物質の電位を正に大きくするとO2が発生し、また負に大きくするとH2が発生し、気泡が加工の妨げになるので、H2及びO2が発生しない範囲で調整することが必要であり、電位の制御域は1.6V程度である。 Further, if the catalyst substance forming the processing reference surface is a conductive material, the processing speed can be controlled by adjusting the potential of the catalyst substance. The oxidation-reduction potential changes the property that the surface of a conductive substance (eg, Pt) “extracts” and “gives” electrons from the oxide side. The electric potential of the conductive material is a parameter for changing to an optimum processing speed in accordance with the accuracy to be finally aimed. However, if the potential of the conductive substance is increased positively, O 2 is generated, and if it is negatively increased, H 2 is generated, and bubbles interfere with processing. Therefore, adjustment is made within a range in which H 2 and O 2 are not generated. And the potential control range is about 1.6V.

例えば、二酸化ケイ素(SiO2)の結晶は、正四面体の中心にSiが位置し、4つの頂点にOが結合した構造で、Oを介してSiが三次元的に結合されており、その加工では、Si−O−Siの結合が切れ、H2Oの加水分解によってSi−OH、OH−Siとなる。このように、加水分解によってケイ酸{[SiOx(OH)4-2xn}が生成される。ここで、0<x<2である。代表的には、オルトケイ酸(H4SiO4)、メタケイ酸(H2SiO3)、メタ二ケイ酸(H2Si25)等がある。これらの分解生成物が、水に溶出するのである。 For example, a silicon dioxide (SiO 2 ) crystal has a structure in which Si is located at the center of a regular tetrahedron and O is bonded to four vertices, and Si is three-dimensionally bonded through O, In the processing, Si—O—Si bonds are broken, and H 2 O is hydrolyzed to become Si—OH and OH—Si. Thus, silicic acid {[SiO x (OH) 4-2x ] n } is generated by hydrolysis. Here, 0 <x <2. Typically, there are orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), metadisilicic acid (H 2 Si 2 O 5 ) and the like. These decomposition products are eluted in water.

固体酸化物以外の材料を加工する場合、材料の酸化と酸化膜の加水分解の双方を促進する機能を備えた触媒物質を加工基準面として用いる。それにより、例えばSiを始め、SiCやGaNのような材料の加工も可能である。   When processing a material other than a solid oxide, a catalyst substance having a function of promoting both oxidation of the material and hydrolysis of the oxide film is used as a processing reference surface. Thereby, materials such as SiC, SiC and GaN can be processed.

次に、加工基準面を形成する触媒物質としてPtを用いて、石英ガラス(純SiO2)を加工した結果を図5に示す。石英ガラスは、前加工面としてCMP面を用い、加工前と加工後の表面を位相シフト干渉顕微鏡(Zygo社、NewView)と原子間力顕微鏡(AFM)で観察して加工特性を評価した。加工圧力:200hPa、回転速度:10rpm、溶液:超純水、加工時間:1時間である。加工速度は、831nm/hであった。加工によって位相シフト干渉顕微鏡像では、加工前はrms:0.338nmが加工後にrms:0.147nmとなり表面粗さが大幅に改善している。AFM像では、加工前はrms:1.455nmが加工後にrms:0.103nmと大幅に表面粗さが改善し、加工前表面にはスクラッチが確認されたが、このようなスクラッチは除去され、原子レベルで平滑な表面を有していることがわかった。厚さ150〜180nmのSiO2薄膜であれば、約10分で除去できることが分かる。 Next, FIG. 5 shows a result of processing quartz glass (pure SiO 2 ) using Pt as a catalyst material for forming the processing reference surface. Quartz glass used a CMP surface as a pre-processed surface, and the processing characteristics were evaluated by observing the surface before and after processing with a phase shift interference microscope (Zygo, NewView) and an atomic force microscope (AFM). Processing pressure: 200 hPa, rotation speed: 10 rpm, solution: ultrapure water, processing time: 1 hour. The processing speed was 831 nm / h. In the phase shift interference microscope image by processing, rms: 0.338 nm before processing becomes rms: 0.147 nm after processing, and the surface roughness is greatly improved. In the AFM image, rms: 1.455 nm before processing was greatly improved to rms: 0.103 nm after processing, and scratches were confirmed on the surface before processing, but such scratches were removed, It was found to have a smooth surface at the atomic level. It can be seen that an SiO 2 thin film having a thickness of 150 to 180 nm can be removed in about 10 minutes.

本発明での最大の課題は最終工程である超精密加工技術を確立することである。前述したように樹脂材料での微細構造製造技術は既に量産技術で確立されており、樹脂上への機能性薄膜形成技術も加工時及び使用時の耐剥離性など、若干の検討が必要であるがほぼ確立されている。問題は柔らかくそして微細構造をもつ非常に繊細な樹脂材料上に形成された、厚さ100nm程度の超薄膜の一種のみを選択的に除去するという超精密加工技術である。なお超薄膜とする理由は、膜が厚いとせっかく形成されたサブμmオーダーの凹凸微細構造を膜が埋めてしまうからである。   The biggest problem in the present invention is to establish ultra-precision machining technology as the final process. As mentioned above, the microstructure manufacturing technology using resin materials has already been established by mass production technology, and the functional thin film formation technology on the resin also requires some consideration such as peeling resistance during processing and use. Is almost established. The problem is an ultra-precision processing technique that selectively removes only one kind of ultra-thin film having a thickness of about 100 nm formed on a very delicate resin material that is soft and has a fine structure. The reason for making the ultrathin film is that if the film is thick, the film fills the uneven micro structure of the order of sub μm.

Water−CAREは、石英ガラス等の被加工物を砥粒フリーにて、水だけを用いて表面粗さ1nmPV程度の超平滑化仕上げを行なうために開発されたものである。親水性のSiO2薄膜(合成石英ガラスと同成分)を最表面に形成し、その下にWater−CAREで反応しない(加工されない)撥水性薄膜を選択することで、ストッパー層として作用させることができ、所望の濡れ性を制御した微細構造が形成できる。通常の砥粒を用いた研磨手法で微細構造を持つ工作物を加工すると、凹部に砥粒やスラリーの化学成分が残留するため、洗浄工程で非常に多くの時間とコストが必要となり、加えてスクラッチなどの欠陥の発生も予想される。 Water-CARE was developed to perform ultra-smooth finishing with a surface roughness of about 1 nm PV using only water on a workpiece such as quartz glass without using abrasive grains. A hydrophilic SiO 2 thin film (same component as synthetic quartz glass) is formed on the outermost surface, and a water-repellent thin film that does not react with Water-CARE (not processed) is selected below it to act as a stopper layer. It is possible to form a fine structure in which a desired wettability is controlled. When a workpiece with a fine structure is processed by a polishing method using ordinary abrasive grains, the chemical components of the abrasive grains and slurry remain in the recesses, which requires a great deal of time and cost in the cleaning process. The occurrence of defects such as scratches is also expected.

本発明において使用する凹凸微細構造を持つ樹指基体は軟質材料であること、また射出成形や形状転写方式で製造されるため最表層や基準面にμmオーダーのうねりが発生してしまうことが避けられない。そのため、従来のCAREでは図6(a)に示すように基体1の表面にうねりがあると、加工ヘッド6の表面で一様な超精密加工が行えない。すなわち、基体1のうねりの山部が選択的に加工され、うねりの谷部が全く加工されないので、目的である濡れ性を制御した微細構造が部分的にしか形成できない(図6(b)参照)。図7に示すように、CAREに対するストッパー層4にも限界があり、長時間の加工や機械的な加工条件を高めると、ストッパー層4が破れ、肝心の微細凹凸構造が消失してしまうという問題がある(図7(b))。   In the present invention, the dendrite base having a concavo-convex microstructure is a soft material, and since it is manufactured by injection molding or a shape transfer method, it is avoided that waviness of the order of μm occurs on the outermost layer or the reference surface. I can't. For this reason, in the conventional CARE, if the surface of the substrate 1 has waviness as shown in FIG. 6A, uniform ultra-precise processing cannot be performed on the surface of the processing head 6. In other words, the undulation peaks of the substrate 1 are selectively processed and the undulation valleys are not processed at all, so that the desired fine structure with controlled wettability can be formed only partially (see FIG. 6B). ). As shown in FIG. 7, there is a limit to the stopper layer 4 for CARE, and when the processing for a long time or mechanical processing is increased, the stopper layer 4 is broken and the essential fine uneven structure disappears. (FIG. 7B).

この問題を克服するために、加工ヘッド6の触媒平面を基準とするのでなく、図8に示すように、弾性体の触媒工具13を用いることで、うねりを持つ工作物表面を基準として皮膜除去を行う「工作物表面基準CARE」となる。それにより、10μm程度の表面うねりを持つ2インチ(φ50mm)サイズの樹脂基体上に、100μmピッチで、100μm角、高さ100μmの微細構造角柱構造を形成し、その上に撥水性と親水性の薄膜を形成し、工作物の表面全体で凸部を撥水性、凹部を親水性とした微細構造を形成した機能性精密部品製造できる。   In order to overcome this problem, instead of using the catalyst plane of the machining head 6 as a reference, as shown in FIG. 8, an elastic catalyst tool 13 is used to remove the film with reference to the surface of the workpiece having waviness. The “work surface reference CARE” is performed. As a result, a fine-structure prismatic structure having a 100 μm square and a height of 100 μm is formed on a 2 inch (φ50 mm) size resin substrate having a surface waviness of about 10 μm, on which water repellency and hydrophilicity are formed. It is possible to manufacture a functional precision component by forming a thin film and forming a fine structure in which the convex portion is water-repellent and the concave portion is hydrophilic on the entire surface of the workpiece.

