JP2016217852A - Displacement measuring system and displacement measuring method - Google Patents

Displacement measuring system and displacement measuring method Download PDF

Info

Publication number
JP2016217852A
JP2016217852A JP2015102278A JP2015102278A JP2016217852A JP 2016217852 A JP2016217852 A JP 2016217852A JP 2015102278 A JP2015102278 A JP 2015102278A JP 2015102278 A JP2015102278 A JP 2015102278A JP 2016217852 A JP2016217852 A JP 2016217852A
Authority
JP
Japan
Prior art keywords
strain
fbg sensor
amount
fbg
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102278A
Other languages
Japanese (ja)
Other versions
JP6397369B2 (en
Inventor
佐藤 裕
Yutaka Sato
佐藤  裕
史一 井上
Fumikazu Inoue
史一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sokki Kenkyujo Co Ltd
Original Assignee
Tokyo Sokki Kenkyujo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sokki Kenkyujo Co Ltd filed Critical Tokyo Sokki Kenkyujo Co Ltd
Priority to JP2015102278A priority Critical patent/JP6397369B2/en
Publication of JP2016217852A publication Critical patent/JP2016217852A/en
Application granted granted Critical
Publication of JP6397369B2 publication Critical patent/JP6397369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement measuring system having high durability and reliability and also having a temperature compensation function whose production cost is low.SOLUTION: A displacement measuring system includes: a cantilevered strain body 12 whose one is fixed and other end is displaced by a measuring object O; two sensors FBG 13a, 13b; and a measuring device 14 which calculates a displacement amount of the strain body 12 based on a difference between change amounts of reflection wavelengths of FBG sensors 13a, 13b. FBG sensors 13a, 13b are annexed to positions different in a strain amount when the same temperature is recognized and the other end is displaced.SELECTED DRAWING: Figure 1

Description

本発明は、ファイバ・ブラッグ・グレーティング(Fiber Bragg Grating。以下、「FBG」という。)センサを備え、温度補償機能を有する変位量測定システムに関する。   The present invention relates to a displacement measuring system including a fiber Bragg grating (hereinafter referred to as “FBG”) sensor and having a temperature compensation function.

従来、一端が固定され他端が変位可能な片持ち梁状に形成された起歪体にFBGセンサを付設し、起歪体が歪んだ際におけるFBGの反射波長の変化量を測定して、起歪体の歪み量、ひいては起歪体の自由端に連動して変位する測定対象物の変位量を算出する変位量測定技術が知られている(例えば、特許文献1,2参照。)。   Conventionally, an FBG sensor is attached to a strain body formed in a cantilever shape in which one end is fixed and the other end is displaceable, and the amount of change in the reflected wavelength of the FBG when the strain body is distorted is measured. There is known a displacement measurement technique for calculating a strain amount of a strain generating body, and thus a displacement amount of a measurement object that is displaced in conjunction with a free end of the strain generating body (see, for example, Patent Documents 1 and 2).

ここで、FBGセンサとは、光ファイバのコア部分を、光ファイバ軸方向において屈折率が周期的に変化するように形成した光伝送用部品のことをいう。FBGセンサは、光ファイバ中を光波が伝播しているときに、ブラッグ波長と呼ばれる特定の波長の光を反射する機能を持つ。FBGセンサのブラッグ波長は、FBGセンサの歪み量や温度変化量等の物理量に応じて変化する性質がある。そのため、FBGセンサは歪み検知素子や温度検知素子として利用することができる。   Here, the FBG sensor refers to an optical transmission component in which a core portion of an optical fiber is formed such that a refractive index periodically changes in the optical fiber axial direction. The FBG sensor has a function of reflecting light having a specific wavelength called a Bragg wavelength when a light wave propagates through an optical fiber. The Bragg wavelength of the FBG sensor has a property of changing according to a physical quantity such as a distortion amount or a temperature change amount of the FBG sensor. Therefore, the FBG sensor can be used as a strain detection element or a temperature detection element.

特許文献1,2に記載の技術は、FBGセンサに作用する張力によって発生する歪みによる反射波長の変化を物理量に変換するものであり、その変換に際しては、温度による反射波長変化分を相殺することで温度補償を行うものである。   The techniques described in Patent Documents 1 and 2 convert a change in reflection wavelength due to strain generated by tension acting on the FBG sensor into a physical quantity, and cancel the reflected wavelength change due to temperature in the conversion. Temperature compensation.

また、特許文献2に記載の技術は、温度変化に応じて撓みが変化する一対のバイメタル部材でFBGセンサの両端を保持することによって温度補償機能を実現している。   Moreover, the technique described in Patent Document 2 realizes a temperature compensation function by holding both ends of the FBG sensor with a pair of bimetal members whose bending changes according to a temperature change.

特開2005−147802号公報JP 2005-147802 A 特開2003−287435号公報JP 2003-287435 A

しかし、特許文献1,2に開示された従来の変位量測定方式は、FBGセンサ素線に直接張力が加えられる形式であるので、測定対象物が変位した際や、測定装置の調整時あるいは設置時にFBGセンサに過大な力が加わりやすい。そのため、光ファイバを用いたFBGセンサに破損が生じ、測定が不能となったり、検出精度が低下したりして、信頼性が乏しいという問題があった。   However, since the conventional displacement measurement methods disclosed in Patent Documents 1 and 2 are a type in which tension is directly applied to the FBG sensor element wire, when the measurement object is displaced, or when the measurement apparatus is adjusted or installed Sometimes an excessive force is easily applied to the FBG sensor. For this reason, the FBG sensor using the optical fiber is damaged, making measurement impossible or detecting accuracy being lowered, resulting in poor reliability.

また、特許文献2に開示された技術では、バイメタル部材を介してFBGセンサに加えられる張力を温度変化によるFBGセンサの反射波長の変化を抑制するものとしなければならないので、製作が比較的難しく、また、調整に多くの時間を要し、生産コストが高くなってしまうという問題があった。   In the technique disclosed in Patent Document 2, the tension applied to the FBG sensor via the bimetal member must be suppressed from changing the reflection wavelength of the FBG sensor due to the temperature change. In addition, it takes a lot of time for adjustment, and there is a problem that the production cost becomes high.

本発明は以上の点に鑑みてなされたものであり、耐久性・信頼性が高く、生産が比較的容易で生産コストの低い温度補償機能を有する変位量測定システムを提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a displacement measuring system having a temperature compensation function that has high durability and reliability, is relatively easy to produce, and has low production costs. .

本発明の変位量測定システムは、一端が固定され他端が変位可能な片持ち梁状に形成された起歪体と、起歪体において温度が同一と認められ他端が変位した場合の歪み量が異なる複数の位置に付設された複数のFBGセンサと、他端が変位した際の複数のFBGセンサの反射波長の変化量の差に基づいて、他端の変位量を算出する測定装置とを備えていることを特徴とする。   The displacement measuring system according to the present invention is a strained body formed in a cantilever shape in which one end is fixed and the other end is displaceable, and the strain when the other end is displaced while the temperature is recognized as the same in the strained body. A plurality of FBG sensors attached to a plurality of positions having different amounts, and a measuring device that calculates a displacement amount of the other end based on a difference in a change amount of a reflection wavelength of the plurality of FBG sensors when the other end is displaced; It is characterized by having.

