JP2020040111A - Deformation limit evaluation method, crack prediction method and press metal mold design method - Google Patents

Deformation limit evaluation method, crack prediction method and press metal mold design method Download PDF

Info

Publication number
JP2020040111A
JP2020040111A JP2018171635A JP2018171635A JP2020040111A JP 2020040111 A JP2020040111 A JP 2020040111A JP 2018171635 A JP2018171635 A JP 2018171635A JP 2018171635 A JP2018171635 A JP 2018171635A JP 2020040111 A JP2020040111 A JP 2020040111A
Authority
JP
Japan
Prior art keywords
bending
deformation
crack
limit
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171635A
Other languages
Japanese (ja)
Other versions
JP6870670B2 (en
Inventor
健斗 藤井
Kento FUJII
健斗 藤井
祐輔 藤井
Yusuke Fujii
祐輔 藤井
雄司 山▲崎▼
Yuji Yamazaki
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018171635A priority Critical patent/JP6870670B2/en
Publication of JP2020040111A publication Critical patent/JP2020040111A/en
Application granted granted Critical
Publication of JP6870670B2 publication Critical patent/JP6870670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a technique for predicting bending crack limit of a sheared surface of a metal plate and determining press molding condition in order to prevent occurrence of bending crack of the sheared surface.SOLUTION: A deformation limit evaluation method for evaluating deformation limit in a sheared surface 10 of a metal plate 1 when performing press molding including bending deformation for the sheared metal plate 1. A relationship between a bending radius R of a bending part due to bending deformation, which is given to a part including the sheared surface 10 of the metal plate 1, and a crack length L generated on the sheared surface 10 is determined. From the determined relationship between the bending radius R and the crack length L, bending deformation limit of the metal plate 1 at the part including the sheared surface 10 is evaluated.SELECTED DRAWING: Figure 2

Description

本発明は、せん断加工した後の金属板(素材)を、曲げ変形を含むプレス成形で成形して加工する際における、せん断加工面(せん断端面)での割れを評価・予測する技術、及びその技術に基づき金属板の割れを事前に抑制可能な金型形状の設計に関する技術である。   The present invention relates to a technology for evaluating and predicting cracks on a sheared surface (shear end surface) when a metal plate (material) after being subjected to shearing is formed by press forming including bending deformation and processed. This is a technique relating to the design of a mold shape capable of suppressing cracks in a metal plate in advance based on the technique.

現在、自動車には軽量化による燃費向上と衝突安全性の向上との両方の性能が求められている。この2つの性能を両立する目的で、自動車の構造部品に対し高強度鋼板が使用される傾向にある。高強度鋼板におけるプレス成形時の成形不良の一つに割れがある。そして、プレス成形のよる割れ防止、特にせん断加工後の端面(せん断加工面)での割れの防止が重要な課題の一つとなっている。   Currently, automobiles are required to have both performance of improving fuel efficiency and improving collision safety by reducing weight. For the purpose of balancing these two performances, there is a tendency to use high-strength steel sheets for structural parts of automobiles. Cracks are one of the forming defects during press forming of high-strength steel sheets. One of the important issues is the prevention of cracking by press molding, particularly the prevention of cracking at the end face (sheared surface) after shearing.

せん断加工面の割れは、大きく分けると伸びフランジ変形による割れと曲げ変形による割れに分類される。伸びフランジ割れの予測については、例えば特許文献1〜3に記載の方法がある。特許文献1には、板面内方向のひずみ勾配を考慮した予測手法や、板面内の応力勾配を考慮した予測手法が記載されている。特許文献2には、伸びフランジ変形におけるひずみ勾配とひずみ集中と破断ひずみの関係を用いる方法が記載されている。特許文献3には、成形限界ひずみと板面内方向及び板厚方向のひずみ勾配の関係を用いた割れ予測方法が記載されている。   Cracks on the sheared surface are roughly classified into cracks due to stretch flange deformation and cracks due to bending deformation. For prediction of stretch flange cracks, there are methods described in Patent Documents 1 to 3, for example. Patent Literature 1 describes a prediction method that considers a strain gradient in a plate surface direction and a prediction method that considers a stress gradient in a plate surface. Patent Literature 2 describes a method that uses the relationship between strain gradient, strain concentration, and breaking strain in stretch flange deformation. Patent Literature 3 describes a crack prediction method using a relationship between a forming limit strain and strain gradients in a sheet surface direction and a sheet thickness direction.

特開2010−69533号公報JP 2010-69533 A 特開2011−140046号公報JP 2011-140046 A 特開2014−115269号公報JP 2014-115269 A

しかしながら、せん断加工面の曲げ割れに関する割れの予測方法については好適な手法は開発されておらず、この曲げ変形によるせん断加工面の割れを予測する手法の開発が求められている。
特に、金属板として、引張強度が590MPa以上の高強度鋼板を採用した場合、プレス成形時に、せん断加工面の曲げ割れが顕在化してきている。
本発明は、上記のような課題に着目したもので、せん断加工面の曲げ割れの発生を防ぐために金属板のせん断加工面の曲げ割れ限界を予測し、プレス成形条件を決定するための技術を提供することを目的とする。
However, no suitable method has been developed for predicting cracks related to bending cracks on the sheared surface, and a method for predicting cracks on the sheared surface due to this bending deformation has been required.
In particular, when a high-strength steel plate having a tensile strength of 590 MPa or more is used as a metal plate, bending cracks on a sheared surface have become apparent during press forming.
The present invention focuses on the above problems, and proposes a technique for predicting a bending crack limit of a sheared surface of a metal plate in order to prevent occurrence of bending cracks on a sheared surface and determining press forming conditions. The purpose is to provide.

発明者は、せん断加工面での曲げ割れについて、曲げ試験によりせん断加工面の曲げ割れが発生する成形条件を求め、更に曲げ試験と同一成形条件の成形シミュレーションにより、曲げ割れの変形限界ひずみεlimitを求めてみた。そして、発明者は、求めた曲げ割れの変形限界ひずみεlimitとプレス成形時のせん断加工面のひずみを比較することで、せん断加工面の割れの発生を予測できるとの知見を得た。
本発明は、金属板に必要となる曲げ性の予測方法と、それを用いた金属板に発生する割れの予測方法である。また、対象とする金属板に割れを発生させることなくプレス成形するための変形限界の評価・予測方法と、金型形状の設計方法を提供する。
The inventor obtained a bending condition on the sheared surface by bending test to determine a forming condition at which a bending crack on the sheared surface occurs, and further formed a deformation limit strain εlimit of bending crack by a forming simulation under the same forming condition as the bending test. I asked for it. The inventor has obtained a finding that the occurrence of cracks in the sheared surface can be predicted by comparing the obtained deformation limit strain εlimit of bending crack with the strain of the sheared surface during press forming.
The present invention relates to a method for predicting the bending property required for a metal plate and a method for predicting cracks generated in the metal plate using the same. Further, the present invention provides a method of evaluating and predicting a deformation limit and a method of designing a mold shape for press-forming without causing cracks in a target metal plate.

すなわち、本発明の一態様は、せん断加工された金属板に曲げ変形を含むプレス成形を行う際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、金属板のせん断加工面を含む部分に曲げ変形を与えることによる、曲げ変形による曲げ部の曲げ半径とせん断加工面に発生する亀裂長さとの関係を求め、その求めた曲げ半径と亀裂長さとの関係から、せん断加工面での金属板の曲げ変形の限界を評価することを要旨とする。   That is, one embodiment of the present invention is a method for evaluating a deformation limit for evaluating a deformation limit on a sheared surface of the metal plate when performing press forming including bending deformation on the sheared metal plate, The relationship between the bending radius of the bent part due to bending deformation and the crack length generated on the sheared surface by applying bending deformation to the part including the sheared surface of the metal plate was determined, and the relationship between the calculated bending radius and the crack length was calculated. From the relationship, the gist is to evaluate the limit of the bending deformation of the metal plate on the sheared surface.

また、本発明の一態様は、せん断加工された金属板に曲げ変形を含むプレス成形を行う際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、金属板のせん断加工面を含む部分に曲げ変形を与えることによる、曲げ変形による曲げ部の曲げ半径とせん断加工面に発生する亀裂長さとの関係を求め、求めた上記関係から、せん断加工面で割れが発生する曲げ割れの変形限界ひずみを求め、求めた変形限界ひずみでせん断加工面での金属板の曲げ変形の限界を評価することを要旨とする。   Another aspect of the present invention is a method of evaluating a deformation limit for evaluating a deformation limit of a sheared surface of the metal plate when performing press forming including bending deformation on the sheared metal plate, By giving bending deformation to the part including the sheared surface of the metal plate, the relationship between the bending radius of the bent part due to bending deformation and the crack length generated on the sheared surface was obtained, and from the obtained relationship, The gist is to determine the deformation limit strain of a bending crack in which a crack occurs, and to evaluate the limit of bending deformation of the metal plate on the sheared surface using the obtained deformation limit strain.

本発明の一態様によれば、せん断加工後の金属板をプレス成形する際に、曲げ変形による金属板のせん断加工面での変形限界を精度良く評価することができる。この結果、例えば、端面からの割れ発生の有無を精度良く予測したり、割れの発生を抑えたりすることができる金型形状の設計が可能となる。
そして、本発明の一態様によれば、例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に、用いる金属板の選定が適切であるか精度良く予測できるようになり、プレス成形を安定して行うことができる。また、プレス成形品の不良率の低減にも大きく寄与することができる。更に、本発明の一態様によれば、例えば、プレス金型の形状を設計段階で精度良く予測できるようになり、プレス金型の製造期間の短縮に貢献できる。
According to one embodiment of the present invention, when press-forming a metal plate after a shearing process, it is possible to accurately evaluate a deformation limit of the metal plate on a sheared surface due to bending deformation. As a result, for example, it is possible to design a mold shape capable of accurately predicting the occurrence of cracks from the end face and suppressing the occurrence of cracks.
According to one aspect of the present invention, for example, when press-forming various parts such as panel parts of automobiles, structural / framework parts, etc., it is possible to accurately predict whether a metal plate to be used is appropriate or not. Press molding can be performed stably. Further, it can greatly contribute to the reduction of the defective rate of the press-formed product. Further, according to one aspect of the present invention, for example, the shape of the press die can be accurately predicted at the design stage, which can contribute to shortening the manufacturing period of the press die.

金属板をプレス成形したプレス部品形状の例を示す図であり、(a)はプレス加工前の金属板を、(b)はプレス加工後の部品形状を、(c)は図1(b)のA−A断面図を示す。It is a figure which shows the example of the press part shape which pressed-formed the metal plate, (a) is the metal plate before press work, (b) is the part shape after press work, (c) is FIG. 1 (b) FIG. 本発明に基づく第1実施形態に係る処理手順の例を示す図である。FIG. 4 is a diagram illustrating an example of a processing procedure according to the first embodiment based on the present invention. V曲げ試験の概略図である。It is the schematic of a V bending test. 亀裂長さの定義の例を説明する図である。It is a figure explaining the example of a definition of a crack length. 亀裂長さの他の定義の例を説明する図である。It is a figure explaining the example of other definitions of crack length. 曲げ半径と亀裂長さの関係を示す図である。It is a figure which shows the relationship between a bending radius and a crack length. 限界曲げ半径を示す図である。It is a figure showing a critical bending radius. 変化率の変化を示す図である。It is a figure showing change of a rate of change. 実施例における試験片の形状を示す図である。It is a figure showing the shape of the test piece in an example. 実施例における、曲げ半径と亀裂長さの関係を示す図である。It is a figure in an example which shows the relationship between a bending radius and a crack length. 実施例における、曲げ半径と亀裂発生部で最大主ひずみとの関係を示す図である。It is a figure in an example which shows the relationship between a bending radius and the maximum principal strain in a crack generation part. 実施例における、曲げ割れ評価部の例を示す図である。It is a figure in an example showing the example of a bending crack evaluation part.

次に、本発明の実施形態について図面を参照しつつ説明する。
図1(b)に、金属板1を曲げ加工を含むプレス成形で成形したプレス部品2の一例を、示す。図1は、金属板1を断面コ字状に曲げ成形した例である。
この例は、図1(a)の形状にせん断加工された金属板1を、図1(b)、図1(c)のプレス部品2の形状にプレス成形した例であり、符号2Aの位置がせん断加工面10を含む部分に曲げ変形を施すことで生じた曲げ部である。図1(a)中、符号1Aが曲げ変形を加えられる位置である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1B shows an example of a pressed part 2 in which the metal plate 1 is formed by press forming including bending. FIG. 1 shows an example in which a metal plate 1 is bent into a U-shaped cross section.
This example is an example in which a metal plate 1 that has been sheared into the shape shown in FIG. 1A is press-formed into the shape of a pressed part 2 shown in FIGS. 1B and 1C. Is a bent portion generated by performing a bending deformation on a portion including the shearing surface 10. In FIG. 1A, reference numeral 1A indicates a position where bending deformation can be applied.

この図1では、符号Xの位置が、端面において、曲げ変形時にひずみが一番大きく、亀裂が発生すると推定される部分である。曲げによる亀裂が発生しやすい位置は、曲げ部2A又はその近傍位置のせん断加工面10の位置である。
本実施形態では、このような、せん断加工された金属板1に曲げ変形を含むプレス成形を行う際における、金属板1のせん断加工面10での変形限界を評価する評価方法である。
なお、本発明の適用は、断面コ字状への曲げ成形に限定されず、せん断加工された金属板に曲げ変形を含むプレス成形を有するものであれば、特にプレス部品の形状に制限はない。
In FIG. 1, the position indicated by the symbol X is a portion on the end face where it is estimated that the largest strain occurs during bending deformation and a crack is generated. The position where cracks due to bending are likely to occur is the position of the shearing surface 10 at or near the bent portion 2A.
The present embodiment is an evaluation method for evaluating a deformation limit on the sheared surface 10 of the metal plate 1 when performing press forming including bending deformation on such a sheared metal plate 1.
The application of the present invention is not limited to bending into a U-shaped cross section, and there is no particular limitation on the shape of the pressed part as long as it has press forming including bending deformation in a sheared metal plate. .

次に、本実施形態における変形限界の評価方法について説明する。
図2に、本実施形態での金属板1のせん断加工面10での変形限界を評価する手順の例を示す。本実施形態での変形限界の評価は、図2に示すように、例えば曲げ試験3A、曲げ半径と亀裂長さの関係を取得3B、限界曲げ半径の決定3C、変形限界ひずみを取得3D、せん断加工面での割れ判定3Eの順番に実施される。
Next, a method of evaluating the deformation limit in the present embodiment will be described.
FIG. 2 shows an example of a procedure for evaluating the deformation limit on the sheared surface 10 of the metal plate 1 in the present embodiment. As shown in FIG. 2, the evaluation of the deformation limit in the present embodiment includes, for example, a bending test 3A, obtaining the relationship between the bending radius and the crack length 3B, determining the limit bending radius 3C, obtaining the deformation limit strain 3D, and shearing. It is performed in the order of the crack determination 3E on the processing surface.

<曲げ試験3A>
本実施形態の評価方法では、せん断加工を施した金属板1からなる試験片を複数用意する。
ここで、試験片の材質は、評価対象の金属板1と同じ材質とする。
また、試験片における曲げ変形が行われる位置における、平面視でみた、せん断加工面10の端面形状(輪郭形状)での曲率半径は、評価対象の金属板1にせん断加工する際の輪郭形状での曲率半径R0以下となっていることが好ましい。また、金属板1の板厚も、評価対象の金属板1の板厚と等しい厚さか又は近似した厚さであることが好ましい。
<Bending test 3A>
In the evaluation method of the present embodiment, a plurality of test pieces made of the metal plate 1 subjected to shearing are prepared.
Here, the material of the test piece is the same as that of the metal plate 1 to be evaluated.
Further, the radius of curvature of the end face shape (contour shape) of the shearing surface 10 as viewed in a plan view at the position where the bending deformation is performed on the test piece is determined by the contour shape when shearing the metal plate 1 to be evaluated. Is preferably equal to or less than the radius of curvature R0. Further, the thickness of the metal plate 1 is also preferably equal to or close to the thickness of the metal plate 1 to be evaluated.

そして、各試験片に対し、曲げ変形による曲げ部がせん断加工面10を通過するように設定し、曲げ試験を行う。このとき、曲げ部での曲げ半径が異なるようにして曲げ試験を複数実施する。具体的には、曲げ試験に使用するパンチとして、曲げ半径の異なるパンチを順次使用することで実現する。
ここで、曲げ試験にはU曲げ試験、V曲げ試験など様々な種類がある。自動車の車体構造部材の評価には、図3に示すようなV曲げ試験が好ましい。但し、試験片20のせん断加工面10に曲げ変形を与えることができ、かつ後述の成形シミュレーションで曲げ試験を再現できれば、どのような曲げ試験の方法でも構わない。図3中、符号21がダイを、符号22がパンチ22を示す。
Then, a bending test is performed on each test piece so that a bent portion due to bending deformation passes through the shearing surface 10. At this time, a plurality of bending tests are performed with different bending radii at the bending portions. Specifically, this is realized by sequentially using punches having different bending radii as punches used for the bending test.
Here, there are various types of bending tests such as a U bending test and a V bending test. A V-bending test as shown in FIG. 3 is preferable for evaluating a vehicle body structural member. However, any bending test method may be used as long as bending deformation can be applied to the sheared surface 10 of the test piece 20 and the bending test can be reproduced by a forming simulation described later. In FIG. 3, reference numeral 21 denotes a die, and reference numeral 22 denotes a punch 22.

曲げ試験は、例えば曲げ半径Rが0.5mm〜10mmの範囲であって、互いの曲げ半径Rが異なる複数のパンチ22を使用して行う。パンチ22の曲げ半径Rとして、6mm以上で2つ以上、4mm以下で2つ以上異なるパンチ22を用いることが好ましい。
各パンチ22の曲げ半径Rのピッチ(隣り合う曲げ半径Rの差)は、パンチ22の曲げ半径Rが5mm未満でのピッチに比べて、相対的にパンチ22の曲げ半径Rが5mm以上でのピッチを大きく設定するとよい。なお、ピッチは等間隔にする必要はない。
The bending test is performed using, for example, a plurality of punches 22 having a bending radius R in a range of 0.5 mm to 10 mm and different bending radii R from each other. As the bending radius R of the punch 22, it is preferable to use two or more punches 22 different from each other by 6 mm or more and 4 mm or less.
The pitch of the bending radius R of each punch 22 (difference between adjacent bending radii R) is relatively larger when the bending radius R of the punch 22 is 5 mm or more than when the bending radius R of the punch 22 is less than 5 mm. It is good to set a large pitch. The pitch does not need to be equal.

例えば、パンチ22の曲げ半径Rが5mm以上では、曲げ半径Rを6.0mm、7.0mm、8.0mm…と、ピッチを1mm以上で変えて曲げ試験を行うとよい。但し、ピッチの最大値は例えば3mm以下とする。曲げ半径Rは、より小さいピッチで変えるほど試験の精度は高まる。しかし、曲げ半径Rが5mmより大きい場合、試験数が増える割に精度はほとんど変わらない。これはKirchhoff-Loveの仮説に基づいた曲げ理論から計算される曲げ変形に伴うひずみからも分かるように、曲げ変形における最大ひずみの発生位置である曲げ外側表面のひずみにおいて、曲げ半径Rが大きいと、曲げ半径Rの変化における曲げ外側表面ひずみの変化量が小さいためである。   For example, when the bending radius R of the punch 22 is 5 mm or more, the bending test may be performed by changing the bending radius R to 6.0 mm, 7.0 mm, 8.0 mm. However, the maximum value of the pitch is, for example, 3 mm or less. The accuracy of the test increases as the bending radius R is changed at a smaller pitch. However, when the bending radius R is larger than 5 mm, the accuracy hardly changes even though the number of tests increases. This is, as can be seen from the strain associated with bending deformation calculated from the bending theory based on the Kirchhoff-Love hypothesis, as the bending radius R is large at the strain on the outer bending surface, which is the position where the maximum strain occurs in bending deformation. This is because the amount of change in the surface strain outside the bend due to the change in the bending radius R is small.

一方、パンチ22の曲げ半径Rが5mm未満では、ピッチが大きくなるほど試験の精度が落ちるため、1mm未満のピッチで曲げ半径Rを変えるのが好ましい。ピッチが細かいほど精度は上がるが、余り細かくても、精度向上が見込めないため、ピッチの下限値は例えば0.2mmとする。例えば、パンチ22の曲げ半径Rが5mm未満では、パンチ22の曲げ半径Rを4.5mm、4.0mm、3.5mm…と、0.5mmピッチで変化させるとよい。   On the other hand, if the bending radius R of the punch 22 is less than 5 mm, the accuracy of the test decreases as the pitch increases, so that it is preferable to change the bending radius R at a pitch of less than 1 mm. The finer the pitch, the higher the accuracy. However, even if the pitch is too small, the accuracy cannot be improved. Therefore, the lower limit of the pitch is set to, for example, 0.2 mm. For example, when the bending radius R of the punch 22 is less than 5 mm, the bending radius R of the punch 22 may be changed to 4.5 mm, 4.0 mm, 3.5 mm,.