工作物表面基準CARE加工法を確立することは、CAREの平面から曲面への展開を意昧し、ならい研磨も可能となるため、究極的には自由曲面形状の超精密研磨にも展開可能なことを意味する。超高精度(超平滑表面)の自由曲面は究極の光学部品である。   Establishing the workpiece surface reference CARE processing method means that CARE can be developed from a flat surface to a curved surface, and can also be polished. Means that. Ultra high precision (super smooth surface) free-form surface is the ultimate optical component.

本発明は、基本的には、マイクロリアクターや細胞シート培養のためのテンプレートなどの量産製造に適用できる。また、サブμmオーダーの微細構造はフォト二ツク結晶としても機能するため、ウイルスをチェックするバイオマーカーなどの検査機器にも応用可能である。   The present invention can basically be applied to mass production of a template for microreactor or cell sheet culture. In addition, since the fine structure of sub-μm order functions as a photonic crystal, it can be applied to inspection equipment such as biomarkers for checking viruses.

A,B 機能性精密部品
1 基体
2 凸部
3 凹部
4 ストッパー層
5 機能性層
6 加工ヘッド
7 機能性凹部
8 機能性材料
9 平面型
10 転写型
11 円筒ロール
12 転写ロール
13 弾性体の触媒工具
A, B Functional precision component 1 Base body 2 Convex part 3 Concave part 4 Stopper layer 5 Functional layer 6 Processing head 7 Functional concave part 8 Functional material 9 Plane type 10 Transfer mold 11 Cylindrical roll 12 Transfer roll 13 Elastic catalyst tool

Claims (6)

基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成した機能性精密部品の製造方法であって、
水分子が解離して被加工物を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物の生成を助ける触媒物質を用い、水の存在下で、前記被加工物と触媒物質とを接触若しくは極接近させて配し、前記触媒物質の電位を、自然電位を含みH2及びO2が発生しない範囲とし、前記被加工物と触媒物質とを相対運動させて、前記分解生成物を被加工物表面から除去する加工プロセスを用い、
前記基体の表面全体に、前記加工プロセスによって加工不能な所定厚さのストッパー層を形成するストッパー層形成工程、
前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を積層形成する機能性材料積層工程、
前記加工プロセスによって前記凹部外の機能性材料を除去する加工工程、
とよりなる機能性精密部品の製造方法。
A method for producing a functional precision component in which a functional material is formed only in the concave portion of the concave-convex microstructure in the range of 10 nm to 1 mm provided on the surface of the substrate,
A catalytic substance that assists in the generation of decomposition products by hydrolysis by adsorbing by breaking back bonds between oxygen elements and other elements that constitute the workpiece by dissociating water molecules, and in the presence of water, The workpiece and the catalyst material are arranged in contact with or in close proximity to each other, the potential of the catalyst material is within a range that includes a natural potential and H 2 and O 2 are not generated, and the workpiece and the catalyst material are moved relative to each other. Using a processing process to remove the decomposition products from the workpiece surface,
A stopper layer forming step for forming a stopper layer having a predetermined thickness that cannot be processed by the processing process on the entire surface of the substrate;
A functional material laminating step for laminating and forming a functional material that can be processed by the processing process on the stopper layer,
A processing step of removing the functional material outside the recess by the processing process;
A manufacturing method for functional precision parts.
機能性材料積層工程が、前記ストッパー層の上に、前記加工プロセスによって加工可能な機能性材料を凹部構造が塞がらない厚さに積層形成して機能性層を形成する工程であり、前記基体の凹部内面のみに所定厚さの機能性層を有する請求項1記載の機能性精密部品の製造方法。   The functional material laminating step is a step of forming a functional layer on the stopper layer by laminating a functional material that can be processed by the processing process to a thickness that does not block the recess structure. The method for producing a functional precision component according to claim 1, wherein the functional layer has a predetermined thickness only on the inner surface of the recess. 前記機能性材料がSiO2である請求項1又は2記載の機能性精密部品の製造方法。 The method for producing a functional precision component according to claim 1, wherein the functional material is SiO 2 . 前記ストッパー層の材料が炭素である請求項1〜3何れか1項に記載の機能性精密部品の製造方法。   The method for producing a functional precision component according to any one of claims 1 to 3, wherein a material of the stopper layer is carbon. 前記基体がシクロオレフィンポリマー(COP)樹脂である請求項1〜4何れか1項に記載の機能性精密部品の製造方法。   The method for producing a functional precision part according to claim 1, wherein the substrate is a cycloolefin polymer (COP) resin. 前記請求項1〜5何れか1項に記載の機能性精密部品の製造方法によって製造し、基体表面に設けられた10nm〜1mmの範囲の凹凸微細構造の凹部内のみに機能性材料を形成したことを特徴とする機能性精密部品。   The functional material was produced only by the method for producing a functional precision component according to any one of claims 1 to 5, and the functional material was formed only in the concave portion of the concave-convex microstructure in the range of 10 nm to 1 mm provided on the substrate surface. Functional precision parts characterized by that.
JP2015108330A 2015-05-28 2015-05-28 Method of manufacturing functional precision parts and functional precision parts Active JP6551833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108330A JP6551833B2 (en) 2015-05-28 2015-05-28 Method of manufacturing functional precision parts and functional precision parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108330A JP6551833B2 (en) 2015-05-28 2015-05-28 Method of manufacturing functional precision parts and functional precision parts

