JP5151652B2 - Characteristic analysis by analysis using inverse method - Google Patents
Characteristic analysis by analysis using inverse method Download PDFInfo
- Publication number
- JP5151652B2 JP5151652B2 JP2008110892A JP2008110892A JP5151652B2 JP 5151652 B2 JP5151652 B2 JP 5151652B2 JP 2008110892 A JP2008110892 A JP 2008110892A JP 2008110892 A JP2008110892 A JP 2008110892A JP 5151652 B2 JP5151652 B2 JP 5151652B2
- Authority
- JP
- Japan
- Prior art keywords
- analysis
- inverse
- strain
- computer
- calculated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
Description
本発明は、性能事前評価としてのCAEによる特性解析方法に関し、特にインバース法を用いた解析による特性解析方法に関するものである。 The present invention relates to a characteristic analysis method using CAE as a preliminary performance evaluation, and more particularly to a characteristic analysis method based on an analysis using an inverse method.
近年、自動車車体の性能評価(衝突安全・はり剛性・NV・耐久疲労等)のために、実車での試験の事前評価としてCAE(Computer Aided Engineering)による解析が行われている。しかし、前述の性能評価解析を行う場合は、部品を成形する際に生ずる板厚変化やひずみ・残留応力を考慮していないことが多い。 In recent years, analysis by CAE (Computer Aided Engineering) has been performed as a pre-evaluation of tests in actual vehicles in order to evaluate the performance of automobile bodies (collision safety, beam rigidity, NV, durability fatigue, etc.). However, in the case of performing the above-described performance evaluation analysis, in many cases, the plate thickness change and strain / residual stress generated when molding a part are not taken into consideration.
金属部品は母材に比べて、部品を成形した際には、板厚・ひずみ・残留応力等の特性が変化する。また、残留ひずみが変化することによる金属部品の加工硬化等により材料の応力−ひずみ特性が大きく変化する。さらに、これらの変化は同一部品でも部位によって異なる。そのため、成形による板厚変化・ひずみ分布・残留応力等を考慮した方がより現実に近い計算結果となる。 When a metal part is molded, the characteristics such as plate thickness, strain, and residual stress change compared to the base material. In addition, the stress-strain characteristics of the material greatly change due to work hardening of metal parts due to the change in residual strain. Furthermore, these changes vary depending on the part even in the same part. Therefore, the calculation results closer to reality are obtained by taking into account the plate thickness change, strain distribution, residual stress, and the like due to molding.
成形による特性の分布を精度よく求めるためには、成形の工程を微小なタイムステップに区切り、タイムステップごとの微小変形について順次計算を積み重ねていくインクリメンタル法、または製品形状をもとに板厚・ひずみ・残留応力等の特性を求めるインバース法を用いた解析方法がある。 In order to accurately determine the distribution of characteristics due to molding, the molding process is divided into minute time steps, and the incremental thickness method that accumulates calculations for minute deformation at each time step, or the thickness and thickness based on the product shape. There is an analysis method using an inverse method for obtaining characteristics such as strain and residual stress.
前者のインクリメンタル法を用いた解析方法は、金型の設計を行い、潤滑やしわ押さえ力といったプレス条件を設定しなければならない。また、計算時間も数時間から数十時間かかることから、主にプレス成形性を詳細に検討する工程で用いられる。通常、各種性能評価を実施する段階は車体の設計段階であり、製品形状もまだ決まっていない場合が多いため、金型を用いたインクリメンタル法を用いた解析方法は使用しない。 In the former analysis method using the incremental method, it is necessary to design a die and set pressing conditions such as lubrication and wrinkle holding force. In addition, since the calculation time also takes several hours to several tens of hours, it is mainly used in the step of examining the press formability in detail. Usually, the stage of performing various performance evaluations is a vehicle body design stage, and the product shape is often not yet determined. Therefore, an analysis method using an incremental method using a mold is not used.