本発明によれば、起歪体において温度が同一と認められ歪み量が異なる複数の位置にFBGセンサを配置し、各FBGセンサの反射波長に基づいて起歪体の変位可能な他端の変位量のみを算出するので、算出される変位量は温度変化に依存しないものとなる。したがって、変位量測定システムは、温度変化の影響を回避し得る温度補償機能を有する。なお、温度が同一と認められるとは、完全に温度が同一である場合の他、温度差が無視できる程度に小さい場合も含む。   According to the present invention, the FBG sensors are arranged at a plurality of positions where the temperature is recognized to be the same and the strain amounts are different in the strain generating body, and the displacement of the other end of the strain generating body that can be displaced based on the reflection wavelength of each FBG sensor. Since only the amount is calculated, the calculated displacement amount does not depend on the temperature change. Therefore, the displacement measurement system has a temperature compensation function that can avoid the influence of temperature changes. In addition, the case where the temperatures are recognized to be the same includes not only the case where the temperatures are completely the same but also the case where the temperature difference is small enough to be ignored.

また、FBGセンサは、起歪体に付設され、起歪体と一体となるものであるので、測定対象物に変位が生じた際にもFBGセンサのみに歪みが生じることがない(すなわち、FBGセンサに直接張力が加えられることがない)ので、FBGセンサに過大な力が加わりにくく、破損が生じにくい。   Further, since the FBG sensor is attached to the strain generating body and integrated with the strain generating body, even when the measurement object is displaced, only the FBG sensor is not distorted (that is, FBG). Since no tension is directly applied to the sensor), an excessive force is not easily applied to the FBG sensor, and damage is unlikely to occur.

よって、耐久性・信頼性が高く、生産コストの低い温度補償機能を有する変位量測定システムを得ることができる。   Therefore, it is possible to obtain a displacement measuring system having a temperature compensation function with high durability and reliability and low production cost.

また、本発明の変位量測定システムにおいては、他端が変位した際における所定のFBGセンサを付設した位置における起歪体の歪み量と他のFBGセンサを付設した位置における起歪体の歪み量との比率が、予め定められていることが好ましい。   In the displacement measurement system of the present invention, the strain amount of the strain generating body at the position where the predetermined FBG sensor is attached when the other end is displaced and the strain amount of the strain body at the position where another FBG sensor is attached. The ratio is preferably determined in advance.

このように、複数のFBGの各々が検出する歪み量の比率を起歪体の形状や材質等を変更することによって予め定めておけば、算出過程が複雑なものになりにくく、より簡易で信頼性の高いシステムとすることができる。   Thus, if the ratio of the amount of strain detected by each of the plurality of FBGs is determined in advance by changing the shape, material, etc. of the strain generating body, the calculation process will not be complicated and simpler and more reliable. It can be set as a highly reliable system.

また、本発明の変位量測定システムにおいては、複数のFBGセンサは、一端から他端に向かう方向に沿って起歪体に付設され、起歪体は、他端が変位した際に、少なくとも複数のFBGセンサがそれぞれ付設された位置で一端から他端に向かう方向の曲率が一定になるように、湾曲することが好ましい。   In the displacement measurement system of the present invention, the plurality of FBG sensors are attached to the strain body along a direction from one end to the other end, and the strain body is at least a plurality when the other end is displaced. It is preferable to bend so that the curvature in the direction from one end to the other end is constant at the position where each of the FBG sensors is attached.

このように、FBGの向きにおいて、起歪体が一定の曲率で湾曲するように構成すれば、FBGの反射波長の尖鋭性を損なうことなく精度及び信頼性の高いシステムとすることができる。   Thus, if the strain generating body is configured to bend with a constant curvature in the direction of the FBG, a system with high accuracy and reliability can be obtained without impairing the sharpness of the reflected wavelength of the FBG.

また、本発明の変位量測定システムにおいては、起歪体は、FBGセンサを収容可能に設けられた溝部を有していることが好ましい。   Moreover, in the displacement measuring system of this invention, it is preferable that the strain body has the groove part provided so that the FBG sensor could be accommodated.

このような溝部を設ければ、FBGの配置位置を容易に確定させることができ、また、接着面積をより広くすることができるので、製造が容易になり、ひいては、生産コストを低下させるとともに、起歪体に対して強固にFBGを付設することができる。   If such a groove portion is provided, the arrangement position of the FBG can be easily determined, and since the adhesion area can be increased, the manufacturing becomes easy, and thus the production cost is reduced. The FBG can be firmly attached to the strain generating body.

また、本発明の変位量測定システムにおいては、複数のFBGセンサは、他端が変位する方向と交わる方向から見て、起歪体を挟んで対向するように(例えば、板状の起歪体の表裏面の対向する位置に)付設されていてもよい。   Further, in the displacement measurement system of the present invention, the plurality of FBG sensors are opposed to each other with the strain body interposed therebetween when viewed from the direction intersecting the direction in which the other end is displaced (for example, plate-shaped strain body). May be attached to the opposite positions of the front and back surfaces.

本発明の実施形態に係る変位量測定システムの構成を示す模式図。The schematic diagram which shows the structure of the displacement measuring system which concerns on embodiment of this invention. 図1の起歪体及びFBGセンサの形状を示す模式図であり、図2Aは、平面図、図2Bは起歪体の自由端が変位していない状態における側面図、図2Cは起歪体の自由端が変位した状態における側面図、図2Dは起歪体の図2AのI−I線断面図。2A and 2B are schematic views showing shapes of the strain generating body and the FBG sensor in FIG. 1, FIG. 2A is a plan view, FIG. 2B is a side view in a state where the free end of the strain generating body is not displaced, and FIG. FIG. 2D is a sectional view taken along the line II of FIG. 2A of the strain generating body. 第1変形例に係る起歪体の形状を示す模式図であり、図3Aは、平面図、図3Bは起歪体の自由端が変位していない状態における側面図。FIG. 3A is a schematic view showing a shape of a strain generating body according to a first modification, FIG. 3A is a plan view, and FIG. 3B is a side view in a state where a free end of the strain generating body is not displaced. 第2変形例に係る起歪体の形状を示す模式図であり、図4Aは、平面図、図4Bは起歪体の自由端が変位していない状態における側面図。FIG. 4A is a schematic view showing a shape of a strain generating body according to a second modified example, FIG. 4A is a plan view, and FIG. 4B is a side view in a state where a free end of the strain generating body is not displaced. 図3に示す変形例におけるFBGセンサの反射波長の変化と温度との関係を示すグラフ。The graph which shows the relationship between the change of the reflective wavelength of the FBG sensor in the modification shown in FIG. 3, and temperature.

以下、図面を参照して、本発明の実施形態に係る変位量測定システム1について説明する。   Hereinafter, a displacement measurement system 1 according to an embodiment of the present invention will be described with reference to the drawings.

まず、変位量測定システム1の構成について説明する。   First, the configuration of the displacement measurement system 1 will be described.

