JP2016211916A - Apparatus and method for measuring x ray crystal orientation - Google Patents
Apparatus and method for measuring x ray crystal orientation Download PDFInfo
- Publication number
- JP2016211916A JP2016211916A JP2015094193A JP2015094193A JP2016211916A JP 2016211916 A JP2016211916 A JP 2016211916A JP 2015094193 A JP2015094193 A JP 2015094193A JP 2015094193 A JP2015094193 A JP 2015094193A JP 2016211916 A JP2016211916 A JP 2016211916A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- measured
- single crystal
- crystal orientation
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims description 10
- 238000001514 detection method Methods 0.000 claims abstract description 46
- 230000003287 optical effect Effects 0.000 claims abstract description 26
- 230000001678 irradiating effect Effects 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 21
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 235000012431 wafers Nutrition 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、半導体シリコンウェーハ、化合物半導体ウェーハまたは水晶等の結晶方位をX線で測定するX線結晶方位測定装置及びX線結晶方位測定方法に関する。 The present invention relates to an X-ray crystal orientation measuring apparatus and an X-ray crystal orientation measuring method for measuring a crystal orientation of a semiconductor silicon wafer, a compound semiconductor wafer, or quartz crystal with X-rays.
半導体シリコンウェーハ及び化合物半導体ウェーハ等の単結晶は、切断面の結晶方位(すなわち、実際の切断面が(100)、(111)、(110)、(511)等の結晶面(以下、ジャスト結晶面と呼ぶことがある)からどのくらい傾いているか)を測定して、これを規格値に合わせ込むように切断角度を調整している。この結晶方位測定方法の概要を図8から図11を参照して説明する。 Single crystals, such as semiconductor silicon wafers and compound semiconductor wafers, have crystal orientations of cut planes (that is, crystal planes whose actual cut planes are (100), (111), (110), (511), etc.) It is measured how much it is tilted from (sometimes called a surface), and the cutting angle is adjusted to match this with the standard value. An outline of this crystal orientation measurement method will be described with reference to FIGS.
図8にX線による結晶方位測定の原理図を示す。試料単結晶のジャスト結晶面と入射X線のなす入射角θ 及びジャスト結晶面と反射(回折)X線のなす反射角θ が、ともに以下の(1)式で示されるブラッグの反射条件から求められるブラッグ角θ’ に等しくなるときに、X線源(X線照射手段11)から照射された入射X線は試料単結晶13のジャスト結晶面で反射(回折)されてX線検出器(X線検出手段12)で検出される。
2d・sinθ’=nλ (1)
(ここで、d:ジャスト結晶面の間隔 、λ:X線の波長、 n:自然数)
また、サンプル単結晶の切断面は必ずしもジャスト結晶面とは一致せず、切断面とジャスト結晶面の角度の差φを偏差角と呼ぶ(図8参照)。
FIG. 8 shows a principle diagram of crystal orientation measurement by X-ray. The incident angle θ formed by the just crystal plane of the sample single crystal and the incident X-ray and the reflection angle θ formed by the just crystal plane and the reflected (diffracted) X-ray are both obtained from the Bragg reflection conditions expressed by the following equation (1). The incident X-rays emitted from the X-ray source (X-ray irradiating means 11) are reflected (diffracted) by the just crystal plane of the sample
2d · sin θ ′ = nλ (1)
(Where d: spacing between just crystal planes, λ: wavelength of X-ray, n: natural number)
Further, the cut surface of the sample single crystal does not necessarily coincide with the just crystal surface, and the difference φ between the cut surface and the just crystal surface is called a deviation angle (see FIG. 8).
上述のように試料単結晶の切断面(被測定面)は必ずしもジャスト結晶面とは一致しない。図9に示すように、偏差角φ とあおり角 ψ を有していることが普通である。図9において、X線がX−Z平面内で試料単結晶に入射する場合、ジャスト結晶面のY軸まわりの傾きを偏差角、これと直交するX軸まわりの傾きをあおり角と言う。 As described above, the cut surface (surface to be measured) of the sample single crystal does not necessarily coincide with the just crystal plane. As shown in FIG. 9, it is common to have a deviation angle φ and a tilt angle ψ. In FIG. 9, when X-rays enter the sample single crystal within the XZ plane, the tilt around the Y axis of the just crystal plane is called the deviation angle, and the tilt around the X axis perpendicular to this is called the tilt angle.