そこで、後者のインバース法を用いた解析方法により解析した特性変化の結果を、各種性能評価試験(衝突・剛性・NV・疲労等)のCAEモデルに組み込んで解析を実施する(例えば、特許文献1を参照)。
しかしながら、特許文献1で使用しているインバース解析は、板厚方向に積分点を持たないFEM要素(膜要素)を用いるものがあり、計算時間が早い利点はあるが、製品の曲げR部のひずみが算出されないものがある。このため、実車での試験の事前評価としての解析精度が高くないという問題がある。 本発明では、これら従来技術の問題点に鑑み、インバース法を用いた解析を前提にし実車での試験の事前評価としての解析精度を向上することができる、インバース法を用いた解析による特性解析方法を提供することを課題とする。 However, the inverse analysis used in Patent Document 1 uses an FEM element (film element) that does not have an integration point in the plate thickness direction. Some strains are not calculated. For this reason, there exists a problem that the analysis precision as prior evaluation of the test by a real vehicle is not high. In the present invention, in view of these problems of the prior art, a characteristic analysis method based on an analysis using an inverse method, which can improve the analysis accuracy as a preliminary evaluation of an actual vehicle test on the premise of an analysis using an inverse method. It is an issue to provide.
本発明の請求項1に係る発明は、自動車車体の金属プレス部品の性能事前評価としてのインバース法を用いた解析による特性解析方法であって、
コンピュータが、前記部品の製品形状データを用意するステップ1と、
コンピュータが、用意した製品形状データに基づいてインバース成形解析用のモデルを作成するステップ2と、
コンピュータが、作成したインバース成形解析用のモデルを用いて、インバース解析を実施するステップ3と、
コンピュータが、実施したインバース解析の結果として、板厚・残留ひずみ分布を得るステップ4と、
コンピュータが、ステップ4においてひずみが計算されていない曲げ部を抽出し別層化し、曲げ半径を測定し、測定した曲げ半径と板厚に基づいてひずみを算出するステップ5と、
コンピュータが、ステップ4で算出した、インバース解析により得られた残留ひずみ分布、ならびに、ステップ5で算出した、別層化した曲げ部のひずみを、性能解析モデルにそれぞれマッピングするステップ6と、
コンピュータが、ステップ6で作成した性能解析モデルを用いて、各種性能評価解析を実施するステップ7と、
を有することを特徴とするインバース法を用いた解析による特性解析方法である。
Invention provides a characterization method according to analysis using the inverse process of the performance assessment of automotive bodies metal press part article according to claim 1 of the present invention,
Step 1 in which the computer prepares product shape data of the part;
Step 2 in which the computer creates a model for inverse molding analysis based on the prepared product shape data;
Step 3 in which the computer performs inverse analysis using the created model for inverse molding analysis,
Step 4 in which the computer obtains the thickness / residual strain distribution as a result of the inverse analysis performed;
A step in which a computer extracts a bend portion in which strain is not calculated in step 4 and separates it, measures a bend radius, and calculates strain based on the measured bend radius and plate thickness; and
A step 6 in which the computer maps the residual strain distribution obtained by the inverse analysis calculated in step 4 and the strain of the bending portion divided in layers calculated in step 5 to the performance analysis model;
Step 7 in which the computer performs various performance evaluation analyzes using the performance analysis model created in Step 6;
It is the characteristic analysis method by the analysis using the inverse method characterized by having .
また本発明の請求項2に係る発明は、請求項1に記載のインバース法を用いた解析による特性解析方法において、
前記ステップ5で算出するひずみεの算出にあたっては、
曲げ半径Rと板厚tに基づいて、
以下の(1)式によって算出することを特徴とするインバース法を用いた解析による特性解析方法である。
In calculating the strain ε calculated in step 5 ,
Based on the bending radius R and thickness t
A characterization method according to analysis using the inverse method characterized in that it thus calculated in the following equation (1).
本発明によれば、インバース法で求めた製品の板厚分布・ひずみ分布を衝突解析等の各種性能評価CAEに組み込む際に、考慮されない曲げR部を別パート化し、曲げ半径Rと板厚tからひずみを算出し、算出したひずみを性能解析モデルに組み込むようにしたので、各種性能評価試験(衝突・剛性・NV・疲労等)のCAE解析による事前評価としての解析精度を向上することができる。 According to the present invention, when the product thickness distribution / strain distribution obtained by the inverse method is incorporated into various performance evaluation CAEs such as collision analysis, the bending radius R and the thickness t Since the calculated strain is incorporated into the performance analysis model, it is possible to improve the analysis accuracy as a prior evaluation by CAE analysis of various performance evaluation tests (collision, rigidity, NV, fatigue, etc.) .