図1に示すように、変位量測定システム1は、ベース11と、ベース11に固定された片持ち梁状の起歪体12と、起歪体12に付設された第1FBGセンサ13a及び第2FBGセンサ13bと、第1FBGセンサ13a及び第2FBGセンサ13bの反射波長を測定する測定装置14と、第1FBGセンサ13a及び第2FBGセンサ13bと測定装置14とを接続する光ファイバ15と、光ファイバ15の測定装置14の端部とは反対側の端部に接続された屈折率整合ジェル16とを備えている。   As shown in FIG. 1, the displacement measuring system 1 includes a base 11, a cantilever-like strain generating body 12 fixed to the base 11, and a first FBG sensor 13 a and a second FBG attached to the strain generating body 12. A sensor 13b, a measuring device 14 for measuring the reflection wavelength of the first FBG sensor 13a and the second FBG sensor 13b, an optical fiber 15 for connecting the first FBG sensor 13a, the second FBG sensor 13b and the measuring device 14, and an optical fiber 15 A refractive index matching gel 16 connected to the end opposite to the end of the measuring device 14 is provided.

第1FBGセンサ13aの初期反射波長と第2FBGセンサ13b初期反射波長とは、異なる波長となっている。   The initial reflection wavelength of the first FBG sensor 13a is different from the initial reflection wavelength of the second FBG sensor 13b.

測定装置14は、光ファイバ15を介して、第1FBGセンサ13a及び第2FBGセンサ13bへ所定の帯域の光を出射する広域帯光源14aと、第1FBGセンサ13a及び第2FBGセンサ13bから反射された光を測定する光スペクトルメータ14bと、光スペクトルメータ14bが測定した光の波長から起歪体12の歪み量を算出する算出部14cとを有している。   The measurement device 14 includes a wide band light source 14a that emits light of a predetermined band to the first FBG sensor 13a and the second FBG sensor 13b, and light reflected from the first FBG sensor 13a and the second FBG sensor 13b via the optical fiber 15. And a calculation unit 14c for calculating the strain amount of the strain generating body 12 from the wavelength of the light measured by the optical spectrum meter 14b.

図2A〜図2Cに示すように、起歪体12は、熱伝導率が高い材料(例えば、ベリリウム銅)で形成された板状の弾性部材である。起歪体12の一端部12aは、ベース11に固定された固定端である。起歪体12の他端部12bは、測定対象物Oから作用点Pに荷重を受けた際に、変位する自由端である。   As shown in FIGS. 2A to 2C, the strain body 12 is a plate-like elastic member formed of a material having high thermal conductivity (for example, beryllium copper). One end portion 12 a of the strain body 12 is a fixed end fixed to the base 11. The other end 12b of the strain body 12 is a free end that is displaced when a load is applied to the action point P from the measurement object O.

また、図2Aに示すように、起歪体12は、第1FBGセンサ13aが付設される一端部12a側の第1領域A1と、第2FBGセンサ13bが付設される他端部12b側の第2領域A2とに分けられる。   Further, as shown in FIG. 2A, the strain body 12 includes a first region A1 on the side of one end 12a to which the first FBG sensor 13a is attached and a second side on the side of the other end 12b to which the second FBG sensor 13b is attached. It is divided into area A2.

第1領域A1の両側縁は、平面形状において、底辺の長さがbで、作用点Pを頂点とする二等辺三角形の底辺側と一致する。第2領域A2の両側縁は、平面形状において、底辺の長さが2bで、作用点Pを頂点とする二等辺三角形の頂点側と一致する。すなわち、起歪体12の平面形状は、底辺の長さが2bの二等辺三角形の底辺側の両側縁が切欠かれた形状となっている。   Both side edges of the first region A1 have a base length of b in the planar shape and coincide with the base side of an isosceles triangle having the action point P as a vertex. The two side edges of the second region A2 have a planar shape with a base length of 2b and coincide with the apex side of an isosceles triangle having the action point P as the apex. That is, the planar shape of the strain body 12 is a shape in which both side edges on the base side of an isosceles triangle having a base length of 2b are cut off.

第1領域A1に付設される第1FBGセンサ13aの向き及び第2領域A2に付設される第2FBGセンサ13bの向きは、一端部12aから他端部12bに向かう方向に沿う方向となっている。   The direction of the first FBG sensor 13a attached to the first area A1 and the direction of the second FBG sensor 13b attached to the second area A2 are directions along the direction from the one end portion 12a to the other end portion 12b.

図2Cに示すように、第1領域A1及び第2領域A2は、第1FBGセンサ13a及び第2FBGセンサ13bがそれぞれ付設された位置で、他端部12bが変位した際に、一端部12aから他端部12bに向かう方向(すなわち、第1FBGセンサ13a及び第2FBGセンサ13bの向きと一致する方向)において、各領域において曲率が一定になるように湾曲する。   As shown in FIG. 2C, the first area A1 and the second area A2 are located at the positions where the first FBG sensor 13a and the second FBG sensor 13b are attached, respectively. In a direction toward the end portion 12b (that is, a direction coinciding with the directions of the first FBG sensor 13a and the second FBG sensor 13b), the curvature is made constant in each region.

本実施形態においては、起歪体12の平面形状(図2A参照)における第1領域A1の板幅と第2領域A2の板幅との比が1:2に近似できる。   In the present embodiment, the ratio between the plate width of the first region A1 and the plate width of the second region A2 in the planar shape of the strain body 12 (see FIG. 2A) can be approximated to 1: 2.

ここで、起歪体12の第1領域A1の板幅b及び第2領域A2の板幅bと第1領域A1の曲率κ及び第2領域A2の曲率κとの関係を説明する。 Here, explaining the relationship between the curvature kappa 2 in the plate width b 2 a curvature kappa 1 and the second region A2 of the first region A1 of the plate width b 1 and the second region A2 of the first region A1 of the strain body 12 To do.

一般に、曲率κは、任意の着目点から荷重が加わる点までの距離をx、曲げモーメントをM(x)、ヤング率をE、断面二次モーメントをIとしたとき、以下の式で表すことができる。
In general, the curvature κ is expressed by the following equation, where x is the distance from any point of interest to the point where the load is applied, M (x) is the bending moment, E is the Young's modulus, and I is the secondary moment of section. Can do.

断面二次モーメントIは、起歪体12の板幅をb(x)、板厚をhとしたとき、以下の式で表すことができる。
The cross-sectional secondary moment I can be expressed by the following equation when the plate width of the strain body 12 is b (x) and the plate thickness is h.

曲げモーメントM(x)、ヤング率E、板厚hは第1領域A1及び第2領域A2で同じであるので、第1領域A1の板幅b及び第2領域A2の板幅bと第1領域A1の曲率κ及び第2領域A2の曲率κとの関係は、以下の式で表すことができる。
Bending moment M (x), the Young's modulus E, since the thickness h is the same in the first region A1 and second region A2, a plate width b 2 of the plate width b 1 and the second region A2 of the first region A1 the relationship between the curvature kappa 2 curvatures kappa 1 and the second region A2 of the first region A1 may be expressed by the following equation.

すなわち、起歪体12の第1領域A1及び第2領域A2における板幅b(x)と曲率κとは反比例の関係にあるので、本実施形態においては、他端部12bが変位した際における第1領域A1の曲率と第2領域A2の曲率との比は2:1と近似できる。   That is, since the plate width b (x) and the curvature κ in the first region A1 and the second region A2 of the strain body 12 are inversely proportional to each other, in the present embodiment, when the other end portion 12b is displaced. The ratio between the curvature of the first region A1 and the curvature of the second region A2 can be approximated to 2: 1.

なお、起歪体表面の弾性歪み量εと曲率κとの関係は、以下の式で表すことができる。
The relationship between the elastic strain amount epsilon e and the curvature κ of the strain body surface can be expressed by the following equation.

すなわち、弾性歪み量εは曲率κに比例する。また、上記したように曲率κは板幅b(x)に反比例するので、弾性歪み量εも板幅b(x)に反比例する。 That is, the elastic strain amount ε e is proportional to the curvature κ. Since the curvature κ is inversely proportional to the plate width b (x) as described above, the elastic strain amount ε e is also inversely proportional to the plate width b (x).

このように、他端部12bが変位した際における第1領域A1で生じる弾性歪み量と第2領域A2で生じる弾性歪み量との比率は、所定の比率となるように予め定められる。この比率は、起歪体12の形状を変更することによって、任意に定めることができる。   Thus, the ratio between the amount of elastic strain generated in the first region A1 and the amount of elastic strain generated in the second region A2 when the other end portion 12b is displaced is predetermined so as to be a predetermined ratio. This ratio can be arbitrarily determined by changing the shape of the strain body 12.

第1領域A1と第2領域A2とは十分に近接した位置に存在するので、それらの領域の間で温度が大きく変化することはない。すなわち、第1領域A1に付設された第1FBGセンサ13aと第2領域A2に付設された第2FBGセンサ13bとは、温度が同一と認められる位置に付設されている。なお、温度が同一と認められるとは、完全に温度が同一である場合の他、温度差が無視できる程度に小さい場合も含む。   Since the first region A1 and the second region A2 exist at positions sufficiently close to each other, the temperature does not change greatly between these regions. That is, the first FBG sensor 13a attached to the first area A1 and the second FBG sensor 13b attached to the second area A2 are attached at positions where the temperatures are recognized to be the same. In addition, the case where the temperatures are recognized to be the same includes not only the case where the temperatures are completely the same but also the case where the temperature difference is small enough to be ignored.

また、図2AのI−I線断面図である図2Dに拡大して示すように、起歪体12の第2FBGセンサ13bを付設する位置には、第2FBGセンサ13bを収容可能な溝部12cが形成されている。第2FBGセンサ13bは、溝部12cに配置された後、接着剤17で固定される。また、起歪体12の第1FBGセンサ13aを付設する位置にも同様の溝部12cが形成されている。起歪体12には、このような溝部12cが設けられているので、第1FBGセンサ13a及び第2FBGセンサ13bの配置位置を容易に確定させるとともに、接着面積をより広くすることができる。これにより、製造が容易になって、生産コストを低下させるとともに、起歪体12に対して強固に第1FBGセンサ13a及び第2FBGセンサ13bを付設することができる。   2D, which is a cross-sectional view taken along the line I-I of FIG. 2A, a groove 12c that can accommodate the second FBG sensor 13b is provided at the position where the second FBG sensor 13b of the strain generating body 12 is attached. Is formed. The second FBG sensor 13b is fixed with the adhesive 17 after being disposed in the groove 12c. A similar groove 12c is also formed at the position where the first FBG sensor 13a of the strain generating body 12 is attached. Since such a groove 12c is provided in the strain body 12, the arrangement positions of the first FBG sensor 13a and the second FBG sensor 13b can be easily determined, and the bonding area can be increased. Thereby, manufacture becomes easy, and while reducing production cost, the 1st FBG sensor 13a and the 2nd FBG sensor 13b can be attached to the distortion body 12 firmly.

次に、変位量測定システム1の測定装置14が、算出部14cにおいて、測定対象物Oの変位量(すなわち、他端部12bの変位量)を算出する方法について説明する。   Next, a method in which the measurement device 14 of the displacement amount measurement system 1 calculates the displacement amount of the measurement object O (that is, the displacement amount of the other end portion 12b) in the calculation unit 14c will be described.

起歪体12の他端部12bが変位した際(すなわち、測定対象物Oが変位した際)における第1領域A1の弾性歪み量(第1FBGセンサ13aの歪み量)をε 、第2領域A2の弾性歪み量(第2FBGセンサ13bの歪み量)をε としたとき、その歪み量の比率frは次式(1)で表すことができる。
When the other end portion 12b of the strain generating body 12 is displaced (that is, when the measuring object O is displaced), the elastic strain amount (strain amount of the first FBG sensor 13a) in the first region A1 is represented by ε e 1 , second When the elastic strain amount in the region A2 (the strain amount of the second FBG sensor 13b) is ε e 2 , the strain amount ratio fr can be expressed by the following equation (1).

第1領域A1の弾性歪み量ε 、第2領域A2の弾性歪み量ε 及びそれらの歪み量の比率frは、起歪体12の形状によって任意に定めることができる。例えば、本実施形態の起歪体12は、ベリリウム銅で形成されており、図2で示した形状(具体的には、他端部12bが変位した際における第1領域A1の曲率と第2領域A2の曲率との比が2:1と近似できる形状)であるので、曲率に比例する弾性歪み量ε ,ε の比率frは次のように設定されている。
Elastic strain amount epsilon e 1 of the first area A1, the ratio fr of elastic strain amount epsilon e 2 and their amount of strain in the second region A2 may be arbitrarily determined by the shape of the strain body 12. For example, the strain body 12 of the present embodiment is made of beryllium copper and has the shape shown in FIG. 2 (specifically, the curvature of the first region A1 when the other end portion 12b is displaced and the second Therefore, the ratio fr of elastic strain amounts ε e 1 and ε e 2 proportional to the curvature is set as follows.

また、例えば、第1FBGセンサ13a及び第2FBGセンサ13bを側方(他端部12bが変位する方向と交わる方向)から見て起歪体12を挟んで対向する位置に付設した場合(具体的には、図3に示す第1変形例の起歪体18、又は図4に示す第2変形例の起歪体19の場合)には、比率fは次のように設定することができる。
In addition, for example, when the first FBG sensor 13a and the second FBG sensor 13b are provided at positions facing each other with the strain generating body 12 therebetween as viewed from the side (direction intersecting the direction in which the other end 12b is displaced) (specifically, is the strain body 18 of the first modification shown in FIG. 3, or in the case of the strain body 19 of the second modification shown in FIG. 4), the ratio f r can be set as follows.

一般に、起歪体12の他端部12bが変位すると、起歪体12が湾曲する。このとき、起歪体12とともに起歪体12に付設された第1FBGセンサ13a及び第2FBGセンサ13bも湾曲する。ここで、温度一定の条件の下で、他端部12bが変位した際の第1FBGセンサ13aの反射波長の変化量をΔλB1)とし、第2FBGセンサ13bの反射波長の変化量をΔλB2)とすると、他端部12bの変位量δは、次式(2)で表すことができる。
Generally, when the other end portion 12b of the strain body 12 is displaced, the strain body 12 is bent. At this time, the first FBG sensor 13a and the second FBG sensor 13b attached to the strain body 12 together with the strain body 12 are also curved. Here, the amount of change in the reflected wavelength of the first FBG sensor 13a when the other end portion 12b is displaced under a constant temperature condition is Δλ B1s ), and the amount of change in the reflected wavelength of the second FBG sensor 13b is If Δλ B2s ), the displacement amount δ s of the other end portion 12b can be expressed by the following equation (2).

ここで、一般に、弾性歪み量εとFBGセンサの反射波長の変化量Δλとの間には、次式(3)で示す関係が成立する。
Here, generally, the relationship represented by the following equation (3) is established between the elastic strain amount ε e and the change amount Δλ B of the reflection wavelength of the FBG sensor.

式(3)におけるkは、所定の波長範囲ではほぼ一定とみなすことができる(例えば、波長が1550nm近傍の場合にはε=1μひずみ当たりでk=1.2pm)。 K e in Formula (3), in a predetermined wavelength range it can be regarded as almost constant (for example, when the wavelength is 1550nm vicinity k e = 1.2 pm per epsilon e = 1 [mu] strain).

したがって、第1FBGセンサ13aの歪み量ε 、第2FBGセンサ13bの歪み量ε 、第1FBGセンサ13aの反射波長の変化量ΔλB1)、第2FBGセンサ13bの反射波長の変化量ΔλB2)との間には、次式(4)で示す関係が成立する。
Therefore, the strain amount ε e 1 of the first FBG sensor 13a, the strain amount ε e 2 of the second FBG sensor 13b, the change amount Δλ B1s ) of the reflection wavelength of the first FBG sensor 13a, and the change of the reflection wavelength of the second FBG sensor 13b. The relationship represented by the following equation (4) is established between the amount Δλ B2s ).

式(2),(4)より得られた2つの係数Kf1及びKf2と比率fとの間には、次式(5)で示す関係が成立する。
Equation (2), between the two coefficients K f1 and K f2 and the ratio f r obtained from (4), the relationship is established as indicated by the following equation (5).

式(5)より、他端部12bが変位した際の第1FBGセンサ13aの反射波長の変化量ΔλB1)及び第2FBGセンサ13bの反射波長の変化量ΔλB2)と、それらの比率fとの関係を示す式として、次式(6)が得られる。
From the equation (5), the change amount Δλ B1s ) of the reflection wavelength of the first FBG sensor 13a and the change amount Δλ B2s ) of the reflection wavelength of the second FBG sensor 13b when the other end 12b is displaced, as an expression indicating the relationship between the ratio of these f r, the following equation (6) is obtained.

ところで、第1FBGセンサ13a及び第2FBGセンサ13bの反射波長は、温度の変化による影響を受ける。そこで、温度がΔTだけ変化した際の第1FBGセンサ13aの反射波長の変化量をΔλB1(ΔT)とし、第2FBGセンサ13bの反射波長の変化量をΔλB2(ΔT)とすると、起歪体12の他端部12bが変位するとともに温度が変化した際の第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量Δλ B1,Δλ B2は、次式(7),(8)で表すことができる。
By the way, the reflection wavelengths of the first FBG sensor 13a and the second FBG sensor 13b are affected by a change in temperature. Therefore, if the amount of change in the reflected wavelength of the first FBG sensor 13a when the temperature changes by ΔT is Δλ B1 (ΔT) and the amount of change in the reflected wavelength of the second FBG sensor 13b is Δλ B2 (ΔT), the strain generating body The change amounts Δλ T B1 and Δλ T B2 of the reflection wavelengths of the first FBG sensor 13a and the second FBG sensor 13b when the other end 12b of the twelve 12 is displaced and the temperature changes are expressed by the following equations (7) and (8). Can be represented.

ここで、本実施形態の起歪体12に付設された第1FBGセンサ13a及び第2FBGセンサ13bは、温度が同一と認められる位置に付設されている。そのため、温度が変化した際の第1FBGセンサ13aの反射波長の変化量ΔλB1(ΔT)と、第2FBGセンサ13bの反射波長の変化量ΔλB2(ΔT)は、同一の変化量Δλ(ΔT)とみなすことができる。そのため、式(7),(8)は次式(9),(10)となる。
Here, the 1st FBG sensor 13a and the 2nd FBG sensor 13b which were attached to the strain body 12 of this embodiment are attached to the position where temperature is recognized as the same. Therefore, the change amount Δλ B1 (ΔT) of the reflection wavelength of the first FBG sensor 13a and the change amount Δλ B2 (ΔT) of the reflection wavelength of the second FBG sensor 13b when the temperature changes are the same change amount Δλ (ΔT). Can be considered. Therefore, the equations (7) and (8) become the following equations (9) and (10).

式(6),(9),(10)より、次式(11)を得ることができる。
From the equations (6), (9) and (10), the following equation (11) can be obtained.

上記の図3に示す起歪体18において、温度が変化した際の第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量Δλ B1,Δλ B2と温度の変化量との関係は、例えば図5のグラフで示される。このグラフにおいて基準点とはδ=0,T=20℃の状態であり、グラフ中の各線はP点を約1mm押し下げた状態(δ=1mmの状態)を示す。また、Δλ=1nmはε=833μ歪みに相当する。 In the strain body 18 shown in FIG. 3, the relationship between the change amounts Δλ T B1 and Δλ T B2 of the reflected wavelengths of the first FBG sensor 13a and the second FBG sensor 13b when the temperature changes and the change amount of the temperature are as follows: For example, it is shown in the graph of FIG. In this graph, the reference point is a state where δ = 0 and T = 20 ° C., and each line in the graph indicates a state where the P point is pushed down by about 1 mm (a state where δ s = 1 mm). Δλ T = 1 nm corresponds to ε = 833 μ strain.

このグラフからも明らかなように、温度が変化した際の第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量の差(Δλ B1−Δλ B2)は、温度によらず一定となる。 As is clear from this graph, the difference in the amount of change in the reflection wavelength of the first FBG sensor 13a and the second FBG sensor 13b (Δλ T B1 −Δλ T B2 ) when the temperature changes is constant regardless of the temperature. .

式(2),(11)より、起歪体12の他端部12bの変位量δを表す式として、次式(12)を得ることができる。
From the equations (2) and (11), the following equation (12) can be obtained as an equation representing the displacement δ s of the other end 12b of the strain generating body 12.

式(12)において、弾性歪み量の比率f,係数Kf1は既知の値であり、反射波長の変化量Δλ B1,Δλ B2は測定により得られる値である。また、式(12)には、温度が変化した際の第1FBGセンサ13aの反射波長の変化量ΔλB1(ΔT)及び第2FBGセンサ13bの反射波長の変化量ΔλB2(ΔT)が存在していない。 In Expression (12), the elastic strain amount ratio f r and the coefficient K f1 are known values, and the reflection wavelength variations Δλ T B1 and Δλ T B2 are values obtained by measurement. Further, in the equation (12), there is a change amount Δλ B1 (ΔT) of the reflection wavelength of the first FBG sensor 13a and a change amount Δλ B2 (ΔT) of the reflection wavelength of the second FBG sensor 13b when the temperature changes. Absent.

すなわち、式(12)は、温度が変化した際の第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量の影響を受けない式であるので、反射波長の変化量Δλ B1,Δλ B2を測定することによって、温度補償をしつつ起歪体12の他端部12bの変位量δ(すなわち、測定対象物Oの変位量)を得ることができる。 That is, since Expression (12) is an expression that is not affected by the amount of change in the reflection wavelength of the first FBG sensor 13a and the second FBG sensor 13b when the temperature changes, the amount of change in the reflection wavelength Δλ T B1 , Δλ T By measuring B2 , it is possible to obtain the displacement amount δ s (that is, the displacement amount of the measuring object O) of the other end 12b of the strain generating body 12 while performing temperature compensation.

本実施形態においては、第1領域A1における弾性歪み量と第2領域A2における弾性歪み量との比率frを予め定めている。この比率frの値は、起歪体12の設計によって凡その値を定めることができるが、正確な値は実際の試験によらなければ得ることはできない。ただし、起歪体12の他端部12bの変位量δと反射波長の変化量Δλ B1,Δλ B2との関係を実際に求めておけば(具体的には、式(12)において、Kf1/(1−fr)を求めておけば)、比率frの正確な値を予め知ることは、実用上必ずしも必要ではない。 In the present embodiment, the ratio fr between the amount of elastic strain in the first region A1 and the amount of elastic strain in the second region A2 is predetermined. The value of the ratio fr can be roughly determined by the design of the strain generating body 12, but an accurate value cannot be obtained unless it is based on an actual test. However, if the relationship between the displacement amount δ s of the other end portion 12b of the strain body 12 and the reflection wavelength changes Δλ T B1 and Δλ T B2 is actually obtained (specifically, in the equation (12)) If K f1 / (1-fr) is obtained), it is not always necessary in practice to know the exact value of the ratio fr.

なお、本実施形態の変位量測定システム1では、起歪体12の他端部12b変位とともに温度が変化した際の第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量Δλ B1,Δλ B2を測定することによって、温度による第1FBGセンサ13a及び第2FBGセンサ13bの反射波長の変化量Δλ(ΔT)を求めることができる。すなわち、温度測定を行うことができる。 In the displacement measurement system 1 of the present embodiment, the amount of change Δλ T B1 , Δλ in the reflection wavelength of the first FBG sensor 13a and the second FBG sensor 13b when the temperature changes with the displacement of the other end 12b of the strain body 12. by measuring T B2, it is possible to determine the amount of change in the reflection wavelength of the 1FBG sensor 13a and the 2FBG sensor 13b due to temperature [Delta] [lambda] ([Delta] T). That is, temperature measurement can be performed.

例えば、第1FBGセンサ13a及び第2FBGセンサ13bを、側面から見て起歪体12を挟んで対向する位置とならないように付設した場合(f≠−1の場合)、比率fと式(9),(10)より、次式(13)を得ることができる。
For example, when the first FBG sensor 13a and the second FBG sensor 13b are attached so as not to face each other with the strain generating body 12 sandwiched when viewed from the side surface (when f r ≠ −1), the ratio f r and the formula ( From 9) and (10), the following equation (13) can be obtained.

式(13)を変形すると、次式(14)を得ることができる。
When the equation (13) is transformed, the following equation (14) can be obtained.

式(14)において、弾性歪み量の比率fは既知の値であり、反射波長の変化量Δλ B1,Δλ B2は測定により得られる値である。また、式(14)は、他端部12bの変位量δに依存しない。したがって、反射波長の変化量Δλ B1,Δλ B2を測定することによって、反射波長の変化量Δλ(ΔT)を求めることができる。すなわち、温度測定を行うことができる。 In the equation (14), the elastic strain amount ratio fr is a known value, and the reflection wavelength changes Δλ T B1 and Δλ T B2 are values obtained by measurement. Further, Expression (14) does not depend on the displacement amount δ s of the other end portion 12b. Therefore, by measuring the change amounts Δλ T B1 and Δλ T B2 of the reflection wavelength, the change amount Δλ (ΔT) of the reflection wavelength can be obtained. That is, temperature measurement can be performed.

さらに、温度変化量ΔTとFBGセンサの反射波長の変化量Δλ(ΔT)をとの間には、次式(15)が成立する。
Further, the following equation (15) is established between the temperature change amount ΔT and the reflection wavelength change amount Δλ (ΔT) of the FBG sensor.

ここで、係数kは、FBGセンサに用いられる光ファイバと起歪体12の材料によって定まる値である。そのため、係数kを予め求めておくことにより、基準温度からの温度変化量ΔTの測定も行うことができる。 Here, the coefficient k T, is a value determined by the material of the optical fiber and the strain body 12 to be used in the FBG sensor. Therefore, by previously obtained the coefficient k T, the measurement of the temperature change amount ΔT from the reference temperature may also be performed.

また、第1FBGセンサ13a及び第2FBGセンサ13bを、側面から見て起歪体を挟んで対向する位置となるように付設した場合(f=−1の場合。図3に示す第1変形例の起歪体18又は図4に示す第2変形例の起歪体19の場合)、式(9),(10)より、次式(16)を得ることができる。
Further, when the first FBG sensor 13a and the second FBG sensor 13b are attached so as to be opposed to each other with the strain generating body viewed from the side (when f r = −1, the first modification shown in FIG. 3). The following formula (16) can be obtained from the formulas (9) and (10).

=−1であるので、式(16)は、次式(17)となる。 Since f r = −1, Expression (16) becomes the following Expression (17).

式(17)を変形すると、次式(18)を得ることができる。   When the equation (17) is transformed, the following equation (18) can be obtained.

式(18)において、反射波長の変化量Δλ B1,Δλ B2は測定により得られる値である。また、式(18)は、他端部12bの変位量δに依存しない。したがって、反射波長の変化量Δλ B1,Δλ B2を測定することによって、反射波長の変化量Δλ(ΔT)を求めることができる。さらに、式(15)を用いることにより、基準温度からの温度変化量ΔTの測定も行うことができる。 In Expression (18), the reflection wavelength changes Δλ T B1 and Δλ T B2 are values obtained by measurement. Further, Expression (18) does not depend on the displacement amount δ s of the other end portion 12b. Therefore, by measuring the change amounts Δλ T B1 and Δλ T B2 of the reflection wavelength, the change amount Δλ (ΔT) of the reflection wavelength can be obtained. Furthermore, the temperature change amount ΔT from the reference temperature can also be measured by using the equation (15).

以上、図示の実施形態について説明したが、本発明はこのような形態に限られるものではない。   Although the illustrated embodiment has been described above, the present invention is not limited to such a form.

例えば、上記実施形態においては、第1FBGセンサ13aを起歪体12の一端部12a側の第1領域A1に付設し、第2FBGセンサ13bを起歪体12の他端部12b側の第2領域A2に付設している。しかし、起歪体に3つ以上のFBGセンサを付設するようにしてもよい。また、FBGセンサの配置位置も、検出される歪み量が異なる位置であればよい。例えば、起歪体の表裏に1つずつFBGセンサを配置するようにしてもよい。   For example, in the above embodiment, the first FBG sensor 13a is attached to the first region A1 on the one end 12a side of the strain body 12, and the second FBG sensor 13b is the second region on the other end 12b side of the strain body 12. It is attached to A2. However, three or more FBG sensors may be attached to the strain generating body. Further, the position where the FBG sensor is arranged may be a position where the detected distortion amount is different. For example, FBG sensors may be arranged one by one on the front and back of the strain body.

また、上記実施形態においては、図2Aに示すように、起歪体12の平面形状を、底辺側の領域の外縁が切欠かれた二等辺三角形となるように構成し、起歪体の一方側の面に2つのFBGセンサを配置している。しかし、起歪体はこのような形状に限定されない。   Moreover, in the said embodiment, as shown to FIG. 2A, the planar shape of the strain body 12 is comprised so that it may become an isosceles triangle by which the outer edge of the area | region of the base side was notched, and one side of the strain body Two FBG sensors are arranged on the surface. However, the strain body is not limited to such a shape.

例えば、図3に示す第1変形例の起歪体18のように、ベース11に固定された一端部18a近傍の平面形状を、作用点Pを頂点とする二等辺三角形の底辺側の形状とし、測定対象物Oから作用点Pに荷重を受けた際に変位する他端部18b近傍の平面形状を、端部が半円形で二等辺三角形の底辺側から頂点側に延びた形状とし、FBGセンサ13a,13bを、起歪体18の表裏に1つずつ配置するようにしてもよい。   For example, as in the strain body 18 of the first modification shown in FIG. 3, the planar shape in the vicinity of the one end 18a fixed to the base 11 is the shape on the base side of the isosceles triangle with the action point P as the apex. The planar shape in the vicinity of the other end portion 18b that is displaced when a load is applied to the action point P from the measuring object O is a shape in which the end portion is semicircular and extends from the base side of the isosceles triangle to the apex side, and FBG You may make it arrange | position the sensors 13a and 13b on the front and back of the strain body 18 one by one.

また、例えば、図4に示す第2変形例の起歪体のように、ベース11に固定された一端部19a近傍の平面形状を、作用点Pを頂点とする二等辺三角形の底辺側の形状とし、測定対象物Oから作用点Pに荷重を受けた際に変位する他端部19b近傍の平面形状を矩形として、FBGセンサ13a,13bを、起歪体19の表裏面に1つずつ配置するようにしてもよい。   Further, for example, like the strain body of the second modification shown in FIG. 4, the planar shape in the vicinity of the one end portion 19 a fixed to the base 11 is the shape on the base side of the isosceles triangle having the action point P as the apex. And the FBG sensors 13a and 13b are arranged on the front and back surfaces of the strain body 19 one by one, with the planar shape in the vicinity of the other end 19b that is displaced when a load is applied from the measuring object O to the action point P. You may make it do.

また、上記実施形態においては、起歪体12に溝部12cを設け、その溝部12cに第1FBGセンサ13a及び第2FBGセンサ13bを付設している。しかし、溝部12cは、省略しても構わない。   Moreover, in the said embodiment, the groove part 12c is provided in the strain body 12, and the 1st FBG sensor 13a and the 2nd FBG sensor 13b are attached to the groove part 12c. However, the groove 12c may be omitted.

また、上記実施形態では、起歪体12の平面形状を、二等辺三角形の底辺近傍の外縁を切欠いた形状としている。しかし、本発明の起歪体の形状はそのような形状に限定されるものではない。例えば、FBGセンサのグレーティング長が起歪体の長さに対して十分に小さいとみなせる場合等には、平面形状が矩形であってもよいし、切欠きのない三角形であってもよい。   Moreover, in the said embodiment, the planar shape of the strain body 12 is made into the shape which notched the outer edge of the base vicinity of an isosceles triangle. However, the shape of the strain body of the present invention is not limited to such a shape. For example, when it can be considered that the grating length of the FBG sensor is sufficiently small with respect to the length of the strain generating body, the planar shape may be a rectangle or a triangle without a notch.

また、上記実施形態においては、第1FBGセンサ13a及び第2FBGセンサ13bの向きと起歪体12の曲率が変化する向きを一致させるとともに、その向きにおいては他端部12bが変位した際における起歪体12の曲率が、第1FBGセンサ13a及び第2FBGセンサ13bの配置した位置(上記実施形態では、第1領域A1及び第2領域A2)で、それぞれ一定となるように構成している。しかし、FBGセンサの向きや、起歪体の湾曲時の曲率は、適宜変更してもよい。   In the above embodiment, the direction of the first FBG sensor 13a and the second FBG sensor 13b and the direction in which the curvature of the strain generating body 12 changes are matched, and in that direction, the strain is generated when the other end 12b is displaced. The curvature of the body 12 is configured to be constant at the positions where the first FBG sensor 13a and the second FBG sensor 13b are arranged (in the above embodiment, the first region A1 and the second region A2). However, the orientation of the FBG sensor and the curvature at the time of bending of the strain body may be changed as appropriate.

1…変位量測定システム、11…ベース、12,18,19…起歪体、12a,18a,19a…一端部、12b,18b,19b…他端部、12c…溝部、13a…第1FBGセンサ、13b…第2FBGセンサ、14…測定装置、14a…広域帯光源、14b…光スペクトルメータ、14c…算出部15…光ファイバ、16…屈折率整合ジェル、17…接着剤、A1…第1領域、A2…第2領域、O…測定対象物、P…作用点。 DESCRIPTION OF SYMBOLS 1 ... Displacement measuring system, 11 ... Base, 12, 18, 19 ... Strain body, 12a, 18a, 19a ... One end part, 12b, 18b, 19b ... Other end part, 12c ... Groove part, 13a ... 1st FBG sensor, 13b ... 2nd FBG sensor, 14 ... Measuring device, 14a ... Wide band light source, 14b ... Optical spectrum meter, 14c ... Calculation part 15 ... Optical fiber, 16 ... Refractive index matching gel, 17 ... Adhesive, A1 ... 1st area | region, A2 ... second region, O ... measurement object, P ... action point.

Claims (5)

一端が固定され他端が変位可能な片持ち梁状に形成された起歪体と、
前記起歪体において温度が同一と認められ前記他端が変位した場合の歪み量が異なる複数の位置に付設された複数のFBGセンサと、
前記他端が変位した際の前記複数のFBGセンサの反射波長の変化量の差に基づいて、前記他端の変位量を算出する測定装置とを備えていることを特徴とする変位量測定システム。
A strain body formed in a cantilever shape in which one end is fixed and the other end is displaceable;
A plurality of FBG sensors attached to a plurality of positions having different strain amounts when the temperature is recognized to be the same in the strain generating body and the other end is displaced;
A displacement amount measuring system comprising: a measuring device that calculates a displacement amount of the other end based on a difference in a change amount of a reflection wavelength of the plurality of FBG sensors when the other end is displaced. .
請求項1に記載の変位量測定システムであって、
前記他端が変位した際における所定の前記FBGセンサを付設した位置における前記起歪体の歪み量と他の前記FBGセンサを付設した位置における前記起歪体の歪み量との比率が、予め定められていることを特徴とする変位量測定システム。
The displacement measurement system according to claim 1,
A ratio between a strain amount of the strain generating body at a position where the predetermined FBG sensor is attached when the other end is displaced and a strain amount of the strain generating body at a position where the other FBG sensor is attached is predetermined. Displacement measuring system characterized by being characterized.
請求項1又は請求項2に記載の変位量測定システムであって、
前記複数のFBGセンサは、前記一端から前記他端に向かう方向に沿って前記起歪体に付設され、
前記起歪体は、前記他端が変位した際に、少なくとも前記複数のFBGセンサがそれぞれ付設された位置で前記一端から前記他端に向かう方向の曲率が一定になるように、湾曲することを特徴とする変位量測定システム。
The displacement measurement system according to claim 1 or 2,
The plurality of FBG sensors are attached to the strain body along a direction from the one end to the other end,
When the other end is displaced, the strain body is curved so that a curvature in a direction from the one end to the other end is constant at a position where each of the plurality of FBG sensors is attached. A featured displacement measurement system.
請求項1〜請求項3のいずれか1項に記載の変位量測定システムであって、
前記起歪体は、前記FBGセンサを収容可能に設けられた溝部を有していることを特徴とする変位量測定システム。
It is a displacement measuring system of any one of Claims 1-3,
The displacement body has a groove part provided so that the FBG sensor can be accommodated.
請求項1〜請求項4のいずれか1項に記載の変位量測定システムであって、
前記複数のFBGセンサは、前記他端が変位する方向と交わる方向から見て、前記起歪体を挟んで対向するように付設されていることを特徴とする変位量測定システム。
It is a displacement measuring system of any one of Claims 1-4,
The displacement measuring system, wherein the plurality of FBG sensors are attached so as to face each other with the strain body as viewed from a direction crossing a direction in which the other end is displaced.
JP2015102278A 2015-05-19 2015-05-19 Displacement measuring system and displacement measuring method Active JP6397369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102278A JP6397369B2 (en) 2015-05-19 2015-05-19 Displacement measuring system and displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102278A JP6397369B2 (en) 2015-05-19 2015-05-19 Displacement measuring system and displacement measuring method

Publications (2)

Publication Number Publication Date
JP2016217852A true JP2016217852A (en) 2016-12-22
JP6397369B2 JP6397369B2 (en) 2018-09-26

Family

ID=57580710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102278A Active JP6397369B2 (en) 2015-05-19 2015-05-19 Displacement measuring system and displacement measuring method

Country Status (1)

Country Link
JP (1) JP6397369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304469A (en) * 2019-12-10 2021-02-02 中国科学院合肥物质科学研究院 FBG temperature sensor based on bimetal cantilever beam and application thereof
JP7016451B1 (en) * 2021-01-25 2022-02-04 三菱電機株式会社 Manufacturing method of gauge carrier, optical fiber displacement sensor and optical fiber displacement sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065730A (en) * 2001-08-23 2003-03-05 Hitachi Cable Ltd Optical fiber grating strain sensor and method for measuring strain
JP2005003609A (en) * 2003-06-13 2005-01-06 Sakata Denki Cantilever-like displacement conversion mechanism using fiber bragg grating
JP2008275489A (en) * 2007-04-29 2008-11-13 Kajima Corp Optical fiber sensor
JP2008541122A (en) * 2005-05-17 2008-11-20 ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス Optical fiber position transducer with magnetostrictive material and position calibration method
US20160334203A1 (en) * 2014-01-17 2016-11-17 Harbin Institute Of Technology Method and Equipment Based on Multi-Core Fiber Bragg Grating Probe for Measuring Structures of a Micro Part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065730A (en) * 2001-08-23 2003-03-05 Hitachi Cable Ltd Optical fiber grating strain sensor and method for measuring strain
JP2005003609A (en) * 2003-06-13 2005-01-06 Sakata Denki Cantilever-like displacement conversion mechanism using fiber bragg grating
JP2008541122A (en) * 2005-05-17 2008-11-20 ペトロレオ ブラジレイロ ソシエダ アノニマ − ペトロブラス Optical fiber position transducer with magnetostrictive material and position calibration method
JP2008275489A (en) * 2007-04-29 2008-11-13 Kajima Corp Optical fiber sensor
US20160334203A1 (en) * 2014-01-17 2016-11-17 Harbin Institute Of Technology Method and Equipment Based on Multi-Core Fiber Bragg Grating Probe for Measuring Structures of a Micro Part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304469A (en) * 2019-12-10 2021-02-02 中国科学院合肥物质科学研究院 FBG temperature sensor based on bimetal cantilever beam and application thereof
JP7016451B1 (en) * 2021-01-25 2022-02-04 三菱電機株式会社 Manufacturing method of gauge carrier, optical fiber displacement sensor and optical fiber displacement sensor

Also Published As

Publication number Publication date
JP6397369B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
US7720324B2 (en) Optical strain gauge strips
US8764678B2 (en) Pressure sensor with an interferometric sensor and an in-fiber bragg grating reference sensor
CN110530548B (en) Fiber grating detection method and device for measuring pressure and temperature parameters
JP6301963B2 (en) Strain sensor and installation method of strain sensor
WO2017183471A1 (en) Temperature measurement substrate and temperature measurement system
US20200240771A1 (en) Optical fibre curvatur sensor and measurement device comprising said sensor
JP6397369B2 (en) Displacement measuring system and displacement measuring method
WO2015080222A1 (en) Strain sensor and manufacturing method for strain sensor
JP2004530899A (en) Difference measurement system based on the use of paired Bragg gratings
JP2005091151A (en) Fbg strain gauge
KR101498381B1 (en) System for monitoring three-dimension shape of pipe-structure using fiber bragg grating sensor
EP3425343A1 (en) Optical fiber sensor
CN110440840A (en) Balloon-dislocation type full-fiber sensor production method that is a kind of while measuring temperature and displacement
JP7047366B2 (en) Fiber optic sensor
JP2012088155A (en) Measuring method using fbg sensor, and device thereof
JP2005134199A (en) Fiber type sensor and sensing system using it
JP3632080B2 (en) Probe type optical fiber sensor
JP3755601B2 (en) FBG temperature sensor
WO2019127808A1 (en) Flexible display device and method for obtaining bending state information of flexible display panel
JP2005351663A (en) Fbg humidity sensor and humidity measuring method using the fbg humidity sensor
TWI494546B (en) The manufacturing method and the measuring configration of a novel air-gap fabry-perot fiber interferometer sensor
JP4862594B2 (en) Optical fiber sensor
CN209181734U (en) Applied on strain gauge substrate and corresponding strain gauge
CN110986819A (en) Fabry-Perot cavity type optical fiber curvature sensing probe and manufacturing method thereof
KR101179624B1 (en) Sensing device for bending developable surface and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180831

R150 Certificate of patent or registration of utility model

Ref document number: 6397369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250