X線による結晶方位測定装置の概要を図10に見取り図で、図11に3面図((a)上面図、(b)正面図、(c)側面図)で例示する。X線結晶方位測定装置はX線ゴニオメータとも言う。試料単結晶13は図10の試料回転手段14により(垂直)回転軸Aに関して回転し、前述のブラッグの反射条件を満足する角度に試料単結晶の被測定面の向きを合わせ込むことができる。
An outline of an X-ray crystal orientation measuring apparatus is shown in FIG. 10 and is illustrated in FIG. 11 as a three-view diagram ((a) top view, (b) front view, (c) side view). The X-ray crystal orientation measuring device is also called an X-ray goniometer. The sample
試料単結晶が偏差角φ のみを有する場合、すなわち、図11(a)の上面図に示すように、上方(又は下方)から見た時に試料単結晶の切断面に対してジャスト結晶面が傾いており、図11(c)の側面図に示すように側方から見た時は傾いていない場合、水平方向から試料単結晶13の切断面に入射したX線の回折X線は入射X線と同じ水平面内にあって、該水平面内に設けられたX線検出手段12に入射する。図11(b)及び(c)に示すように、回折X線がX線検出手段12の上下方向に逸れることはない。なお、図11(b)では試料単結晶としてノッチ15を有するウェーハを用いた場合を例示している。
When the sample single crystal has only the
試料単結晶が偏差角の他に大きなあおり角を持つ場合には、図12に示すように、このあおり角によって回折X線はX線検出手段12の遙か上方(または下方)に逸れてしまってX線検出手段に入射せず、この方向の結晶方位を測定することができない(図12(b)の正面図 及び (c)の側面図を参照)。 When the sample single crystal has a large tilt angle in addition to the deviation angle, as shown in FIG. 12, the diffraction angle causes the diffracted X-ray to deviate upward (or downward) from the X-ray detection means 12. Therefore, the crystal orientation in this direction cannot be measured (see the front view of FIG. 12B and the side view of FIG. 12C).
これに対して特許文献1では、湾曲型のX線検出器とハーフシャッターを使用して、あおり角を持つ試料単結晶の被測定面からの回折X線を捉えている。この技術でもあおり角を持つ被測定面の結晶方位を測定することは可能であるが、湾曲型X線検出器自体が必ずしも一般的なものとは言えず、この技術を実用化する際のハードルは非常に高い。
On the other hand,
また、特許文献2では、回折X線の検出に二次元検出器を使用していることが特徴であり、1回の測定で偏差角とあおり角を測定できるという利点がある。しかし、大きなあおり角を有する結晶からのX線回折スポットを検出するためには大型の二次元検出器を使用しなければならないことや、入射X線を小さな点(スポット)にコリメートすること、偏差角とあおり角を求めるためには二次元検出器で検出した信号を処理・解析することが必須であり、この技術を実用化する際のハードルは非常に高い。 Further, Patent Document 2 is characterized in that a two-dimensional detector is used for detecting diffracted X-rays, and has an advantage that a deviation angle and a tilt angle can be measured by one measurement. However, in order to detect an X-ray diffraction spot from a crystal having a large tilt angle, a large two-dimensional detector must be used, collimating incident X-rays to a small point (spot), and deviation In order to obtain the angle and tilt angle, it is essential to process and analyze the signal detected by the two-dimensional detector, and the hurdles for putting this technology to practical use are very high.
さらに、特許文献3では、試料単結晶とサンプルホルダー(試料固定台)との間に楔形の傾斜補正治具を挟んだり、試料単結晶を回転させることによって、試料単結晶の傾斜角(偏差角)やあおり角の影響を除去してX線回折パターンを精度よく測定することが示されている。しかし、予め試料単結晶の偏差角と同じ角度を持った楔形の傾斜補正治具を準備することは、被測定面の偏差角が予め分かっていない場合には適用できない。また、試料単結晶を偏差角やあおり角の影響を除去するように正確に回転させるのは、操作が複雑で容易ではなく、この操作自体で偏差角が求まるわけではない。
Further, in
本発明は、上記問題点に鑑みてなされたものであって、試料単結晶の被測定面が結晶面に対して偏差角の他に大きなあおり角を持っている場合であっても、簡便に回折X線を検出して、結晶方位を測定することができるX線結晶方位測定装置及びX線結晶方位測定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and even when the surface to be measured of the sample single crystal has a large tilt angle in addition to the deviation angle with respect to the crystal plane, the present invention is simple. It is an object of the present invention to provide an X-ray crystal orientation measuring apparatus and an X-ray crystal orientation measuring method capable of detecting a diffraction X-ray and measuring a crystal orientation.