図1は、本発明に係るインバース法を用いた解析による特性解析方法における処理フローの一例を示す図である。 FIG. 1 is a diagram showing an example of a processing flow in a characteristic analysis method based on an analysis using an inverse method according to the present invention.
まず、Step01で、衝突解析を行う部品の製品形状データを用意する。ここで形状データとしては、CADデータを用いてもまたFEMのメッシュデータを用いることができる。次に、Step02にて、用意した製品形状データに基づいてインバース成形解析用のモデルを作成する。なお、インバース解析で用いる材料データは母材の材料モデルとする。 First, in Step 01, product shape data of a part to be subjected to collision analysis is prepared. Here, as the shape data, FEM mesh data can be used even if CAD data is used. Next, in Step 02, an inverse molding analysis model is created based on the prepared product shape data. The material data used in the inverse analysis is a material model of the base material.
そして、Step03にて、各種性能評価解析(衝突・剛性・NV・疲労等)を実施する前に、作成したインバース成形解析用のモデルを用いて、インバース解析を実施する。このインバース解析結果として、板厚・残留ひずみ分布を得る(Step04)。 In Step 03, before performing various performance evaluation analyzes (collision, rigidity, NV, fatigue, etc.), an inverse analysis is performed using the created inverse forming analysis model. As a result of the inverse analysis, a plate thickness / residual strain distribution is obtained (Step 04).
Step05では、インバース解析によってひずみが計算されていない曲げR部分について、曲げR部を抽出し別層化し、曲げR半径を測定し、半径Rと板厚tに応じた以下の(1)式からひずみ量εを算出する。 In Step 05, for the bending R portion where the strain is not calculated by inverse analysis, the bending R portion is extracted and separated into layers, the bending R radius is measured, and the following equation (1) corresponding to the radius R and the thickness t is obtained. The amount of strain ε is calculated.
各ひずみに加工硬化により変化した応力−ひずみ特性を割り当てるために、インバース解析により得られた成形後のひずみの分布を性能解析モデルにマッピングする。また、製品のR部にはStep05で求めたひずみ量を別層化したパートにマッピングする(Step06)。 In order to assign stress-strain characteristics changed by work hardening to each strain, the strain distribution after molding obtained by inverse analysis is mapped to a performance analysis model. In addition, the strain amount obtained in Step 05 is mapped to the R layer of the product to a part having a different layer (Step 06).
Step07にて、前段Step06で作成した解析モデルを用いて、各種性能評価解析(衝突・剛性・NV・疲労等)を最終的に実施する。成形後のひずみ分布が曲げR部も含めて正確にマッピングされているため、従来に比較して精度の高い衝突解析が可能となる。図2は、図1に示す一連の処理をある製品形状例で示す図である。また、図3は、相当塑性ひずみ分布の比較例を示す図である。図3(a)は、曲げR部のひずみが計算されていないインバース解析結果(図1のStep04)であり、図3(b)は、R部のひずみを付与した性能特性解析モデル(図1のStep06)を示す。 In Step 07, various performance evaluation analyzes (collision, stiffness, NV, fatigue, etc.) are finally performed using the analysis model created in the previous Step 06. Since the strain distribution after molding is accurately mapped including the bending R part, it is possible to perform collision analysis with higher accuracy than before. FIG. 2 is a diagram showing a series of processes shown in FIG. 1 in a certain product shape example. FIG. 3 is a diagram showing a comparative example of the equivalent plastic strain distribution. Fig. 3 (a) shows an inverse analysis result (Step 04 in Fig. 1) in which the strain at the bending R portion is not calculated, and Fig. 3 (b) shows a performance characteristic analysis model (Fig. Step 06).
以下に本発明を用いた実施例を説明する。図4は、本実施例での単純ハットモデルおよび軸圧壊試験を示す図である。適用材の材料は、軟鋼(270MPa材)、およびハイテン材(590MPa材)の2種類で、板厚1.2mm、ハット部材 a=40mm 高さ200mm、背板との接合はスポット溶接したものである。試験条件は、ストローク100mmで変形速度(等速)10m/secである。 Examples using the present invention will be described below. FIG. 4 is a diagram showing a simple hat model and an axial crush test in this example. There are two types of applicable materials: mild steel (270 MPa material) and high-tensile material (590 MPa material). Plate thickness is 1.2 mm, hat member is a = 40 mm, height is 200 mm, and the back plate is spot welded. . The test conditions are a stroke of 100 mm and a deformation speed (constant speed) of 10 m / sec.
本実施例における結果を、表1および図5に示す。ストローク50mmにおける平均崩壊荷重を評価したところ、軟鋼(図5(a))・ハイテン(図5(b))いずれの材料においても従来方法よりも実験値に近い値となっている。従来方法と比較して、本手法により約3%平均崩壊荷重が上昇し、実験値に近づいており事前評価としての解析精度が向上していることが分る。 The results in this example are shown in Table 1 and FIG. When the average collapse load at a stroke of 50 mm was evaluated, both the mild steel (FIG. 5 (a)) and high tension (FIG. 5 (b)) materials were closer to the experimental values than the conventional method. Compared to the conventional method, the average collapse load is increased by about 3% by this method, approaching the experimental value, and it can be seen that the analysis accuracy as the preliminary evaluation is improved.
Claims (2)
コンピュータが、前記部品の製品形状データを用意するステップ1と、
コンピュータが、用意した製品形状データに基づいてインバース成形解析用のモデルを作成するステップ2と、
コンピュータが、作成したインバース成形解析用のモデルを用いて、インバース解析を実施するステップ3と、
コンピュータが、実施したインバース解析の結果として、板厚・残留ひずみ分布を得るステップ4と、
コンピュータが、ステップ4においてひずみが計算されていない曲げ部を抽出し別層化し、曲げ半径を測定し、測定した曲げ半径と板厚に基づいてひずみを算出するステップ5と、
コンピュータが、ステップ4で算出した、インバース解析により得られた残留ひずみ分布、ならびに、ステップ5で算出した、別層化した曲げ部のひずみを、性能解析モデルにそれぞれマッピングするステップ6と、
コンピュータが、ステップ6で作成した性能解析モデルを用いて、各種性能評価解析を実施するステップ7と、
を有することを特徴とするインバース法を用いた解析による特性解析方法。 A characterization method according to analysis using the inverse process of the performance assessment of automobile body metal press section products,
Step 1 in which the computer prepares product shape data of the part;
Step 2 in which the computer creates a model for inverse molding analysis based on the prepared product shape data;
Step 3 in which the computer performs inverse analysis using the created model for inverse molding analysis,
Step 4 in which the computer obtains the thickness / residual strain distribution as a result of the inverse analysis performed;
A step in which a computer extracts a bend portion in which strain is not calculated in step 4 and separates it, measures a bend radius, and calculates strain based on the measured bend radius and plate thickness; and
A step 6 in which the computer maps the residual strain distribution obtained by the inverse analysis calculated in step 4 and the strain of the bending portion divided in layers calculated in step 5 to the performance analysis model;
Step 7 in which the computer performs various performance evaluation analyzes using the performance analysis model created in Step 6;
The characteristic analysis method by the analysis using the inverse method characterized by having .
前記ステップ5で算出するひずみεの算出にあたっては、
曲げ半径Rと板厚tに基づいて、
以下の(1)式によって算出することを特徴とするインバース法を用いた解析による特性解析方法。
In calculating the strain ε calculated in step 5 ,
Based on the bending radius R and thickness t
Analysis method according to analysis using the inverse method characterized in that it thus calculated in the following equation (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008110892A JP5151652B2 (en) | 2008-04-22 | 2008-04-22 | Characteristic analysis by analysis using inverse method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008110892A JP5151652B2 (en) | 2008-04-22 | 2008-04-22 | Characteristic analysis by analysis using inverse method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009265712A JP2009265712A (en) | 2009-11-12 |
JP5151652B2 true JP5151652B2 (en) | 2013-02-27 |
Family
ID=41391530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008110892A Expired - Fee Related JP5151652B2 (en) | 2008-04-22 | 2008-04-22 | Characteristic analysis by analysis using inverse method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5151652B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6427704B1 (en) * | 2018-05-22 | 2018-11-21 | 株式会社Jsol | Initial condition setting device, initial condition setting method, and program |
CN112507443B (en) * | 2021-02-03 | 2021-04-27 | 湖南联智科技股份有限公司 | Incomplete relaxation curve mileage back calculation method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3979493B2 (en) * | 2002-07-22 | 2007-09-19 | 新日本製鐵株式会社 | Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts |
JP3979492B2 (en) * | 2002-07-22 | 2007-09-19 | 新日本製鐵株式会社 | Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts |
JP4041766B2 (en) * | 2003-04-24 | 2008-01-30 | 新日本製鐵株式会社 | Method for analyzing characteristics of structure including pressed metal parts, characteristic analysis program, and storage medium storing the program |
JP4716171B2 (en) * | 2005-05-16 | 2011-07-06 | 有限会社エムアンドエムリサーチ | Die design support program and method for press working |
-
2008
- 2008-04-22 JP JP2008110892A patent/JP5151652B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009265712A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Al-Momani et al. | An application of finite element method and design of experiments in the optimization of sheet metal blanking process | |
Chikalthankar et al. | Factors affecting on springback in sheet metal bending: a review | |
JP5098651B2 (en) | Press forming state estimation method and friction coefficient acquisition method for forming simulation | |
KR101368108B1 (en) | Springback occurrence cause analyzing method, springback occurrence cause analyzing device, computer readable recording medium for recording springback occurrence cause analyzing program | |
KR20150042838A (en) | Springback suppression countermeasure method and analysis device for press-formed object | |
JP6870670B2 (en) | Deformation limit evaluation method, crack prediction method and press die design method | |
KR102471287B1 (en) | Method for specifying the area that causes springback amount variation | |
Park et al. | Development of automotive seat rail parts for improving shape fixability of ultra high strength steel of 980MPa | |
JP5151652B2 (en) | Characteristic analysis by analysis using inverse method | |
KR101588263B1 (en) | Method and apparatus for identifying effect of countermeasure for reducing springback on press-formed product | |
KR102549984B1 (en) | Springback amount discrepancy factor portion identification method and apparatus, and computer-readable medium storing program of springback amount discrepancy factor portion identification | |
JP6350498B2 (en) | Press wrinkle generation judgment method | |
JP3979492B2 (en) | Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts | |
CN102759505A (en) | Auxiliary device for medium plate material compression test and measuring method for flowing stress curve | |
JP5765013B2 (en) | Springback factor analysis method in multi-process press forming | |
JP3979493B2 (en) | Molding analysis method of press parts by computer simulation and characteristic analysis method of structures including press parts | |
JP2011218389A (en) | Method of evaluating installation position of detection sensor for detecting breaking of blank | |
JP6784346B1 (en) | Manufacturing method of pressed parts | |
Al-Wahab et al. | Experimental investigation of drawbead effect on springback in profilee of double circular, rectangular and triangular bending sheet metal forming processes | |
Vedpathak et al. | Evaluation of deep drawing force in sheet metal forming | |
Nikam et al. | EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF NONAXISYMMETRIC STRETCH FLANGING PROCESS USING AA 5052. | |
Sresomroeng et al. | Sidewall-curl prediction in U-bending process of advanced high strength steel | |
JP7556373B2 (en) | Method for determining coefficient of friction for forming simulation, forming simulation method, method for designing press parts, method for manufacturing die, method for manufacturing press-molded parts, program for determining coefficient of friction, and program for forming simulation | |
JP7452520B2 (en) | Press molding crack determination method, press molding crack determination device, press molding crack determination program, and press molding crack suppression method | |
JP3609600B2 (en) | Structural strength analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5151652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |