JP2016211970A - Optical measurement device and optical measurement method - Google Patents

Optical measurement device and optical measurement method Download PDF

Info

Publication number
JP2016211970A
JP2016211970A JP2015096029A JP2015096029A JP2016211970A JP 2016211970 A JP2016211970 A JP 2016211970A JP 2015096029 A JP2015096029 A JP 2015096029A JP 2015096029 A JP2015096029 A JP 2015096029A JP 2016211970 A JP2016211970 A JP 2016211970A
Authority
JP
Japan
Prior art keywords
main surface
ultraviolet light
wavelength conversion
light
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096029A
Other languages
Japanese (ja)
Other versions
JP6511331B2 (en
Inventor
鉄美 越智
Tetsumi Ochi
鉄美 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2015096029A priority Critical patent/JP6511331B2/en
Publication of JP2016211970A publication Critical patent/JP2016211970A/en
Application granted granted Critical
Publication of JP6511331B2 publication Critical patent/JP6511331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical measurement technology that can obtain a plane intensity distribution of ultraviolet light.SOLUTION: An optical measurement device 10 comprises a wavelength conversion plate 20 that includes a wavelength conversion material converts ultraviolet light 61 into visible light 62, and has a first principal plane 21, and a second principal plane 22 provided on a side opposite the first principal plane 21 to convert the ultraviolet light 61 to be incident upon the first principal plane 21 into the visible light 62 and causing the visible light to be emitted. The optical measurement device 10 may include: a transparent substrate 24 that transmits the ultraviolet light 61; and a wavelength conversion layer 26 that includes the wavelength conversion material to be provided on the transparent substrate 24. The first principal plane 21, transparent substrate 24, wavelength conversion layer 26 and second principal plane 22 may be sequentially arranged.SELECTED DRAWING: Figure 1

Description

本発明は、光測定装置および光測定方法に関し、特に、紫外光の測定に関する。   The present invention relates to a light measurement device and a light measurement method, and more particularly to measurement of ultraviolet light.

紫外光は、樹脂硬化の分野や、医療や食品分野における滅菌もしくは殺菌処理などで広く用いられている。紫外光による滅菌もしくは殺菌効果を適切に得るには、紫外光を所定の強度で処理対象に照射することが必要とされる。紫外光の強度を測定する方法として、シリコンフォトディテクタなどの受光素子により紫外光を直接検出する方法や、蛍光体を用いて紫外光を可視光に変換し、変換した可視光の強度から紫外光の強度を間接的に検出する方法がある(例えば、特許文献1参照)。   Ultraviolet light is widely used in the fields of resin curing, sterilization or sterilization treatment in the medical and food fields. In order to appropriately obtain the sterilization effect or sterilization effect by ultraviolet light, it is necessary to irradiate the object to be treated with a predetermined intensity. As a method of measuring the intensity of ultraviolet light, a method of directly detecting ultraviolet light with a light receiving element such as a silicon photodetector, or a method of converting ultraviolet light into visible light using a phosphor and converting the intensity of visible light into ultraviolet light. There is a method of indirectly detecting the intensity (see, for example, Patent Document 1).

国際公開第00/11440号International Publication No. 00/11440

紫外光による滅菌もしくは殺菌効果を広い面積で得られるように、複数の紫外光源をアレイ状に配置した紫外光発光装置が用いられることがある。このような発光装置の特性を評価するためには、紫外光の面強度分布を測定できることが望ましい。   An ultraviolet light emitting device in which a plurality of ultraviolet light sources are arranged in an array may be used so that sterilization or sterilization effect by ultraviolet light can be obtained in a wide area. In order to evaluate the characteristics of such a light emitting device, it is desirable to be able to measure the surface intensity distribution of ultraviolet light.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、紫外光の面強度分布が得られる光測定技術を提供することにある。   The present invention has been made in view of such problems, and one of exemplary purposes thereof is to provide a light measurement technique capable of obtaining a surface intensity distribution of ultraviolet light.

本発明のある態様の光測定装置は、紫外光を可視光に変換する波長変換材料を含み、第1主面と、第1主面の反対側に設けられ、第1主面に入射する紫外光を可視光に変換して出射させる第2主面と、を有する波長変換板を備える。   An optical measurement device according to an aspect of the present invention includes a wavelength conversion material that converts ultraviolet light into visible light, and is provided on a side opposite to the first main surface and the first main surface, and is incident on the first main surface. A wavelength conversion plate having a second main surface that converts light into visible light and emits the light.

この態様によると、波長変換板の第1主面に入射する紫外光が可視光に変換され、第1主面に入射する紫外光の面強度分布に対応した面強度分布を有する可視光が第2主面から出射される。このため、紫外光の強度分布を第2主面における可視光の面強度分布として可視化することができる。   According to this aspect, the ultraviolet light incident on the first main surface of the wavelength conversion plate is converted into visible light, and the visible light having a surface intensity distribution corresponding to the surface intensity distribution of the ultraviolet light incident on the first main surface is the first. 2 is emitted from the main surface. For this reason, the intensity distribution of ultraviolet light can be visualized as the surface intensity distribution of visible light on the second main surface.

波長変換板は、紫外光を透過させる透明基板と、透明基板上に設けられる波長変換材料を含む波長変換層とを有し、第1主面、透明基板、波長変換層および第2主面が順に配置されてもよい。   The wavelength conversion plate has a transparent substrate that transmits ultraviolet light and a wavelength conversion layer that includes a wavelength conversion material provided on the transparent substrate, and the first main surface, the transparent substrate, the wavelength conversion layer, and the second main surface are You may arrange in order.

第2主面から出射される可視光の強度分布を測定する撮像素子と、撮像素子からの信号を用いて第2主面から出射される可視光の面強度分布を示すデータを生成する信号処理部と、をさらに備えてもよい。   An image sensor that measures the intensity distribution of visible light emitted from the second main surface, and a signal process that generates data indicating the surface intensity distribution of visible light emitted from the second main surface using a signal from the image sensor And a section.

波長変換板は、アレイ状に配置される複数の紫外光源に対向して配置され、信号処理部は、複数の紫外光源の発光強度を制御するためのフィードバック信号を出力してもよい。   The wavelength conversion plate may be arranged to face a plurality of ultraviolet light sources arranged in an array, and the signal processing unit may output a feedback signal for controlling the light emission intensity of the plurality of ultraviolet light sources.

波長変換板の第1主面および第2主面は、曲面で構成されてもよい。   The first main surface and the second main surface of the wavelength conversion plate may be configured by curved surfaces.

波長変換材料は、波長300nm以下の紫外光を可視光に変換してもよい。   The wavelength conversion material may convert ultraviolet light having a wavelength of 300 nm or less into visible light.

本発明の別の態様は、光測定方法である。この方法は、紫外光を可視光に変換する波長変換材料を含み、第1主面と、第1主面の反対側に設けられ、第1主面に入射する紫外光を可視光に変換して出射させる第2主面と、を有する波長変換板を、アレイ状に配置される複数の紫外光源に第1主面が対向するように配置することと、第2主面から出射される可視光を観測することと、を備える。   Another aspect of the present invention is a light measurement method. This method includes a wavelength conversion material that converts ultraviolet light into visible light, is provided on the opposite side of the first main surface and the first main surface, and converts ultraviolet light incident on the first main surface into visible light. A wavelength conversion plate having a second main surface to be emitted and disposed so that the first main surface faces a plurality of ultraviolet light sources arranged in an array, and visible light emitted from the second main surface Observing light.

本発明の光測定装置および光測定方法によれば、紫外光の面強度分布を簡易に得ることができる。   According to the light measurement device and the light measurement method of the present invention, the surface intensity distribution of ultraviolet light can be easily obtained.

実施の形態に係る光測定装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the optical measurement apparatus which concerns on embodiment. 発光装置の構成を概略的に示す正面図である。It is a front view which shows the structure of a light-emitting device roughly. 変形例に係る光測定装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the optical measurement apparatus which concerns on a modification.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.

図1は、実施の形態に係る光測定装置10の構成を概略的に示す図である。光測定装置10は、発光装置50から出力される紫外光の強度を測定する装置であり、発光装置50から出力される紫外光の面強度分布を可視化する装置である。   FIG. 1 is a diagram schematically showing a configuration of a light measurement apparatus 10 according to an embodiment. The light measurement device 10 is a device that measures the intensity of ultraviolet light output from the light emitting device 50 and is a device that visualizes the surface intensity distribution of the ultraviolet light output from the light emitting device 50.

発光装置50は、複数の紫外光源52と、本体部54と、駆動部56を備える。   The light emitting device 50 includes a plurality of ultraviolet light sources 52, a main body portion 54, and a driving portion 56.

紫外光源52は、紫外線ランプや紫外光を発するLED(Light Emitting Diode)などである。本実施の形態では、紫外光源52としてUV−LEDを使用し、その中心波長またはピーク波長が約200nm〜300nmの紫外領域に含まれるLEDを用いる。発光装置50を殺菌用途に用いる場合、殺菌効率の高い波長である260nm付近の紫外光を発するものを用いることが好ましい。このような紫外光LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。なお、樹脂硬化など他の用途に用いる場合には、用途に適した波長の紫外光を発する光源を選択すればよい。   The ultraviolet light source 52 is an ultraviolet lamp or an LED (Light Emitting Diode) that emits ultraviolet light. In the present embodiment, a UV-LED is used as the ultraviolet light source 52, and an LED whose central wavelength or peak wavelength is included in the ultraviolet region of about 200 nm to 300 nm is used. When the light-emitting device 50 is used for sterilization, it is preferable to use a device that emits ultraviolet light near 260 nm, which is a wavelength with high sterilization efficiency. As such an ultraviolet light LED, for example, one using aluminum gallium nitride (AlGaN) is known. In addition, when using for other uses, such as resin hardening, what is necessary is just to select the light source which emits the ultraviolet light of the wavelength suitable for a use.

複数の紫外光源52は、図2に示すように、本体部54の表面55にアレイ状に配置される。紫外光源52は、例えば、四方格子状または六方格子状に配置される。これにより、複数の紫外光源52は、表面55に対向する被照射体に向けて面状に紫外光を放射する。したがって、発光装置50は、紫外光の面発光装置と言うことができる。   The plurality of ultraviolet light sources 52 are arranged in an array on the surface 55 of the main body 54 as shown in FIG. For example, the ultraviolet light source 52 is arranged in a tetragonal lattice shape or a hexagonal lattice shape. Thereby, the plurality of ultraviolet light sources 52 radiate ultraviolet light in a planar shape toward the irradiated object facing the surface 55. Therefore, it can be said that the light emitting device 50 is an ultraviolet light surface emitting device.

本体部54は、複数の紫外光源52を固定する。本体部54は、例えば、紫外光源52が直接取り付けられる実装基板と、実装基板と熱的に接続されるヒートシンクを有する。本体部54は、ヒートシンクを空冷または水冷するための冷却機構を有してもよい。また、本体部54は、紫外光源52から放射される紫外光を反射して被照射体に向かわせる反射機構を有してもよい。このような反射機構は、紫外光の反射率の高いアルミニウム(Al)の反射面を有することが望ましい。   The main body 54 fixes a plurality of ultraviolet light sources 52. The main body 54 includes, for example, a mounting board to which the ultraviolet light source 52 is directly attached and a heat sink that is thermally connected to the mounting board. The main body 54 may have a cooling mechanism for cooling the heat sink with air or water. The main body 54 may have a reflection mechanism that reflects the ultraviolet light emitted from the ultraviolet light source 52 and directs it toward the irradiated object. Such a reflection mechanism desirably has an aluminum (Al) reflecting surface having a high reflectivity of ultraviolet light.

駆動部56は、複数の紫外光源52を発光させるための駆動電流を生成し、紫外光源52に供給する。駆動部56は、例えば、所定の発光強度が得られるような定電流を紫外光源52に供給する。駆動部56は、本体部54に取り付けられる複数の紫外光源52の発光強度を個別に調整できるように、それぞれの紫外光源52に異なる値の駆動電流を供給可能に構成される。また、駆動部56は、後述する信号処理部40からのフィードバック信号に基づいてそれぞれの紫外光源52の駆動電流を制御する。   The drive unit 56 generates a drive current for causing the plurality of ultraviolet light sources 52 to emit light, and supplies the drive current to the ultraviolet light source 52. For example, the drive unit 56 supplies the ultraviolet light source 52 with a constant current that provides a predetermined light emission intensity. The drive unit 56 is configured to be able to supply drive currents having different values to the respective ultraviolet light sources 52 so that the light emission intensities of the plurality of ultraviolet light sources 52 attached to the main body unit 54 can be individually adjusted. Moreover, the drive part 56 controls the drive current of each ultraviolet light source 52 based on the feedback signal from the signal processing part 40 mentioned later.

光測定装置10は、波長変換板20と、撮像部30と、信号処理部40を備える。   The light measurement device 10 includes a wavelength conversion plate 20, an imaging unit 30, and a signal processing unit 40.

波長変換板20は、紫外光61が入射される第1主面21と、透明基板24と、波長変換層26と、可視光62が出射される第2主面22を有する。第1主面21、透明基板24、波長変換層26および第2主面22は、この順に配置される。波長変換板20は、複数の紫外光源52に対向するように配置され、例えば、発光装置50の表面55の全体を覆うように設けられる。   The wavelength conversion plate 20 has a first main surface 21 on which ultraviolet light 61 is incident, a transparent substrate 24, a wavelength conversion layer 26, and a second main surface 22 from which visible light 62 is emitted. The 1st main surface 21, the transparent substrate 24, the wavelength conversion layer 26, and the 2nd main surface 22 are arrange | positioned in this order. The wavelength conversion plate 20 is disposed so as to face the plurality of ultraviolet light sources 52, and is provided, for example, so as to cover the entire surface 55 of the light emitting device 50.

透明基板24は、紫外光を透過する材料で構成される板状部材であり、石英(SiO)やサファイア(Al)等で構成される。なお透明基板24は、紫外光の透過率の高い樹脂材料で構成されてもよい。透明基板24を樹脂材料とする場合、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)やPTFE(ポリテトラフルオロエチレン)などのフッ素樹脂や、透明性のシリコーン樹脂などを用いればよい。 The transparent substrate 24 is a plate-like member made of a material that transmits ultraviolet light, and is made of quartz (SiO 2 ), sapphire (Al 2 O 3 ), or the like. The transparent substrate 24 may be made of a resin material having a high ultraviolet light transmittance. When the transparent substrate 24 is a resin material, a fluorine resin such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) or PTFE (polytetrafluoroethylene), a transparent silicone resin, or the like may be used.

波長変換層26は、紫外光を可視光に変換する波長変換材料を含む層である。本実施の形態では、波長変換材料として、紫外光を励起光として可視光の蛍光を発する蛍光体を用いる。蛍光体は、波長200nm〜300nmの紫外光に対して高い励起効率を有するものが望ましい。このような蛍光体として、例えば、ネモト・ルミマテリアル社製の蛍光体(例えば、青色蛍光体:D1230、緑色蛍光体:D1164、赤色蛍光体:D1120)が挙げられる。   The wavelength conversion layer 26 is a layer containing a wavelength conversion material that converts ultraviolet light into visible light. In the present embodiment, a phosphor that emits visible light fluorescence using ultraviolet light as excitation light is used as the wavelength conversion material. The phosphor desirably has high excitation efficiency with respect to ultraviolet light having a wavelength of 200 nm to 300 nm. As such a phosphor, for example, a phosphor (for example, blue phosphor: D1230, green phosphor: D1164, red phosphor: D1120) manufactured by Nemoto Lumi Materials, Inc. may be used.

波長変換層26は、上述の蛍光体をシリコン(Si)等を主成分とするバインダに混合したものを透明基板24の表面に塗布して焼成することにより形成できる。波長変換層26は、入射する紫外光61の強度に比例する可視光62を出射できるように、蛍光体の濃度が第2主面22において均一となるように形成されることが望ましい。なお、透明基板24の表面には、バインダとの密着性を高めるための微細な凹凸構造が設けられてもよい。   The wavelength conversion layer 26 can be formed by applying a mixture of the above-described phosphor to a binder mainly composed of silicon (Si) or the like on the surface of the transparent substrate 24 and baking it. The wavelength conversion layer 26 is desirably formed so that the concentration of the phosphor is uniform on the second main surface 22 so that visible light 62 proportional to the intensity of the incident ultraviolet light 61 can be emitted. The surface of the transparent substrate 24 may be provided with a fine concavo-convex structure for improving the adhesion with the binder.

撮像部30は、波長フィルタ32と、撮像レンズ34と、撮像素子36を有する。つまり、撮像部30は、例えば、第2主面22の可視光画像を取得するためのカメラである。   The imaging unit 30 includes a wavelength filter 32, an imaging lens 34, and an imaging element 36. That is, the imaging unit 30 is, for example, a camera for acquiring a visible light image of the second main surface 22.

波長フィルタ32は、可視光を透過させ、紫外光を遮断するローパスフィルタである。波長フィルタ32を設けることで、撮像素子36や撮像部30の封止に用いる樹脂材料などに紫外光が照射されて劣化してしまうのを防ぐ。なお、波長フィルタ32は、波長変換層26から出力される可視光の波長を選択的に通過させるバンドパスフィルタであってもよい。   The wavelength filter 32 is a low-pass filter that transmits visible light and blocks ultraviolet light. Providing the wavelength filter 32 prevents the resin material used for sealing the imaging element 36 and the imaging unit 30 from being irradiated with ultraviolet light and being deteriorated. The wavelength filter 32 may be a band-pass filter that selectively passes the wavelength of visible light output from the wavelength conversion layer 26.

撮像レンズ34は、波長変換板20から出射される可視光を撮像素子36に結像させる。撮像レンズ34は、一枚のレンズで構成されてもよいし、複数のレンズからなるレンズ群により構成されてもよい。撮像レンズ34は、撮像素子36に結像させる像の倍率を変えられるようにズーム機能を有してもよい。   The imaging lens 34 images the visible light emitted from the wavelength conversion plate 20 on the imaging element 36. The imaging lens 34 may be configured by a single lens or a lens group including a plurality of lenses. The imaging lens 34 may have a zoom function so that the magnification of an image formed on the imaging element 36 can be changed.

撮像素子36は、入射する光の強度に応じた電気信号を生成する光電変換素子である。本実施の形態において、撮像素子36は、撮像レンズ34により結像される像に対応した画像信号の生成が可能な二次元イメージセンサであり、例えば、CCDイメージセンサやCMOSイメージセンサなどである。撮像素子36は、グレースケールの画像信号が生成可能となるように構成されてもよいし、カラーの画像信号が生成可能となるように構成されてもよい。撮像素子36が生成する画像信号は、信号処理部40に送られる。   The image sensor 36 is a photoelectric conversion element that generates an electrical signal corresponding to the intensity of incident light. In the present embodiment, the image sensor 36 is a two-dimensional image sensor capable of generating an image signal corresponding to an image formed by the imaging lens 34, and is, for example, a CCD image sensor or a CMOS image sensor. The image sensor 36 may be configured to be able to generate a grayscale image signal, or may be configured to be able to generate a color image signal. The image signal generated by the image sensor 36 is sent to the signal processing unit 40.

信号処理部40は、撮像素子36からの信号を用いて第2主面22から出射される可視光62の面強度分布を示すデータを生成する。信号処理部40は、第2主面22における面強度分布データとして、光強度の強弱が各画素の輝度値に対応するグレースケール画像データを生成する。撮像素子36がカラー画像を測定可能な場合、信号処理部40は、第2主面22を目視した場合に対応するカラー画像データを生成してもよい。信号処理部40は、生成した画像データを図示しないディスプレイ等に出力して可視化してもよいし、さらなるデータ処理のために外部のコンピュータ等に画像データを出力してもよい。   The signal processing unit 40 generates data indicating the surface intensity distribution of the visible light 62 emitted from the second main surface 22 using the signal from the image sensor 36. The signal processing unit 40 generates grayscale image data in which the intensity of light intensity corresponds to the luminance value of each pixel as the surface intensity distribution data on the second main surface 22. When the image sensor 36 can measure a color image, the signal processing unit 40 may generate color image data corresponding to the case where the second main surface 22 is viewed. The signal processing unit 40 may output the generated image data to a display (not shown) or the like for visualization, or may output the image data to an external computer or the like for further data processing.

信号処理部40は、生成した画像データを解析して、第2主面22から出射される可視光の面強度分布が所望の値となるように複数の紫外光源52の発光強度を制御するためのフィードバック信号を駆動部56に出力する。信号処理部40は、例えば、紫外光源52の点灯および消灯を個別に制御するための点灯指示信号を駆動部56に出力し、点灯中の紫外光源52が画像データのどの位置にあるのかを割り出す。信号処理部40は、紫外光源52の位置の割り出すことによって複数の紫外光源52のそれぞれの寄与に基づく強度を算出し、これらの強度が均一となるようにフィードバック信号を出力する。信号処理部40は、第2主面22から出射される可視光の強度分布が不均一な所望の分布となるようにフィードバック信号を出力してもよい。   The signal processing unit 40 analyzes the generated image data and controls the light emission intensity of the plurality of ultraviolet light sources 52 so that the surface intensity distribution of the visible light emitted from the second main surface 22 has a desired value. The feedback signal is output to the drive unit 56. For example, the signal processing unit 40 outputs a lighting instruction signal for individually controlling lighting and extinguishing of the ultraviolet light source 52 to the driving unit 56, and determines the position of the lit ultraviolet light source 52 in the image data. . The signal processing unit 40 calculates the intensity based on the contribution of each of the plurality of ultraviolet light sources 52 by determining the position of the ultraviolet light source 52, and outputs a feedback signal so that these intensities are uniform. The signal processing unit 40 may output a feedback signal so that the intensity distribution of visible light emitted from the second main surface 22 becomes a desired distribution that is not uniform.

つづいて、本実施の形態に係る光計測方法について述べる。まず、波長変換板20を用意し、波長変換板20の第1主面21がアレイ状に配置される複数の紫外光源52に対向するように波長変換板20を配置する。つづいて、波長変換板20の第2主面22から出射される可視光62を観測する。第2主面22から出射される可視光62は、目視により確認してもよいし、撮像部30などに含まれる撮像素子を用いて測定してもよい。   Next, the optical measurement method according to the present embodiment will be described. First, the wavelength conversion plate 20 is prepared, and the wavelength conversion plate 20 is arranged so that the first main surface 21 of the wavelength conversion plate 20 faces a plurality of ultraviolet light sources 52 arranged in an array. Subsequently, the visible light 62 emitted from the second main surface 22 of the wavelength conversion plate 20 is observed. The visible light 62 emitted from the second main surface 22 may be confirmed by visual observation, or may be measured using an imaging element included in the imaging unit 30 or the like.

光測定装置10は、発光装置50の紫外光強度の測定が必要なときに一時的に発光装置50の前面に配置してもよいし、発光装置50の前面に常時配置して発光装置50にフィードバック信号を供給してもよい。後者の場合、光測定装置10は、発光装置50が設けられる機器等に組み込まれてもよい。また光測定装置10は、発光装置50と波長変換板20の間に紫外光の照射対象が位置する配置で、発光装置50が出力する紫外光の面強度分布を測定してもよい。   The light measuring device 10 may be temporarily disposed on the front surface of the light emitting device 50 when the measurement of the ultraviolet light intensity of the light emitting device 50 is required, or may be always disposed on the front surface of the light emitting device 50 to the light emitting device 50. A feedback signal may be provided. In the latter case, the light measurement device 10 may be incorporated in a device or the like in which the light emitting device 50 is provided. In addition, the light measurement device 10 may measure the surface intensity distribution of the ultraviolet light output from the light emitting device 50 in an arrangement where the irradiation target of ultraviolet light is located between the light emitting device 50 and the wavelength conversion plate 20.

本実施の形態によれば、発光装置50からの紫外光61の強度分布を可視光62を介して測定するため、可視光用の撮像素子やカメラを用いて紫外光の面強度分布を得ることができる。一般に、紫外光用の撮像素子は、汎用的な可視光用の撮像素子と比べてコストが高い。また、シリコンフォトディテクタなどを用いた紫外光用の受光素子は、半導体素子部分を樹脂材料等で封止している場合があり、紫外光の照射を受けて樹脂材料が劣化することで封止性が低下し、受光素子としての特性が低下してしまう。そうすると、測定される紫外光の強度が安定せず、測定装置としての信頼性が低下してしまう。また、受光素子を頻繁に交換する必要が生じ、メンテナンスコストも高くなる。   According to the present embodiment, since the intensity distribution of the ultraviolet light 61 from the light emitting device 50 is measured via the visible light 62, the surface intensity distribution of the ultraviolet light is obtained using the visible light imaging element or camera. Can do. In general, an image sensor for ultraviolet light is more expensive than a general-purpose image sensor for visible light. In addition, a light receiving element for ultraviolet light using a silicon photodetector or the like may have a semiconductor element portion sealed with a resin material or the like. As a result, the characteristics of the light receiving element deteriorate. If it does so, the intensity | strength of the ultraviolet light measured will not be stabilized, and the reliability as a measuring apparatus will fall. In addition, it is necessary to frequently replace the light receiving element, and the maintenance cost increases.

一方、本実施の形態によれば、波長変換板20により紫外光61を可視光62に変換して測定するため、紫外光により撮像素子が劣化する影響を低減できる。これにより、測定装置としての信頼性を高めることができる。また、可視光用の撮像素子を用いることで、光測定装置10のコストを下げることができる。また、紫外光61を可視光62に変換することにより、発光装置50の面強度分布を目視で確認する場合の安全性を高めることができる。   On the other hand, according to the present embodiment, since the ultraviolet light 61 is converted into the visible light 62 by the wavelength conversion plate 20 and measured, the influence of deterioration of the image sensor due to the ultraviolet light can be reduced. Thereby, the reliability as a measuring apparatus can be improved. Moreover, the cost of the optical measurement device 10 can be reduced by using an imaging element for visible light. Further, by converting the ultraviolet light 61 into the visible light 62, it is possible to improve safety when the surface intensity distribution of the light emitting device 50 is visually confirmed.

また本実施の形態によれば、可視光62の観測対象となる第2主面22に波長変換層26を設けることで、波長変換板20に入射する紫外光61の面強度分布を精度良く可視光62の面強度分布に変換できる。仮に、透明基板24のような厚みのある基材に波長変換材料を混ぜて波長変換板を形成すると、紫外光が進行する厚さ方向の異なる位置で紫外光から可視光への変換が生じる。このとき、発光装置50から出力される紫外光は平行光とは限らないため、紫外光の進行方向の位置に応じて面強度分布は異なりうる。その結果、形状の異なる面強度分布を有する可視光が厚さ方向に重畳され、ピントがぼけたような面強度分布を有する可視光が生成される。そうすると、測定しようとする紫外光の面強度分布と、実際に観測する可視光の面強度分布のずれが大きくなってしまう。   Further, according to the present embodiment, the surface intensity distribution of the ultraviolet light 61 incident on the wavelength conversion plate 20 is visible with high accuracy by providing the wavelength conversion layer 26 on the second main surface 22 to be observed of the visible light 62. The light 62 can be converted into a surface intensity distribution. If a wavelength conversion material is formed by mixing a wavelength conversion material with a thick base material such as the transparent substrate 24, conversion from ultraviolet light to visible light occurs at different positions in the thickness direction where the ultraviolet light travels. At this time, since the ultraviolet light output from the light emitting device 50 is not necessarily parallel light, the surface intensity distribution may be different depending on the position in the traveling direction of the ultraviolet light. As a result, visible light having a surface intensity distribution having a different shape is superimposed in the thickness direction, and visible light having a surface intensity distribution that is out of focus is generated. Then, the deviation between the surface intensity distribution of the ultraviolet light to be measured and the surface intensity distribution of the visible light actually observed becomes large.

一方、本実施の形態によれば、相対的に厚さの小さい波長変換層26を第2主面22に設けるため、波長変換層26に入射する紫外光61の面強度分布と波長変換層26から出射する可視光62の面強度分布とのずれを小さくすることができる。これにより、発光装置50から出力される紫外光の面強度分布を精度良く測定することができる。また、波長変換板20の位置を紫外光の進行方向に変化させることで、異なる観測面における紫外光の面強度分布を簡単に測定することができる。   On the other hand, according to the present embodiment, since the wavelength conversion layer 26 having a relatively small thickness is provided on the second main surface 22, the surface intensity distribution of the ultraviolet light 61 incident on the wavelength conversion layer 26 and the wavelength conversion layer 26. The deviation from the surface intensity distribution of the visible light 62 emitted from the light can be reduced. Thereby, the surface intensity distribution of the ultraviolet light output from the light emitting device 50 can be accurately measured. Further, by changing the position of the wavelength conversion plate 20 in the traveling direction of the ultraviolet light, it is possible to easily measure the surface intensity distribution of the ultraviolet light on different observation surfaces.

図3は、変形例に係る光測定装置110の構成を概略的に示す図である。本変形例では、複数の紫外光源52が曲面155に設けられる発光装置150を測定対象とする点で上述の実施の形態と異なる。また、光測定装置110の波長変換板120は、湾曲する本体部154に対応した形状の曲面で構成される第1主面121および第2主面122を有する。以下、本変形例について上述の実施の形態との相違点を中心に説明する。   FIG. 3 is a diagram schematically showing the configuration of the light measurement apparatus 110 according to the modification. This modification is different from the above-described embodiment in that the light emitting device 150 in which a plurality of ultraviolet light sources 52 are provided on the curved surface 155 is a measurement target. In addition, the wavelength conversion plate 120 of the optical measurement device 110 has a first main surface 121 and a second main surface 122 that are configured by curved surfaces corresponding to the curved main body portion 154. Hereinafter, this modified example will be described focusing on differences from the above-described embodiment.

発光装置150は、曲面155を有する本体部154を備える。複数の紫外光源52は、曲面155に取り付けられている。本変形例における曲面155は、凹面となるように形成されている。したがって、発光装置150は、被照射物に向けて集光させるように紫外光を出力することができる。   The light emitting device 150 includes a main body 154 having a curved surface 155. The plurality of ultraviolet light sources 52 are attached to the curved surface 155. The curved surface 155 in this modification is formed to be a concave surface. Therefore, the light emitting device 150 can output ultraviolet light so as to be condensed toward the irradiation object.

波長変換板120は、順に配置される第1主面121、透明基板124、波長変換層126、第2主面122を有する。第1主面121は、発光装置150の曲面155と対向し、凹面である曲面155に対応した形状の凸面で構成される。第2主面122は、第1主面121との距離が一定となるように設けられ、第1主面121に対応した形状の凹面で構成される。透明基板124および波長変換層126も同様に、湾曲した形状を有する。   The wavelength conversion plate 120 has a first main surface 121, a transparent substrate 124, a wavelength conversion layer 126, and a second main surface 122 that are arranged in order. The first main surface 121 is a convex surface that faces the curved surface 155 of the light emitting device 150 and has a shape corresponding to the curved surface 155 that is a concave surface. The second main surface 122 is provided such that the distance from the first main surface 121 is constant, and is configured as a concave surface having a shape corresponding to the first main surface 121. Similarly, the transparent substrate 124 and the wavelength conversion layer 126 have a curved shape.

第2主面122から出射される可視光62は、撮像部30により測定される。撮像部30により測定した画像信号は、信号処理部40に送られて画像データの生成および解析がなされる。   The visible light 62 emitted from the second main surface 122 is measured by the imaging unit 30. The image signal measured by the imaging unit 30 is sent to the signal processing unit 40 to generate and analyze image data.

本変形例によれば、第1主面121および第2主面122が曲面で構成される波長変換板120を用いることにより、紫外光の面強度分布を測定しようとする観測面を曲面にできる。これにより、被照射物に向けて集光するような紫外光を出力する発光装置150について、紫外光の面強度分布を好適に測定することができる。   According to this modification, the observation surface on which the surface intensity distribution of the ultraviolet light is to be measured can be curved by using the wavelength conversion plate 120 in which the first major surface 121 and the second major surface 122 are curved surfaces. . Thereby, about the light-emitting device 150 which outputs the ultraviolet light which condenses toward an irradiation object, the surface intensity distribution of ultraviolet light can be measured suitably.

さらなる変形例においては、波長変換板の第1主面が凹面であり、第2主面が凸面となる光測定装置を用いてもよい。また、測定対象とする発光装置の形状に対応して、不均一に湾曲した曲面を有する波長変換板を用いてもよい。また、上述の実施の形態のように平面上に複数の紫外光源52が配置される発光装置50について、第1主面および第2主面が曲面で構成される波長変換板を用いてもよい。逆に、変形例に係る発光装置150について、上述の実施の形態のような第1主面21および第2主面22が平面で構成される波長変換板20を用いてもよい。つまり、測定しようとする観測面の形状に応じて、適切な形状を有する波長変換板を用いればよい。   In a further modification, an optical measurement device in which the first main surface of the wavelength conversion plate is a concave surface and the second main surface is a convex surface may be used. Further, a wavelength conversion plate having a curved surface that is unevenly curved may be used in accordance with the shape of the light emitting device to be measured. Further, for the light emitting device 50 in which a plurality of ultraviolet light sources 52 are arranged on a plane as in the above-described embodiment, a wavelength conversion plate in which the first main surface and the second main surface are curved surfaces may be used. . Conversely, for the light emitting device 150 according to the modification, the wavelength conversion plate 20 in which the first main surface 21 and the second main surface 22 are flat surfaces as in the above-described embodiment may be used. That is, a wavelength conversion plate having an appropriate shape may be used according to the shape of the observation surface to be measured.

以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。   In the above, this invention was demonstrated based on the Example. It is understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, and various modifications are possible, and such modifications are within the scope of the present invention. It is a place.

上述の実施の形態および変形例においては、二次元の光強度が計測可能な撮像部30を用いて可視光の面強度分布を測定することとした。さらなる変形例においては、線状に一列に配置される複数の受光素子や、アレイ状に配置される複数の受光素子を用いて光強度分布を計測してもよい。また、第2主面22から出射される可視光の進行方向に交差する方向に受光素子を移動させ、測定対象をスキャンするように受光素子を移動させることにより面強度分布を計測してもよい。   In the embodiment and the modification described above, the surface intensity distribution of visible light is measured using the imaging unit 30 capable of measuring two-dimensional light intensity. In a further modification, the light intensity distribution may be measured using a plurality of light receiving elements arranged in a line in a line or a plurality of light receiving elements arranged in an array. Alternatively, the surface intensity distribution may be measured by moving the light receiving element in a direction intersecting the traveling direction of visible light emitted from the second main surface 22 and moving the light receiving element so as to scan the measurement target. .

さらなる変形例においては、波長変換層に複数種類の蛍光体が含まれるようにしてもよい。具体的には、励起波長および蛍光波長がそれぞれ異なる複数種類の蛍光体を波長変換層に含ませ、測定する可視光の波長ごとの強度から発光装置から出力される紫外光の波長ごとの強度を算出してもよい。   In a further modification, a plurality of types of phosphors may be included in the wavelength conversion layer. Specifically, a plurality of types of phosphors having different excitation wavelengths and fluorescence wavelengths are included in the wavelength conversion layer, and the intensity for each wavelength of ultraviolet light output from the light emitting device is determined from the intensity for each wavelength of visible light to be measured. It may be calculated.

さらなる変形例においては、波長変換層を第2主面ではなく紫外光が入射する第1主面に設けてもよい。この場合、波長変換板の透明基板として、硼珪酸ガラスなどの紫外光の透過率が低く可視光の透過率が高い材料を用いてもよい。   In a further modification, the wavelength conversion layer may be provided not on the second main surface but on the first main surface on which ultraviolet light is incident. In this case, a material having a low ultraviolet light transmittance and a high visible light transmittance, such as borosilicate glass, may be used as the transparent substrate of the wavelength conversion plate.

10…光測定装置、20…波長変換板、21…第1主面、22…第2主面、24…透明基板、26…波長変換層、36…撮像素子、40…信号処理部、52…紫外光源、61…紫外光、62…可視光。   DESCRIPTION OF SYMBOLS 10 ... Light measuring device, 20 ... Wavelength conversion board, 21 ... 1st main surface, 22 ... 2nd main surface, 24 ... Transparent substrate, 26 ... Wavelength conversion layer, 36 ... Image sensor, 40 ... Signal processing part, 52 ... Ultraviolet light source, 61 ... ultraviolet light, 62 ... visible light.

Claims (7)

紫外光を可視光に変換する波長変換材料を含み、第1主面と、前記第1主面の反対側に設けられ、前記第1主面に入射する紫外光を可視光に変換して出射させる第2主面と、を有する波長変換板を備えることを特徴とする光測定装置。   It includes a wavelength conversion material that converts ultraviolet light into visible light, is provided on the first main surface and on the opposite side of the first main surface, and converts ultraviolet light incident on the first main surface into visible light, which is emitted. An optical measurement device comprising a wavelength conversion plate having a second main surface to be made. 前記波長変換板は、紫外光を透過させる透明基板と、前記透明基板上に設けられる前記波長変換材料を含む波長変換層とを有し、前記第1主面、前記透明基板、前記波長変換層および前記第2主面が順に配置されることを特徴とする請求項1に記載の光測定装置。   The wavelength conversion plate includes a transparent substrate that transmits ultraviolet light, and a wavelength conversion layer including the wavelength conversion material provided on the transparent substrate, and the first main surface, the transparent substrate, and the wavelength conversion layer. The light measuring device according to claim 1, wherein the second main surface is arranged in order. 前記第2主面から出射される可視光の強度分布を測定する撮像素子と、
前記撮像素子からの信号を用いて前記第2主面から出射される可視光の面強度分布を示すデータを生成する信号処理部と、をさらに備えることを特徴とする請求項1または2に記載の光測定装置。
An image sensor for measuring an intensity distribution of visible light emitted from the second main surface;
The signal processing part which produces | generates the data which show the surface intensity distribution of the visible light radiate | emitted from the said 2nd main surface using the signal from the said image pick-up element is further provided. Light measuring device.
前記波長変換板は、アレイ状に配置される複数の紫外光源に対向して配置され、
前記信号処理部は、前記複数の紫外光源の発光強度を制御するためのフィードバック信号を出力することを特徴とする請求項3に記載の光測定装置。
The wavelength conversion plate is arranged to face a plurality of ultraviolet light sources arranged in an array,
The optical measurement apparatus according to claim 3, wherein the signal processing unit outputs a feedback signal for controlling emission intensity of the plurality of ultraviolet light sources.
前記波長変換板の前記第1主面および前記第2主面は、曲面で構成されることを特徴とする請求項1から4のいずれか一項に記載の光測定装置。   5. The optical measurement device according to claim 1, wherein the first main surface and the second main surface of the wavelength conversion plate are configured by curved surfaces. 6. 前記波長変換材料は、波長300nm以下の紫外光を可視光に変換することを特徴とする請求項1から5のいずれか一項に記載の光測定装置。   The light measuring device according to any one of claims 1 to 5, wherein the wavelength conversion material converts ultraviolet light having a wavelength of 300 nm or less into visible light. 紫外光を可視光に変換する波長変換材料を含み、第1主面と、前記第1主面の反対側に設けられ、前記第1主面に入射する紫外光を可視光に変換して出射させる第2主面と、を有する波長変換板を、アレイ状に配置される複数の紫外光源に前記第1主面が対向するように配置することと、
前記第2主面から出射される可視光を観測することと、を備えることを特徴とする光測定方法。
It includes a wavelength conversion material that converts ultraviolet light into visible light, is provided on the first main surface and on the opposite side of the first main surface, and converts ultraviolet light incident on the first main surface into visible light, which is emitted. A wavelength conversion plate having a second main surface to be disposed such that the first main surface faces a plurality of ultraviolet light sources arranged in an array;
Observing visible light emitted from the second main surface. A light measurement method comprising:
JP2015096029A 2015-05-08 2015-05-08 Light measurement apparatus and light measurement method Active JP6511331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096029A JP6511331B2 (en) 2015-05-08 2015-05-08 Light measurement apparatus and light measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096029A JP6511331B2 (en) 2015-05-08 2015-05-08 Light measurement apparatus and light measurement method

Publications (2)

Publication Number Publication Date
JP2016211970A true JP2016211970A (en) 2016-12-15
JP6511331B2 JP6511331B2 (en) 2019-05-15

Family

ID=57550822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096029A Active JP6511331B2 (en) 2015-05-08 2015-05-08 Light measurement apparatus and light measurement method

Country Status (1)

Country Link
JP (1) JP6511331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146130A (en) * 2019-03-11 2020-09-17 日機装株式会社 Fluid sterilizer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916319A (en) * 1988-04-22 1990-04-10 Tauton Technologies, Inc. Beam intensity profilometer
JPH0485748U (en) * 1990-11-30 1992-07-24
JP2000213983A (en) * 1999-01-21 2000-08-04 Komatsu Ltd Power measuring device of vacuum ultraviolet laser
JP2002022422A (en) * 2000-07-07 2002-01-23 Hamamatsu Photonics Kk Laser light imaging device and cap member
JP2005214726A (en) * 2004-01-28 2005-08-11 Advanced Lcd Technologies Development Center Co Ltd Light-intensity distribution detection method, light-intensity distribution detecting device, annealing device, and annealing method
JP2006332363A (en) * 2005-05-26 2006-12-07 Nikon Corp Exposure device and illumination light intensity distribution measuring device thereof
JP2009290245A (en) * 2009-09-15 2009-12-10 Mitsubishi Electric Corp Planar light source device and liquid crystal display using the same
JP2010028043A (en) * 2008-07-24 2010-02-04 Sony Corp Light emitting element assembly, planar light source device, liquid crystal display device assembly, and light emitting member
JP2011166013A (en) * 2010-02-12 2011-08-25 Nikon Corp Optical detection device, optical characteristic measurement device, optical characteristic measurement method, exposure apparatus, exposure method, and method of manufacturing device
JP2013022634A (en) * 2011-07-25 2013-02-04 Disco Corp Method for detecting spot shape of laser beam

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916319A (en) * 1988-04-22 1990-04-10 Tauton Technologies, Inc. Beam intensity profilometer
JPH0485748U (en) * 1990-11-30 1992-07-24
JP2000213983A (en) * 1999-01-21 2000-08-04 Komatsu Ltd Power measuring device of vacuum ultraviolet laser
JP2002022422A (en) * 2000-07-07 2002-01-23 Hamamatsu Photonics Kk Laser light imaging device and cap member
JP2005214726A (en) * 2004-01-28 2005-08-11 Advanced Lcd Technologies Development Center Co Ltd Light-intensity distribution detection method, light-intensity distribution detecting device, annealing device, and annealing method
JP2006332363A (en) * 2005-05-26 2006-12-07 Nikon Corp Exposure device and illumination light intensity distribution measuring device thereof
JP2010028043A (en) * 2008-07-24 2010-02-04 Sony Corp Light emitting element assembly, planar light source device, liquid crystal display device assembly, and light emitting member
JP2009290245A (en) * 2009-09-15 2009-12-10 Mitsubishi Electric Corp Planar light source device and liquid crystal display using the same
JP2011166013A (en) * 2010-02-12 2011-08-25 Nikon Corp Optical detection device, optical characteristic measurement device, optical characteristic measurement method, exposure apparatus, exposure method, and method of manufacturing device
JP2013022634A (en) * 2011-07-25 2013-02-04 Disco Corp Method for detecting spot shape of laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146130A (en) * 2019-03-11 2020-09-17 日機装株式会社 Fluid sterilizer
JP7191738B2 (en) 2019-03-11 2022-12-19 日機装株式会社 Fluid sterilizer

Also Published As

Publication number Publication date
JP6511331B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US9553230B2 (en) Method and apparatus for fabricating light emitting apparatus
US9405019B2 (en) Fluorescent device, irradiation apparatus, and projector apparatus
JP2014146542A5 (en)
JP6623711B2 (en) Inspection device
JP6511331B2 (en) Light measurement apparatus and light measurement method
JP2019020198A (en) Standard light source device
KR101174755B1 (en) Apparatus and method for inspecting LED epiwafer using photoluminescence imaging
KR101996023B1 (en) Illumination system
JP2016081898A (en) Lighting device, pattern radiation device and system
JP5565278B2 (en) Light distribution measuring device, light distribution measuring method, and light distribution measuring program
WO2011142123A1 (en) Light sources, illumination optical system and reflection property measurement apparatus
JP2016223835A (en) Multi-spectral irradiation device
KR100998015B1 (en) Method for Evaluating Current Spreading of Light Emitting Device and Evaluating System using the same
JP2019218234A5 (en)
Thi et al. Enhancing light scattering effect of white LEDs with ZnO nanostructures
WO2019010909A1 (en) Light-source apparatus and projection system
KR101350218B1 (en) Inspection apparatus for led including confocal sensor
JP2018200211A (en) Optical measuring system
JP7141102B2 (en) Emission characteristic measurement device for LED devices
JP2017203722A (en) Light source device
JP6578470B2 (en) Image display method, image display program, image display device, and image display object
JP5578329B2 (en) Line light source
JP2023069742A (en) Inspection device and inspection method
KR101327308B1 (en) Concentrating Mirror for Measurement of Cathodoluminescence and Photoluminescence
WO2015182089A1 (en) Light-emitting device and production method for light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250