上記目的を達成するために、本発明は、試料単結晶の被測定面の結晶方位をX線を用いて測定するための装置であって、
前記試料単結晶の被測定面にX線を照射するX線照射手段と、
前記試料単結晶の中心を通り、前記被測定面に平行な回転軸を中心として回転可能とし、該回転軸の方向が前記被測定面に入射するX線の光軸と該光軸が入射する前記被測定面の法線とが含まれる平面に垂直方向である試料回転手段と、
前記X線照射手段から前記試料単結晶の被測定面上に照射されたX線の回折X線を検出するX線検出手段と、
前記光軸と法線が含まれる平面に垂直な方向に前記X線検出手段を移動可能とする可動手段を有するものであることを特徴とするX線結晶方位測定装置を提供する。
In order to achieve the above object, the present invention is an apparatus for measuring the crystal orientation of a measured surface of a sample single crystal using X-rays,
X-ray irradiation means for irradiating the measurement surface of the sample single crystal with X-rays;
The optical axis of the X-ray that passes through the center of the sample single crystal and is rotatable about a rotation axis parallel to the surface to be measured and the direction of the rotation axis is incident on the surface to be measured and the optical axis are incident. A sample rotating means that is perpendicular to a plane that includes a normal to the surface to be measured;
X-ray detection means for detecting diffracted X-rays of X-rays irradiated on the measurement target surface of the sample single crystal from the X-ray irradiation means;
There is provided an X-ray crystal orientation measuring apparatus characterized by comprising movable means that enables the X-ray detection means to move in a direction perpendicular to a plane including the optical axis and normal line.
このように、光軸と法線が含まれる平面に垂直な方向にX線検出手段を移動可能な可動手段を備えることにより、試料単結晶の被測定面が結晶面に対して大きなあおり角を持っている場合であっても、X線検出手段を前記平面に対して垂直方向に移動させて垂直方向に逸れた回折X線を検出することができるので、簡便に被測定面の結晶方位の測定を行うことができる。 As described above, by providing the movable means capable of moving the X-ray detection means in the direction perpendicular to the plane including the optical axis and the normal line, the measured surface of the sample single crystal has a large tilt angle with respect to the crystal plane. Even if it is held, it is possible to detect the diffracted X-rays deviated in the vertical direction by moving the X-ray detection means in the direction perpendicular to the plane. Measurements can be made.
さらに、上記目的を達成するために、本発明は、上述の前記光軸と法線が含まれる平面に垂直な方向に前記X線検出手段を移動可能なX線結晶方位測定装置を用いて、前記試料単結晶の被測定面にX線を照射し、前記被測定面上に照射されたX線の回折X線を検出して、前記被測定面の結晶方位を測定することを特徴とするX線結晶方位測定方法を提供する。 Furthermore, in order to achieve the above object, the present invention uses an X-ray crystal orientation measuring apparatus capable of moving the X-ray detection means in a direction perpendicular to a plane including the optical axis and the normal line. X-rays are irradiated onto the surface to be measured of the sample single crystal, diffracted X-rays of the X-rays irradiated on the surface to be measured are detected, and the crystal orientation of the surface to be measured is measured An X-ray crystal orientation measurement method is provided.
このように、本発明のX線結晶方位測定装置を用いて、被測定面上に照射されたX線の回折X線を検出することにより、試料単結晶の被測定面が結晶面に対してあおり角を持っていない場合はもちろん、持っている場合であっても、被測定面の結晶方位の測定を行うことができ、結晶面と被測定面の偏差角の測定を行うことができる。 In this way, by using the X-ray crystal orientation measuring apparatus of the present invention to detect the diffracted X-rays of X-rays irradiated on the surface to be measured, the surface to be measured of the sample single crystal is relative to the crystal plane. Of course, the crystal orientation of the surface to be measured can be measured and the deviation angle between the crystal surface and the surface to be measured can be measured even if it has the tilt angle.
以上のように、本発明によれば、試料単結晶の被測定面が結晶面に対してあおり角を持っている場合でも、持っていない場合でも、被測定面の結晶方位の測定を簡便に行うことができる。 As described above, according to the present invention, it is possible to easily measure the crystal orientation of the measurement surface regardless of whether the measurement surface of the sample single crystal has a tilt angle with respect to the crystal surface. It can be carried out.
以下、本発明をより詳細に説明する。
上記のように、試料単結晶の被測定面の結晶方位をX線を用いて測定する装置において、試料単結晶の被測定面(切断面)が結晶面に対して偏差角の他に大きなあおり角を持っている場合であっても、回折X線を検出して、結晶方位を測定することができるX線結晶方位測定装置が求められている。
Hereinafter, the present invention will be described in more detail.
As described above, in the apparatus for measuring the crystal orientation of the measurement surface of the sample single crystal using X-rays, the measurement surface (cut surface) of the sample single crystal is larger than the deviation angle with respect to the crystal plane. There is a need for an X-ray crystal orientation measuring apparatus that can detect a diffracted X-ray and measure the crystal orientation even when it has an angle.
本発明者らは、上記目的を達成するために鋭意検討を行った結果、試料単結晶の被測定面の結晶方位をX線を用いて測定するための装置であって、
前記試料単結晶の被測定面にX線を照射するX線照射手段と、
前記試料単結晶の中心を通り、前記被測定面に平行な回転軸を中心として回転可能とし、該回転軸の方向が前記被測定面に入射するX線の光軸と該光軸が入射する前記被測定面の法線とが含まれる平面に垂直方向である試料回転手段と、
前記X線照射手段から前記試料単結晶の被測定面上に照射されたX線の回折X線を検出するX線検出手段と、
前記光軸と法線が含まれる平面に垂直な方向に前記X線検出手段を移動可能とする可動手段を有するものであることを特徴とするX線結晶方位測定装置が、上記課題を解決できることを見出し、本発明を完成させた。
As a result of intensive studies to achieve the above object, the present inventors are an apparatus for measuring the crystal orientation of the measurement surface of a sample single crystal using X-rays,
X-ray irradiation means for irradiating the measurement surface of the sample single crystal with X-rays;
The optical axis of the X-ray that passes through the center of the sample single crystal and is rotatable about a rotation axis parallel to the surface to be measured and the direction of the rotation axis is incident on the surface to be measured and the optical axis are incident. A sample rotating means that is perpendicular to a plane that includes a normal to the surface to be measured;
X-ray detection means for detecting diffracted X-rays of X-rays irradiated on the measurement target surface of the sample single crystal from the X-ray irradiation means;
An X-ray crystal orientation measuring apparatus characterized by comprising a movable means that enables the X-ray detection means to move in a direction perpendicular to a plane including the optical axis and normal line. The present invention was completed.
以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
まず、本発明のX線結晶方位測定装置を図1を参照して説明する。
図1は本発明のX線結晶方位測定装置と、入射X線の光軸と該光軸が入射する被測定面の法線とが含まれる平面を示す見取り図である。X線結晶方位測定装置100は、X線照射手段11、試料回転手段14、X線検出手段12、及び可動手段17を備えている。そして、試料単結晶13は被測定面にX線が入射する向きとなるように試料回転手段14に載置される。
First, the X-ray crystal orientation measuring apparatus of the present invention will be described with reference to FIG.
FIG. 1 is a sketch showing a plane including an X-ray crystal orientation measuring apparatus of the present invention, an optical axis of incident X-rays, and a normal line of a surface to be measured on which the optical axis is incident. The X-ray crystal orientation measuring apparatus 100 includes an
X線照射手段11から放射されたX線は、試料単結晶13の被測定面に入射し、ブラッグの反射条件を満たす時に、回折X線がX線検出手段12により検出される。試料回転手段14は、試料単結晶13を載置した状態で回転軸Aを中心として回転可能な構造を備える。このとき、回転軸Aは、試料単結晶13の中心を通り、被測定面(試料単結晶にX線が入射する側の表面)に平行である。さらに、回転軸Aの方向は被測定面に入射するX線の光軸と該光軸が入射する被測定面の法線18とが含まれる平面16に垂直方向である。X線検出手段12は、可動手段17により、平面16に垂直な方向に移動可能である。尚、平面16が水平面である場合には、可動手段17はX線検出手段12を上下(鉛直)方向に移動させる。
X-rays radiated from the X-ray irradiating means 11 are incident on the surface to be measured of the sample
試料単結晶の被測定面と結晶面の間にあおり角を有する試料単結晶では、回折X線はX線検出手段の遙か上方(または下方)に逸れてしまうので、X線検出手段が平面16内にある時は、X線検出手段に入射しない。そこで本発明のX線結晶方位測定装置100では、X線検出手段を図1に示すように、平面16(すなわち、図中のX−Z平面)から垂直方向に移動可能な構成とする。すなわち、図2の本発明のX線結晶方位測定装置の見取り図、及び、図3のあおり角を持つ切断面からの回折X線の検出方法の三面図に例示するように、可動手段17によりX線検出手段12を元の位置からY軸方向(上下方向)に平行に移動することで、様々な大きさのあおり角を有する試料単結晶に対してもその結晶方位を測定できる。 In the sample single crystal having a tilt angle between the measured surface of the sample single crystal and the crystal plane, the diffracted X-rays are shifted to the upper side (or the lower side) of the X-ray detection unit. When it is within 16, it does not enter the X-ray detection means. Therefore, in the X-ray crystal orientation measuring apparatus 100 of the present invention, the X-ray detection means is configured to be movable in the vertical direction from the plane 16 (that is, the XZ plane in the figure) as shown in FIG. That is, as illustrated in the plan view of the X-ray crystal orientation measuring apparatus of the present invention in FIG. 2 and the three views of the method for detecting diffracted X-rays from the cut surface having the tilt angle in FIG. By moving the line detection means 12 from the original position in parallel in the Y-axis direction (vertical direction), the crystal orientation can be measured even for sample single crystals having various tilt angles.
図2は、本発明のX線結晶方位測定装置の一例を示す見取り図である。図1から、平面16を取り除き、装置全体の構成を分かりやすく示している。
図3は、あおり角を持つ切断面からの回折X線の検出を示す三面図((a)上面図、(b)正面図、(c)側面図)である。図3に示した試料単結晶は、切断面(被測定面)とジャスト結晶面の間に、偏差角φとあおり角ψを持っている。この試料単結晶13に図3に示した方向からX線を入射すると、図3(b)、(c)に示すように回折X線は上方に逸れる。そのため、X線検出手段12を可動手段17により上方に移動させ、回折X線を検出する高さ(位置)で測定を行う。このように、本発明のX線結晶方位測定装置を用いることで、試料単結晶の被測定面があおり角を有する場合でも、被測定面の結晶方位の測定を行うことができる。
FIG. 2 is a sketch showing an example of the X-ray crystal orientation measuring apparatus of the present invention. The plane 16 is removed from FIG. 1 to show the overall configuration of the apparatus in an easy-to-understand manner.
FIG. 3 is a three-view diagram ((a) top view, (b) front view, (c) side view) showing detection of diffracted X-rays from a cut surface having a tilt angle. The sample single crystal shown in FIG. 3 has a deviation angle φ and a tilt angle ψ between the cut surface (surface to be measured) and the just crystal surface. When X-rays are incident on the sample
X線検出手段を上下方向に移動可能とする可動手段としては、例えば、図4に示すようなラックとピニオン(ギア)の機構が考えられる。図4(a)は可動手段17の全体概略図、図4(b)はピニオンを含む水平な面での断面図である。可動手段17は、棒に歯切りをしたラック21、歯車であるピニオン22、X線検出手段支柱(内柱)23、X線検出手段支柱(外筒)24、つまみ25で構成される。ラック21はX線検出手段支柱(内柱)23に直接加工して形成してもよい。X線検出手段支柱(内柱)23には凹部が、X線検出手段支柱(外筒)24には凸部が上下方向に設けられ、内柱の回り止め部26が形成される。つまみ25を回すことにより、ピニオン22が回転し、ラック21を通してX線検出手段支柱(内柱)23が上下方向に移動する。これにより、X線検出手段を上下方向に移動させることができる。
ここでは、可動手段としてラックとピニオンの機構を例示したが、X線検出器を上下方向に平行移動できる機構ならばこれに限定されない。他の例として、パルスモーターを用いた移動機構とすることもできる。
For example, a rack and pinion (gear) mechanism as shown in FIG. 4 can be considered as the movable means that enables the X-ray detection means to move in the vertical direction. 4A is an overall schematic view of the
Here, the mechanism of the rack and pinion is exemplified as the movable means, but the mechanism is not limited to this as long as the mechanism can translate the X-ray detector in the vertical direction. As another example, a moving mechanism using a pulse motor may be used.
次に、本発明のX線結晶方位測定方法について、図2及び図3を参照して説明する。
まず、図2に例示した本発明のX線結晶方位測定装置100に、試料単結晶13をその被測定面にX線照射手段11から放射されるX線が入射するように、試料回転手段14に載置する。ここで、図2の試料単結晶13はウェーハであるが、必ずしもウェーハ形状である必要はなく、円柱や直方体等の形状であってもよい。次に、回転軸Aを中心として試料単結晶13を回転させ、ブラッグの回折条件を満たす位置でX線検出手段12により回折X線を検出する。
Next, the X-ray crystal orientation measuring method of the present invention will be described with reference to FIGS.
First, in the X-ray crystal orientation measuring apparatus 100 of the present invention illustrated in FIG. 2, the sample rotating means 14 so that X-rays radiated from the X-ray irradiating means 11 are incident on the measurement target surface of the sample
このとき図3(c)に示すように、試料単結晶の被測定面とジャスト結晶面の間にあおり角ψがある場合は、回折X線は入射X線の光軸と該光軸が入射する被測定面の法線とが含まれる平面(図3においては、入射X線の光軸を含む水平面)から上方に逸れた方向に進行する。このため、可動手段17により、X線検出手段12を上方に平行に移動させ回折X線を検出する。これにより、試料単結晶の被測定面とジャスト結晶面の間にあおり角がある場合であっても、被測定面の結晶方位を測定することができる。すなわち、インゴットから切り出したウェーハの切断面とジャスト結晶面の間にあおり角がある場合であっても、切断面とジャスト結晶面の偏差角を測定することができ、切断角度の調整・管理を行うことができる。 At this time, as shown in FIG. 3C, when there is a tilt angle ψ between the measured surface of the sample single crystal and the just crystal plane, the diffracted X-ray is incident on the optical axis of the incident X-ray and the optical axis. It proceeds in a direction deviating upward from a plane including the normal line of the surface to be measured (in FIG. 3, a horizontal plane including the optical axis of the incident X-ray). For this reason, the movable means 17 moves the X-ray detection means 12 upward in parallel to detect diffracted X-rays. Thereby, even if there is a tilt angle between the measured surface of the sample single crystal and the just crystal surface, the crystal orientation of the measured surface can be measured. That is, even if there is a tilt angle between the cut surface of the wafer cut from the ingot and the just crystal surface, the deviation angle between the cut surface and the just crystal surface can be measured, and the adjustment and management of the cutting angle can be performed. It can be carried out.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
シリコンの(551)単結晶の(551)面の間隔dは0.076nmであり、X線結晶方位測定装置(ゴニオメータ)で通常使用されているCuターゲットの特性X線の波長λ=0.154nm の1/2 より小さいため、回折X線が得られない。一方、(551)面から[0 0 −1]方向へ角度8°03′(8度03分)離れた(110)ジャスト結晶面からの回折X線は、通常使用されているCuターゲットのX線結晶方位測定装置で測定することができる。 The distance (d) between the (551) planes of the (551) single crystal of silicon is 0.076 nm, and the characteristic X-ray wavelength λ = 0.154 nm of a Cu target usually used in an X-ray crystal orientation measuring apparatus (goniometer). The diffraction X-ray cannot be obtained because it is smaller than ½ of. On the other hand, the diffracted X-rays from the (110) just crystal plane that is 8 ° 03 ′ (8 ° 03 minutes) away from the (551) plane in the [0 0 −1] direction are X It can be measured with a linear crystal orientation measuring device.
図5に(551)面と(110)面の幾何学的関係を示す。図5おいてX線を[1/10 1/10 −1]方向に入射した時には、図6に示すように、(551)シリコン単結晶31からの回折X線はX線検出手段を上下方向に移動しなくとも検出できる。図6(a)に示すように、(8°03′+偏差角φ)がこれまで説明してきた偏差角に相当するが、図6(c)に示すようにあおり角に相当する角度がない(すなわち0°)ためである。この時、実測された結晶方位と前述の角度8°03′との差がこの(551)結晶の[1/10 1/10 −1]方向の偏差角である。
尚、ミラー指数においては、本来はマイナスの数字には上にバーをつけて表記するものであるが、本明細書においては便宜的にそのままマイナスの数字で示してある。
FIG. 5 shows the geometric relationship between the (551) plane and the (110) plane. In FIG. 5, when X-rays are incident in the [1/10 1/10 -1] direction, as shown in FIG. 6, (551) diffracted X-rays from the silicon
In the Miller index, a negative number is originally written with a bar on top, but in this specification, it is shown as a negative number for convenience.
シリコンの(551)単結晶を、本発明のX線結晶方位測定装置の試料回転手段に載置し、(110)面からの回折X線が得られるように、切断面にX線を[1/10 1/10 −1]方向に入射させ、切断面と(110)面のなす角度を測定した。測定された角度は8°30′であり、この(551)結晶の[1/10 1/10 −1]方向の偏差角は27′となった。 A (551) single crystal of silicon is placed on the sample rotating means of the X-ray crystal orientation measuring apparatus of the present invention, and X-rays [1] are applied to the cut surface so as to obtain diffracted X-rays from the (110) plane. / 10 1/10 −1] direction, and the angle formed by the cut surface and the (110) plane was measured. The measured angle was 8 ° 30 ′, and the deviation angle in the [1/10 1/10 −1] direction of this (551) crystal was 27 ′.
次に、同じシリコンの(551)単結晶に対して、X線を図5に示した[1/10 1/10 −1]方向と直交する[−1 1 0]方向に入射した時には、そのままでは回折X線をX線検出手段によって検出できない。図7(b)、(c) に示すように、(110)面に入射したX線は、あおり角に相当する8°03′の角度が切断面と(110)面の間に存在することによって、X線検出手段の上方(または下方)へ逸れてしまうためである。 Next, when the X-ray is incident on the same silicon (551) single crystal in the [-1 1 0] direction orthogonal to the [1/10 1/10 -1] direction shown in FIG. Thus, the diffracted X-rays cannot be detected by the X-ray detection means. As shown in FIGS. 7B and 7C, the X-ray incident on the (110) plane has an angle of 8 ° 03 ′ corresponding to the tilt angle between the cut plane and the (110) plane. This is due to the fact that the X-ray detection means moves upward (or downward).
そこで、図4に例示した可動手段により、X線検出手段を元の位置から上に60mm移動させたところ、回折X線がX線検出手段に入射するようになり、[1/10 1/10 −1]方向と直行する[−1 1 0]方向に入射したX線からの回折X線も正確に測定でき、(551)結晶の[−1 1 0]方向の偏差角を問題なく簡便に求めることができた。 Therefore, when the X-ray detection means is moved 60 mm upward from the original position by the movable means illustrated in FIG. 4, the diffracted X-rays enter the X-ray detection means, and [1/10 1/10 -1] direction, the X-ray diffracted from the X-ray incident in the [-1 1 0] direction perpendicular to the direction can also be measured accurately, and the deviation angle of the (551) crystal in the [-1 1 0] direction can be easily and easily determined. I was able to ask.
以上で説明したように、本発明のX線結晶方位測定装置及びX線結晶方位測定方法によれば、X線結晶方位測定装置のターゲット電極を交換して、特性X線の波長を変更(ブラッグの反射条件を変更)したりすることなく、X線結晶方位測定装置にそのX線検出手段の高さを調整するような最小限の機構を設けるだけで、大きなあおり角を持つ結晶の切断方位を正確に測定することが可能になった。 As described above, according to the X-ray crystal orientation measuring apparatus and the X-ray crystal orientation measuring method of the present invention, the target electrode of the X-ray crystal orientation measuring apparatus is replaced to change the wavelength of the characteristic X-ray (Bragg Without changing the reflection condition of the crystal, the crystal orientation of the crystal having a large tilt angle can be obtained by providing the X-ray crystal orientation measuring device with a minimum mechanism for adjusting the height of the X-ray detection means. Can be measured accurately.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
11…X線照射手段、 12…X線検出手段、 13…試料単結晶、
14…試料回転手段、 15…ノッチ、
16…入射X線の光軸と光軸が入射する被測定面の法線とが含まれる平面、
17…可動手段、 18…法線、 21…ラック、 22…ピニオン、
23…X線検出手段支柱(内柱)、 24…X線検出手段支柱(外筒)、
25…つまみ、 26…内柱の回り止め部、 31…(551)シリコン単結晶、
100…X線結晶方位測定装置。
11 ... X-ray irradiation means, 12 ... X-ray detection means, 13 ... Sample single crystal,
14 ... Sample rotating means, 15 ... Notch,
16: a plane including the optical axis of incident X-rays and the normal of the surface to be measured on which the optical axis is incident,
17 ... movable means, 18 ... normal, 21 ... rack, 22 ... pinion,
23 ... X-ray detection means support (inner pillar), 24 ... X-ray detection means support (outer cylinder),
25 ... Knob, 26 ... Detent of inner pillar, 31 ... (551) Silicon single crystal,
100: X-ray crystal orientation measuring apparatus.
Claims (2)
前記試料単結晶の被測定面にX線を照射するX線照射手段と、
前記試料単結晶の中心を通り、前記被測定面に平行な回転軸を中心として回転可能とし、該回転軸の方向が前記被測定面に入射するX線の光軸と該光軸が入射する前記被測定面の法線とが含まれる平面に垂直方向である試料回転手段と、
前記X線照射手段から前記試料単結晶の被測定面上に照射されたX線の回折X線を検出するX線検出手段と、
前記光軸と法線が含まれる平面に垂直な方向に前記X線検出手段を移動可能とする可動手段を有するものであることを特徴とするX線結晶方位測定装置。 An apparatus for measuring the crystal orientation of a measured surface of a sample single crystal using X-rays,
X-ray irradiation means for irradiating the measurement surface of the sample single crystal with X-rays;
The optical axis of the X-ray that passes through the center of the sample single crystal and is rotatable about a rotation axis parallel to the surface to be measured and the direction of the rotation axis is incident on the surface to be measured and the optical axis are incident. A sample rotating means that is perpendicular to a plane that includes a normal to the surface to be measured;
X-ray detection means for detecting diffracted X-rays of X-rays irradiated on the measurement target surface of the sample single crystal from the X-ray irradiation means;
An X-ray crystal orientation measuring apparatus characterized by comprising a moving means that allows the X-ray detection means to move in a direction perpendicular to a plane including the optical axis and normal line.
The X-ray crystal orientation measuring apparatus according to claim 1, wherein the X-ray crystal orientation measuring device is capable of moving the X-ray detection means in a direction perpendicular to a plane including the optical axis and the normal line. An X-ray crystal orientation measuring method comprising: irradiating X-rays, detecting X-ray diffraction X-rays irradiated on the surface to be measured, and measuring the crystal orientation of the surface to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015094193A JP6447349B2 (en) | 2015-05-01 | 2015-05-01 | X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015094193A JP6447349B2 (en) | 2015-05-01 | 2015-05-01 | X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016211916A true JP2016211916A (en) | 2016-12-15 |
JP6447349B2 JP6447349B2 (en) | 2019-01-09 |
Family
ID=57551627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015094193A Active JP6447349B2 (en) | 2015-05-01 | 2015-05-01 | X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6447349B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107421972A (en) * | 2017-06-05 | 2017-12-01 | 朱彦婷 | A kind of assay method of the secondary orientation of workpiece |
CN108312370A (en) * | 2017-12-20 | 2018-07-24 | 天通控股股份有限公司 | A kind of oriented machining method positioning crystal based on horizon sensor |
CN110923819A (en) * | 2019-11-05 | 2020-03-27 | 杭州电子科技大学 | Method for manufacturing silicon seed crystal with high orientation precision |
CN113433146A (en) * | 2021-07-23 | 2021-09-24 | 深圳先进电子材料国际创新研究院 | Crystal orientation method, crystal orientation device and crystal processing method |
CN113740366A (en) * | 2020-05-27 | 2021-12-03 | 中国兵器工业第五九研究所 | Method and device for nondestructive detection of crystal orientation difference and crystal boundary defects in single crystal or oriented crystal |