Publications (2)

Publication Number Publication Date
JP2016221603A true JP2016221603A (en) 2016-12-28
JP6551833B2 JP6551833B2 (en) 2019-07-31

Family

ID=57746277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108330A Active JP6551833B2 (en) 2015-05-28 2015-05-28 Method of manufacturing functional precision parts and functional precision parts

Country Status (1)

Country Link
JP (1) JP6551833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128403A (en) * 2018-07-24 2019-01-04 杭州电子科技大学 Metal surface method for manufacturing microstructure and device based on atomic migration orientation regulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200732A1 (en) * 2003-04-14 2004-10-14 Basol Bulent M. Method and apparatus for eliminating defects and improving uniformity in electrochemically processed conductive layers
JP2013065858A (en) * 2012-10-22 2013-04-11 Jsr Corp Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing
WO2013084934A1 (en) * 2011-12-06 2013-06-13 国立大学法人大阪大学 Method for manufacturing solid oxide and device therefor
WO2013137220A1 (en) * 2012-03-14 2013-09-19 日立化成株式会社 Grinding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200732A1 (en) * 2003-04-14 2004-10-14 Basol Bulent M. Method and apparatus for eliminating defects and improving uniformity in electrochemically processed conductive layers
WO2013084934A1 (en) * 2011-12-06 2013-06-13 国立大学法人大阪大学 Method for manufacturing solid oxide and device therefor
WO2013137220A1 (en) * 2012-03-14 2013-09-19 日立化成株式会社 Grinding method
JP2013065858A (en) * 2012-10-22 2013-04-11 Jsr Corp Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109128403A (en) * 2018-07-24 2019-01-04 杭州电子科技大学 Metal surface method for manufacturing microstructure and device based on atomic migration orientation regulation

Also Published As

Publication number Publication date
JP6551833B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
Zhou et al. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding
CN106030406B (en) Method for uniform imprint pattern transfer of sub-20 nm features
KR20120024616A (en) Method for forming uneven pattern
JP5442892B1 (en) Precision polishing method
TW201021112A (en) Method for polishing a semiconductor wafer provided with a strain-relaxed layer of Si1-xGex
TW201623139A (en) Rectangular substrate for imprint lithography and making method
WO2008117883A1 (en) Synthetic grindstone
JP2010115922A (en) Production method for mold for nanostructured polymer product
Yang et al. Obtaining atomically smooth 4H–SiC (0001) surface by controlling balance between anodizing and polishing in electrochemical mechanical polishing
TW201523717A (en) Metallic polishing pad and production method therefor
US20160035598A1 (en) Method for chemical planarization and chemical planarization apparatus
TWI604932B (en) Metal mold for forming optical element, method for forming metal mold, and optical element
JP6127517B2 (en) Manufacturing method of imprint mold
JP2013128096A (en) Chemical planarization method and chemical planarization device
Gao et al. Polystyrene/CeO2 core/shell abrasives for high-quality 4H-SiC surface in ECMP: The effects of shell thickness
Zhang et al. Epitaxial patterning of thin-films: conventional lithographies and beyond
JP6551833B2 (en) Method of manufacturing functional precision parts and functional precision parts
TW201220360A (en) High contrast alignment marks through multiple stage imprinting
TW201024075A (en) Double sidewall angle nano-imprint template
JP2015035245A (en) Glass substrate carrier, polishing method of glass substrate for magnetic recording medium, and manufacturing method of glass substrate for magnetic recording medium
JP2020529332A (en) Fine replication polished surface with improved flatness
JP2010082832A (en) Mold for nano-imprinting by cutting
JP6188152B2 (en) Method and apparatus for planarizing Si substrate
JP2009256164A (en) Metal mask and method for manufacturing the same, and glass molding die and method for manufacturing the same
JP2017152650A (en) Glass plate for imprint mold, laminate sheet for imprint mold, and imprint mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6551833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250