JP2016211962A - Method for evaluating possibility of formation of shear edge - Google Patents
Method for evaluating possibility of formation of shear edge Download PDFInfo
- Publication number
- JP2016211962A JP2016211962A JP2015095861A JP2015095861A JP2016211962A JP 2016211962 A JP2016211962 A JP 2016211962A JP 2015095861 A JP2015095861 A JP 2015095861A JP 2015095861 A JP2015095861 A JP 2015095861A JP 2016211962 A JP2016211962 A JP 2016211962A
- Authority
- JP
- Japan
- Prior art keywords
- strain
- deformation
- amount
- equivalent
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 title claims abstract 8
- 239000002184 metal Substances 0.000 claims abstract description 52
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 238000000465 moulding Methods 0.000 claims description 86
- 238000011156 evaluation Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 abstract description 14
- 238000002474 experimental method Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 17
- 238000010008 shearing Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/28—Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Punching Or Piercing (AREA)
Abstract
Description
本発明は、一次成形後にせん断される材料縁の成形可否の評価技術に関する。例えば、自動車用プレス品等のせん断縁におけるFEMシミュレーションでの成形可否を評価する技術に関する。 The present invention relates to a technique for evaluating whether or not a material edge that is sheared after primary forming can be formed. For example, the present invention relates to a technique for evaluating the feasibility of molding by FEM simulation at a shearing edge of an automobile press product or the like.
プレス品のせん断縁における変形限界への影響度が大きいせん断縁近傍の変形状態を踏まえた成形可否を評価する方法としては、例えば特許文献1〜3に記載の判定方法がある。
しかしながら、上記のプレス品のせん断縁における成形可否判定方法は、いずれも予変形(一次成形)を受けずにせん断された材料縁を評価するものであって、予変形を受けた後にせん断された材料縁への適用については何ら考慮されていない。
このように、一次変形を受けた後のせん断縁における成形可否の判定精度については従来から問題があり、金型作製後でないと成形可否が不明確であるとの課題があった。
As a method for evaluating the possibility of forming based on the deformation state in the vicinity of the shearing edge, which has a large influence on the deformation limit at the shearing edge of the press product, for example, there are determination methods described in Patent Documents 1 to 3.
However, each of the above-mentioned methods for determining whether or not a sheared edge of a press product can be formed evaluates a material edge that has been sheared without undergoing predeformation (primary molding), and has been sheared after undergoing predeformation. No consideration is given to the application to the material edge.
As described above, there has been a problem with the accuracy of determining whether or not forming is possible at the shearing edge after undergoing primary deformation, and there has been a problem that whether or not forming is possible is not clear until after the mold is manufactured.
本発明は、上記のような点に着目したもので、予成形後にせん断される材料縁の成形可否をより精度良く評価する技術の提供を目的としている。 The present invention pays attention to the above points, and an object of the present invention is to provide a technique for more accurately evaluating whether or not a material edge to be sheared after preforming can be formed.
課題を解決するために、本発明の一態様は、予成形によって予変形を加えた金属板に対するプレス成形によるせん断縁の成形可否を評価する評価方法であって、予成形後の金属板に対する穴広げ試験によってせん断縁での変形限界を求め、求めたせん断縁での変形限界量を変形限界相当ひずみ量で表現して、せん断縁での径方向のひずみ勾配に対する上記穴広げ試験によって求めた変形限界相当ひずみ量からなるデータとして、ひずみ勾配が異なる複数のデータを取得し、上記予成形で上記金属板に加えられる相当ひずみ量を予変形相当ひずみ量と定義し、その予変形相当ひずみ量と上記予成形後の金属板での変形限界相当ひずみ量との和を伸びフランジ変形限界相当ひずみと定義し、上記予変形相当ひずみ量と上記複数のデータとに基づき、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係を求め、上記求めた関係からせん断縁の成形可能領域を特定して、予成形によって予変形を加えた金属板に対するせん断縁の成形可否を評価することを特徴とする。 In order to solve the problem, one aspect of the present invention is an evaluation method for evaluating whether or not a shear edge can be formed by press forming on a metal plate that has been pre-deformed by pre-forming, and includes a hole in the metal plate after pre-forming. The deformation limit at the shear edge is obtained by the expansion test, the deformation limit at the shear edge is expressed in terms of the deformation limit equivalent strain, and the deformation determined by the above hole expansion test for the radial strain gradient at the shear edge. A plurality of data with different strain gradients are acquired as data consisting of the limit equivalent strain amount, and the equivalent strain amount applied to the metal plate in the preforming is defined as the predeformation equivalent strain amount. The sum of the deformation limit equivalent strain in the metal sheet after pre-forming is defined as the stretch flange deformation limit equivalent strain, and based on the pre-deformation equivalent strain amount and the plurality of data. Obtain the relationship between the strain equivalent to the stretch flange deformation limit and the strain gradient, identify the formable region of the shear edge from the obtained relationship, and evaluate whether or not the shear edge can be formed on a pre-deformed metal plate. It is characterized by.
本発明の一態様によれば、一次成形(予成形)及び二次成形を経て形成される成形品における、予成形後にせん断される金属板の材料縁の成形可否を、より簡便により精度良く評価することが出来るようになる。
すなわち、金型を何度も作成することなく、二次成形における伸びフランジ部での成形可否や成形余裕度などの評価が精度よく予測できる結果、割れ発生による不良を早期に予防することが出来る。
According to one aspect of the present invention, in a molded product formed through primary molding (pre-molding) and secondary molding, whether or not the material edge of the metal plate to be sheared after preforming is molded can be more easily and accurately evaluated. You will be able to
That is, it is possible to prevent defects due to cracks at an early stage as a result of accurately predicting the possibility of molding at the stretch flange portion in the secondary molding and the molding margin without creating a mold many times. .
(本発明に到る知見)
上記の従来技術による、加工によるせん断縁の成形可否の判定方法の評価は、いずれも予変形(一次成形)を受けていない状態からのせん断縁に関する変形限界だけの評価を想定したものである。このため、上記の従来技術の評価方法が、一次変形を受けた後のせん断縁に関する成形可否の判定にも直接展開できるかどうかは不明であった。なぜなら、せん断によるダメージが、予成形によって生じる一次変形量に依存しないとは言い切れないためである。
(Knowledge to the present invention)
The evaluation of the method for determining whether or not a shear edge can be formed by processing according to the above-described prior art assumes only the evaluation of the deformation limit relating to the shear edge from a state where no pre-deformation (primary forming) has been applied. For this reason, it has been unclear whether the above-described conventional evaluation method can be directly applied to the determination of whether or not forming is possible with respect to the shearing edge after undergoing primary deformation. This is because it cannot be said that damage due to shear does not depend on the amount of primary deformation caused by preforming.
そして、発明者は、二次成形時の変形限界に及ぼす、予変形量(一次変形量)の影響を定量的に解明するための詳細調査を実施した。
以下、その内容について説明する。
ここで、表1に示す供試材A〜Eを使用して、一次成形(予変形)を付与した金属板に対して、各種の穴広げ試験を実施した。穴広げ試験としては、円錐形状のポンチを使用した円錐穴広げ試験と、円筒形状のポンチを使用した円筒穴広げ試験とを実施した。
The inventor conducted a detailed investigation for quantitatively elucidating the influence of the pre-deformation amount (primary deformation amount) on the deformation limit during secondary molding.
The contents will be described below.
Here, using the test materials A to E shown in Table 1, various hole expansion tests were performed on the metal plate to which primary forming (predeformation) was applied. As the hole expansion test, a conical hole expansion test using a conical punch and a cylindrical hole expansion test using a cylindrical punch were performed.
上記の穴広げ試験は、対象とする金属板を円錐台形状に一次成形を加えた後に、円錐台の上面を中心に試料とする部分を切り出し、その切り出した試料を平坦化する。その後、試料の中心に抜き穴を形成し、ポンチによって抜き穴の穴広げを行う試験である。使用した円錐形状のポンチは、60度円錐ポンチであり、円筒形状のポンチは直径50mmの円筒ポンチである。
なお、半径方向のひずみ勾配は、使用するポンチの形状や予成形後の抜き穴径を変更することで調整可能である。
In the above hole expansion test, after subjecting a target metal plate to a truncated cone shape, the sample is centered on the upper surface of the truncated cone, and the cut sample is flattened. Thereafter, a test is performed in which a punch hole is formed in the center of the sample and the punch hole is widened by a punch. The cone-shaped punch used is a 60-degree cone punch, and the cylindrical punch is a cylindrical punch having a diameter of 50 mm.
The strain gradient in the radial direction can be adjusted by changing the shape of the punch used or the diameter of the punched hole after preforming.
〈実験1〉
供試材Aからなる金属板に対して、円錐穴広げ試験を行った。
そして、予成形による予変形相当ひずみに対する、予成形後の金属板における二次変形限界ひずみで纏めたところ、図1に示す結果を得た。また、予成形による予変形相当ひずみに対する、予変形相当ひずみと二次変形限界ひずみとの和であるトータル変形量で纏めたところ、図2に示す結果を得た。
<Experiment 1>
A conical hole expansion test was performed on the metal plate made of the test material A.
And when it summarized by the secondary deformation | transformation limit distortion | strain in the metal plate after pre-forming with respect to the pre-deformation equivalent distortion | strain by preforming, the result shown in FIG. 1 was obtained. Further, when the total deformation amount, which is the sum of the pre-deformation equivalent strain and the secondary deformation limit strain, is summarized with respect to the pre-deformation equivalent strain by the pre-forming, the result shown in FIG. 2 was obtained.
次に、供試材Aからなる金属板に対して、円筒穴広げ試験を行った。
そして、予成形による予変形相当ひずみに対する、予成形後の金属板における二次変形限界ひずみで纏めたところ、図3に示す結果を得た。また、予成形による予変形相当ひずみに対する、予変形相当ひずみと二次変形限界ひずみとの和であるトータル変形量で纏めたところ、図4に示す結果を得た。
Next, a cylindrical hole expansion test was performed on the metal plate made of the test material A.
And when it summarized by the secondary deformation | transformation limit distortion | strain in the metal plate after pre-forming with respect to the pre-deformation equivalent distortion | strain by preforming, the result shown in FIG. 3 was obtained. Further, when the total deformation amount, which is the sum of the pre-deformation equivalent strain and the secondary deformation limit strain, is summarized with respect to the pre-deformation equivalent strain due to the pre-forming, the result shown in FIG. 4 was obtained.
ここで、各図において、
●:等二軸によるひずみ
■:不等二軸によるひずみ
▲:平面ひずみによるひずみ
である。
Here, in each figure,
●: Strain due to equal biaxial ■: Strain due to unequal biaxial ▲: Strain due to plane strain
円錐穴広げを行った場合は、円筒穴広げを行う場合に比べ、せん断縁でのひずみ勾配が大きくなる。
したがって、供試材Aでは、ひずみ勾配が大きい場合には、図1から分かるように、二次変形限界ひずみは、予変形相当ひずみ量が増えるほど小さくなるが、図2から分かるように、トータル変形量では、予変形相当ひずみ量が増加するほど、増加する傾向にある。
When conical hole expansion is performed, the strain gradient at the shear edge becomes larger than when cylindrical hole expansion is performed.
Therefore, in the specimen A, when the strain gradient is large, as can be seen from FIG. 1, the secondary deformation limit strain decreases as the amount of pre-deformation equivalent strain increases, but as can be seen from FIG. The amount of deformation tends to increase as the amount of pre-deformation equivalent strain increases.
一方、せん断縁でのひずみ勾配が小さい場合には、図3から分かるように、二次変形限界ひずみは、予変形相当ひずみ量が増えるほど小さくなるが、図4から分かるように、トータル変形量では、予変形相当ひずみ量にあまり依存せず、予変形相当ひずみ量との相関が低い。
また、図1〜図4から分かるように、二次変形限界ひずみに及ぼす予変形相当ひずみ量(予変形量、一次変形量)の影響は、予変形の変形形態にあまり依存しない。このため二次変形限界ひずみは相当ひずみで整理できることをつきとめた。
On the other hand, when the strain gradient at the shearing edge is small, as can be seen from FIG. 3, the secondary deformation limit strain decreases as the amount of pre-deformation equivalent strain increases, but as can be seen from FIG. However, it does not depend much on the amount of pre-deformation equivalent strain, and its correlation with the amount of pre-deformation equivalent strain is low.
Further, as can be seen from FIGS. 1 to 4, the influence of the pre-deformation equivalent strain amount (pre-deformation amount, primary deformation amount) on the secondary deformation limit strain does not depend much on the pre-deformation deformation mode. For this reason, it was found that the secondary deformation limit strain can be arranged by the equivalent strain.
〈実験2〉
供試材Dについて、実験1と同様な実験を行った。その結果を図5〜図8に示す。
この供試材Dにおいても、図5〜図8から分かるように、供試材Aと同様な傾向があることが分かる。
〈実験3〉
供試材Eについて、実験1と同様な実験を行った。その結果を図9〜図12に示す。
供試材Eにおいても、図9〜図12から分かるように、供試材Aと似た傾向はあるものの、次のような傾向もあることが分かる。
即ち、ひずみ勾配が大きい場合、所定の変形領域では、予変形量によって二次変形限界はほとんど低下しない。一方、ひずみ勾配が小さい場合、トータル変形量が、予変形量に依存性があり、予変形量の増加に伴い減少する。つまり、予変形を付与することが逆効果となる。
<
For the test material D, an experiment similar to the experiment 1 was performed. The results are shown in FIGS.
It can be seen that this sample material D also has the same tendency as the sample material A, as can be seen from FIGS.
<
The test material E was subjected to the same experiment as the experiment 1. The results are shown in FIGS.
As can be seen from FIG. 9 to FIG. 12, the specimen E has a tendency similar to that of the specimen A, but also has the following tendency.
That is, when the strain gradient is large, the secondary deformation limit hardly decreases depending on the amount of pre-deformation in a predetermined deformation region. On the other hand, when the strain gradient is small, the total deformation amount depends on the pre-deformation amount and decreases as the pre-deformation amount increases. That is, applying the pre-deformation has an adverse effect.
〈実験結果のまとめ〉
供試材B、Cについても実験1と同様な実験を行った。
そして、上記の結果を、予変形量(予変形相当ひずみ量)に対する(二次成形での変形限界量の低下量)の比で纏めると、表2に示す結果となった。
<Summary of experimental results>
Experiments B and C were also performed in the same manner as Experiment 1.
When the above results are summarized by the ratio of (the amount of decrease in deformation limit amount in secondary molding) to the amount of predeformation (predeformation equivalent strain amount), the results shown in Table 2 were obtained.
表2から分かるように、ひずみ勾配が小さい場合に比べて、ひずみ勾配が大きい場合には、予成形後の金属板に対する成形余裕量が過少に見積もられる可能性があることが分かる。そして、過少に見積もられた場合には、無駄な型修正が発生する危惧があることが分かる。 As can be seen from Table 2, it can be seen that when the strain gradient is large compared to when the strain gradient is small, the forming margin for the metal plate after pre-forming may be underestimated. And if it is underestimated, it turns out that there is a risk of unnecessary mold correction.
〈知見〉
以上の実験から、発明者は、以下のような知見を得た。
(1)せん断後の変形限界ひずみに対する一次変形量の影響度は、せん断後の変形限界ひずみの変形形態(等二軸、不等二軸、平面ひずみ)にあまり依存せず、相当ひずみで整理できる。
このため、本発明では、相当ひずみで評価している。
<Knowledge>
From the above experiments, the inventors have obtained the following knowledge.
(1) The degree of influence of the primary deformation amount on the deformation limit strain after shearing does not depend much on the deformation form (equal biaxial, unequal biaxial, plane strain) of the deformation limit strain after shearing, and is organized by the equivalent strain. it can.
For this reason, in this invention, it evaluates by a considerable distortion.
(2)ひずみ勾配が大きい場合、二次変形のみの変形限界ひずみにおよぼす一次変形による影響は小さい。そのため、一次変形でのひずみを含めた最終的な材料縁の変形限界は、一次変形量の増加に伴い増加する。一方、ひずみ勾配が小さい場合、上記最終的な材料縁の変形限界は、一次変形量の増加に伴い二次変形のみの変形限界ひずみは変わらないか大きく減少する。 (2) When the strain gradient is large, the influence of primary deformation on the deformation limit strain of only secondary deformation is small. Therefore, the deformation limit of the final material edge including the strain in the primary deformation increases as the primary deformation amount increases. On the other hand, when the strain gradient is small, the deformation limit of the final material edge does not change or greatly decreases the deformation limit strain of only the secondary deformation as the primary deformation amount increases.
すなわち、予変形も含めた二次成形による伸びフランジ部の最終的な変形限界ひずみは、一次変形量とひずみ勾配との両方に依存する。
また、一次変形の依存性は、ひずみ勾配が大きい場合と小さい場合とで異なる。すなわち、所定のひずみ勾配に対し、ひずみ勾配が小さい場合と大きい場合とに別けて、せん断縁を評価する方が、評価の精度が向上する。なお、この傾向は厚さには依存性がない。
本発明は、以上のような新たな知見に基づきなされたものである。
以下に、この知見に基づく各実施形態について説明する。
That is, the final deformation limit strain of the stretch flange portion by secondary forming including pre-deformation depends on both the primary deformation amount and the strain gradient.