CN117352428A (en) * | 2023-10-09 | 2024-01-05 | 中环领先半导体材料有限公司 | Crystal orientation deviation detection method and system and silicon wafer processing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5768335A (en) * | 1997-02-10 | 1998-06-16 | Lucent Technologies Inc. | Apparatus and method for measuring the orientation of a single crystal surface |
JP2006329821A (en) * | 2005-05-26 | 2006-12-07 | Sony Corp | X-ray diffraction apparatus and measuring method of x-ray diffraction pattern |
JP2014048160A (en) * | 2012-08-31 | 2014-03-17 | Rigaku Corp | Orientation flat position determination method and orientation flat position determination device |
-
2015
- 2015-05-01 JP JP2015094193A patent/JP6447349B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5768335A (en) * | 1997-02-10 | 1998-06-16 | Lucent Technologies Inc. | Apparatus and method for measuring the orientation of a single crystal surface |
JP2006329821A (en) * | 2005-05-26 | 2006-12-07 | Sony Corp | X-ray diffraction apparatus and measuring method of x-ray diffraction pattern |
JP2014048160A (en) * | 2012-08-31 | 2014-03-17 | Rigaku Corp | Orientation flat position determination method and orientation flat position determination device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107421972A (en) * | 2017-06-05 | 2017-12-01 | 朱彦婷 | A kind of assay method of the secondary orientation of workpiece |
CN107421972B (en) * | 2017-06-05 | 2019-10-01 | 朱彦婷 | A kind of measuring method of the secondary orientation of workpiece |
CN108312370A (en) * | 2017-12-20 | 2018-07-24 | 天通控股股份有限公司 | A kind of oriented machining method positioning crystal based on horizon sensor |
CN110923819A (en) * | 2019-11-05 | 2020-03-27 | 杭州电子科技大学 | Method for manufacturing silicon seed crystal with high orientation precision |
CN113740366A (en) * | 2020-05-27 | 2021-12-03 | 中国兵器工业第五九研究所 | Method and device for nondestructive detection of crystal orientation difference and crystal boundary defects in single crystal or oriented crystal |
CN113740366B (en) * | 2020-05-27 | 2023-11-28 | 中国兵器工业第五九研究所 | Method and device for nondestructively detecting crystal orientation difference and grain boundary defect in monocrystal or directional crystal |
CN113433146A (en) * | 2021-07-23 | 2021-09-24 | 深圳先进电子材料国际创新研究院 | Crystal orientation method, crystal orientation device and crystal processing method |
CN113433146B (en) * | 2021-07-23 | 2022-05-27 | 深圳先进电子材料国际创新研究院 | Crystal orientation method, crystal orientation device and crystal processing method |
CN117352428A (en) * | 2023-10-09 | 2024-01-05 | 中环领先半导体材料有限公司 | Crystal orientation deviation detection method and system and silicon wafer processing method |
Also Published As
Publication number | Publication date |
---|---|
JP6447349B2 (en) | 2019-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6447349B2 (en) | X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method | |
JP7084979B2 (en) | Methods and equipment for X-ray scatterometry | |
JP7165400B2 (en) | X-ray analyzer | |
JP5695595B2 (en) | X-ray measuring device | |
CN110398506A (en) | X-ray detection optical device for small angle X ray scattering measurement | |
JP6871629B2 (en) | X-ray analyzer and its optical axis adjustment method | |
US20140067316A1 (en) | Measuring apparatus, detector deviation monitoring method and measuring method | |
KR102018908B1 (en) | Apparatus and method for calibrating a polarizer | |
KR102243222B1 (en) | Beam generation unit and x-ray small-angle scattering apparatus | |
JP6230618B2 (en) | Apparatus and method for surface mapping using in-plane oblique incidence diffraction | |
JP6000696B2 (en) | X-ray stress measuring apparatus and X-ray stress measuring method | |
JP6198406B2 (en) | Micro diffraction method and apparatus | |
JP6842084B2 (en) | Portable 3-axis stress measuring device | |
JP2015232450A (en) | Film thickness measurement method and film thickness measurement device | |
JP4884553B1 (en) | X-ray analysis apparatus and method | |
JP7207186B2 (en) | X-ray diffraction device and X-ray diffraction measurement method | |
JP2016205893A (en) | Calibration method of crystal orientation measuring apparatus | |
JP5963331B2 (en) | X-ray measuring device | |
JP2015004639A (en) | Method and device for measuring warp of single crystal substrate | |
JPH11248652A (en) | X-ray diffraction measuring method and x-ray differactometer | |
JPH1163956A (en) | Method for measuring multi-point angle and method for measuring angle of crystal plate | |
JP2016031271A (en) | Adjustment method for x-ray spectrometer, the x-ray spectrometer, and sample analysis device | |
JP2019086408A (en) | Apparatus for x-ray measurement and slit plate used therefor | |
JPS62228152A (en) | X-ray diffracting apparatus and its use | |
JP2001336992A (en) | X-ray stress measuring method and x-ray stress measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6447349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |