JP2016213245A - Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board - Google Patents

Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board Download PDF

Info

Publication number
JP2016213245A
JP2016213245A JP2015093166A JP2015093166A JP2016213245A JP 2016213245 A JP2016213245 A JP 2016213245A JP 2015093166 A JP2015093166 A JP 2015093166A JP 2015093166 A JP2015093166 A JP 2015093166A JP 2016213245 A JP2016213245 A JP 2016213245A
Authority
JP
Japan
Prior art keywords
core member
wiring board
substrate
semiconductor device
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015093166A
Other languages
Japanese (ja)
Inventor
井口 知洋
Tomohiro Iguchi
知洋 井口
内田 雅之
Masayuki Uchida
雅之 内田
大祐 平塚
Daisuke Hiratsuka
大祐 平塚
大家 央
Hiroshi Oya
央 大家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015093166A priority Critical patent/JP2016213245A/en
Publication of JP2016213245A publication Critical patent/JP2016213245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board which achieves high cooling performance, and to provide a semiconductor device, a semiconductor package, and a manufacturing method of the wiring board.SOLUTION: A wiring board according to an embodiment includes: a substrate part in which an insulating layer is made of a ceramic material and a wiring layer is formed on one main surface of the insulating layer; a conductive layer formed on the other surface of the substrate part; a core member made of a metallic material and erected on the conductive layer of the substrate part; and a cover layer formed by a plating film made of a metallic material and provided on an outer surface of the core member.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、配線基板、半導体装置、半導体パッケージ、及び配線基板の製造方法に関する。   Embodiments described herein relate generally to a wiring board, a semiconductor device, a semiconductor package, and a manufacturing method of the wiring board.

半導体パッケージは、例えば、半導体回路基板と、半導体回路基板を封止する封止部材と、を含む。半導体回路基板は、例えば、セラミックや樹脂等の絶縁基材及び絶縁基材の両面または片面に固定された金属箔等を含む導電基材と、一方の導電基材に半田等で固定された半導体素子等を含む回路と、を備えている。   The semiconductor package includes, for example, a semiconductor circuit substrate and a sealing member that seals the semiconductor circuit substrate. The semiconductor circuit board is, for example, a conductive base material including an insulating base material such as ceramic or resin and a metal foil fixed on both sides or one side of the insulating base material, and a semiconductor fixed to one conductive base material with solder or the like. A circuit including elements and the like.

例えば(絶縁ゲートバイポーラトランジスタ(IGBT)などのパワー半導体素子は、スイッチングすることにより熱を発生する。そのため、半導体回路基板は、熱を拡散する拡散板を介してヒートシンクと接触して固定されることで冷却される。   For example, a power semiconductor element such as an insulated gate bipolar transistor (IGBT) generates heat by switching. Therefore, the semiconductor circuit board is fixed in contact with a heat sink via a diffusion plate that diffuses heat. Cooled by.

近年、パワー半導体は高電圧、大電流下において高速でスイッチングする場合、大電流下において高速でスイッチングすることにより発熱量が大きくなるため、パワー半導体を含む半導体回路には放熱性、冷却性能の向上が望まれている。   In recent years, when power semiconductors switch at high speeds under high voltage and large current, the amount of heat generated is increased by switching at high speeds under large currents. Therefore, heat dissipation and cooling performance are improved for semiconductor circuits including power semiconductors. Is desired.

また、ハイブリッドカ−や電気自動車等の実用化に伴い、パワー半導体パッケージは小型化、軽量化、低価格化が望まれている。   In addition, with the practical application of hybrid cars and electric vehicles, power semiconductor packages are desired to be reduced in size, weight, and cost.

特開2002−329938号公報JP 2002-329938 A 特開2002−315358号公報JP 2002-315358 A

半導体素子と冷却面との間に介在する構成を減らすと、パッケージ全体としての熱抵抗を小さくすることができるため、冷却性能の向上に有利になる。   If the configuration interposed between the semiconductor element and the cooling surface is reduced, the thermal resistance of the entire package can be reduced, which is advantageous for improving the cooling performance.

放熱性を向上させるため、絶縁材料として比較的熱抵抗の低いセラミックス材の基板を用い、ヒートシンクなどの冷却構造を設けることが考えられる。しかしながらセラミックス材は熱伝導率が高いことから、基板内で熱が拡散せず、熱密度が高くなるため、冷却構造の設計が困難となる。   In order to improve heat dissipation, it is conceivable to use a ceramic material substrate having a relatively low thermal resistance as an insulating material and to provide a cooling structure such as a heat sink. However, since the ceramic material has a high thermal conductivity, heat does not diffuse in the substrate and the heat density becomes high, so that it is difficult to design a cooling structure.

また、セラミックス材で構成される基板に冷却構造を接合する場合、例えば半田の材料によっては熱抵抗が大きくなり、冷却性能が低下する。一方、冷却構造をろう付けによって基板に接合する場合、比較的高温下での接合処理を行うことから、基板が変形する場合がある。   Further, when the cooling structure is joined to the substrate made of a ceramic material, for example, depending on the material of the solder, the thermal resistance increases, and the cooling performance decreases. On the other hand, when the cooling structure is bonded to the substrate by brazing, the substrate may be deformed because the bonding process is performed at a relatively high temperature.

本発明の実施形態は、このような事情に鑑みて成されたものであり、冷却性能の高い配線基板及び配線基板を含む半導体パッケージを提供することを目的とする。   Embodiments of the present invention have been made in view of such circumstances, and an object thereof is to provide a wiring board having a high cooling performance and a semiconductor package including the wiring board.

一実施形態に係る配線基板は、絶縁層がセラミックス材で構成され、前記絶縁層の一方の主面に配線層が形成された基板部と、前記基板部の他方の面に形成される導電層と、金属材料で構成され、前記基板部の前記導電層上に立設されるコア部材と、金属材料のメッキ膜で構成され、前記コア部材の外表面に設けられるカバー層と、を備える。   In the wiring board according to one embodiment, the insulating layer is made of a ceramic material, the substrate part having the wiring layer formed on one main surface of the insulating layer, and the conductive layer formed on the other surface of the substrate part And a core member that is made of a metal material and is erected on the conductive layer of the substrate part, and a cover layer that is made of a plating film of the metal material and is provided on the outer surface of the core member.

第1実施形態に係る半導体装置の構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor device which concerns on 1st Embodiment. 同半導体装置の構成を示す説明図。2 is an explanatory diagram illustrating a configuration of the semiconductor device. FIG. 同半導体パッケージの構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor package. 同半導体装置のコア部材の構成を示す斜視図。The perspective view which shows the structure of the core member of the semiconductor device. 同半導体装置の配線基板の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the wiring board of the semiconductor device. 第2実施形態に係る半導体装置の構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor device which concerns on 2nd Embodiment. 第3実施形態に係る半導体装置の構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor device which concerns on 3rd Embodiment. 他の実施形態に係る半導体装置の構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置の構成を示す説明図。Explanatory drawing which shows the structure of the semiconductor device which concerns on other embodiment. 同半導体装置の構成を示す説明図。2 is an explanatory diagram illustrating a configuration of the semiconductor device. FIG. 他の実施形態に係る半導体装置のコア部材の構成を示す説明図。Explanatory drawing which shows the structure of the core member of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置のコア部材の構成を示す説明図。Explanatory drawing which shows the structure of the core member of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置のコア部材の製造方法の説明図。Explanatory drawing of the manufacturing method of the core member of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置のコア部材の構成を示す説明図。Explanatory drawing which shows the structure of the core member of the semiconductor device which concerns on other embodiment. 他の実施形態に係る半導体装置のコア部材の構成を示す説明図。Explanatory drawing which shows the structure of the core member of the semiconductor device which concerns on other embodiment.

[第1実施形態]
以下、実施形態の配線基板21及び配線基板21を含む半導体装置1について、図1乃至図5を参照して説明する。各図において説明のため、適宜構成を拡大、縮小または省略して示している。
[First Embodiment]
Hereinafter, the semiconductor device 1 including the wiring substrate 21 and the wiring substrate 21 according to the embodiment will be described with reference to FIGS. 1 to 5. In each figure, the structure is appropriately enlarged, reduced, or omitted for explanation.

図1は、第1実施形態の配線基板21及び半導体装置1の構成を断面で示す説明図であり、図2は、同配線基板21及び半導体装置1を他の方向からみた断面で示す説明図である。図3は半導体装置1を備える半導体パッケージ100の構成を断面で示す説明図である。なお、図2において説明のため一部を側面で示している。   FIG. 1 is an explanatory view showing the configurations of the wiring board 21 and the semiconductor device 1 of the first embodiment in cross section, and FIG. 2 is an explanatory view showing the wiring board 21 and the semiconductor device 1 in a cross section seen from other directions. It is. FIG. 3 is an explanatory view showing the configuration of a semiconductor package 100 including the semiconductor device 1 in cross section. In FIG. 2, a part is shown on the side surface for explanation.

図1乃至図3に示すように、本実施形態の半導体パッケージ100は、半導体装置1と、配線基板21の他方側に設けられる冷却用の流路ジャケット50と、を備えて構成される。
半導体装置1は、配線基板21と、配線基板上に搭載される半導体素子10と21、半導体素子10を封止する封止構造部60と、を備えている。
As shown in FIGS. 1 to 3, the semiconductor package 100 of the present embodiment includes the semiconductor device 1 and a cooling flow path jacket 50 provided on the other side of the wiring substrate 21.
The semiconductor device 1 includes a wiring substrate 21, semiconductor elements 10 and 21 mounted on the wiring substrate, and a sealing structure 60 that seals the semiconductor element 10.

配線基板21は、基板部としての絶縁基板20と、絶縁基板20の第1の面20aに形成された接合パッド30と、絶縁基板20の第2の面20bに設けられたフィン構造部40と、を備えている。   The wiring substrate 21 includes an insulating substrate 20 as a substrate portion, a bonding pad 30 formed on the first surface 20a of the insulating substrate 20, and a fin structure portion 40 provided on the second surface 20b of the insulating substrate 20. It is equipped with.

半導体素子10は、IGBT、FET(Field−Effect Transistor)、GTO(gate turn−off thyristor)、トランジスタなどの半導体スイッチや、ダイオード等、電気回路に用いられる様々な半導体素子などである。半導体素子10は、例えば半田12により配線基板21の接合パッド30の表面に固定されている。   The semiconductor element 10 is a semiconductor switch such as an IGBT, an FET (Field-Effect Transistor), a GTO (Gate-Turn-Off Thyristor), a transistor, or various semiconductor elements used in an electric circuit such as a diode. The semiconductor element 10 is fixed to the surface of the bonding pad 30 of the wiring substrate 21 by, for example, solder 12.

絶縁基板20は、セラミックス材で形成される。絶縁基板20は接合パッド30が接合され、半導体素子10が搭載される第1の面20aと、第1の面20aと対向した第2の面20bとを有する方形の板状に構成されている。   The insulating substrate 20 is made of a ceramic material. The insulating substrate 20 is formed in a rectangular plate shape having a first surface 20a on which the bonding pads 30 are bonded and a semiconductor element 10 is mounted, and a second surface 20b facing the first surface 20a. .

絶縁基板20は、粉末状の材料をシート状にして焼結して形成されている。本実施形態では、絶縁基板20は、例えば窒化珪素(SiN)やアルミナ(Al)等のセラミックのシートなどで形成される。複数のシートを積層して形成することも可能である。とくに窒化珪素は強度が高く、線膨張係数が低いため、高温環境においても変形し難い。また、窒化珪素は、アルミナや樹脂等と比較して熱伝導率が高い。絶縁基板20は、セラミックであり、腐食しにくく、また、硬く、強度が高いため、冷却媒体の流速向上や沸騰現象に対する十分な耐量を有する。例えば、絶縁基板20の厚さ、すなわちZ方向寸法は、窒化珪素である場合に0.3mm程度、アルミナの場合には0.6mm程度に構成される。 The insulating substrate 20 is formed by sintering a powdery material into a sheet. In the present embodiment, the insulating substrate 20 is formed of a ceramic sheet such as silicon nitride (SiN) or alumina (Al 2 O 3 ), for example. A plurality of sheets can be stacked and formed. In particular, silicon nitride has high strength and a low coefficient of linear expansion, so that it is difficult to deform even in a high temperature environment. Silicon nitride has a higher thermal conductivity than alumina or resin. Since the insulating substrate 20 is ceramic, hardly corrodes, is hard, and has high strength, the insulating substrate 20 has sufficient resistance to an increase in the flow rate of the cooling medium and a boiling phenomenon. For example, the thickness of the insulating substrate 20, that is, the dimension in the Z direction is configured to be about 0.3 mm in the case of silicon nitride and about 0.6 mm in the case of alumina.

接合パッド30は、回路配線に用いられる銅材料やアルミニウムなどの導電材料をパターンニングして形成される配線層である。本実施形態では接合パッド30は、例えば銅により形成され、厚さ、すなわちZ方向寸法は0.3mm程度に構成される。接合パッド30は、例えば絶縁基板20の表面に半田付けあるいは、ろう接合により、されている。   The bonding pad 30 is a wiring layer formed by patterning a conductive material such as a copper material or aluminum used for circuit wiring. In the present embodiment, the bonding pad 30 is made of, for example, copper, and has a thickness, that is, a Z-direction dimension of about 0.3 mm. The bonding pad 30 is soldered or brazed to the surface of the insulating substrate 20, for example.

ろう接合処理の条件の一例として、例えば1×10−3Pa以下の真空、温度790〜850℃、溶融時間1〜5分、置きろうで接合する。なお、ろう材は、Ag−Cu−Ti系、Cu−Sn−Ti系、Co−Ti系、Ni−Ti系、Al合金系などが用いられる。例えば本実施形態においては一例として、Ag−28wt%Cu−(1〜3)wt%Tiを用いる。   As an example of the conditions of the brazing process, for example, a vacuum of 1 × 10 −3 Pa or less, a temperature of 790 to 850 ° C., and a melting time of 1 to 5 minutes are used to place and join. As the brazing material, Ag-Cu-Ti, Cu-Sn-Ti, Co-Ti, Ni-Ti, Al alloy, or the like is used. For example, in this embodiment, Ag-28 wt% Cu- (1-3) wt% Ti is used as an example.

接合パッド30は、絶縁基板20上においてパターンニングされる。接合パッド30は、半導体素子10を含む回路の一部を構成してもよく、外部から電流を供給するリード11が接続される接続パッド31を含んでいてもよい。   The bonding pad 30 is patterned on the insulating substrate 20. The bonding pad 30 may constitute a part of a circuit including the semiconductor element 10 and may include a connection pad 31 to which a lead 11 that supplies current from the outside is connected.

接合パッド30は、半導体素子10で発生した熱を絶縁基板20の基板面方向、すなわち半導体素子10、接合パッド30、及び絶縁基板20が積層した方向と直交する方向、に拡散するためのヒートスプレッダとしても機能する。   The bonding pad 30 serves as a heat spreader for diffusing the heat generated in the semiconductor element 10 in the direction of the substrate surface of the insulating substrate 20, that is, in the direction orthogonal to the direction in which the semiconductor element 10, the bonding pad 30, and the insulating substrate 20 are stacked. Also works.

フィン構造部40は、絶縁基板20の第2の面20bに一体に接合される。フィン構造部40は、メッキ膜で構成される導電層である下地層41と、複数の柱状のコア部材42と、コア部材42の表面を覆うカバー層43と、を備え、第2の面20bから複数の柱状部44が突出する構造に構成される。   The fin structure portion 40 is integrally joined to the second surface 20b of the insulating substrate 20. The fin structure portion 40 includes a base layer 41 that is a conductive layer formed of a plating film, a plurality of columnar core members 42, and a cover layer 43 that covers the surface of the core member 42, and the second surface 20b. The plurality of columnar portions 44 are configured to protrude from.

ィン構造部40は、冷却媒体が通過する空隙である所定の流路45を構成する。フィン構造部40の表面が冷却面40aを構成する。   The fin structure portion 40 constitutes a predetermined flow path 45 that is a gap through which the cooling medium passes. The surface of the fin structure portion 40 constitutes the cooling surface 40a.

下地層41は、例えばニッケルのメッキ膜で構成される。下地層41は例えば無電解メッキ処理によって絶縁基板20の第2の面の表面に成膜される。下地層41の厚さは配線基板の反りを考慮して、接合パッド30の厚さと同等の厚さ、例えば0.3mm程度に構成される。   The underlayer 41 is made of, for example, a nickel plating film. The underlayer 41 is formed on the surface of the second surface of the insulating substrate 20 by, for example, electroless plating. The thickness of the foundation layer 41 is set to a thickness equivalent to the thickness of the bonding pad 30, for example, about 0.3 mm in consideration of the warpage of the wiring board.

図4に示すように、コア部材42は、例えばCu等の金属から成る細長いピン形状の部材であり、積層方向に沿って延びている。コア部材42は下地層41が形成された絶縁基板20の第2の面において任意の箇所に、複数配置され、立設される。例えば下地層41上の方形の領域において縦横に複数のコア部材42が整列して配置されている。   As shown in FIG. 4, the core member 42 is an elongated pin-shaped member made of a metal such as Cu, and extends along the stacking direction. A plurality of core members 42 are arranged and erected at arbitrary positions on the second surface of the insulating substrate 20 on which the base layer 41 is formed. For example, a plurality of core members 42 are aligned in the vertical and horizontal directions in a rectangular region on the base layer 41.

コア部材42は、一方向に長いベース部42aと、ベース部42aの長手方向端部に設けられる突起部42bと、を備えている。コア部材は、例えばプレスによる打ち抜き加工で形成される。   The core member 42 includes a base portion 42a that is long in one direction, and a protrusion 42b that is provided at an end portion in the longitudinal direction of the base portion 42a. The core member is formed, for example, by punching with a press.

コア部材42はその長手方向が、絶縁基板20の面方向であるXY方向に交差するZ方向に沿って延びている。すなわち、コア部材42は、絶縁基板20と接合パッド30と半導体素子10との積層方向に沿って半導体素子10とは反対側に立設している。   The longitudinal direction of the core member 42 extends along the Z direction intersecting the XY direction which is the surface direction of the insulating substrate 20. That is, the core member 42 is erected on the opposite side of the semiconductor element 10 along the stacking direction of the insulating substrate 20, the bonding pad 30, and the semiconductor element 10.

ベース部42aはZ方向に直交する断面形状が例えば矩形の板状に構成される。ベース部42aはZ方向に沿う長手方向の寸法が例えば数mm程度であり、X方向に沿う幅寸法が例えば1mm程度に構成される。またY方向に沿う厚さ寸法は1mm程度に構成される。   The base portion 42a has a cross-sectional shape orthogonal to the Z direction, for example, a rectangular plate shape. The base portion 42a is configured such that the longitudinal dimension along the Z direction is about several millimeters, for example, and the width dimension along the X direction is about 1 mm, for example. The thickness dimension along the Y direction is about 1 mm.

突起部42bは、Z方向寸法が例えば0.05mm程度、X方向に沿う幅寸法が0.1mm程度、Y方向に沿う厚さ寸法はベース部42aと同様の1mm程度に構成される。   The protrusion 42b is configured to have a Z-direction dimension of, for example, about 0.05 mm, a width dimension along the X direction of about 0.1 mm, and a thickness dimension along the Y direction of about 1 mm, similar to the base section 42a.

コア部材42の端部には突起部42bによって段差42cが形成される。この段差42cにより、下地層41とカバー層43との接合面積やコア部材42表面とカバー層43との接合面積が拡大する。このため下地層41とカバー層43との接合強度が向上し、カバー層43によりコア部材42が絶縁基板20に強固に固定される。   A step 42 c is formed at the end of the core member 42 by the protrusion 42 b. By this step 42 c, the bonding area between the base layer 41 and the cover layer 43 and the bonding area between the surface of the core member 42 and the cover layer 43 are expanded. Therefore, the bonding strength between the base layer 41 and the cover layer 43 is improved, and the core member 42 is firmly fixed to the insulating substrate 20 by the cover layer 43.

なお、突起部42bの数や位置はこれに限られないが、長手方向一端に設けられている場合には、先端付近の冷却水の流れも効率よくコントロールできるという効果が得られる。   The number and positions of the protrusions 42b are not limited to this. However, when the protrusions 42b are provided at one end in the longitudinal direction, an effect that the flow of the cooling water near the tip can be controlled efficiently is obtained.

カバー層43は、例えばニッケルのメッキ膜で構成される。カバー層43は例えば電解メッキ処理によってコア部材42の外表面上及び下地層41の表面に成膜される。このとき、コア部材42の端部の段差43c部分に形成される隙間に金属材料が入り込んで付着し、下地層41との接合面積を拡大できる。カバー層43の厚さは例えば0.1mm程度に構成される。   The cover layer 43 is made of, for example, a nickel plating film. The cover layer 43 is formed on the outer surface of the core member 42 and the surface of the base layer 41 by, for example, electrolytic plating. At this time, the metal material enters and adheres to the gap formed in the step 43 c at the end of the core member 42, and the bonding area with the base layer 41 can be increased. The cover layer 43 has a thickness of about 0.1 mm, for example.

コア部材42の端部のコーナー部分や絶縁基板20との接続部分に形成されるコーナー部分や稜部上にカバー層43が成膜されることにより、フィン構造部40のコーナー部分や稜部の外面は滑らかな湾曲面を構成する。したがって、フィン構造部40によって形成される空隙で構成される冷媒の流路45を規定する壁が滑らかな表面となり、冷媒の流体抵抗を低くすることができる。   By forming the cover layer 43 on the corner portion or the ridge portion formed at the corner portion of the end portion of the core member 42 or the connection portion with the insulating substrate 20, the corner portion or the ridge portion of the fin structure portion 40 is formed. The outer surface constitutes a smooth curved surface. Therefore, the wall defining the refrigerant flow path 45 formed by the gap formed by the fin structure portion 40 becomes a smooth surface, and the fluid resistance of the refrigerant can be lowered.

流路ジャケット50は、フィン構造部40を収容する凹部51aを形成するケース部51を備えている。ケース部51は、フィン構造部40の外周を覆う周壁部51bと、絶縁基板20の第2の面側に対向配置される底壁部51cとを有している。周壁部51bの底壁部51cと反対側の端部は開口51dを形成している。ケース部51とフィン構造部40の外面との間の空隙が冷却媒体の流路45となる。   The flow path jacket 50 includes a case portion 51 that forms a recess 51 a that houses the fin structure portion 40. The case part 51 includes a peripheral wall part 51 b that covers the outer periphery of the fin structure part 40, and a bottom wall part 51 c that is disposed opposite to the second surface side of the insulating substrate 20. An end of the peripheral wall 51b opposite to the bottom wall 51c forms an opening 51d. A gap between the case portion 51 and the outer surface of the fin structure portion 40 serves as a cooling medium flow path 45.

周壁部51bの開口縁はねじ等の締結部材54によって絶縁基板20の外周縁に固定されている。周壁部51bの開口縁には、ステップ部52が形成され、このステップ部52にOリング53が配置されている。Oリング53はシール部材であり、絶縁基板20とステップ部52との間で挟まれて、絶縁基板20と流路ジャケット50との間を封止している。   The opening edge of the peripheral wall portion 51b is fixed to the outer peripheral edge of the insulating substrate 20 by a fastening member 54 such as a screw. A step portion 52 is formed at the opening edge of the peripheral wall portion 51 b, and an O-ring 53 is disposed on the step portion 52. The O-ring 53 is a sealing member, and is sandwiched between the insulating substrate 20 and the step portion 52 to seal between the insulating substrate 20 and the flow path jacket 50.

封止構造部60は、例えば樹脂等により形成された絶縁体である。封止構造部60は、例えばモールドやポッティングにより、半導体パッケージの半導体素子10や接合パッド30等を被覆及び封止している。封止構造部40は、少なくとも半導体素子10を封止することにより半導体素子10が水や空気と接触することを防止し、半導体素子10の劣化を回避している。封止構造部60は、接合パッド30の一部を露出するように配置されてもよい。   The sealing structure portion 60 is an insulator formed of, for example, a resin. The sealing structure unit 60 covers and seals the semiconductor element 10 and the bonding pad 30 of the semiconductor package, for example, by molding or potting. The sealing structure 40 prevents the semiconductor element 10 from coming into contact with water or air by sealing at least the semiconductor element 10, and avoids deterioration of the semiconductor element 10. The sealing structure 60 may be arranged so as to expose a part of the bonding pad 30.

半導体装置1及び半導体パッケージ100において、フィン構造部40の柱状部44の間に形成される流路45を冷媒が流れることで、フィン構造部40が水冷される。流路45を流れる冷媒は,例えば水、エチレングリコール等である。   In the semiconductor device 1 and the semiconductor package 100, the coolant flows through the flow path 45 formed between the columnar portions 44 of the fin structure portion 40, thereby cooling the fin structure portion 40 with water. The refrigerant flowing through the flow path 45 is, for example, water, ethylene glycol or the like.

以下、図5を参照して、本実施形態にかかる半導体装置1及び半導体パッケージ100に用いる配線基板21の製造方法について説明する。   Hereinafter, with reference to FIG. 5, a method for manufacturing the wiring substrate 21 used in the semiconductor device 1 and the semiconductor package 100 according to the present embodiment will be described.

配線基板21の製造工程は、絶縁基板の表面に導電層である下地層41を成膜する導電層形成行程と、下地層41上の所定位置に、フィン構造部40を構成するコア部材42を配置するコア部材配置工程と、コア部材42の外面及び下地層41上に、メッキ処理により、カバー層43を形成するカバー層形成工程と、を備える。   The manufacturing process of the wiring substrate 21 includes a conductive layer forming step of forming a base layer 41 as a conductive layer on the surface of the insulating substrate, and a core member 42 constituting the fin structure portion 40 at a predetermined position on the base layer 41. A core member arranging step of arranging, and a cover layer forming step of forming the cover layer 43 on the outer surface of the core member and the base layer 41 by plating.

具体的には、まず、例えば、セラミック材の粉末状の材料をシート状にして焼結することで、所定形状の絶縁基板20を製造する。   Specifically, first, for example, the insulating substrate 20 having a predetermined shape is manufactured by sintering a powdery material of a ceramic material into a sheet shape.

そして、この絶縁基板上の表面に無電解メッキ処理を施し、下地層41となる導電層としての薄膜導電層を形成する(導電層形成行程)。   Then, an electroless plating process is performed on the surface of the insulating substrate to form a thin film conductive layer as a conductive layer to be the base layer 41 (conductive layer forming step).

次に、下地層41上の所定位置に、例えばAgナノ材料からなる接合材46を介在させてピン状のコア部材42を長手方向が面方向に交差するように立てて仮付けする(コア部材配置工程)。なお、コア部材42は予めプレス加工による打ち抜きで所定形状に形成される。   Next, a pin-shaped core member 42 is temporarily attached to a predetermined position on the base layer 41 with a bonding material 46 made of, for example, an Ag nanomaterial interposed so that the longitudinal direction intersects the plane direction (core member). Placement process). The core member 42 is formed in a predetermined shape by punching by press processing in advance.

具体的には、例えば複数のコア部材42を基板上方にセットし振動を与えながら落下させる振り込み処理を行うことで、複数のコア部材を絶縁基板20の表面上の所定位置に立設状態で整列して供給する。   Specifically, for example, a plurality of core members 42 are set up above the substrate and subjected to a transfer process in which the core members 42 are dropped while applying vibration, thereby aligning the plurality of core members in a standing position on the surface of the insulating substrate 20. And supply.

このとき、絶縁基板20上に複数のコア部材42を支持する供給部28aと、所望の位置に対応する孔部28cを備える位置決め用治具28bと、当該孔部にコア部材42を案内するテーパ状のガイド部材28dと、を備える振り込み式の供給装置28を用いることで、所望の位置にコア部材42を立位状態で配列することができる。   At this time, a supply portion 28a for supporting the plurality of core members 42 on the insulating substrate 20, a positioning jig 28b having a hole portion 28c corresponding to a desired position, and a taper for guiding the core member 42 into the hole portion. The core member 42 can be arranged in a standing position at a desired position by using the transfer type supply device 28 provided with the guide member 28d.

コア部材42が立位状態で基板20の第2の面にセットされた状態で、導電ゴム材料で構成される支持部材29で押圧することによりコア部材42を抑え、電解メッキ処理装置を用いて電解メッキ処理を施すことにより、下地層41上及びコア部材42の表面に導電性のメッキ膜を形成し、カバー層43を構成する(カバー層形成工程)。   In a state where the core member 42 is set on the second surface of the substrate 20 in a standing state, the core member 42 is suppressed by pressing with a support member 29 made of a conductive rubber material, and an electrolytic plating apparatus is used. By performing an electrolytic plating process, a conductive plating film is formed on the base layer 41 and on the surface of the core member 42 to form the cover layer 43 (cover layer forming step).

このとき、カバー層43が下地層41及びコア部材42の表面に付着することで、コア部材42及びカバー層43が固定され、柱状部44が絶縁基板20の第2の面20b上に形成され、フィン構造部40が構成される。   At this time, the cover layer 43 adheres to the surface of the base layer 41 and the core member 42, whereby the core member 42 and the cover layer 43 are fixed, and the columnar portion 44 is formed on the second surface 20b of the insulating substrate 20. The fin structure 40 is configured.

このとき、突起部42bの周りの段差42cにできる隙間にカバー層43のメッキ膜が入り込み、コア部材42と下地層41に固着することで、下地層41にコア部材42とカバー層43が固着し、高い接合強度が得られる。   At this time, the plating film of the cover layer 43 enters the gap formed in the step 42 c around the protrusion 42 b and is fixed to the core member 42 and the base layer 41, so that the core member 42 and the cover layer 43 are fixed to the base layer 41. In addition, high bonding strength can be obtained.

さらに絶縁基板20の第1の面20aにろう付け等の処理によって、接合パッド30やリード接続用の接続パッド31を形成することで、配線基板21が製造される。   Furthermore, the wiring board 21 is manufactured by forming the bonding pads 30 and the connection pads 31 for lead connection on the first surface 20a of the insulating substrate 20 by a process such as brazing.

以上の様に構成された配線基板21の接合パッド30上に、半田12を用いて半導体素子10を搭載し、半導体装置1が完成する。さら樹脂封止処理によって封止構造部60を形成し、一方で、第2の面20b側に流路ジャケット50を被せ、ねじ止め等によって固定することで半導体パッケージ100が完成する。   The semiconductor device 10 is mounted on the bonding pads 30 of the wiring board 21 configured as described above using the solder 12 to complete the semiconductor device 1. Further, the sealing structure 60 is formed by a resin sealing process. On the other hand, the flow path jacket 50 is placed on the second surface 20b side and fixed by screwing or the like, thereby completing the semiconductor package 100.

以上の様に構成された半導体装置1は、熱源である半導体素子10と、冷却媒体と接触するフィン構造部40の冷却面40aとの間に、半田12と、接合パッド30と、絶縁基板20と、フィン構造部40と、を有している。したがって、半導体素子10で発生した熱は、接合パッド30へ伝熱され、さらに絶縁基板20を介してフィン構造部40に伝熱されて冷却媒体により冷却される。また、接合パッド30にリードが接続される場合には、リードから接合パッド30へ流れる電流によりリードと接合パッド30との接続部分で熱が発生する。リードと接合パッド30との間で発生した熱は、接合パッド30へ伝熱され、さらに絶縁基板20を介してフィン構造部40へ伝熱されて冷却媒体により冷却される。   The semiconductor device 1 configured as described above includes the solder 12, the bonding pad 30, and the insulating substrate 20 between the semiconductor element 10 that is a heat source and the cooling surface 40a of the fin structure portion 40 that is in contact with the cooling medium. And a fin structure portion 40. Therefore, the heat generated in the semiconductor element 10 is transferred to the bonding pad 30 and further transferred to the fin structure 40 via the insulating substrate 20 and cooled by the cooling medium. Further, when a lead is connected to the bonding pad 30, heat is generated at a connection portion between the lead and the bonding pad 30 due to a current flowing from the lead to the bonding pad 30. The heat generated between the lead and the bonding pad 30 is transferred to the bonding pad 30, further transferred to the fin structure 40 via the insulating substrate 20, and cooled by the cooling medium.

本実施形態の半導体装置1及び半導体パッケージ100では、例えば絶縁基板20の表面のろう付けによる接合部分よりも,熱抵抗の高いメッキ膜からなる導電層で絶縁基板20の裏面が封止されていることにより、セラミックス材で構成される絶縁基板20から、フィン構造部40への、伝熱速度を遅らせることができる。したがって、絶縁基板20において面方向に熱を拡散させることができる。このため、例えばセラミックス材の基板の表面上に熱を拡散させるための厚銅板を設ける構成と比べて、厚さ寸法を小さく抑えながら、高い冷却性能を得ることができる。   In the semiconductor device 1 and the semiconductor package 100 of this embodiment, the back surface of the insulating substrate 20 is sealed with a conductive layer made of a plating film having a higher thermal resistance than, for example, a joint portion formed by brazing the surface of the insulating substrate 20. Thus, the heat transfer rate from the insulating substrate 20 made of a ceramic material to the fin structure portion 40 can be delayed. Therefore, heat can be diffused in the surface direction in the insulating substrate 20. For this reason, compared with the structure which provides the thick copper plate for diffusing heat on the surface of the board | substrate of a ceramic material, for example, high cooling performance can be obtained, suppressing a thickness dimension small.

また、配線基板21によれば、絶縁基板20にメッキ膜で構成される下地層41が形成されているため、ろう付けなど高温下で処理する際の配線基板21の反りや変形を防止することができる。   Further, according to the wiring substrate 21, since the base layer 41 made of a plating film is formed on the insulating substrate 20, it is possible to prevent the wiring substrate 21 from being warped or deformed during processing at a high temperature such as brazing. Can do.

さらに、絶縁基板20の裏面にフィン構造部40を構成し冷却媒体の流路45を設けることで、冷却面40aの面積を拡大し、冷却性能を向上できる。   Furthermore, by forming the fin structure portion 40 on the back surface of the insulating substrate 20 and providing the cooling medium flow path 45, the area of the cooling surface 40a can be expanded and the cooling performance can be improved.

本実施形態の半導体装置1及び半導体パッケージ100は、配線基板21上に半導体素子10と、接合パッド30と、封止構造部60と、を備える構成としたことで、半田等の接合材を介して絶縁基板下に例えば銅製のベースプレートを備えた従来の構成と比べて部材や工程数が少なくなるため、小型化、軽量化、低価格化を実現することが可能となる。また、ベースプレートと冷却器をグリースを介して接続した場合と比較して、熱を効率欲、伝達することができる。   The semiconductor device 1 and the semiconductor package 100 of the present embodiment are configured to include the semiconductor element 10, the bonding pad 30, and the sealing structure portion 60 on the wiring substrate 21, so that a bonding material such as solder is interposed therebetween. Thus, since the number of members and processes is reduced as compared with the conventional configuration in which, for example, a copper base plate is provided under the insulating substrate, it is possible to realize a reduction in size, weight, and cost. Also, heat can be transmitted and transmitted more efficiently than when the base plate and the cooler are connected via grease.

さらに、セラミック材からなる絶縁基板の表面に所定形状のコア部材を設置してメッキ膜によって被覆する構成で、所望のフィン構造40を構築できるため、低コストで冷却性能の高い配線基板及び配線基板を含む半導体パッケージを提供することができる。例えば、セラミックス基板上にセラミックス材で構成されるフィンを積層により製造する場合と比べ、コア部材を設置してメッキ膜を形成するだけの単純な処理で済むため、フィン構造部40の製造コストを低く抑えられる。   Furthermore, since a desired fin structure 40 can be constructed with a structure in which a core member having a predetermined shape is installed on the surface of an insulating substrate made of a ceramic material and covered with a plating film, the wiring substrate and the wiring substrate having high cooling performance at low cost Can be provided. For example, compared with the case where fins made of a ceramic material are manufactured by stacking on a ceramic substrate, a simple process of installing a core member and forming a plating film is sufficient, so the manufacturing cost of the fin structure portion 40 can be reduced. It can be kept low.

また、コア部材42の形状や治具の孔部の配置の設定によって、フィン構造部40の形状やレイアウトを任意に設定できる。   Further, the shape and layout of the fin structure portion 40 can be arbitrarily set by setting the shape of the core member 42 and the arrangement of the hole portions of the jig.

さらに、フィン構造部40の外面にメッキ膜でカバー層43を形成することでコーナー部分にメッキ膜が堆積し、滑らかな連続した壁面を構成でき、流路45の抵抗を低く抑えることができるため、冷却用の流体を高効率で案内できるとともに、例えば冷媒の沸騰により生じる気泡の滞留を防止できる。
[第2実施形態]
以下、第2実施形態にかかる配線基板22及び半導体装置2について、図6を参照して説明する。図6は、第2実施形態に係る半導体装置の構成を示す説明図である。なお、第2実施形態にかかる配線基板22及び半導体装置2は、コア部材142が板状であって、流路を形成する壁状部材144を複数備えるフィン構造部140を有する点が上記第1実施形態と異なる。この他は第1実施形態にかかる配線基板21及び半導体装置1と同様であるため、重複する説明は省略する。
Further, the cover layer 43 is formed with a plating film on the outer surface of the fin structure portion 40, so that the plating film is deposited on the corner portion, a smooth continuous wall surface can be formed, and the resistance of the flow path 45 can be kept low. In addition to being able to guide the cooling fluid with high efficiency, it is possible to prevent air bubbles from staying due to, for example, boiling of the refrigerant.
[Second Embodiment]
The wiring board 22 and the semiconductor device 2 according to the second embodiment will be described below with reference to FIG. FIG. 6 is an explanatory diagram showing the configuration of the semiconductor device according to the second embodiment. Note that the wiring board 22 and the semiconductor device 2 according to the second embodiment have the fin structure part 140 that includes the core member 142 having a plate shape and a plurality of wall-like members 144 that form flow paths. Different from the embodiment. Since the rest is the same as that of the wiring substrate 21 and the semiconductor device 1 according to the first embodiment, a duplicate description is omitted.

図6は、第2実施形態の配線基板22及び半導体装置2の構成の一例を説明するための断面図である。なお、図6において説明のため一部を側面で示している。   FIG. 6 is a cross-sectional view for explaining an example of the configuration of the wiring board 22 and the semiconductor device 2 of the second embodiment. In addition, in FIG. 6, a part is shown by the side surface for description.

半導体装置2は、X方向に並列して絶縁基板20からZ方向に立設する複数の壁状部144を有するフィン構造部140を備えている。フィン構造部140は、導電層からなる下地層141と、梁状のコア部材142と、メッキ膜から成るカバー層143の積層構造で構成される。   The semiconductor device 2 includes a fin structure portion 140 having a plurality of wall-like portions 144 erected in the Z direction from the insulating substrate 20 in parallel with the X direction. The fin structure section 140 has a laminated structure of a base layer 141 made of a conductive layer, a beam-like core member 142, and a cover layer 143 made of a plating film.

コア部材142は銅などの金属材料から、例えばY方向に沿って配置される梁状の部材であって、YZ平面に沿う所定の壁を形成している。コア部材142は突起部142b及び段差142cを有している。このコア部材142の外面にメッキ膜からなるカバー層143が形成されている。   The core member 142 is a beam-like member that is disposed along the Y direction, for example, from a metal material such as copper, and forms a predetermined wall along the YZ plane. The core member 142 has a protrusion 142b and a step 142c. A cover layer 143 made of a plating film is formed on the outer surface of the core member 142.

フィン構造部140は各がYZ平面に沿う複数の壁状部144をX方向において複数並列して備える。このため、半導体装置2の半導体素子10の裏側には、複数の壁状部144間の隙間においてY方向に沿う流路145が形成され、壁状部144によって流れの方向がY方向に案内される。   The fin structure section 140 includes a plurality of wall-shaped sections 144, each of which extends along the YZ plane, in parallel in the X direction. For this reason, on the back side of the semiconductor element 10 of the semiconductor device 2, a flow path 145 is formed along the Y direction in the gaps between the plurality of wall portions 144, and the flow direction is guided in the Y direction by the wall portions 144. The

本実施形態においても、上記第1実施形態と同様の効果を奏する。また、壁状のコア部材142を用いて所定の流路を構成することで、冷媒の流れを案内することができるため、冷却効率が向上する。
[第3実施形態]
以下、第3実施形態にかかる配線基板23及び半導体装置3について、図7を参照して説明する。図7は、第2実施形態に係る半導体装置の構成を示す説明図である。なお、第3実施形態にかかる配線基板23及び半導体装置3は半導体素子10の設置部の裏側に凸部70を備える点が上記第1実施形態と異なる。この他は第1実施形態にかかる配線基板21及び半導体装置1と同様であるため、重複する説明は省略する。
Also in this embodiment, there exists an effect similar to the said 1st Embodiment. In addition, by configuring the predetermined flow path using the wall-shaped core member 142, the flow of the refrigerant can be guided, so that the cooling efficiency is improved.
[Third Embodiment]
The wiring board 23 and the semiconductor device 3 according to the third embodiment will be described below with reference to FIG. FIG. 7 is an explanatory diagram showing the configuration of the semiconductor device according to the second embodiment. The wiring board 23 and the semiconductor device 3 according to the third embodiment are different from the first embodiment in that a convex portion 70 is provided on the back side of the installation portion of the semiconductor element 10. Since the rest is the same as that of the wiring substrate 21 and the semiconductor device 1 according to the first embodiment, a duplicate description is omitted.

図7は、第3実施形態の配線基板23及び半導体装置3の構成の一例を説明するための断面図である。なお、XZ面に沿う断面図は図1と同様である。   FIG. 7 is a cross-sectional view for explaining an example of the configuration of the wiring board 23 and the semiconductor device 3 of the third embodiment. The cross-sectional view along the XZ plane is the same as FIG.

半導体装置3において、絶縁基板20の第2の面20b側であって、半導体素子10の設置部すなわち接合パッド30の設置部位の裏側の領域において、凸部70が設けられている。凸部70は、例えば金属から成る複数の板状部材が積層して構成されている。   In the semiconductor device 3, the convex portion 70 is provided in the region on the second surface 20 b side of the insulating substrate 20 and on the back side of the installation portion of the semiconductor element 10, that is, the installation site of the bonding pad 30. The convex portion 70 is configured by laminating a plurality of plate-like members made of, for example, metal.

なお、コア部材42は半導体素子10の設置部すなわちパッド30部の設置部位の裏側の領域を除く部分に配置されている。   The core member 42 is disposed in a portion excluding the region on the back side of the installation portion of the semiconductor element 10, that is, the installation portion of the pad 30 portion.

これらのコア部材42及び凸部70の外面に、メッキ膜からなるカバー層43が形成されている。   A cover layer 43 made of a plating film is formed on the outer surfaces of the core member 42 and the convex portion 70.

すなわちフィン構造部40は図7に示すように、接合パッド30の裏側に柱状部44がなく、接合パッド30のX方向及びY方向の中央位置が柱状部44の高さよりも低く隆起した構造となる。   That is, as shown in FIG. 7, the fin structure portion 40 does not have the columnar portion 44 on the back side of the bonding pad 30, and the center position of the bonding pad 30 in the X direction and the Y direction protrudes lower than the height of the columnar portion 44. Become.

本実施形態においても、上記第1実施形態と同様の効果を奏する。また、半導体素子10が搭載される部分において絶縁基板20が薄すぎると基板として十分な強度を得ることができず、衝撃等が加えられた際に絶縁基板20が破損してしまうが、本実施形態においては、凸部70を構成する板状部材によって半導体素子10の搭載部分が保護されるため耐衝撃性が向上する。   Also in this embodiment, there exists an effect similar to the said 1st Embodiment. In addition, if the insulating substrate 20 is too thin in the portion where the semiconductor element 10 is mounted, sufficient strength as a substrate cannot be obtained, and the insulating substrate 20 is damaged when an impact or the like is applied. In the embodiment, the mounting portion of the semiconductor element 10 is protected by the plate-like member constituting the convex portion 70, so that the impact resistance is improved.

なお、冷却手段として冷媒をY方向に案内する他に、図7中矢印で示すように半導体素子10の裏側に冷媒を噴射することも可能である。この場合にも冷媒を効率よく循環させることができる。さらに、沸騰冷却により気泡が生じた場合には、図7中破線の矢印で示すように隆起部分の両側を回って気泡が案内されることで、壁面に気泡が滞留するのを防止できる。
[第4実施形態]
以下、第4実施形態にかかる配線基板24及び半導体装置4について、図8、及び図9を参照して説明する。図8及び9は、第4実施形態に係る半導体装置の構成を示す説明図である。図8はY軸方向から見た図であり、図9はX軸方向から見た図である。なお、図9において説明のため一部を側面で示している。
なお、第5実施形態にかかる配線基板24及び半導体装置4は、第1実施形態にかかる複数の柱状部44を有するフィン構造部40とは異なり、コア部材42の先端側の外面が絶縁基板20の面方向に沿う平面状に連続する冷却構造部240を備えている。この他は第1実施形態にかかる配線基板21及び半導体装置1と同様であるため、重複する説明は省略する。
In addition to guiding the refrigerant in the Y direction as a cooling means, it is also possible to inject the refrigerant to the back side of the semiconductor element 10 as indicated by an arrow in FIG. Also in this case, the refrigerant can be circulated efficiently. Further, when bubbles are generated by boiling cooling, the bubbles are guided around the both sides of the raised portion as shown by the broken arrows in FIG. 7, thereby preventing the bubbles from staying on the wall surface.
[Fourth Embodiment]
Hereinafter, the wiring board 24 and the semiconductor device 4 according to the fourth embodiment will be described with reference to FIGS. 8 and 9. 8 and 9 are explanatory views showing the configuration of the semiconductor device according to the fourth embodiment. 8 is a diagram viewed from the Y-axis direction, and FIG. 9 is a diagram viewed from the X-axis direction. In FIG. 9, a part is shown on the side surface for explanation.
Note that the wiring substrate 24 and the semiconductor device 4 according to the fifth embodiment are different from the fin structure portion 40 having the plurality of columnar portions 44 according to the first embodiment in that the outer surface on the tip side of the core member 42 is the insulating substrate 20. The cooling structure 240 continues in a planar shape along the surface direction. Since the rest is the same as that of the wiring substrate 21 and the semiconductor device 1 according to the first embodiment, a duplicate description is omitted.

冷却構造部240は、下地層241と、下地層241上に複数立設するコア部材242と、これらを覆うカバー層243と、を備える。コア部材242は例えばピン状または板状であって、半導体素子10の設置部位の裏側を含むエリアに複数立設して配置されている。コア部材242の長手方向の寸法は10mm程度である。   The cooling structure 240 includes a base layer 241, a plurality of core members 242 standing on the base layer 241, and a cover layer 243 that covers them. The core member 242 has, for example, a pin shape or a plate shape, and a plurality of the core members 242 are arranged in an area including the back side of the installation site of the semiconductor element 10. The longitudinal dimension of the core member 242 is about 10 mm.

本実施形態にかかる配線基板24では、カバー層243の表面が平面状に連続している。   In the wiring board 24 according to this embodiment, the surface of the cover layer 243 is continuous in a planar shape.

本実施形態においても、上記第1実施形態と同様に、下地層241によって裏面が封止された絶縁基板20において、熱の伝達速度が減速することで、熱を面方向に拡散させることが可能である。このため、厚さ方向の寸法を小さく抑えながら、高い冷却性能が得られる。   Also in the present embodiment, similarly to the first embodiment, in the insulating substrate 20 whose back surface is sealed by the base layer 241, heat can be diffused in the surface direction by reducing the heat transfer rate. It is. For this reason, high cooling performance is obtained while keeping the dimension in the thickness direction small.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、流路ジャケット50を省略してもよい。その場合であっても、上述の第1実施形態の配線基板及び半導体パッケージと同様の効果を得ることができる。また、第1実施形態及び第2実施形態において、封止構造部40は接合パッド30の一部を露出して半導体素子10を覆うように配置されても良い。その場合であっても上述の第1実施形態及び第2実施形態と同様の効果を得ることができる。また、配線基板21を流路ジャケット50に固定する方法は上述の方法に限定されるものではない。   For example, the flow path jacket 50 may be omitted. Even in that case, the same effects as those of the wiring substrate and the semiconductor package of the first embodiment described above can be obtained. In the first embodiment and the second embodiment, the sealing structure 40 may be disposed so as to cover the semiconductor element 10 by exposing a part of the bonding pad 30. Even in such a case, the same effects as those of the first and second embodiments described above can be obtained. Further, the method of fixing the wiring board 21 to the flow path jacket 50 is not limited to the method described above.

さらに流路を形成するコア部材42,142等の配置や形状は上記に限られるものではない。例えば第1実施形態においては半導体素子10の搭載部分の裏側に柱状部44を配置したが、これに限られるものではなく、例えば図10に示す配線基板25及び半導体装置5のように、半導体素子10の搭載部分の裏側の領域を除く位置に柱状部44や壁状部144を配置する構成としてもよい。   Further, the arrangement and shape of the core members 42 and 142 forming the flow path are not limited to the above. For example, in the first embodiment, the columnar portion 44 is disposed on the back side of the mounting portion of the semiconductor element 10. However, the present invention is not limited to this. For example, as in the wiring substrate 25 and the semiconductor device 5 illustrated in FIG. The columnar portion 44 and the wall-shaped portion 144 may be arranged at a position excluding the region on the back side of the 10 mounting portions.

また、例えば他の実施形態に係るコア部材342は、例えば図11に示すように断面視円形の軸部材を軸方向に対して斜めに切断した形状としてもよい。この場合にあっても基板の裏面の下地層41に先端部分を対向させて保持した状態でメッキ処理することにより、先端部分の周りに形成される隙間にメッキ膜が入り込むことで強固な接合が可能となる。   Further, for example, the core member 342 according to another embodiment may have a shape obtained by cutting a shaft member having a circular cross-sectional view obliquely with respect to the axial direction as illustrated in FIG. 11, for example. Even in this case, the plating process is performed in a state where the tip portion is held opposite to the base layer 41 on the back surface of the substrate, so that the plating film enters the gap formed around the tip portion so that strong bonding is achieved. It becomes possible.

また、例えば他の実施形態に係るコア部材442は、例えば図12に示すように断面視円形の軸部材からなり、先端面の一部に軸方向に突出する突起部442bを有する形状としてもよい。例えば図13に示すように、段差を有するカッタ445で切断することにより一部に突起を残した状態で切断される。この場合にあっても基板の裏面の下地層41に、先端部分を対向させて保持した状態でメッキ処理することにより、段差442cに形成される隙間にメッキ膜が入り込むことで強固な接合が可能となる。   Further, for example, the core member 442 according to another embodiment may be formed of a shaft member having a circular cross-sectional view as shown in FIG. 12, for example, and having a protruding portion 442b protruding in the axial direction at a part of the tip surface. . For example, as shown in FIG. 13, cutting is performed with a projection remaining in a part by cutting with a cutter 445 having a step. Even in this case, a strong bonding is possible because the plating film enters the gap formed in the step 442c by plating the base layer 41 on the back surface of the substrate while holding the tip portion facing the substrate. It becomes.

また、例えば他の実施形態に係るコア部材542は、例えば図14に示すように断面視矩形の棒状部材からなり、先端面の一部に軸方向に突出する突起を有する形状としてもよい。   Further, for example, the core member 542 according to another embodiment may be formed of a rod-like member having a rectangular cross-sectional view as shown in FIG. 14, for example, and may have a shape having a protrusion protruding in the axial direction at a part of the tip surface.

なお、突起部42bはコア部材42の一端にのみに設けられている例を示したが、これに限られるものではない。例えば図15に示すコア部材642のように、長手方向両端に突起部642bを有する構造としてもよい。このように両端に突起部642bが設けられている場合には、製造工程において、コア部材642の供給時に方向の調整が不要となり、振り込み法で容易に整列させることができるため生産性が高い。   In addition, although the projection part 42b showed the example provided only in the end of the core member 42, it is not restricted to this. For example, like the core member 642 shown in FIG. 15, it is good also as a structure which has the projection part 642b at a longitudinal direction both ends. When the protrusions 642b are provided at both ends as described above, it is not necessary to adjust the direction when supplying the core member 642 in the manufacturing process, and the alignment can be easily performed by the transfer method, so that productivity is high.

また、フィン構造部40、140の構造も上記実施形態に限られるものではない。例えば複数の柱状部44や複数の壁状部144の先端同士を連続する板状部材で覆うなど、他の形状であってもよい。   Further, the structure of the fin structure portions 40 and 140 is not limited to the above embodiment. For example, other shapes such as covering the tips of the plurality of columnar portions 44 and the plurality of wall-shaped portions 144 with continuous plate-like members may be used.

1、2,3…半導体装置、10…半導体素子、21、22、23、24…配線基板、20…絶縁基板(基板部)、20A…第1の面、20B…第2の面、30…接合パッド、31…接続パッド、40…フィン構造部、40A…冷却面、41…カバー層、41…下地層(導電層)、42…コア部材、42A…ベース部、42B…突起部、42C…段差、43…カバー層、44…柱状部、45…流路、50…流路ジャケット、51…ケース部、51A…凹部、51B…周壁部、51C…底壁部、51D…開口、52…ステップ部、53…Oリング、54…締結部材、60…封止構造部、70…凸部、100…半導体パッケージ、140…冷却構造部、142…コア部材、144…壁状部。   DESCRIPTION OF SYMBOLS 1, 2, 3 ... Semiconductor device, 10 ... Semiconductor element, 21, 22, 23, 24 ... Wiring board, 20 ... Insulating substrate (board | substrate part), 20A ... 1st surface, 20B ... 2nd surface, 30 ... Bonding pad 31 ... Connection pad 40 ... Fin structure part 40A ... Cooling surface 41 ... Cover layer 41 ... Underlayer (conductive layer) 42 ... Core member 42A ... Base part 42B ... Protrusion part 42C ... Step, 43 ... Cover layer, 44 ... Columnar part, 45 ... Channel, 50 ... Channel jacket, 51 ... Case part, 51A ... Recess, 51B ... Peripheral wall part, 51C ... Bottom wall part, 51D ... Opening, 52 ... Step , 53 ... O-ring, 54 ... fastening member, 60 ... sealing structure part, 70 ... convex part, 100 ... semiconductor package, 140 ... cooling structure part, 142 ... core member, 144 ... wall-like part.

Claims (8)

絶縁層がセラミックス材で構成され、前記絶縁層の一方の主面に配線層が形成された基板部と、
前記基板部の他方の面に形成される導電層と、
金属材料で構成され、前記基板部の前記導電層上に立設されるコア部材と、
金属材料のメッキ膜で構成され、前記コア部材の外表面に設けられるカバー層と、
を備える、配線基板。
A substrate part in which the insulating layer is made of a ceramic material, and a wiring layer is formed on one main surface of the insulating layer;
A conductive layer formed on the other surface of the substrate portion;
A core member made of a metal material and erected on the conductive layer of the substrate portion;
A cover layer that is formed of a plating film of a metal material and is provided on the outer surface of the core member;
A wiring board comprising:
前記基板部の第1の面に、金属で構成される接合パッドが設けられ、
前記基板部の前記第1の面と対向する第2の面に前記導電層が設けられ、
前記カバー層は、前記導電層の表面と、前記導電層上に配置された前記コア部材の外表面を覆うことで、前記コア部材を前記導電層に固定する、請求項1記載の配線基板。
A bonding pad made of metal is provided on the first surface of the substrate portion,
The conductive layer is provided on a second surface of the substrate portion facing the first surface;
The wiring board according to claim 1, wherein the cover layer fixes the core member to the conductive layer by covering a surface of the conductive layer and an outer surface of the core member disposed on the conductive layer.
前記コア部材はピン形状であり、
前記コア部材と前記カバー層とにより、複数の柱状部を備えるフィン構造部が構成されることを特徴とする請求項1記載の配線基板。
The core member has a pin shape,
The wiring board according to claim 1, wherein the core member and the cover layer constitute a fin structure portion including a plurality of columnar portions.
前記コア部材と前記カバー層とは、冷却用の流体を案内する壁状部を構成する請求項1乃至3のいずれか記載の配線基板。   The wiring board according to claim 1, wherein the core member and the cover layer constitute a wall-shaped portion that guides a cooling fluid. 前記コア部材は、前記基板部に対向する端部に段差を備える請求項2乃至4のいずれか記載の配線基板。   The wiring substrate according to claim 2, wherein the core member has a step at an end portion facing the substrate portion. 請求項1乃至5のいずれか記載の配線基板と、
前記配線基板の前記基板部の前記第1の面に配される半導体素子と、
前記半導体素子を封止する封止構造部と、
を備える半導体装置。
A wiring board according to any one of claims 1 to 5,
A semiconductor element disposed on the first surface of the substrate portion of the wiring board;
A sealing structure for sealing the semiconductor element;
A semiconductor device comprising:
請求項6記載の半導体装置と、
前記基板部の前記第1の面に対向する第2の面に対向配置され、前記配線基板との間に流路を構成する流路ジャケットと、を備える半導体パッケージ。
A semiconductor device according to claim 6;
A semiconductor package comprising: a channel jacket disposed opposite to the second surface of the substrate unit facing the first surface and forming a channel with the wiring substrate.
セラミックス材で構成される基板部の表面に、導電層を成膜することと、
前記導電層上の所定位置に、コア部材を配置し、前記コア部材及び前記導電層上に、メッキ処理により、メッキ膜で構成されるカバー層を形成することと、
を備える配線基板の製造方法。
Forming a conductive layer on the surface of the substrate portion made of a ceramic material;
A core member is disposed at a predetermined position on the conductive layer, and a cover layer formed of a plating film is formed on the core member and the conductive layer by plating;
A method of manufacturing a wiring board comprising:
JP2015093166A 2015-04-30 2015-04-30 Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board Pending JP2016213245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015093166A JP2016213245A (en) 2015-04-30 2015-04-30 Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093166A JP2016213245A (en) 2015-04-30 2015-04-30 Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board

Publications (1)

Publication Number Publication Date
JP2016213245A true JP2016213245A (en) 2016-12-15

Family

ID=57549853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093166A Pending JP2016213245A (en) 2015-04-30 2015-04-30 Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board

Country Status (1)

Country Link
JP (1) JP2016213245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017649A1 (en) * 2021-08-11 2023-02-16 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device package and heat dissipating lead frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017649A1 (en) * 2021-08-11 2023-02-16 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device package and heat dissipating lead frame

Similar Documents

Publication Publication Date Title
JP5046378B2 (en) Power semiconductor module and power semiconductor device equipped with the module
US11129310B2 (en) Semiconductor module, vehicle and manufacturing method
JP5434986B2 (en) Semiconductor module and semiconductor device including the same
US11456233B2 (en) Semiconductor module, vehicle and manufacturing method
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US10396023B2 (en) Semiconductor device
CN109314063B (en) Power semiconductor device
WO2013118478A1 (en) Semiconductor device
JP2010171279A (en) Heat radiator
US10090222B2 (en) Semiconductor device with heat dissipation and method of making same
US11232991B2 (en) Semiconductor apparatus
JP2006303290A (en) Semiconductor device
JP6350364B2 (en) Connection structure
JP2016127279A (en) Wiring board and semiconductor package including wiring board
US11637052B2 (en) Semiconductor device and semiconductor device manufacturing method
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2017054842A (en) Wiring board, semiconductor device, and semiconductor package
KR20180087330A (en) Metal slug for double sided cooling of power module
JP2008124187A6 (en) Power module base
JP2008124187A (en) Base for power module
JP2016213245A (en) Wiring board, semiconductor device, semiconductor package, and manufacturing method of wiring board
JP2017054855A (en) Semiconductor device, and semiconductor package
JP2010062491A (en) Semiconductor device and composite semiconductor device
JP5125530B2 (en) Power converter
JP7059714B2 (en) Power converter and manufacturing method of power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170905