Further, the dependence of the primary deformation differs depending on whether the strain gradient is large or small. That is, the accuracy of the evaluation is improved by evaluating the shear edge separately when the strain gradient is small or large with respect to the predetermined strain gradient. This tendency does not depend on the thickness.
The present invention has been made based on the above new findings.
Each embodiment based on this knowledge will be described below.
(第1実施形態)
次に、本実施形態のせん断縁の成形可否評価方法について、図面を参照しつつ説明する。
本実施形態のせん断縁の成形可否評価方法は、一次成形(予成形)された金属板に対するせん断縁の成形可否を評価する技術である。
(First embodiment)
Next, a method for evaluating whether or not a shear edge can be formed according to this embodiment will be described with reference to the drawings.
The method for evaluating whether or not a shear edge can be formed according to the present embodiment is a technique for evaluating whether or not a shear edge can be formed on a primary-formed (pre-formed) metal plate.
〈構成〉
本実施形態の成形可否評価方法は、図13に示すように、実験データ取得工程1、予変形相当ひずみ量設定工程2、成形可能領域特定工程3、成形仕様データ取得工程4、及び可否判定工程5を備える。
実験データ取得工程1は、予め設定した予成形を施した金属板に対して穴広げ試験を実施する。穴広げ試験では、使用するポンチ形状あるいは拡径前の抜き穴の径を変えることで、せん断縁での径方向のひずみ勾配が異なる2種類以上の穴広げ試験を実施する。
<Constitution>
As shown in FIG. 13, the moldability evaluation method of the present embodiment includes an experimental data acquisition step 1, a pre-deformation equivalent strain
In the experimental data acquisition step 1, a hole expansion test is performed on a preliminarily formed metal plate. In the hole expansion test, two or more types of hole expansion tests with different radial strain gradients at the shear edges are performed by changing the punch shape to be used or the diameter of the punched hole before diameter expansion.
データを取得するために金属板に施す予成形、及び予成形を施した金属板に対する穴広げ試験は、上記の実験1で説明したような方法で行えばよい。この場合、穴広げを行う場所に加えられた、予成形による相当ひずみ量は一定の値となるように一次成形すると簡便である。
ここで、各穴広げ試験によって拡径した後の穴のひずみ勾配は、その試験による成形品の分析あるいは別途実施した成形分析(FEM解析計算)によって特定する。また、各穴広げ試験による穴広げ率から、二次成形による、各穴のせん断縁に発生した変形限界ひずみ量を求める。本実施形態では取得する変形限界ひずみ量として変形限界相当ひずみ量を採用する。
The preforming performed on the metal plate to acquire data and the hole expansion test on the preformed metal plate may be performed by the method described in Experiment 1 above. In this case, it is convenient to perform primary molding so that the amount of equivalent strain due to preforming added to the place where hole expansion is performed becomes a constant value.
Here, the strain gradient of the hole after diameter expansion by each hole expansion test is specified by analysis of the molded product by the test or molding analysis (FEM analysis calculation) performed separately. Moreover, the deformation limit strain amount generated at the shearing edge of each hole by secondary forming is obtained from the hole expansion rate obtained by each hole expansion test. In this embodiment, the deformation limit equivalent strain amount is adopted as the deformation limit strain amount to be acquired.
穴広げ率λは、抜き穴径をd0、拡径後の穴径をdとした場合、下記式で表すことが出来る。
λ=((d−d0)/d0)×100
本実施形態では、ひずみ勾配を、穴の縁からの半径方向に沿った所定区間(例えば縁から5mmまでの区間)での最大主ひずみの平均勾配で表現する。なお、本実施形態では、ひずみ勾配の値は絶対値で表現する。
The hole expansion ratio λ can be expressed by the following formula, where d0 is the diameter of the punched hole and d is the diameter of the hole after expansion.
λ = ((d−d0) / d0) × 100
In the present embodiment, the strain gradient is expressed as an average gradient of the maximum main strain in a predetermined section (for example, a section from the edge to 5 mm) along the radial direction from the edge of the hole. In the present embodiment, the value of the strain gradient is expressed as an absolute value.
以上の処理によって、実験データ取得工程1は、せん断縁での径方向のひずみ勾配と上記予成形後の金属板での変形限界相当ひずみ量からなるデータとして、ひずみ勾配が異なる複数のデータを取得する。取得する位置は使用者が特定する。
予変形相当ひずみ量設定工程2は、予成形した成形品又は別途実施した成形分析(FEM解析計算)によって、上記の穴広げ試験の穴広げを行う部分における、予成形で金属板に加えられた相当ひずみ量を予変形相当ひずみ量として取得する。予変形相当ひずみ量は、上記穴広げ試験の際に取得若しくは一次加工条件を設定すればよい。
Through the above processing, the experimental data acquisition step 1 acquires a plurality of data with different strain gradients as data consisting of the radial strain gradient at the shear edge and the deformation limit equivalent strain amount in the pre-formed metal plate. To do. The position to acquire is specified by the user.
Pre-deformation equivalent strain
成形可能領域特定工程3は、実験データ取得工程1が取得したひずみ勾配が異なる複数のデータと、予変形相当ひずみ量設定工程2が取得した予変形相当ひずみ量とから、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係を求める。
ここで、伸びフランジ変形限界相当ひずみは、変形限界相当ひずみ量と予変形相当ひずみ量との和である。すなわち、実験データ取得工程1で取得した変形限界相当ひずみ量に、予変形相当ひずみ量設定工程2で取得した予変形相当ひずみ量を加算して、伸びフランジ変形限界相当ひずみとする。
The formable
Here, the stretch flange deformation limit equivalent strain is the sum of the deformation limit equivalent strain amount and the predeformation equivalent strain amount. That is, the deformation equivalent to the deformation limit acquired in the experimental data acquisition step 1 is added to the strain equivalent to the pre-deformation obtained in the pre-deformation equivalent
これによって、ひずみ勾配と伸びフランジ変形限界相当ひずみとの2つをパラメータ(変数)とした2以上のデータを関係生成用のデータとして求めることが出来る。
そして、図14のように横軸にひずみ勾配をとり、縦軸に伸びフランジ変形限界相当ひずみをとって、求めた複数の(ひずみ勾配、伸びフランジ変形限界相当ひずみ)のデータをプロットし、そのプロットした点を結んだ線を成形限界線Lとする。そして成形限界線Lを境界として、その下側の領域を成形可能領域Rとして特定する。
As a result, two or more data having two parameters, ie, strain gradient and stretch flange deformation limit equivalent strain, as parameters (variables) can be obtained as relation generation data.
Then, as shown in FIG. 14, the horizontal axis represents the strain gradient, the vertical axis represents the stretch flange deformation limit equivalent strain, and the obtained data (strain gradient, stretch flange deformation limit equivalent strain) are plotted. A line connecting the plotted points is defined as a forming limit line L. Then, with the forming limit line L as a boundary, the lower region is specified as the moldable region R.
ここで、取得するデータが2データであれば、図14のように、その2点を通過する直線を成形限界線Lとする。この場合、例えば、一方のデータはひずみ勾配が0.03未満とし、他方のデータはひずみ勾配が0.06以上であることが好ましい。または、二次成形で発生する可能性のあるひずみ勾配の範囲が決まっているようであれば、その範囲のひずみ勾配がある2つのデータを採用してもよい。いずれの場合でも2点のひずみ勾配間が0.03以上離れている事が好ましい。 Here, if the data to be acquired is two data, a straight line passing through the two points is set as a forming limit line L as shown in FIG. In this case, for example, one data preferably has a strain gradient of less than 0.03, and the other data preferably has a strain gradient of 0.06 or more. Or if the range of the strain gradient that may occur in the secondary forming is determined, two data having the strain gradient in the range may be adopted. In any case, it is preferable that the two strain gradients are separated by 0.03 or more.
取得するデータは3データ以上であることが好ましい。この場合、ひずみ勾配が0.03以下のデータ、ひずみ勾配が0.06以上のデータ、0.03より大きく且つ0.06未満のデータの3データを含む事が好ましい。このようにすると、ひずみ勾配が大きい場合と小さい場合の傾向の違いを加味して成形限界線Lを求めることが可能となる。
また、プロットするデータが3点以上の場合には、隣り合う各点を直線で結んだ線を成形限界線Lとしたり、その複数のデータを通過する曲線を成形限界線Lとする。
It is preferable that the data to be acquired is three or more data. In this case, it is preferable to include three data: data having a strain gradient of 0.03 or less, data having a strain gradient of 0.06 or more, and data having a value greater than 0.03 and less than 0.06. If it does in this way, it will become possible to obtain the forming limit line L in consideration of the difference in tendency when the strain gradient is large and small.
When the data to be plotted is three or more points, a line connecting adjacent points with a straight line is defined as a forming limit line L, and a curve passing through the plurality of data is defined as a forming limit line L.
ここで、成形可能領域特定工程3で求める成形限界線Lを、(ひずみ勾配、伸びフランジ変形限界相当ひずみ)をパラメータとした関係式として求めても良い。
上記成形可能領域特定工程3は、実験データ取得工程1が取得したひずみ勾配が異なる複数のデータのデータと、予変形相当ひずみ量設定工程2が取得した予変形相当ひずみ量のデータとを入力し、上記処理の演算をコンピュータで実行して上記成形限界線L及び成形可能領域Rの少なくとも一方の情報をアウトプットして生成するように構成しておくと良い。成形限界線Lは式として、その式の係数を記憶しておいても良い。
Here, the forming limit line L obtained in the formable
In the moldable
ここで、実験データ取得工程1の穴広げ試験以外の演算処理部分は、FEM解析計算などのプログラムを使用してコンピュータで実行させるようにしても良い。
以上の処理によって、予成形によって予変形を加えた金属板に対するプレス成形によるせん断縁の成形可否を評価するための基礎情報の取得が終了する。
成形仕様データ取得工程4では、一次成形及び二次成形の少なくとも2工程で作成される成形品の成形仕様を暫定し、この暫定した成形仕様についてFEM解析計算を行って、予成形後の金属板に対する成形完了後のせん断縁の変形量及びひずみ勾配を求めると共に、予成形によって、上記のせん断縁近傍に発生する相当ひずみ量を予変形相当ひずみ量として演算する。この成形仕様データ取得工程4において、FEM解析計算に加え、必要に応じて適宜実験を行ってデータを取得するようにしても良い。
Here, calculation processing parts other than the hole expansion test in the experimental data acquisition step 1 may be executed by a computer using a program such as FEM analysis calculation.
With the above processing, the acquisition of basic information for evaluating whether or not a shear edge can be formed by press forming on a metal plate that has been pre-deformed by pre-forming is completed.
In the molding specification
ここで、成形品の成形仕様においては、予変形相当ひずみの大きさは、予成形に付与する形状によって異なり、伸びフランジの各位置によって異なることが多いことから、設定したせん断縁毎に個別に演算することが好ましい。予成形時における各せん断縁に発生する予変形相当ひずみの幅が狭い場合には、その代表値を採用してもよい。
可否判定工程5では、成形仕様データ取得工程4で求めた、成形完了後のせん断縁でのトータルの変形量を成形可否判定対象部位での相当ひずみ量として出力する。そして、そのトータルの変形量とひずみ勾配とのデータ組が、成形可能領域特定工程3の出力情報で特定される成形可能領域R内に存在するか判定する。成形可能領域R内に存在する場合には、成形可と評価し、そうでない場合には、成形否と評価する。この評価はコンピュータで自動演算させても構わない。そして、その評価を表示部6に表示する。
Here, in the molding specification of the molded product, the magnitude of the pre-deformation equivalent strain differs depending on the shape applied to the pre-molding and often varies depending on the position of the stretch flange. It is preferable to calculate. When the width of the pre-deformation equivalent strain generated at each shear edge at the time of preforming is narrow, the representative value may be adopted.
In the
ここで、暫定した成形仕様におけるせん断縁評価のための取得データは1箇所に限定されず、複数箇所のせん断縁で取得して、それぞれ上記の成形の可否の評価を行うようにしても良い。
そして、成形否のせん断縁が存在している場合には、その成形否のせん断縁近傍の仕様を変更した暫定した成形仕様(予成形の仕様と予成形後の仕様)を策定し直して、上記の成形仕様データ取得工程4及び可否判定工程5を繰り返す。そして、設定した全てのせん断縁箇所で成形可となった暫定の成形仕様から、予成形した金属板に対する最終の成形仕様を決定する。
ここで、使用する金属板の鋼種毎に成形限界線Lを求めて、使用するようにすればよい。
また上記の成形評価では、可否判定を例示したが、どの程度、余裕が有るか、どの程度変形量がオーバーしているかで評価しても良い。
Here, the acquisition data for the shear edge evaluation in the provisional molding specification is not limited to one place, but may be obtained at a plurality of shear edges and each of the above-described evaluation of the possibility of forming may be performed.
Then, if there is a molding-impossible shear edge, re-form a provisional molding specification (pre-molding specification and post-molding specification) that changes the specifications in the vicinity of the molding-impossible shear edge, The molding specification
Here, what is necessary is just to obtain | require and use the shaping | molding limit line L for every steel type of the metal plate to be used.
Further, in the above-described molding evaluation, the possibility determination is exemplified, but the degree of allowance may be evaluated or the degree of deformation may be exceeded.
〈本実施形態の効果〉
本実施形態では、次のような効果を奏する。
(1)せん断縁でのひずみ勾配に対する予成形後の金属板での変形限界相当ひずみ量のデータを複数取得し、その複数のデータに基づき、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係を求め、求めた関係から成形限界線Lを特定することで、せん断縁の成形可能領域Rを特定する。そして、特定した成形限界線Lや成形可能領域Rに基づき、暫定した成形仕様から求められるせん断縁でのひずみ勾配に対するトータルの変形量に対し、成形可否を評価する。
<Effect of this embodiment>
This embodiment has the following effects.
(1) Acquire a plurality of deformation limit equivalent strain data in the pre-formed metal plate with respect to the strain gradient at the shear edge, and obtain the relationship between the strain corresponding to the stretch flange deformation limit and the strain gradient based on the data. By specifying the forming limit line L from the obtained relationship, the formable region R of the shear edge is specified. Then, based on the specified forming limit line L and the formable region R, whether or not forming is possible is evaluated with respect to the total deformation amount with respect to the strain gradient at the shear edge obtained from the provisional forming specification.
この構成によれば、一次成形(予成形)及び二次成形を経て形成される成形品における、予成形後にせん断される金属板の材料縁の成形可否を、より簡便により精度良く評価することが出来るようになる。
すなわち、金型を何度も作成することなく、二次成形における伸びフランジ部での成形可否や成形余裕度などの評価が精度よく予測できる結果、割れ発生による不良を早期に予防することが出来る。
また相当ひずみで評価することで、ひずみ形態の違いを考慮する必要もない。
According to this configuration, it is possible to more easily and accurately evaluate whether or not the material edge of the metal plate to be sheared after pre-forming in a formed product formed through primary forming (pre-forming) and secondary forming can be formed. become able to do.
That is, it is possible to prevent defects due to cracks at an early stage as a result of accurately predicting the possibility of molding at the stretch flange portion in the secondary molding and the molding margin without creating a mold many times. .
Moreover, it is not necessary to consider the difference of a strain form by evaluating by equivalent strain.
〈変形例〉
ここで、上記の実施形態では、一つの連続した成形限界線Lを求める場合で説明している。これに対し、本変形例では、ひずみ勾配が0.03以上0.06以下の基準ひずみ勾配範囲内で設定した、基準のひずみ勾配を境に2つの領域に区分し、区分毎に成形限界線L1,L2を求める。
<Modification>
Here, in the above-described embodiment, the case where one continuous forming limit line L is obtained is described. On the other hand, in this modification, the strain gradient is set within a reference strain gradient range of 0.03 or more and 0.06 or less, and is divided into two regions with the reference strain gradient as a boundary, and a forming limit line is set for each division. L1 and L2 are obtained.
ここで、発明者が確認したところでは、変形限界相当ひずみ量と予変形相当ひずみ量との和である伸びフランジ変形限界相当ひずみは、ひずみ勾配が小さい場合には、予変形相当ひずみ量の大きさにさほど依存しない。一方、ひずみ勾配が大きい場合には、伸びフランジ変形限界相当ひずみは、予変形相当ひずみ量の増加に伴い増加する傾向にある。発明者が、その2つのひずみ勾配の境界について確認したところ、0.03〜0.06の間に存在することを確認したため、基準ひずみ勾配範囲を0.03以上0.06以下とした。好ましくは、0.04以上0.05以下である。 Here, the inventor has confirmed that the strain corresponding to the stretch flange deformation limit, which is the sum of the deformation limit equivalent strain amount and the predeformation equivalent strain amount, is large when the strain gradient is small. It doesn't depend much. On the other hand, when the strain gradient is large, the stretch flange deformation limit equivalent strain tends to increase as the pre-deformation equivalent strain amount increases. When the inventor confirmed the boundary between the two strain gradients, it was confirmed that the boundary exists between 0.03 and 0.06, so the reference strain gradient range was set to 0.03 or more and 0.06 or less. Preferably, it is 0.04 or more and 0.05 or less.
例えば、種々の自動車用プレス品で二次成形での伸びフランジ成形可否判定が問題となる部位のひずみ勾配を調べたところ、0.03未満か、0.06以上に大別された。
また、穴径にもよるが、多くのケースで、円錐穴広げ試験ではひずみ勾配が0.06以上に、円筒穴広げ試験ではひずみ勾配が0.03未満になる。
以上のことから、境界となる基準のひずみ勾配を上記範囲とした。
For example, when the strain gradient of the part where the determination of whether or not stretch flange forming in secondary molding is a problem in various automotive press products was examined, it was roughly classified as less than 0.03 or 0.06 or more.
Depending on the hole diameter, in many cases, the strain gradient is 0.06 or more in the conical hole expansion test, and the strain gradient is less than 0.03 in the cylindrical hole expansion test.
From the above, the reference strain gradient as a boundary is set to the above range.
本変形例での評価方法について、詳細に説明する。
まず0.03以上0.06以下の基準ひずみ勾配範囲から基準のひずみ勾配を選択する。本実施形態では、例えば基準のひずみ勾配として0.05を設定する。
そして、ひずみ勾配が基準のひずみ勾配未満の第1の領域と、ひずみ勾配が基準のひずみ勾配以上の第2の領域との2つに区分する。
The evaluation method in this modification will be described in detail.
First, a reference strain gradient is selected from a reference strain gradient range of 0.03 or more and 0.06 or less. In the present embodiment, for example, 0.05 is set as the reference strain gradient.
And it divides into two, the 1st field where a strain gradient is less than a standard strain gradient, and the 2nd field where a strain gradient is more than a standard strain gradient.
実験データ取得工程1では、上記と同様に、せん断縁での径方向のひずみ勾配と上記予成形後の金属板に対する変形限界相当ひずみ量とをパラメータとした、ひずみ勾配が異なる複数のデータを取得する。但し、複数のデータとして、基準のひずみ勾配より小さいひずみ勾配からなる2以上の第1のデータと、上記基準となるひずみ勾配よりも大きなひずみ勾配からなる2以上の第2のデータとを個別に取得する。 In the experimental data acquisition step 1, as described above, a plurality of data with different strain gradients are obtained using the radial strain gradient at the shear edge and the deformation limit equivalent strain amount for the metal plate after the preforming as parameters. To do. However, two or more first data composed of a strain gradient smaller than the reference strain gradient and two or more second data composed of a strain gradient larger than the reference strain gradient are individually used as a plurality of data. get.
そして、第1のデータ及び第2のデータ毎に、予変形相当ひずみ量設定工程2、及び成形可能領域特定工程3を実施する。
これによって、成形可能領域特定工程3のアウトプットとして、ひずみ勾配が基準のひずみ勾配未満の第1の領域を対象とする第1の成形限界線L1及び第1の成形可能領域R1の少なくとも一方からなる第1の情報と、ひずみ勾配が基準のひずみ勾配以上の第2の領域を対象とする第2の成形限界線L2及び第2の成形可能領域R2の少なくとも一方からなる第2の情報を得る(図15参照)。
Then, for each of the first data and the second data, the pre-deformation equivalent strain
Thereby, as an output of the moldable
そして、成形仕様データ取得工程4では、上記と同様に、一次成形及び二次成形が行われて作成される成形品の成形仕様を暫定し、この暫定した成形仕様についてFEM解析計算を行って、予成形後の金属板に対する成形完了後のせん断縁の変形量及びひずみ勾配を求めると共に、予成形によって、上記のせん断縁近傍に発生する相当ひずみ量を予変形相当ひずみ量として演算する。すなわち、プレス成形によって対象とするせん断縁に発生するひずみ勾配を成形品あるいは成形分析により推定する。
Then, in the molding specification
そして、可否判定工程5では、成形仕様データ取得工程4で求めた、成形完了後のせん断縁の変形量を成形可否判定部位での相当ひずみ量として求め、その求めた変形量とひずみ勾配とのデータ組が、成形可能領域特定工程3の出力情報で特定される成形可能領域内に存在するか判定する。このとき、対象とするひずみ勾配が第1の領域の場合には、第1の情報を使用して可否判定を行い、対象とするひずみ勾配が第2の領域の場合には、第2の情報を使用して可否判定を行う。
And in the
その他の構成や処理などは上記第1実施形態と同様である。
本変形例の評価方法の効果は、第1実施形態と同様であるが、ひずみ勾配に応じて2つの領域に分けて評価している。このため、ひずみ勾配が大きい場合と小さい場合との傾向違いを考慮して評価することが可能となる。
Other configurations and processes are the same as those in the first embodiment.
Although the effect of the evaluation method of this modification is the same as that of the first embodiment, the evaluation is divided into two regions according to the strain gradient. For this reason, it becomes possible to evaluate in consideration of the difference in tendency between when the strain gradient is large and when the strain gradient is small.
(第2実施形態)
次に、第2実施形態について図面を参照して説明する。第1実施形態と同様な構成については同一の符号を付して説明する。
本実施形態の成形可否評価方法は、図16に示すように、予成形無しでの実験データ取得工程7、予成形無しでの成形可能領域特定行程8、予成形後への変換工程9、成形仕様データ取得工程4、及び可否判定工程5を備える。
(Second Embodiment)
Next, a second embodiment will be described with reference to the drawings. The same components as those in the first embodiment will be described with the same reference numerals.
As shown in FIG. 16, the moldability evaluation method of the present embodiment includes an experimental
予成形無しでの実験データ取得工程7では、予成形無しでの金属板(予成形前の金属板)に対して穴広げ試験を行って、せん断縁での径方向のひずみ勾配と上記金属板に対する変形限界相当ひずみ量とをパラメータとしたひずみ勾配が異なる複数のデータを求める。
予成形無しでの成形可能領域特定行程8は、予成形無しでの実験データ取得工程7が求めた複数のデータから、予成形無しでの金属板に対する、ひずみ勾配に対する変形限界相当ひずみ量の関係を求める。
In the experimental
The
例えば、複数のデータに基づき、図17のように横軸にひずみ勾配をとり、縦軸に変形限界相当ひずみをとって、求めた複数の(ひずみ勾配、変形限界相当ひずみ)のデータをプロットし、そのプロットした点を結んだ線を、予成形無しでの成形限界線L0とする。
この予成形無しでの成形限界線L0は、特許第4935713号公報に記載の方法によって求めても構わない。この予成形無しでの成形限界線L0によって、予成形無しでの成形可能領域が特定される。
For example, based on a plurality of data, the horizontal axis indicates the strain gradient and the vertical axis indicates the deformation limit equivalent strain, and the obtained plural data (strain gradient, deformation limit equivalent strain) are plotted. A line connecting the plotted points is defined as a forming limit line L0 without pre-forming.
The molding limit line L0 without pre-molding may be obtained by the method described in Japanese Patent No. 4935713. The formable region without preforming is specified by the molding limit line L0 without preforming.
予成形後への変換工程9では、ひずみ勾配をパラメータとした、上記予成形無しでの成形限界線L0に対して、予成形無しでの変形限界相当ひずみを伸びフランジ変形限界相当ひずみ相当に変換するための換算値k1,k2を各領域毎に加算して、予成形後の金属板における、せん断縁でのひずみ勾配に対する伸びフランジ変形限界相当ひずみに対応する、予成形有りでの成形限界線Lxを求める。
In the
ここで、第1実施形態と同様に、予成形で金属板に加えられた相当ひずみ量を予変形相当ひずみ量と定義し、その予変形相当ひずみ量と予成形後の金属板での変形限界相当ひずみ量との和を伸びフランジ変形限界相当ひずみと定義する。
そして、予成形後への変換工程9で求めた、予変形有りでの成形限界線Lx以下の領域を成形可能領域Rとする。
Here, as in the first embodiment, the equivalent strain applied to the metal plate in the pre-forming is defined as the pre-deformation equivalent strain, and the pre-deformation equivalent strain and the deformation limit in the metal plate after the pre-forming. The sum of the equivalent strain is defined as the strain equivalent to the stretch flange deformation limit.
And the area | region below the shaping | molding limit line Lx with pre-deformation calculated | required in the
上記の換算値k1,k2は、ひずみ勾配を変数とした値であり、基準のひずみ勾配以上のひずみ勾配のときの換算値k2が、基準のひずみ勾配未満のひずみ勾配のときの換算値k1よりも大きくなるように設定する。
これは、上記の知見に基づき、ひずみ勾配が大きい場合、ひずみ勾配が小さい場合よりも予成形の増加によって増加する傾向があることを考慮したものである。
The converted values k1 and k2 are values having a strain gradient as a variable. The converted value k2 when the strain gradient is equal to or higher than the reference strain gradient is smaller than the converted value k1 when the strain gradient is less than the reference strain gradient. Is set to be larger.