<曲げ半径Rと亀裂長さの関係取得3B>
次に、曲げ試験を実施後、各試験片20における、せん断加工面10に発生した亀裂長さを測定する。なお、亀裂は、せん断加工面10に対して垂直方向に伸展しているとは限らない。
亀裂長さLの測定方法は、例えば図4に示すように、亀裂先端k1からせん断加工面10の曲げ外表面までの最小距離で定義するのが良い。他にも図5に示すように、亀裂長さLとして、亀裂先端k1と曲げ外表面における亀裂の口開き部の中点Nとの距離で測定する方法や、亀裂に沿った長さを測定する方法などがある。亀裂長さLの測定方法は、同一の亀裂長さLの測定条件で評価すれば良く、いずれの亀裂長さLの測定方法でも構わない。
<Acquisition of relationship between bending radius R and crack length 3B>
Next, after performing the bending test, the length of the crack generated in the sheared surface 10 in each test piece 20 is measured. Note that the crack does not necessarily extend in a direction perpendicular to the shearing surface 10.
The method of measuring the crack length L is preferably defined by the minimum distance from the crack tip k1 to the outer bending surface of the shearing surface 10 as shown in FIG. 4, for example. In addition, as shown in FIG. 5, as the crack length L, a method of measuring the distance between the tip k1 of the crack and the midpoint N of the opening of the crack on the bending outer surface, or measuring the length along the crack There are ways to do that. The method for measuring the crack length L may be evaluated under the same conditions for measuring the crack length L, and any method for measuring the crack length L may be used.

これによって、(パンチ22の曲げ半径R、亀裂長さL)の組からなる評価データを複数取得できる。なお、パンチ22の曲げ半径Rは、曲げ部の曲げ半径と同等の値となる。
上記複数の(パンチ22の曲げ半径R、亀裂長さL)の組からなる評価データによって、曲げ変形による曲げ部の曲げ半径Rとせん断加工面10に発生する亀裂長さLとの関係は表現できる。その関係は、例えば図6に示すような関係となっている。図6から分かるように、所定の曲げ半径Rから急に亀裂が伸展していることが分かる。
As a result, a plurality of pieces of evaluation data including a set of (bending radius R of punch 22 and crack length L) can be obtained. Note that the bending radius R of the punch 22 has a value equivalent to the bending radius of the bent portion.
The relationship between the bending radius R of the bent portion due to bending deformation and the crack length L generated on the shearing surface 10 is expressed by the evaluation data composed of a plurality of sets (bending radius R of the punch 22 and crack length L). it can. The relationship is, for example, as shown in FIG. As can be seen from FIG. 6, it can be seen that the crack has suddenly extended from the predetermined bending radius R.

<限界曲げ半径の決定3C>
上記の複数の(パンチ22の曲げ半径R、亀裂長さL)の組からなる評価データについて、回帰分析などの統計処理を行って、図7のような、パンチ22の曲げ半径Rの変化に対する亀裂長さLの変化からなる変化率L/Rを求める。そして、変化率L/Rが急激に変化する変化位置CHに対応する曲げ半径Rを、評価したせん断加工面10での曲げ変形の成形限界(変形限界)である限界曲げ半径RXとする。ここで、成形限界は成形可能な限界を表す。
<Determination of critical bending radius 3C>
Statistical processing such as regression analysis is performed on the evaluation data composed of a plurality of sets (the bending radius R of the punch 22 and the crack length L), and a change in the bending radius R of the punch 22 as shown in FIG. A change rate L / R consisting of a change in the crack length L is determined. The bending radius R corresponding to the change position CH where the change rate L / R changes abruptly is defined as a critical bending radius RX which is a forming limit (deformation limit) of the bending deformation on the evaluated shearing surface 10. Here, the molding limit represents a molding limit.

より具体的には、図8に示すような、パンチ22の曲げ半径Rの変化に対する亀裂長さLの変化の割合である変化率L/Rが、0.03以上、好ましくは0.05以上となる曲げ半径の境界位置を限界曲げ半径RXとすることが好ましい。その限界曲げ半径RXは、変化率L/Rが急激に変化する曲げ半径のうちの最大の曲げ半径Rである。この値を採用する理由は、変化率L/Rが0.03未満だと成形条件であるパンチ22の曲げ半径Rの変化に伴うせん断加工面10の曲げひずみ変化が及ぼす亀裂長さLの急激な変化への影響が確認できないおそれがあるためである。なお、せん断加工によってせん断加工面10には微小な亀裂が発生している。そして、変化率L/Rが0.03以上と変化率が変化する変化位置で亀裂が急に伸展し、そのときの曲げ半径Rの最大値が限界曲げ半径RXとなる。   More specifically, as shown in FIG. 8, the rate of change L / R, which is the ratio of the change in the crack length L to the change in the bending radius R of the punch 22, is 0.03 or more, preferably 0.05 or more. It is preferable to set the boundary position of the bending radius to be the critical bending radius RX. The critical bending radius RX is the maximum bending radius R among the bending radii at which the rate of change L / R changes rapidly. The reason for adopting this value is that if the rate of change L / R is less than 0.03, the crack length L sharply changes due to the change in bending strain of the sheared surface 10 due to the change in the bending radius R of the punch 22, which is a forming condition. This is because there is a possibility that the influence on the change cannot be confirmed. Note that a small crack is generated on the sheared surface 10 by the shearing. Then, the crack rapidly expands at the change position where the change rate L / R is 0.03 or more, and the maximum value of the bending radius R at that time becomes the critical bending radius RX.

ここで、上記の曲げ試験及び亀裂の測定による(パンチ22の曲げ半径R、亀裂長さL)の組からなる評価データは、順次、鋼種などをキーとしてデータベースに登録しておくと良い。そして、評価対象の金属板1の条件と同一又は近似の評価データがデータベースに既に存在していれば、曲げ試験を行うことなく、データベース中の評価データを使用すればよい。同一の鋼材等の成形条件の評価データがデータベースになくても、データベース中の近似の評価データに補間処理を施して、複数の(パンチ22の曲げ半径R、亀裂長さL)の組からなる評価データを取得するようにしても良い。   Here, the evaluation data composed of a set of (the bending radius R of the punch 22 and the crack length L) by the bending test and the crack measurement described above may be sequentially registered in a database using a steel type or the like as a key. Then, if evaluation data that is the same or similar to the condition of the metal plate 1 to be evaluated already exists in the database, the evaluation data in the database may be used without performing the bending test. Even if the evaluation data of the same steel material or the like is not present in the database, the approximate evaluation data in the database is subjected to an interpolation process to form a plurality of sets (bending radius R of punch 22 and crack length L). Evaluation data may be obtained.

<変形限界ひずみの算出(取得)3D>
次に、限界曲げ半径RXを決定した曲げ試験の試験方法を再現した成形シミュレーションを実施する。この成形シミュレーションで、曲げ半径Rに対するせん断加工面10での亀裂発生部の表面ひずみを推定する。表面ひずみとしては、例えば最大主ひずみを採用する。
成形シミュレーションの手法としては、プレス成形時のせん断加工面10の曲げ割れを判断する上で、プレス成形シミュレーションとして広く用いられているFEM解析が良い。解析結果より、せん断加工面10の亀裂発生部での最大主ひずみを取得し、せん断加工面10の割れ発生部の最大主ひずみと成形条件であるパンチ22の曲げ半径Rの関係を取得する。FEM解析では有限要素により最大主ひずみを取得する。
<Calculation (acquisition) 3D of deformation limit strain>
Next, a forming simulation that reproduces the test method of the bending test in which the critical bending radius RX is determined is performed. In this forming simulation, the surface strain of the crack generating portion on the sheared surface 10 with respect to the bending radius R is estimated. As the surface strain, for example, the maximum principal strain is adopted.
As a method of the forming simulation, an FEM analysis widely used as a press forming simulation for determining a bending crack of the sheared surface 10 at the time of press forming is preferable. From the analysis result, the maximum principal strain at the crack generating portion of the shearing surface 10 is obtained, and the relationship between the maximum principal strain of the crack generating portion of the shearing surface 10 and the bending radius R of the punch 22 as the forming condition is obtained. In the FEM analysis, the maximum principal strain is obtained by a finite element.

そして、前述の割れ限界の限界曲げ半径RXの成形条件での最大主ひずみを求め、これを変形限界ひずみεlimitと定義する。このようにして、変形限界ひずみを算出する。
また、割れ限界の成形条件の成形シミュレーションを実施し、割れ限界のひずみを測定して変形限界ひずみとしても良い。なお、ひずみの評価位置としては、簡易的には曲げ外側の最表面の有限要素から取得してもよい。
また、曲げ試験時に金属板1の表面にスクライブドサークル等のマーキングをし、曲げ加工前後のマーキング位置の変化からせん断加工面10近傍の最大主ひずみを実験的に取得することで変形限界ひずみを取得してもよい。すなわち、試験片20の表面に微小なマークをつけてマークの変形からひずみを求めても良い。
Then, the maximum principal strain under the forming conditions of the above-mentioned limit bending radius RX of the crack limit is determined, and this is defined as the deformation limit strain εlimit. In this way, the deformation limit strain is calculated.
Also, a forming simulation under the forming conditions at the crack limit may be performed, and the strain at the crack limit may be measured and used as the deformation limit strain. The strain evaluation position may be simply obtained from the outermost finite element on the outer side of the bend.
In addition, a marking such as a scribed circle is marked on the surface of the metal plate 1 during the bending test, and the maximum principal strain in the vicinity of the shearing surface 10 is experimentally obtained from a change in a marking position before and after the bending to reduce a deformation limit strain. May be acquired. That is, a minute mark may be formed on the surface of the test piece 20 and the strain may be obtained from the deformation of the mark.

マークの形状は、サークルパターン、ドットパターン、グリッドパターン、同心円パターン等、成形後にひずみを計測できる形状であればよい。また、マーク方法は、電解エッチング、フォトエッチング、インクによる転写(スタンプ印刷)等があるが、いずれの方法を用いてもよい。但し、けがきは亀裂発生を誘発するため好ましくない。成形シミュレーションの場合は、せん断加工を再現する必要はなく、せん断加工された試験片20の端面形状を再現したモデルや、端面形状を単に平坦としたモデルを用いればよい。
3次元のソリッド要素を用いた有限要素法を用いると精度良く割れひずみが算出できる。
The shape of the mark may be any shape such as a circle pattern, a dot pattern, a grid pattern, a concentric pattern, or the like, which can measure the strain after molding. The mark method includes electrolytic etching, photoetching, transfer with ink (stamp printing), and the like, and any method may be used. However, scribing is not preferable because it induces cracks. In the case of the forming simulation, it is not necessary to reproduce the shearing processing, and a model reproducing the end face shape of the test piece 20 subjected to the shearing processing or a model having a simple flat end face shape may be used.
If the finite element method using a three-dimensional solid element is used, the crack strain can be calculated with high accuracy.

<プレス成形時のせん断加工面での割れ判定3E>
プレス成形のFEM解析を実施し、割れを判定したい部分のせん断加工面10の割れ発生懸念部位の最大主ひずみεedgeを算出する。そして、割れを判定したい部分のせん断加工面10の最大主ひずみεedgeと、上記求めた変形限界ひずみεlimitを比較することで、割れ発生の有無を判定する。
ここで、割れを判定したい部分のせん断加工面の位置と、限界曲げ半径RXで割れが発生するせん断加工面の評価位置は一致している必要はない。
具体的には、以下の条件(1)を満たすときに割れ発生と判定する。
εedge ≧ εlimit ・・・(1)
ここで、せん断加工面10の割れ判定は、割れを判定したい部分のせん断加工面10の割れ発生懸念部位の曲げ成形時の曲げ半径Rが限界曲げ半径RX以上か否かで判定しても良い。
<Determination of crack on sheared surface during press molding 3E>
The FEM analysis of the press forming is performed to calculate the maximum principal strain εedge of the portion where the crack is likely to occur on the sheared surface 10 at the portion where the crack is to be determined. Then, the presence or absence of a crack is determined by comparing the maximum principal strain εedge of the sheared surface 10 of the portion where the crack is to be determined with the above-described deformation limit strain εlimit obtained above.
Here, the position of the sheared surface where the crack is to be determined and the evaluation position of the sheared surface where the crack occurs at the critical bending radius RX need not coincide.
Specifically, when the following condition (1) is satisfied, it is determined that a crack has occurred.
εedge ≧ εlimit (1)
Here, the cracking of the sheared surface 10 may be determined based on whether or not the bending radius R of the portion where the crack is to be determined in the portion where the cracking is to be determined, at which the crack is likely to occur, is greater than or equal to the critical bending radius RX. .

<プレス金型の設計について>
使用する金型形状における曲げ半径Rが、上記のようにして評価・予測した限界曲げ半径RXよりも大きな半径となるように、プレス成形で使用するプレス金型の設計、若しくは設計変更を行う。
<Press die design>
The design or change of the design of the press die used in the press forming is performed so that the bending radius R in the shape of the die to be used is larger than the critical bending radius RX evaluated and predicted as described above.

(作用その他)
本実施形態では、対象となる金属板1をせん断加工後にプレス成形される際に、金属板1のせん断加工面10の変形限界を精度良く評価することができる。この結果、端面からの割れ発生の有無を精度良く予測したり、割れの発生を抑えたりすることができる金型形状の設計が可能となる。
例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金属板1の選定が適切であるか精度良く予測できるようになる。また、プレス成形を安定して行うことができるとともに、プレス成形品の不良率の低減にも大きく寄与することができる。更に、本実施形態によれば、例えば、プレス金型の形状を設計段階で精度良く予測できるようになり、プレス金型の製造期間の短縮に貢献できる。
(Action and others)
In the present embodiment, when the target metal plate 1 is press-formed after the shearing, the deformation limit of the sheared surface 10 of the metal plate 1 can be accurately evaluated. As a result, it is possible to design a mold shape capable of accurately predicting the occurrence of cracks from the end face and suppressing the occurrence of cracks.
For example, it is possible to accurately predict whether or not the selection of the metal plate 1 to be used when press-molding various parts such as a panel part, a structure and a skeleton part of an automobile is appropriate. In addition, it is possible to stably perform press molding, and to greatly contribute to a reduction in a defective rate of a press-formed product. Furthermore, according to the present embodiment, for example, the shape of the press die can be accurately predicted at the design stage, which can contribute to shortening the manufacturing period of the press die.

次に、本実施形態に基づく実施例について説明する。
表1に示す3種類の供試材A、B及びCからなる金属板1を対象として、実施例を説明する。表1に各供試材の材料特性を示す。
Next, an example based on the present embodiment will be described.
An example will be described for a metal plate 1 made of three types of test materials A, B and C shown in Table 1. Table 1 shows the material properties of each test material.

Figure 2020040111
Figure 2020040111

各供試材に対し、直径10mmの打ち抜き穴を作製後、各供試材について、打ち抜き穴の中央位置を通過するようにして切断し、図9に示すような試験片20を作製した。打ち抜きには、パンチ22の直径10mm、ダイス直径10.3mmのハイス製工具を使用して、クランクプレス機を用いて打ち抜いて、打ち抜き穴を形成した。この打ち抜き穴がせん断加工面10を構成する。   After making a punched hole having a diameter of 10 mm for each test material, each test material was cut so as to pass through the center position of the punched hole, and a test piece 20 as shown in FIG. 9 was manufactured. The punching was performed using a high-speed steel tool having a diameter of the punch 22 of 10 mm and a die diameter of 10.3 mm using a crank press to form a punched hole. This punched hole forms the shearing surface 10.

本実施例では、せん断加工面10を直径10mmの丸穴としたが、せん断加工面10であればどのような端面形状の打ち抜き穴であっても構わない。但し、せん断加工面10の曲率半径は1mm以上とすることが好ましい。曲率半径が1mm未満となると、曲げ変形時に応力集中が起きやすくなるため、曲げ変形以外の影響がせん断加工面10に加わる可能性がある。更に、曲率半径が1mm未満の打ち抜き径となると、せん断加工時に工具の剛性が低いことから、せん断加工面10が所定の形状で形成できない可能性がある。このため、せん断加工面10の曲率半径は1mm以上として行うことが好ましい。但し、目的の製品形状における曲げ成形が加えられる位置のせん断加工面10の曲率半径以下に設定することが好ましい。なお、曲げ成形が加えられるせん断加工面10位置及びその近傍が、亀裂が発生しやすいと推定される位置となる。   In the present embodiment, the sheared surface 10 is a round hole having a diameter of 10 mm. However, a punched hole having any end surface shape may be used as long as the sheared surface 10 is used. However, the radius of curvature of the shearing surface 10 is preferably 1 mm or more. If the radius of curvature is less than 1 mm, stress concentration is likely to occur during bending deformation, so that effects other than bending deformation may be applied to the sheared surface 10. Furthermore, if the radius of curvature is less than 1 mm, the rigidity of the tool during the shearing process is low, so that the sheared surface 10 may not be formed in a predetermined shape. Therefore, it is preferable that the radius of curvature of the shearing surface 10 is set to 1 mm or more. However, it is preferable to set the radius to be equal to or less than the radius of curvature of the shearing surface 10 at the position where the bending is applied in the target product shape. The position of the shearing surface 10 to which bending is applied and its vicinity are positions where cracks are presumed to be easily generated.

本実施例では各試験片20にV曲げ試験を行った。
V曲げ試験は、試験片20の中央線(打ち抜き穴の中央を通過する位置)と、V曲げ用のパンチ22の稜線が一致するように試験片20を設置し、パンチ22の移動速度を3mm/s、決め押し荷重を100kNとして曲げ試験を実施した。このとき、曲げ半径Rが異なるV曲げ用のパンチ22でそれぞれ実施した。
そして、パンチ22で曲げられた各試験片20におけるせん断加工面10に発生している亀裂のうちの、最大長さの亀裂長さLを、せん断加工面10での亀裂長さLとして測定した。
In this example, a V-bending test was performed on each test piece 20.
In the V-bending test, the test piece 20 was set so that the center line of the test piece 20 (the position passing through the center of the punched hole) and the ridge line of the V-bending punch 22 coincided with each other, and the moving speed of the punch 22 was 3 mm. The bending test was carried out with a predetermined pressing load of 100 kN / s. At this time, the bending was performed using the V-bending punches 22 having different bending radii R.
Then, of the cracks generated on the sheared surface 10 of each test piece 20 bent by the punch 22, the maximum length of the crack L was measured as the crack length L on the sheared surface 10. .

せん断加工面10の亀裂長さLの測定方法としては、上述(図4参照)のように、亀裂先端k1からせん断加工面10の曲げ外表面までの最小距離を亀裂長さLとして測定した。亀裂長さLの測定にはKeyence社製のデジタルマイクロスコープVHX−6000を使用し、観察倍率100倍でせん断加工面10を観察して、せん断加工面10の亀裂長さLの距離を測定した。
図10に、V曲げ試験によるせん断加工面10の亀裂長さLとパンチ22の曲げ半径Rの関係を示す。
図10から分かるように、亀裂長さLは、所定の曲げ半径Rを境に急激に変化し、その変化位置は、各供試材によって異なることが分かる。
本実施例では、亀裂長さLが急激に変化する試験結果を割れと判定した。この割れ判定より割れ限界の曲げ半径Rを決定した。例えば、供試材Aでは、5mmが割れ限界の曲げ半径Rと決定された。
As a method of measuring the crack length L of the sheared surface 10, the minimum distance from the crack tip k1 to the outer bending surface of the sheared surface 10 was measured as the crack length L as described above (see FIG. 4). The shear length L was measured by observing the sheared surface 10 at an observation magnification of 100 times using a digital microscope VHX-6000 manufactured by Keyence Corporation for the measurement of the crack length L. .
FIG. 10 shows the relationship between the crack length L of the sheared surface 10 and the bending radius R of the punch 22 in the V bending test.
As can be seen from FIG. 10, it can be seen that the crack length L changes abruptly at a predetermined bending radius R, and the change position differs depending on each test material.
In the present example, a test result in which the crack length L rapidly changed was determined to be a crack. The bending radius R at the crack limit was determined from the crack determination. For example, in the test material A, 5 mm was determined as the bending radius R at the crack limit.

ここで、割れ限界の曲げ半径Rよりも大きな曲げ半径Rでは、亀裂長さLが略等しい長さとなっている。また曲げ成形する前であって、せん断加工によってせん断加工面10には微小の亀裂が存在する。例えば、高強度鋼板からなる供試材Aでは、せん断加工によってせん断加工面10に約50μmの亀裂が発生している。材料の引張強度が低い方が、通常、せん断加工による亀裂は小さい。
次いで、上記のV曲げ試験を再現したFEM解析により、最大主ひずみからなる表面ひずみと割れ限界の曲げ半径Rとの関係を取得した。その結果を図11に示す。
Here, at a bending radius R larger than the bending radius R at the crack limit, the crack lengths L are substantially equal. Before the bending process, a small crack is present on the sheared surface 10 by the shearing process. For example, in the test material A made of a high-strength steel plate, a crack of about 50 μm is generated on the sheared surface 10 by shearing. The lower the tensile strength of the material, the smaller the cracks due to shearing are usually small.
Next, the relationship between the surface strain consisting of the maximum principal strain and the bending radius R at the crack limit was obtained by FEM analysis reproducing the above-mentioned V bending test. The result is shown in FIG.

FEM解析のソルバーには汎用有限要素法ソフトLS−DYNA ver.800を用い、解法には動的陽解法を使用した。試験片20の要素は1次完全積分8節点6面体ソリッド要素とし、面内方向の最小メッシュサイズを0.16mmとし、板厚方向にメッシュを10分割した。材料モデルは等方硬化モデルとし、材料の応力−ひずみ関係として単軸引張り試験より得られた真応力−真ひずみ関係をSwiftの式で近似し、これを相当応力−相当塑性ひずみ関係として与えた。パンチ22、ダイスは剛体とし、要素は4節点1次低減積分シェル要素を用いた。
この図11に示すような結果から、V曲げ試験の割れ判定条件における変形限界ひずεlimitは表2のようになった。この結果から、他の成形条件をFEM解析で再現し、せん断加工面10のひずみを求めれば、せん断加工面10の割れ発生の有無を予測することができる。
The general-purpose finite element method software LS-DYNA ver. 800, and a dynamic explicit solution was used for the solution. The element of the test piece 20 was a first-order complete integral 8-node hexahedral solid element, the minimum mesh size in the in-plane direction was 0.16 mm, and the mesh was divided into ten in the plate thickness direction. The material model was an isotropic hardening model, and the true stress-true strain relationship obtained from the uniaxial tensile test was approximated by the Swift equation as the stress-strain relationship of the material, and this was given as the equivalent stress-equivalent plastic strain relationship. . The punch 22 and the die were rigid bodies, and the elements used were four-node first-order reduced integral shell elements.
From the results shown in FIG. 11, the deformation limit strain εlimit under the crack determination conditions in the V-bending test was as shown in Table 2. From this result, if the other forming conditions are reproduced by FEM analysis and the strain of the sheared surface 10 is obtained, it is possible to predict whether or not cracking of the sheared surface 10 occurs.

Figure 2020040111
Figure 2020040111

一例として、表1の供試材Cの材料を用いたプレス成形品による実施例を示す。
なお、供試材Cの限界曲げ半径RXは6.0mmであった。
図12にプレス成形品におけるせん断加工面10の曲げ割れ評価部を示す。
図12中の評価部を含む部品稜線の曲げ半径Rを4mm、6mm、8mmと変化させてFEM解析及び実部品試作による検証を行った。表3に、割れ予測及び実部品試作による割れ判定結果を示す。
As an example, an example using a press-formed product using the material of the test material C in Table 1 will be described.
The critical bending radius RX of the test material C was 6.0 mm.
FIG. 12 shows a bending crack evaluation section of the sheared surface 10 in the press-formed product.
The bending radius R of the ridge line of the part including the evaluation part in FIG. 12 was changed to 4 mm, 6 mm, and 8 mm, and verification was performed by FEM analysis and actual part trial production. Table 3 shows the results of crack prediction and crack determination based on trial production of actual parts.

Figure 2020040111
Figure 2020040111

本結果より、曲げ半径Rと亀裂長さLに基づく割れ予測が実部品試作においても有効であることを確認した。これは本手法により高精度に割れ限界が予測できることを表している。
ここで、本発明は、上記に説明した内容に限られるものではなく、例えば、上記実施例では、引張強さが980MPa級以上の鋼板(1180MPa級の鋼板)に適用した例を示している。本発明は、このような高強度鋼板のプレス成形に適用することが好ましいが、引張強さが980MPa級未満の鋼板や、鋼板以外の金属板1に適用することもできる。
From these results, it was confirmed that the crack prediction based on the bending radius R and the crack length L was also effective in actual part trial production. This indicates that the crack limit can be predicted with high accuracy by this method.
Here, the present invention is not limited to the contents described above. For example, in the above embodiment, an example is shown in which the present invention is applied to a steel plate having a tensile strength of 980 MPa class or more (a steel plate of 1180 MPa class). The present invention is preferably applied to press forming of such a high-strength steel sheet, but can also be applied to a steel sheet having a tensile strength of less than 980 MPa or a metal sheet 1 other than a steel sheet.

1 金属板
2 プレス部品
2A 曲げ部
3A 曲げ試験
3B 曲げ半径と亀裂長さの関係取得
3C 限界曲げ半径の決定
3D 変形限界ひずみの取得
3E せん断加工面での割れ判定
10 せん断加工面
20 試験片
22 パンチ
CH 変化位置
L 亀裂長さ
L/R 変化率
R パンチの曲げ半径
RX 限界曲げ半径
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Pressed part 2A Bending part 3A Bending test 3B Acquisition of relation between bending radius and crack length 3C Determination of critical bending radius 3D Acquisition of deformation critical strain 3E Crack judgment on sheared surface 10 Sheared surface 20 Test piece 22 Punch CH Change position L Crack length L / R Change rate R Punch bending radius RX Limit bending radius

Claims (8)

せん断加工された金属板に曲げ変形を含むプレス成形を行う際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、
金属板のせん断加工面を含む部分に曲げ変形を与えることによる、曲げ変形による曲げ部の曲げ半径とせん断加工面に発生する亀裂長さとの関係を求め、その求めた曲げ半径と亀裂長さとの関係から、せん断加工面での金属板の曲げ変形の限界を評価することを特徴とする変形限界の評価方法。
When performing press forming including bending deformation on the sheared metal plate, a deformation limit evaluation method for evaluating the deformation limit on the sheared surface of the metal plate,
The relationship between the bending radius of the bent portion due to bending deformation and the crack length generated on the sheared surface by applying bending deformation to the portion including the sheared surface of the metal plate was determined, and the relationship between the calculated bending radius and the crack length was calculated. A method of evaluating a deformation limit, comprising evaluating a limit of bending deformation of a metal plate on a sheared surface from a relationship.
上記曲げ半径の変化に対する上記亀裂長さの変化である変化率が予め設定した設定変化率以上に変化する変化位置に対応する曲げ半径を、評価したせん断加工面での曲げ変形の成形限界と判定することを特徴とする請求項1に記載した変形限界の評価方法。   A bending radius corresponding to a change position at which a change rate, which is a change in the crack length with respect to a change in the bending radius, changes more than a preset change rate, is determined as a forming limit of bending deformation on the evaluated sheared surface. The method for evaluating a deformation limit according to claim 1, wherein: 上記設定変化率が0.03であることを特徴とする請求項2に記載した変形限界の評価方法。   The method according to claim 2, wherein the set change rate is 0.03. 上記評価の位置を、曲げ変形時に亀裂が発生すると推定されるせん断加工面での位置とすることを特徴とした請求項1〜請求項3のいずれか1項に記載した変形限界の評価方法。   The method for evaluating a deformation limit according to any one of claims 1 to 3, wherein the position of the evaluation is a position on a sheared surface where a crack is presumed to be generated during bending deformation. せん断加工された金属板に曲げ変形を含むプレス成形を行う際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、
金属板のせん断加工面を含む部分に曲げ変形を与えることによる、曲げ変形による曲げ部の曲げ半径とせん断加工面に発生する亀裂長さとの関係を求め、求めた上記関係から、せん断加工面で割れが発生する曲げ割れの変形限界ひずみを求め、求めた変形限界ひずみでせん断加工面での金属板の曲げ変形の限界を評価することを特徴とする変形限界の評価方法。
When performing press forming including bending deformation on the sheared metal plate, a deformation limit evaluation method for evaluating the deformation limit on the sheared surface of the metal plate,
By giving bending deformation to the part including the sheared surface of the metal plate, the relationship between the bending radius of the bent part due to bending deformation and the crack length generated on the sheared surface was obtained, and from the obtained relationship, A method for evaluating a deformation limit, comprising: determining a deformation limit strain of a bending crack in which a crack occurs, and evaluating a bending deformation limit of a metal sheet on a sheared surface using the obtained deformation limit strain.
曲げ半径と亀裂長さとの関係から、せん断加工面で割れが発生する成形限界の曲げ半径を求め、上記成形限界の曲げ半径を求めた際の曲げ成形条件で成形シミュレーションを行って、せん断加工面での表面ひずみを求めることで、曲げ割れの変形限界ひずみを決定することを特徴とする請求項5に記載した変形限界の評価方法。   From the relationship between the bending radius and the crack length, the bending radius of the forming limit at which cracking occurs on the sheared surface is determined, and the forming simulation is performed under the bending forming conditions at the time when the bending radius of the forming limit is obtained, and the shearing surface is determined. The method for evaluating a deformation limit according to claim 5, wherein the deformation limit strain of bending crack is determined by calculating the surface strain at (1). 請求項1〜6のいずれか1項に記載の変形限界の評価方法を用いた、金属板のせん断加工面での曲げ変形による割れの予測方法。   A method for predicting cracks due to bending deformation on a sheared surface of a metal plate, using the method for evaluating a deformation limit according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の評価方法又は請求項7に記載の予測方法のいずれか1つの方法を用いて、金属板端面での割れ発生を抑制したプレス金型を設計することを特徴とするプレス金型の設計方法。
Using one of the evaluation method according to any one of claims 1 to 6 and the prediction method according to claim 7, a press die that suppresses the occurrence of cracks at the end face of the metal plate is designed. A method for designing a press die, characterized in that:
JP2018171635A 2018-09-13 2018-09-13 Deformation limit evaluation method, crack prediction method and press die design method Active JP6870670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171635A JP6870670B2 (en) 2018-09-13 2018-09-13 Deformation limit evaluation method, crack prediction method and press die design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171635A JP6870670B2 (en) 2018-09-13 2018-09-13 Deformation limit evaluation method, crack prediction method and press die design method

Publications (2)

Publication Number Publication Date
JP2020040111A true JP2020040111A (en) 2020-03-19
JP6870670B2 JP6870670B2 (en) 2021-05-12

Family

ID=69799146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171635A Active JP6870670B2 (en) 2018-09-13 2018-09-13 Deformation limit evaluation method, crack prediction method and press die design method

Country Status (1)

Country Link
JP (1) JP6870670B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN114323891A (en) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 Die for forming deformation width characteristic forming limit through roll punching and evaluation method
WO2023119724A1 (en) * 2021-12-24 2023-06-29 Jfeスチール株式会社 Method for assessing fracture in press-formed part, and method for determining fracture countermeasure in press-formed part
JP7400777B2 (en) 2021-06-22 2023-12-19 Jfeスチール株式会社 Bending test method and bending performance evaluation method for metal plate materials for automobile bodies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204427A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method for determining propriety of shaping of sheared edge of press article
JP2012166251A (en) * 2011-02-16 2012-09-06 Jfe Steel Corp Method for predicting crack in press forming and method for manufacturing pressed component
US20150294043A1 (en) * 2012-11-19 2015-10-15 Jfe Steel Corporation Method for specifying stretch flange limit strain and method for determining feasibility of press forming
WO2016121358A1 (en) * 2015-01-26 2016-08-04 新日鐵住金株式会社 Press-molded article, and method and equipment line for manufacturing press-molded article
JP2016211962A (en) * 2015-05-08 2016-12-15 Jfeスチール株式会社 Method for evaluating possibility of formation of shear edge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204427A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method for determining propriety of shaping of sheared edge of press article
JP2012166251A (en) * 2011-02-16 2012-09-06 Jfe Steel Corp Method for predicting crack in press forming and method for manufacturing pressed component
US20150294043A1 (en) * 2012-11-19 2015-10-15 Jfe Steel Corporation Method for specifying stretch flange limit strain and method for determining feasibility of press forming
WO2016121358A1 (en) * 2015-01-26 2016-08-04 新日鐵住金株式会社 Press-molded article, and method and equipment line for manufacturing press-molded article
JP2016211962A (en) * 2015-05-08 2016-12-15 Jfeスチール株式会社 Method for evaluating possibility of formation of shear edge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323891A (en) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 Die for forming deformation width characteristic forming limit through roll punching and evaluation method
JP7400777B2 (en) 2021-06-22 2023-12-19 Jfeスチール株式会社 Bending test method and bending performance evaluation method for metal plate materials for automobile bodies
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN113790977B (en) * 2021-08-10 2023-07-07 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of sheet metal
WO2023119724A1 (en) * 2021-12-24 2023-06-29 Jfeスチール株式会社 Method for assessing fracture in press-formed part, and method for determining fracture countermeasure in press-formed part
JP2023094682A (en) * 2021-12-24 2023-07-06 Jfeスチール株式会社 Press molding crack determination method and press molding crack countermeasure determination method

Also Published As

Publication number Publication date
JP6870670B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6870670B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
JP6769561B2 (en) Deformation limit evaluation method, crack prediction method and press die design method
EP2839896B1 (en) Method for preparing forming limit diagram in press forming, method for predicting crack and method of producing press parts
JP5472518B1 (en) Method for determining limit strain of stretch flange and method for determining press forming possibility
KR102334109B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
JP4814851B2 (en) Estimation method of stretch flange crack in thin plate press forming simulation
KR101539559B1 (en) Press-forming mold designing method and press-forming mold
JP5630312B2 (en) Forming limit diagram creation method, crack prediction method and press part manufacturing method in press forming
KR102271009B1 (en) Evaluation method of deformation limit in shearing surface of metal plate, crack prediction method, and design method of press mold
JP6819832B1 (en) Stretch flange crack evaluation method, metal plate selection method, press die design method, part shape design method, and press part manufacturing method
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
JPWO2018066669A1 (en) Break determination apparatus, break determination program, and method thereof
JP5561203B2 (en) Stretch flange crack judgment method
JP5151652B2 (en) Characteristic analysis by analysis using inverse method
JP6773255B1 (en) Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
JP7288212B2 (en) Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
JP7452520B2 (en) Press molding crack determination method, press molding crack determination device, press molding crack determination program, and press molding crack suppression method
Kumar et al. Analysis of the effect of different punch shapes on thickness distribution of AA5052 sheet in stretch flanging process
JP2021001754A (en) Formability evaluation method for metal sheet
Albut Displacement of the welding line in case of a square shaped part made from tailor welded blanks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250