This is based on the above findings and takes into account that when the strain gradient is large, it tends to increase with an increase in preforming than when the strain gradient is small.
基準のひずみ勾配は、上述と同様に、0.03以上0.06以下の基準ひずみ勾配範囲内から選択する。本実施形態では、例えば基準のひずみ勾配として0.05を設定する。
成形仕様データ取得工程4では、一次成形及び二次成形が行われて作成される成形品の成形仕様を暫定し、この暫定した成形仕様についてFEM解析計算を行って、予成成形後の金属板に対する成形完了後のせん断縁の変形量及びひずみ勾配を求めると共に、予成形によって、上記のせん断縁近傍に発生する変形相当ひずみ量を予変形相当ひずみ量として演算する。
The reference strain gradient is selected from the range of 0.03 or more and 0.06 or less of the reference strain gradient as described above. In the present embodiment, for example, 0.05 is set as the reference strain gradient.
In the molding specification
可否判定工程5では、成形仕様データ取得工程4で求めた、成形完了後のせん断縁の変形量を成形可否判定部位での相当ひずみ量として求め、その求めた変形量とひずみ勾配とのデータ組が、予成形後への変換工程9の出力情報で特定される成形可能領域R内に存在するか判定する。成形可能領域R内に存在する場合には、成形可と評価し、そうでない場合には、成形否と評価する。
ここで、成形仕様データ取得工程4及び可否判定工程5の処理は、第1実施形態と同様な処理で構わない。
In the
Here, the processing of the molding specification
〈換算値について〉
この換算値k1,k2は、基準のひずみ勾配を境界とした各ひずみ勾配の領域内から代表点を任意に設定し、その代表点において、それぞれの予変形無しでの成形限界値と予成形有りでの成形限界値とを実験などで求めて、その差を、各領域での各換算値k1,k2としてもよい。
<About the conversion value>
These converted values k1 and k2 are set with a representative point arbitrarily from within each strain gradient region with the reference strain gradient as a boundary, and at the representative point, there is a forming limit value and pre-forming without each pre-deformation. It is also possible to obtain the molding limit value at 1 by experiment or the like and use the difference as the converted values k1 and k2 in each region.
次に、別の換算値の決定方法の例を説明する。
成形仕様データ取得工程4から、評価するせん断縁位置での予成形による変形相当ひずみ量を取得すると共に、そのせん断縁のひずみ勾配を取得する。
そして、取得したひずみ勾配が基準ひずみ勾配未満の場合には、取得した変形相当ひずみ量に対してα=−0.5〜0.5の範囲から選択した係数を乗算して換算値とする。また、取得したひずみ勾配が基準ひずみ勾配以上の場合には、取得した変形相当ひずみ量に対してβ=0.5〜1.0の範囲から選択した係数を乗算して換算値とする。
Next, an example of another conversion value determination method will be described.
From the molding specification
If the acquired strain gradient is less than the reference strain gradient, the acquired deformation equivalent strain amount is multiplied by a coefficient selected from the range of α = −0.5 to 0.5 to obtain a converted value. If the acquired strain gradient is equal to or greater than the reference strain gradient, the acquired deformation equivalent strain amount is multiplied by a coefficient selected from the range of β = 0.5 to 1.0 to obtain a converted value.
すなわち、
k1=α×εeq1
k2=β×εeq1
となる。
但し、εeq1は予変形相当ひずみ量である。
That is,
k1 = α × ε eq1
k2 = β × ε eq1
It becomes.
However, ε eq1 is a pre-deformation equivalent strain amount.
そして、可否判定工程5は、評価するひずみ勾配について、求めた換算値を使用して予成形有りでの成形限界値を特定して、成形可能領域R内に存在するか判定する。
ここで、成形品作成時における、予成形時の変形相当ひずみ量が一定である場合には、その一定の予成形時の変形相当ひずみ量に対して、α=−0.5〜0.5の範囲から選択した係数を乗算して、基準ひずみ勾配未満のひずみ勾配に対する換算値とし、一定の予成形時の変形相当ひずみ量に対して、β=0.5〜1.0の範囲から選択した係数を乗算して、基準ひずみ勾配以上のひずみ勾配に対する換算値として、予め決定する。
Then, the
Here, when the deformation equivalent strain amount at the time of preforming is constant at the time of forming the molded product, α = −0.5 to 0.5 with respect to the constant deformation equivalent strain amount at the time of preforming. Multiply by a coefficient selected from the range of, to obtain a converted value for strain gradients below the standard strain gradient, and select from the range of β = 0.5 to 1.0 for the deformation equivalent strain amount at the time of constant preforming By multiplying the calculated coefficient, the conversion value for the strain gradient equal to or higher than the reference strain gradient is determined in advance.
本実施形態は、簡易な評価方法であるので、上記範囲内から任意の値を選択して使用しても良いが、より精度を上げるには次のようにして係数α、βの決定を行う。
ここで、α、βは次式で決定するのがよい。
α=1−R
β=1−R
例えば、表2に示したような「二次成形での変形限界低下量/予変形量」=Rの比によって上記の乗算する係数を決定すればよい。表2では、例えば、「ひずみ勾配小」の場合が、取得したひずみ勾配が基準ひずみ勾配未満の場合に相当し、「ひずみ勾配大」の場合が、取得したひずみ勾配が基準ひずみ勾配以上の場合に相当する。
Since this embodiment is a simple evaluation method, any value may be selected from the above range and used. However, in order to increase the accuracy, the coefficients α and β are determined as follows. .
Here, α and β are preferably determined by the following equations.
α = 1−R
β = 1−R
For example, the coefficient to be multiplied may be determined according to the ratio of “deformation limit reduction amount in secondary molding / predeformation amount” = R as shown in Table 2. In Table 2, for example, the case of “low strain gradient” corresponds to the case where the acquired strain gradient is less than the reference strain gradient, and the case of “large strain gradient” indicates that the acquired strain gradient is greater than or equal to the reference strain gradient. It corresponds to.
本実施形態では、予成形なしで取得した実験データから簡易にせん断縁の成形可否を評価することが可能となる。
この場合、成形限界線の精度が第1実施形態よりも低いおそれがある。
ここで、全実施形態において、予成形の際の予変形相当ひずみ量を成形仕様で変更可能である場合には、予変形相当ひずみ量側も変更することで、最終的な成形仕様を求めることも可能である。
In the present embodiment, it is possible to easily evaluate whether or not a shear edge can be formed from experimental data obtained without pre-forming.
In this case, the accuracy of the forming limit line may be lower than in the first embodiment.
Here, in all the embodiments, when the pre-deformation equivalent strain amount in the pre-molding can be changed by the molding specification, the final molding specification is obtained by changing the pre-deformation equivalent strain amount side as well. Is also possible.
1 実験データ取得工程
2 予変形相当ひずみ量設定工程
3 成形可能領域特定工程
4 成形仕様データ取得工程
5 可否判定工程
6 表示部
7 予成形無しでの実験データ取得工程
8 予成形無しでの成形可能領域特定行程
9 予成形後への変換工程
k1,k2 換算値
L 成形限界線
L0 予成形無しでの成形限界線
L1,L2 成形限界線
Lx 成形限界線
R 成形可能領域
R1 成形可能領域
R2 成形可能領域
1 Experimental
Claims (6)
予成形後の金属板に対する穴広げ試験によってせん断縁での変形限界を求め、求めたせん断縁での変形限界量を変形限界相当ひずみ量で表現して、せん断縁での径方向のひずみ勾配に対する上記穴広げ試験によって求めた変形限界相当ひずみ量からなるデータとして、ひずみ勾配が異なる複数のデータを取得し、
上記予成形で上記金属板に加えられる相当ひずみ量を予変形相当ひずみ量と定義し、その予変形相当ひずみ量と上記予成形後の金属板での変形限界相当ひずみ量との和を伸びフランジ変形限界相当ひずみと定義し、
上記予変形相当ひずみ量と上記複数のデータとに基づき、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係を求め、
上記求めた関係からせん断縁の成形可能領域を特定して、予成形によって予変形を加えた金属板に対するせん断縁の成形可否を評価することを特徴とするせん断縁の成形可否評価方法。 An evaluation method for evaluating the possibility of forming a shear edge by press forming on a metal plate pre-deformed by pre-forming,
The deformation limit at the shear edge is obtained by the hole expansion test for the pre-formed metal plate, the deformation limit amount at the shear edge is expressed as a deformation limit equivalent strain amount, and the radial strain gradient at the shear edge is expressed. As data consisting of the deformation limit equivalent strain amount obtained by the above hole expansion test, obtain multiple data with different strain gradients,
The equivalent amount of strain applied to the metal plate in the pre-forming is defined as the pre-deformation equivalent strain amount, and the sum of the pre-deformation equivalent strain amount and the deformation limit equivalent strain amount in the metal plate after the pre-forming is stretched flange It is defined as deformation equivalent strain,
Based on the amount of strain equivalent to the pre-deformation and the plurality of data, the relationship between the strain corresponding to the stretch flange deformation limit and the strain gradient is obtained,
A shear edge formability evaluation method characterized by identifying a formable area of a shear edge from the obtained relationship and evaluating the formability of a shear edge on a metal plate pre-deformed by pre-forming.
予成形後の金属板に対する穴広げ試験によってせん断縁での変形限界を求め、求めたせん断縁での変形限界量を変形限界相当ひずみ量で表現して、せん断縁での径方向のひずみ勾配に対する上記穴広げ試験によって求めた変形限界相当ひずみ量からなる複数のデータを取得し、
上記複数のデータは、予め設定した基準のひずみ勾配より小さいひずみ勾配からなる2以上の第1のデータと、上記基準となるひずみ勾配よりも大きなひずみ勾配からなる2以上の第2のデータとを有し、
上記予成形で上記金属板に加えられる相当ひずみ量を予変形相当ひずみ量と定義し、その予変形相当ひずみ量と上記予成形後の金属板での変形限界相当ひずみ量との和を伸びフランジ変形限界相当ひずみと定義し、
上記予変形相当ひずみ量と上記2以上の第1のデータに基づき、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係である第1の関係を求め、
上記予変形相当ひずみ量と上記2以上の第2のデータに基づき、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係である第2の関係を求め、
上記プレス成形によって対象とするせん断縁に発生するひずみ勾配を推定し、
上記推定したひずみ勾配が、上記基準のひずみ勾配未満の場合には、上記第1の関係によってせん断縁の第1の成形可能領域を特定してプレス成形によるせん断縁の成形可否を評価し、上記推定したひずみ勾配が、上記基準のひずみ勾配以上の場合には、上記第2の関係によってせん断縁の第2の成形可能領域を特定してプレス成形によるせん断縁の成形可否を評価することを特徴とするせん断縁の成形可否評価方法。 An evaluation method for evaluating the possibility of forming a shear edge by press forming on a metal plate pre-deformed by pre-forming,
The deformation limit at the shear edge is obtained by the hole expansion test for the pre-formed metal plate, the deformation limit amount at the shear edge is expressed as a deformation limit equivalent strain amount, and the radial strain gradient at the shear edge is expressed. Acquire a plurality of data consisting of the deformation limit equivalent strain obtained by the hole expansion test,
The plurality of data includes two or more first data having a strain gradient smaller than a preset reference strain gradient and two or more second data having a strain gradient larger than the reference strain gradient. Have
The equivalent amount of strain applied to the metal plate in the pre-forming is defined as the pre-deformation equivalent strain amount, and the sum of the pre-deformation equivalent strain amount and the deformation limit equivalent strain amount in the metal plate after the pre-forming is stretched flange It is defined as deformation equivalent strain,
Based on the amount of strain equivalent to pre-deformation and the first data of 2 or more, a first relationship that is a relationship of strain equivalent to the stretch flange deformation limit with respect to the strain gradient is obtained,
Based on the pre-deformation equivalent strain amount and the second data of 2 or more, a second relationship that is a relationship of the strain corresponding to the stretch flange deformation limit with respect to the strain gradient is obtained,
Estimate the strain gradient generated at the target shear edge by the press molding,
When the estimated strain gradient is less than the reference strain gradient, the first formable region of the shear edge is specified according to the first relationship to evaluate whether the shear edge can be formed by press molding, When the estimated strain gradient is equal to or greater than the reference strain gradient, the second formable region of the shear edge is specified by the second relationship, and whether or not the shear edge is formed by press forming is evaluated. A method for evaluating whether or not a shear edge can be formed.
予成形無しでの金属板に対する穴広げ試験によってせん断縁での変形限界を求め、求めたせん断縁での変形限界量を変形限界相当ひずみ量で表現して、上記予成形無しでの金属板における、せん断縁での径方向のひずみ勾配に対する上記穴広げ試験によって求めた変形限界相当ひずみ量からなるデータであって、ひずみ勾配が異なる複数のデータを取得し、
上記複数のデータから、上記予成形無しでの金属板における、ひずみ勾配に対する予成形無しでの変形限界相当ひずみ量の関係である予成形無しでの関係を求め、
予成形で上記金属板に加えられる相当ひずみ量を予変形相当ひずみ量と定義し、その予変形相当ひずみ量と上記予成形後の金属板での変形限界相当ひずみ量との和を伸びフランジ変形限界相当ひずみと定義し、
上記求めた予成形無しでの関係における変形限界相当ひずみ量を上記伸びフランジ変形限界相当ひずみ相当に変換するための換算値を、当該変形限界相当ひずみ量に加算して、ひずみ勾配に対する伸びフランジ変形限界相当ひずみの関係である予成形有りでの関係を求め、
上記求めた予成形有りでの関係からせん断縁の成形可能領域を特定して、予成形によって予変形を加えた金属板に対するせん断縁の成形可否を評価することを特徴とするせん断縁の成形可否評価方法。 An evaluation method for evaluating the possibility of forming a shear edge by press forming on a metal plate pre-deformed by pre-forming,
The deformation limit at the shear edge is obtained by the hole expansion test for the metal plate without pre-formation, and the deformation limit amount at the shear edge is expressed in terms of the deformation limit equivalent strain amount. , Data consisting of the deformation limit equivalent strain amount obtained by the above-mentioned hole expansion test for the radial strain gradient at the shear edge, obtaining a plurality of data with different strain gradients,
From the plurality of data, in the metal plate without pre-formation, to obtain the relationship without pre-forming, which is the relationship of the deformation limit equivalent strain amount without pre-formation to the strain gradient,
The equivalent strain applied to the metal plate during pre-forming is defined as the pre-deformation equivalent strain amount, and the sum of the pre-deformation equivalent strain amount and the deformation limit equivalent strain amount in the metal plate after pre-forming is stretched flange deformation It is defined as the limit equivalent strain,
By adding the converted value for converting the deformation limit equivalent strain amount to the elongation flange deformation limit equivalent strain in the relationship without the preforming to the deformation limit equivalent strain amount, the elongation flange deformation with respect to the strain gradient Find the relationship with pre-forming, which is the limit equivalent strain relationship,
Determine the shear edge moldable area from the relationship with the pre-formation obtained above, and evaluate whether the shear edge can be formed on a pre-deformed metal plate. Evaluation method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015095861A JP6098664B2 (en) | 2015-05-08 | 2015-05-08 | Shear edge molding availability evaluation method |
KR1020177030625A KR101993545B1 (en) | 2015-05-08 | 2016-05-02 | Evaluation method of forming shear edge |
MX2017014240A MX2017014240A (en) | 2015-05-08 | 2016-05-02 | Method for evaluating propriety of molding sheared edge. |
CN201680025732.3A CN107532980B (en) | 2015-05-08 | 2016-05-02 | Method for evaluating whether sheared edge can be formed |
PCT/JP2016/063604 WO2016181892A1 (en) | 2015-05-08 | 2016-05-02 | Method for evaluating propriety of molding sheared edge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015095861A JP6098664B2 (en) | 2015-05-08 | 2015-05-08 | Shear edge molding availability evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016211962A true JP2016211962A (en) | 2016-12-15 |
JP6098664B2 JP6098664B2 (en) | 2017-03-22 |
Family
ID=57248069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015095861A Active JP6098664B2 (en) | 2015-05-08 | 2015-05-08 | Shear edge molding availability evaluation method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6098664B2 (en) |
KR (1) | KR101993545B1 (en) |
CN (1) | CN107532980B (en) |
MX (1) | MX2017014240A (en) |
WO (1) | WO2016181892A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110740821A (en) * | 2017-07-20 | 2020-01-31 | 杰富意钢铁株式会社 | Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die |
JP2020040111A (en) * | 2018-09-13 | 2020-03-19 | Jfeスチール株式会社 | Deformation limit evaluation method, crack prediction method and press metal mold design method |
JP2021104537A (en) * | 2019-12-26 | 2021-07-26 | Jfeスチール株式会社 | Stretch flangeability evaluation method, press metal mold designing method, and press component manufacturing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6133915B2 (en) * | 2015-02-09 | 2017-05-24 | 日新製鋼株式会社 | Secondary press workability evaluation method |
JP6133965B1 (en) * | 2015-12-17 | 2017-05-24 | 日新製鋼株式会社 | Evaluation method of stretch flangeability |
JP6773255B1 (en) * | 2019-02-26 | 2020-10-21 | Jfeスチール株式会社 | Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts |
CN113588421A (en) * | 2021-08-04 | 2021-11-02 | 唐山钢铁集团有限责任公司 | Method for evaluating forming performance of sheared edge of metal plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232715A (en) * | 2006-02-01 | 2007-09-13 | Nippon Steel Corp | Method and device for breaking estimation, program and recording medium |
JP2007232714A (en) * | 2006-02-01 | 2007-09-13 | Nippon Steel Corp | Method and apparatus for acquiring breaking limit, program and recording medium |
JP2009204427A (en) * | 2008-02-27 | 2009-09-10 | Jfe Steel Corp | Method for determining propriety of shaping of sheared edge of press article |
JP2014115269A (en) * | 2012-11-19 | 2014-06-26 | Jfe Steel Corp | Method for specifying limit strain of elongation flange, and method for determining press forming acceptance/rejection |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4935713A (en) | 1972-08-08 | 1974-04-02 | ||
JPS5472518A (en) | 1977-11-19 | 1979-06-11 | Yuuji Miyashita | Mechanism of controlling revolution in automatic plug closing device |
JPS5561203A (en) | 1978-10-27 | 1980-05-08 | Mitsubishi Electric Corp | Panel unit |
WO2007088935A1 (en) * | 2006-02-01 | 2007-08-09 | Nippon Steel Corporation | Breaking prediction method |
US8589121B2 (en) * | 2007-04-12 | 2013-11-19 | Nippon Steel & Sumitomo Metal Corporation | Fracture prediction method, processing device, program product and recording medium |
JP5146395B2 (en) | 2008-08-20 | 2013-02-20 | 新日鐵住金株式会社 | Stretch flange crack estimation method considering strain gradient and stretch flange crack judgment system of press forming simulation |
JP5630311B2 (en) | 2011-02-16 | 2014-11-26 | Jfeスチール株式会社 | Method for predicting cracks in press molding and method for manufacturing pressed parts |
CN202101900U (en) * | 2011-05-25 | 2012-01-04 | 山东大学 | DIC-based plate forming property test device |
EP2839896B1 (en) * | 2012-04-16 | 2017-11-22 | JFE Steel Corporation | Method for preparing forming limit diagram in press forming, method for predicting crack and method of producing press parts |
CN102661899A (en) * | 2012-05-07 | 2012-09-12 | 同济大学 | Method for establishing and using forming limit diagram of metal sheet material |
CN104411851B (en) * | 2012-05-08 | 2016-08-24 | 塔塔钢铁艾默伊登有限责任公司 | The automotive chassis components prepared by high intensity shapable hot-rolled steel sheet material |
JP6044191B2 (en) * | 2012-08-31 | 2016-12-14 | Jfeスチール株式会社 | Springback suppression countermeasure method and analysis device for press-formed products |
KR20150025908A (en) * | 2013-08-30 | 2015-03-11 | 현대제철 주식회사 | Forming limit test apparatus |
CN104155194B (en) * | 2014-07-22 | 2016-05-18 | 武汉钢铁(集团)公司 | The FLC method of testing changing based on strain rate |
-
2015
- 2015-05-08 JP JP2015095861A patent/JP6098664B2/en active Active
-
2016
- 2016-05-02 MX MX2017014240A patent/MX2017014240A/en active IP Right Grant
- 2016-05-02 CN CN201680025732.3A patent/CN107532980B/en active Active
- 2016-05-02 KR KR1020177030625A patent/KR101993545B1/en active IP Right Grant
- 2016-05-02 WO PCT/JP2016/063604 patent/WO2016181892A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232715A (en) * | 2006-02-01 | 2007-09-13 | Nippon Steel Corp | Method and device for breaking estimation, program and recording medium |
JP2007232714A (en) * | 2006-02-01 | 2007-09-13 | Nippon Steel Corp | Method and apparatus for acquiring breaking limit, program and recording medium |
JP2009204427A (en) * | 2008-02-27 | 2009-09-10 | Jfe Steel Corp | Method for determining propriety of shaping of sheared edge of press article |
JP2014115269A (en) * | 2012-11-19 | 2014-06-26 | Jfe Steel Corp | Method for specifying limit strain of elongation flange, and method for determining press forming acceptance/rejection |
Non-Patent Citations (2)
Title |
---|
吉田 健吾 KENGO YOSHIDA: "「予変形を受けた鋼板の破断限界の評価方法」", 材料とプロセス, vol. 17, no. 5, JPN6016026775, 1 September 2004 (2004-09-01), pages 1063, ISSN: 0003481541 * |
臼田松男、石井良男、藤井力、正林央: "薄板成形における破断予測(第3報 曲げ曲げ戻し予変形材の変形特性と破断限界)", 第37回塑性加工連合講演会後援論文集, JPN6016024501, 31 October 1986 (1986-10-31), pages 335 - 338, ISSN: 0003481542 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110740821A (en) * | 2017-07-20 | 2020-01-31 | 杰富意钢铁株式会社 | Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die |
CN110740821B (en) * | 2017-07-20 | 2021-04-20 | 杰富意钢铁株式会社 | Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die |
JP2020040111A (en) * | 2018-09-13 | 2020-03-19 | Jfeスチール株式会社 | Deformation limit evaluation method, crack prediction method and press metal mold design method |
JP2021104537A (en) * | 2019-12-26 | 2021-07-26 | Jfeスチール株式会社 | Stretch flangeability evaluation method, press metal mold designing method, and press component manufacturing method |
JP7092107B2 (en) | 2019-12-26 | 2022-06-28 | Jfeスチール株式会社 | Extension flange property evaluation method, press die design method, and press part manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN107532980A (en) | 2018-01-02 |
CN107532980B (en) | 2019-12-24 |
MX2017014240A (en) | 2018-03-01 |
WO2016181892A1 (en) | 2016-11-17 |
JP6098664B2 (en) | 2017-03-22 |
KR101993545B1 (en) | 2019-06-26 |
KR20170130555A (en) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098664B2 (en) | Shear edge molding availability evaluation method | |
Oudjene et al. | On the parametrical study of clinch joining of metallic sheets using the Taguchi method | |
KR101167764B1 (en) | Breakage prediction method, calculation processing device and recording medium | |
JP6769561B2 (en) | Deformation limit evaluation method, crack prediction method and press die design method | |
JP4935713B2 (en) | Method for determining whether molding is possible at the shear edge of a pressed product | |
JP4621216B2 (en) | Fracture limit acquisition method and apparatus, program, and recording medium | |
JP6819832B1 (en) | Stretch flange crack evaluation method, metal plate selection method, press die design method, part shape design method, and press part manufacturing method | |
JP6176410B2 (en) | Fracture prediction method, program, recording medium, and arithmetic processing apparatus | |
JP4418452B2 (en) | Springback occurrence cause identifying method, apparatus thereof, and program thereof | |
JP2001076022A (en) | Method for designing formed article made of aluminum alloy plate | |
JP2008087015A (en) | Method for specifying springback occurrence cause portion, its device and its program | |
JP2016144825A (en) | Secondary press workability evaluation method | |
KR102482506B1 (en) | Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts | |
JP7031640B2 (en) | How to evaluate the formability of metal plates | |
JP2008090481A (en) | Spring-back influence display method, device therefor and program therefor | |
CN115169027A (en) | Prediction method and device for material safety margin | |
KR20230158347A (en) | Strain prediction system and method for predicting strain | |
Roy et al. | Seamless Integration of Stamping Simulation with Product and Process Optimization | |
JP2024054822A (en) | Press molding crack determination method, device and program, and manufacturing method of press molded product | |
TH177192A (en) | Method for assessing the feasibility of sheared edge shaping. | |
JP2021139012A (en) | Production method of steel sheet for press, manufacturing method of pressed component, steel sheet, and evaluation method for formability of stretch flange | |
Bhatt et al. | FLD Creation for SS304 Using Experiments & It’s Validation Using HyperForm 11.0 | |
TH77420B (en) | Method for assessing the feasibility of sheared edge shaping. | |
JP2021104537A (en) | Stretch flangeability evaluation method, press metal mold designing method, and press component manufacturing method | |
KR20210017803A (en) | Curvature area prediction for the deep drawing-ironing process of a cylindrical cup using finite element method and regression analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161208 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20161208 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161220 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6098664 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |