JP4884553B1 - X-ray analysis apparatus and method - Google Patents

X-ray analysis apparatus and method Download PDF

Info

Publication number
JP4884553B1
JP4884553B1 JP2010193677A JP2010193677A JP4884553B1 JP 4884553 B1 JP4884553 B1 JP 4884553B1 JP 2010193677 A JP2010193677 A JP 2010193677A JP 2010193677 A JP2010193677 A JP 2010193677A JP 4884553 B1 JP4884553 B1 JP 4884553B1
Authority
JP
Japan
Prior art keywords
sample
ray
rays
angle
avoidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193677A
Other languages
Japanese (ja)
Other versions
JP2012052840A (en
Inventor
智行 福田
康裕 清水
昭弘 池下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2010193677A priority Critical patent/JP4884553B1/en
Priority to PCT/JP2011/061303 priority patent/WO2012029358A1/en
Application granted granted Critical
Publication of JP4884553B1 publication Critical patent/JP4884553B1/en
Publication of JP2012052840A publication Critical patent/JP2012052840A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Abstract

【課題】結晶構造を有する試料から発生する散乱線および不純線を抑制し、回折X線を回避することができるX線分析装置および方法を提供する。
【解決手段】X線分析装置は、試料Sを試料の所定点周りに360°回転させながら1次X線2を照射させて取得した回折パターンを記憶する制御手段15と、試料SのR−θ座標において試料の測定面上に位置することができる試料の平行移動範囲の上下限値のθ座標を、演算および/または記憶する演算記憶手段17と、演算および/または記憶されたθ座標の上下限値、および回折パターンに基づいて、隣り合う間隔がθ座標の上下限値範囲内の角度であって、回折X線を回避できる回避角度を選択するための選択手段とを備え、制御手段15が試料の測定点の座標に応じて、回避角度の中から測定点の座標に最も近い回避角度を読み出して、読み出した回避角度に試料を設定する。
【選択図】図1
The present invention provides an X-ray analysis apparatus and method capable of suppressing scattered radiation and impurity lines generated from a sample having a crystal structure and avoiding diffracted X-rays.
An X-ray analyzer includes a control means 15 for storing a diffraction pattern obtained by irradiating a primary S-ray 2 while rotating the specimen S around a predetermined point of the specimen 360 °, and an R− of the specimen S. The calculation storage means 17 for calculating and / or storing the upper and lower limit values of the parallel movement range of the sample that can be positioned on the measurement surface of the sample in the θ coordinate, and the calculated and / or stored θ coordinate And a selection means for selecting an avoidance angle at which the adjacent interval is an angle within the upper and lower limit value range of the θ coordinate based on the upper and lower limit values and the diffraction pattern and can avoid the diffracted X-ray, 15 reads out the avoidance angle closest to the coordinates of the measurement point from the avoidance angles according to the coordinates of the measurement points of the sample, and sets the sample to the read avoidance angle.
[Selection] Figure 1

Description

本発明は、ウエーハ等の円板状の試料の任意の測定部位を測定するX線分析装置およびその方法に関する。   The present invention relates to an X-ray analysis apparatus and method for measuring an arbitrary measurement site of a disk-shaped sample such as a wafer.

従来、例えば、ウエーハの分析には、試料表面に1次X線を照射して、試料表面から発生する2次X線の強度を検出して分析している。ウエーハなどの結晶構造を有する試料はX線が照射されると、蛍光X線、回折X線などの2次X線を発生する。蛍光X線分析において、この回折X線が測定の障害となる場合がある。回折X線は結晶構造である(110)面、(111)面などの試料のカット面によって発生する角度位置が異なる。   Conventionally, for example, in wafer analysis, primary X-rays are irradiated on a sample surface, and the intensity of secondary X-rays generated from the sample surface is detected and analyzed. When a sample having a crystal structure such as a wafer is irradiated with X-rays, secondary X-rays such as fluorescent X-rays and diffraction X-rays are generated. In fluorescent X-ray analysis, this diffracted X-ray may be an obstacle to measurement. Diffracted X-rays are generated at different angular positions depending on the cut surface of the sample, such as the (110) plane and (111) plane, which are crystal structures.

そこで、試料の蛍光X線分析に先立って、試料を試料の所定点周りに180°以上回転させながら、この試料に1次X線を照射して、試料から発生する蛍光X線および回折X線を含む2次X線を検出し、得られた2次X線強度が最小値を示す回転方向位置に試料を位置決めし、この状態で、試料を、その測定面に平行な面内で互いに直交するXY方向に移動させて、試料の測定面全域の分析を行なう蛍光X線分析方法がある(特許文献1)。   Therefore, prior to fluorescent X-ray analysis of the sample, the sample is irradiated with primary X-rays while rotating the sample around a predetermined point of 180 ° or more, and fluorescent X-rays and diffraction X-rays generated from the sample. Secondary X-rays are detected, and the sample is positioned at the rotational direction position where the obtained secondary X-ray intensity shows the minimum value. In this state, the samples are orthogonal to each other in a plane parallel to the measurement surface. There is a fluorescent X-ray analysis method in which the entire measurement surface of the sample is analyzed by moving in the XY direction (Patent Document 1).

また、図11に示すように、試料の縁近傍にある所望の測定部位の測定において、試料Sの上方の領域外から1次X線2が照射されて前記領域へ全反射するように位置させて測定すると、1次X線2の一部が板状の試料Sの鉛直な端面に照射され、四方に向けて強い散乱線9が発生する。この散乱線9の一部は、測定すべき蛍光X線に対して大きなバックグラウンドとなる。   Further, as shown in FIG. 11, in measurement of a desired measurement site near the edge of the sample, the primary X-ray 2 is irradiated from outside the region above the sample S so as to be totally reflected to the region. As a result, a part of the primary X-ray 2 is irradiated onto the vertical end surface of the plate-like sample S, and strong scattered rays 9 are generated in all directions. A part of the scattered radiation 9 becomes a large background with respect to the fluorescent X-ray to be measured.

そこで、試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ全反射するように位置させて試料の端面から発生する散乱線を抑制して測定する全反射蛍光X線分析装置がある(特許文献2)。   Therefore, an arbitrary measurement site near the edge of the sample is positioned so that the primary X-ray is irradiated from the region above the sample and totally reflected outside the region, thereby suppressing scattered radiation generated from the end surface of the sample. Thus, there is a total reflection fluorescent X-ray analysis apparatus (Patent Document 2).

特開平5−126768号公報JP-A-5-126768 特開2002−5858号公報Japanese Patent Laid-Open No. 2002-5858

特許文献1に記載の蛍光X線分析方法では、結晶構造が回転対称の試料から発生する回折X線を回避することはできるが、結晶構造が回転対称でない試料から発生する回折X線を回避することができなかった。   The fluorescent X-ray analysis method described in Patent Document 1 can avoid diffracted X-rays generated from a sample whose crystal structure is rotationally symmetric, but avoid diffracted X-rays generated from a sample whose crystal structure is not rotationally symmetric. I couldn't.

特許文献2に記載の全反射蛍光X線分析装置では、試料の縁近傍から発生する散乱線の影響を抑制することができるが、結晶構造が回転対称でない試料から発生する回折X線を回避することを考慮していないので、散乱線の影響を排除できる位置に試料を設定しても回折X線を回避することできず、試料によっては精度のよい分析ができなかった。   The total reflection X-ray fluorescence analyzer described in Patent Document 2 can suppress the influence of scattered radiation generated from the vicinity of the edge of the sample, but avoids diffracted X-rays generated from a sample whose crystal structure is not rotationally symmetric. Therefore, even if the sample is set at a position where the influence of scattered radiation can be eliminated, diffracted X-rays cannot be avoided, and depending on the sample, accurate analysis cannot be performed.

そこで、本発明は前記従来の問題に鑑みてなされたもので、結晶構造を有する円板状の試料の縁近傍ならびに試料近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料から発生する回折X線を回避することによって、簡単に精度のよい分析をすることができるX線分析装置および方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described conventional problems, and suppresses and avoids scattered rays and impurity lines generated from the vicinity of the edge of a disk-shaped sample having a crystal structure and an apparatus structure in the vicinity of the sample, An object of the present invention is to provide an X-ray analysis apparatus and method capable of easily performing accurate analysis by avoiding diffracted X-rays generated from a sample.

前記目的を達成するために、本発明の第1構成のX線分析装置は、結晶構造を有する円板状の試料が載置される試料台と、試料に1次X線を照射するX線源と、試料から発生する2次X線を検出する検出器と、試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、を備え、試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定する。   In order to achieve the above object, an X-ray analyzer according to a first configuration of the present invention includes a sample stage on which a disk-shaped sample having a crystal structure is placed, and an X-ray that irradiates the sample with primary X-rays. A source, a detector for detecting secondary X-rays generated from the sample, translation means for translating the sample stage so as to irradiate the primary X-ray at an arbitrary position on the sample measurement surface, and a sample measurement surface Rotating means for rotating the sample stage around an axis perpendicular to the surface, and the primary X-ray is irradiated from the region above the sample to the outside of the region at any measurement site near the edge of the sample Measured with reflection.

さらに、このX線分析装置は、試料を試料の所定点周りに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを表示手段に表示させ、その回折パターンを記憶する制御手段と、試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算および/または記憶する演算記憶手段と、
sinθ1=(R−T)/R (1)
測定者が前記演算記憶手段によって演算および/または記憶された前記角度範囲2θ1、ならびに前記表示手段に表示された回折パターンに基づいて、回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択するための選択手段と、を備え、前記制御手段が、測定者によって前記選択手段を用いて選択された回避角度を記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段を制御して前記読み出した回避角度に試料を設定し、前記平行移動手段を制御して試料の測定点を1次X線の照射位置に設定する。
Further, the X-ray analyzer irradiates the sample with a primary X-ray from the X-ray source while rotating the sample around a predetermined point of the sample by the rotation means by 360 °, and generates the sample to enter the detector. The display unit displays a diffraction pattern in which the intensity of the secondary X-ray corresponds to the rotation angle of the sample, and stores the diffraction pattern, the radius R of the sample, and the field of view of the detector on the measurement surface of the sample Calculation storage means for calculating and / or storing the angle range 2θ1 obtained from the following equation (1) based on the radius T of each of the sample diameters;
sin θ1 = (R−T) / R (1)
Based on the angle range 2θ1 calculated and / or stored by the calculation storage means by the measurer and the diffraction pattern displayed on the display means , there are a plurality of avoidance angles that can avoid the diffracted X-rays. comprising selecting means for spacing adjacent to each other to select the avoidance angle is within the angular range 2.theta.1, the said control means stores the avoidance angle selected using the selection means by the measurer, According to the coordinates of the measurement point of the sample, the avoidance angle closest to the coordinate of the measurement point is read out from the stored avoidance angles, the sample is set to the read avoidance angle by controlling the rotating means, The translation point is controlled to set the measurement point of the sample as the primary X-ray irradiation position.

本発明の第1構成のX線分析装置によれば、結晶構造を有する円板状の試料の縁近傍ならびに試料近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料から発生する回折X線を回避することによって、簡単に精度のよい分析をすることができる。   According to the X-ray analyzer of the first configuration of the present invention, while suppressing and avoiding scattered rays and impurity lines generated from the vicinity of the edge of the disk-shaped sample having a crystal structure and the device structure in the vicinity of the sample, By avoiding the generated diffracted X-rays, it is possible to easily analyze with high accuracy.

本発明の第2構成のX線分析装置は、結晶構造を有する円板状の試料が載置される試料台と、試料に1次X線を照射するX線源と、試料から発生する2次X線を検出する検出器と、試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、を備え、試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定する。   The X-ray analyzer of the second configuration of the present invention includes a sample stage on which a disk-shaped sample having a crystal structure is placed, an X-ray source that irradiates the sample with primary X-rays, and 2 generated from the sample. A detector for detecting a secondary X-ray, a translation means for translating the sample stage so as to irradiate the primary X-ray at an arbitrary position on the sample measurement surface, and the axis about the axis perpendicular to the sample measurement surface. Rotating means for rotating the sample stage, and measuring an arbitrary measurement site near the edge of the sample so that the primary X-ray is irradiated from the region above the sample and reflected outside the region. To do.

さらに、このX線分析装置は、試料を試料の所定点周りに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを表示手段に表示させ、その回折パターンを記憶する制御選択手段と、試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算および/または記憶する演算記憶手段と、を備え、
sinθ1=(R−T)/R (1)
前記制御選択手段が、前記演算記憶手段によって演算および/または記憶された前記角度範囲2θ1、ならびに前記表示手段に表示された回折パターンに基づいて、前記回折パターンにおいて所定の閾値以下のX線強度で回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択して記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段を制御して前記読み出した回避角度に試料を設定し、前記平行移動手段を制御して試料の測定点を1次X線の照射位置に設定する。
Further, the X-ray analyzer irradiates the sample with a primary X-ray from the X-ray source while rotating the sample around a predetermined point of the sample by the rotation means by 360 °, and generates the sample to enter the detector. The display unit displays a diffraction pattern in which the intensity of the secondary X-ray corresponds to the rotation angle of the sample, and the control selection unit that stores the diffraction pattern, the radius R of the sample, and the detector on the measurement surface of the sample Calculation storage means for calculating and / or storing the angle range 2θ1 obtained from the following formula (1) based on the radius T of the visual field for each diameter of the sample;
sin θ1 = (R−T) / R (1)
Based on the angle range 2θ1 calculated and / or stored by the calculation storage means and the diffraction pattern displayed on the display means, the control selection means has an X-ray intensity below a predetermined threshold in the diffraction pattern. A plurality of avoidance angles that can avoid the diffracted X-rays, and an avoidance angle in which an interval between adjacent avoidance angles is within the angle range 2θ1 is selected and stored, and the storage is performed according to the coordinates of the measurement point of the sample. The avoidance angle closest to the coordinates of the measurement point is read out from the avoidance angles, the sample is set to the read avoidance angle by controlling the rotating means, and the measurement point of the sample is controlled by controlling the parallel moving means. The primary X-ray irradiation position is set.

本発明の第2構成のX線分析装置によれば、自動的に、結晶構造を有する円板状の試料の縁近傍ならびに試料近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料から発生する回折X線を回避することによって、簡単に精度のよい分析をすることができる。   According to the X-ray analyzer of the second configuration of the present invention, it is possible to automatically suppress and avoid scattered rays and impurity lines generated from the vicinity of the edge of the disk-shaped sample having a crystal structure and the device structure in the vicinity of the sample. At the same time, by avoiding the diffracted X-rays generated from the sample, it is possible to easily analyze with high accuracy.

本発明の第3構成のX線分析方法は、結晶構造を有する円板状の試料が載置される試料台と、試料に1次X線を照射するX線源と、試料から発生する2次X線を検出する検出器と、試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、を備え、試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定するX線分析装置を用いる。   The X-ray analysis method of the third configuration of the present invention includes a sample stage on which a disk-shaped sample having a crystal structure is placed, an X-ray source that irradiates the sample with primary X-rays, and 2 generated from the sample. A detector for detecting a secondary X-ray, a translation means for translating the sample stage so as to irradiate the primary X-ray at an arbitrary position on the sample measurement surface, and the axis about the axis perpendicular to the sample measurement surface. Rotating means for rotating the sample stage, and measuring an arbitrary measurement site near the edge of the sample so that the primary X-ray is irradiated from the region above the sample and reflected outside the region. X-ray analyzer is used.

さらに、このX線分析方法は、前記試料台に載置された試料を前記回転手段によって試料の所定点周りに360°回転させながら1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを取得し、試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算して記憶し、
sinθ1=(R−T)/R (1)
演算記憶された前記角度範囲2θ1、および前記表示手段に表示された回折パターンに基づいて、回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択して記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段によって前記読み出した回避角度に試料を設定し、前記平行移動手段によって試料の測定点を1次X線の照射位置に設定して分析する。
Further, in this X-ray analysis method, the sample placed on the sample stage is irradiated with primary X-rays while being rotated 360 ° around a predetermined point of the sample by the rotating means, and is generated from the sample to generate the detector. A diffraction pattern in which the intensity of the secondary X-ray incident on the sample is made to correspond to the rotation angle of the sample is acquired, and based on the radius R of the sample and the radius T of the field of view of the detector on the measurement surface of the sample, ) Is calculated and stored for each diameter of the sample,
sin θ1 = (R−T) / R (1)
Based on the calculated and stored angle range 2θ1 and the diffraction pattern displayed on the display means, a plurality of avoidance angles that can avoid diffracted X-rays, and the adjacent intervals between the avoidance angles are within the angle range 2θ1. storing the avoidance angle is selected and, depending on the coordinates of the measuring points of the sample, read the closest avoidance angle coordinates of the measuring point from the avoidance angle to said storage, and read out the by said rotating means The sample is set at the avoidance angle, and the measurement point of the sample is set to the irradiation position of the primary X-ray by the parallel moving means for analysis.

本発明の第3構成のX線分析方法によれば、結晶構造を有する円板状の試料の縁近傍ならびに試料近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料から発生する回折X線を回避することによって、簡単に精度のよい分析をすることができる。   According to the X-ray analysis method of the third configuration of the present invention, while suppressing and avoiding scattered rays and impurity lines generated from the vicinity of the edge of the disk-shaped sample having a crystal structure and the device structure in the vicinity of the sample, By avoiding the generated diffracted X-rays, it is possible to easily analyze with high accuracy.

本発明の第1実施形態のX線分析装置を示す概略図である。1 is a schematic diagram showing an X-ray analysis apparatus according to a first embodiment of the present invention. 同装置の試料台における試料の初期位置を示す図である。It is a figure which shows the initial position of the sample in the sample stand of the apparatus. 同装置によって測定した試料の回折パターンを示す図である。It is a figure which shows the diffraction pattern of the sample measured with the same apparatus. 同装置の測定点Aと仮想線との位置関係を示す図である。It is a figure which shows the positional relationship of the measurement point A of the same apparatus, and a virtual line. 同装置の測定点Bと仮想線との位置関係を示す図である。It is a figure which shows the positional relationship of the measurement point B of the same apparatus, and a virtual line. 同装置の測定点Cと仮想線との位置関係を示す図である。It is a figure which shows the positional relationship of the measurement point C of the same apparatus, and a virtual line. 同装置の測定点Dと仮想線との位置関係を示す図である。It is a figure which shows the positional relationship of the measurement point D of the same apparatus, and a virtual line. 同装置によって回折パターンを取得するときの試料位置を示す図である。It is a figure which shows the sample position when acquiring a diffraction pattern with the same apparatus. 同装置の測定点Fが回折X線回避角度に設定された図である。It is the figure where the measurement point F of the same apparatus was set to the diffraction X-ray avoidance angle. 本発明の第3実施形態のX線分析装置を示す概略図である。It is the schematic which shows the X-ray analyzer of 3rd Embodiment of this invention. 従来のX線分析装置における試料からの散乱線発生部分の拡大図である。It is an enlarged view of the scattered radiation generation part from the sample in the conventional X-ray analyzer.

以下、本発明の第1実施形態のX線分析装置について説明する。まず、X線分析装置の構成について、図にしたがって説明する。図1は、この発明のX線分析方法を実施するために使用する全反射蛍光X線分析装置などのX線分析装置の概略構成図であり、このX線分析装置は、ウエーハなどの結晶構造を有する円板状の試料Sに向けて1次X線2を照射するX線管などのX線源1と、1次X線2の照射によって試料Sから発生する蛍光X線、回折X線などの2次X線4の強度を検出する検出器7と、試料Sを載置する試料台8と、この試料台8を試料Sの測定面に垂直な軸を中心に回転させる、この実施形態では試料Sの中心O周りに回転させる回転手段11と、この回転手段11を回転可能に支持した状態で、試料Sの測定面の任意の位置に1次X線2を照射させるように測定面に平行な面内でR−θ方向に移動させるR−θステージなどの平行移動手段12とを備えている。例えば、R−θステージは特開平8−161049に開示されているステージである。   The X-ray analyzer according to the first embodiment of the present invention will be described below. First, the configuration of the X-ray analyzer will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an X-ray analyzer such as a total reflection fluorescent X-ray analyzer used for carrying out the X-ray analysis method of the present invention. This X-ray analyzer has a crystal structure such as a wafer. X-ray source 1 such as an X-ray tube that emits primary X-rays 2 toward a disk-shaped sample S having a fluorescent X-ray and diffracted X-rays generated from the sample S by the irradiation of primary X-rays 2 The detector 7 for detecting the intensity of the secondary X-ray 4 such as the sample stage 8, the sample stage 8 on which the sample S is placed, and the sample stage 8 are rotated around an axis perpendicular to the measurement surface of the sample S. In the embodiment, the rotating means 11 is rotated around the center O of the sample S, and the measurement is performed so that the primary X-ray 2 is irradiated at an arbitrary position on the measurement surface of the sample S while the rotating means 11 is rotatably supported. And a parallel moving means 12 such as an R-θ stage for moving in the R-θ direction in a plane parallel to the surface. ing. For example, the R-θ stage is a stage disclosed in JP-A-8-161049.

試料Sの座標はR−θ座標で示され、図2に示すように、R−θ座標において時計方向の角度を−θ、反時計方向の角度を+θと表示し、試料Sが回転手段11によって回転される時計方向の回転角度を符号ωと表示する。試料Sは試料台8に載置され、ウエーハのノッチNやオリフラなどを基準として初期位置に設定される。試料Sの初期位置において、試料Sの中心Oと検出器7の視野Vの中心Pとは合致している。図2に示す符号I 、II、III 、IVは座標の第1象限、第2象限、第3象限、第4象限を示している。 The coordinates of the sample S are indicated by R-θ coordinates. As shown in FIG. 2, the clockwise angle in the R-θ coordinate is represented as -θ, and the counterclockwise angle is represented as + θ. the rotation angle when a total of the direction that will be rotated to display a sign ω by. The sample S is placed on the sample stage 8, and is set to the initial position with reference to the notch N of the wafer, the orientation flat, and the like. At the initial position of the sample S, the center O of the sample S coincides with the center P of the field of view V of the detector 7. Symbols I 1, II, III, and IV shown in FIG. 2 indicate the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant of coordinates.

試料Sの縁近傍にある任意の測定部位について、試料Sの上方の領域から1次X線2が照射されて前記領域外へ反射するように位置させて測定できるように、図1に示すように1次X線2を紙面の左方から試料Sの右側縁近傍に照射している。1次X線2の試料Sへの照射方向は所定の方向に固定されている。検出器7はSDDなどの半導体検出器である。検出器7は装置の所定の部位に固定されており、試料S測定面上の視野Vは一定の大きさ(一定面積)となる。第1実施形態のX線分析装置では、例えば、検出器7の視野Vは円形であり、半径Tは10mmである。   As shown in FIG. 1, an arbitrary measurement site near the edge of the sample S can be measured by being positioned so that the primary X-ray 2 is irradiated from the region above the sample S and reflected outside the region. In addition, the primary X-ray 2 is irradiated to the vicinity of the right edge of the sample S from the left side of the drawing. The irradiation direction of the primary X-ray 2 to the sample S is fixed in a predetermined direction. The detector 7 is a semiconductor detector such as an SDD. The detector 7 is fixed to a predetermined part of the apparatus, and the visual field V on the sample S measurement surface has a constant size (a constant area). In the X-ray analyzer of the first embodiment, for example, the field of view V of the detector 7 is circular, and the radius T is 10 mm.

第1実施形態のX線分析装置は、さらに、制御手段15、表示手段16、演算記憶手段17および選択手段18を備えている。制御手段15は、試料Sを試料Sの中心O周りに回転手段11によって時計方向に360°回転させながらX線源1から1次X線2を照射させ、試料Sから発生して検出器7に入射する2次X線4の強度を試料Sの回転角度ωと対応させた回折パターンを表示手段16に表示させ、その回折パターンを記憶する。本実施形態の装置で1次X線W−Lβ1を照射して取得され、表示手段16に表示されて記憶された回折パターンの例を図3に示す。なお、試料Sの回転方向は時計方向であってもよい。 The X-ray analysis apparatus of the first embodiment further includes a control unit 15, a display unit 16, a calculation storage unit 17 and a selection unit 18. Control means 15, the sample S is irradiated with X-ray source 1 from the primary X-ray 2 while 360 ° rotation it clockwise by the rotating means 11 to the center O around the sample S, is generated from the sample S A diffraction pattern in which the intensity of the secondary X-ray 4 incident on the detector 7 is made to correspond to the rotation angle ω of the sample S is displayed on the display means 16, and the diffraction pattern is stored. FIG. 3 shows an example of a diffraction pattern acquired by irradiating the primary X-ray W-Lβ1 with the apparatus of the present embodiment, displayed on the display means 16, and stored. The rotation direction of the sample S can be a counter-clockwise direction.

演算記憶手段17は、試料Sへの1次X線2の水平方向成分と同一方向を向いた仮想線であって、試料の測定面上における検出器7の視野の外周に接する2つの仮想線が、試料Sの測定面上に位置することができる試料Sの平行移動範囲の上下限値のθ座標を、試料Sの直径Rごとに、演算および/または記憶する。仮想線は、図4に示す符号Hと符号Mで表示され、1次X線2の水平方向成分と同一方向を向いており、試料Sの測定面上における検出器7の視野Vの外周に接する仮想の線である。図1で説明したように1次X線2の試料Sへの照射方向は図4の矢印で示す方向に固定されており、検出器7の視野Vも一定であるので、2つの仮想線H、Mは図4に示す一定位置にある。平行移動手段12によって測定点Aが検出器7の視野Vの中心Pに配置されて測定される。   The arithmetic storage means 17 is an imaginary line facing the same direction as the horizontal component of the primary X-ray 2 to the sample S, and is two imaginary lines in contact with the outer periphery of the field of view of the detector 7 on the measurement surface of the sample. However, the θ coordinates of the upper and lower limit values of the translation range of the sample S that can be positioned on the measurement surface of the sample S are calculated and / or stored for each diameter R of the sample S. The imaginary line is indicated by the symbols H and M shown in FIG. 4 and faces the same direction as the horizontal component of the primary X-ray 2 and is on the outer periphery of the visual field V of the detector 7 on the measurement surface of the sample S. It is a virtual line that touches. As described with reference to FIG. 1, the irradiation direction of the primary X-ray 2 onto the sample S is fixed in the direction indicated by the arrow in FIG. 4 and the field of view V of the detector 7 is also constant. , M are at fixed positions shown in FIG. The measuring point A is arranged at the center P of the field of view V of the detector 7 and measured by the translation means 12.

測定者は、選択手段18を用いて、演算記憶手段17によって演算または記憶されたθ座標の上下限値、および表示手段16に表示された回折パターンに基づいて、隣り合う間隔がθ座標の上下限値範囲内の角度であって、回折X線を回避できる回避角度を選択する。   The measurer uses the selection unit 18 to set the adjacent interval to the upper limit of the θ coordinate based on the upper and lower limit values of the θ coordinate calculated or stored by the calculation storage unit 17 and the diffraction pattern displayed on the display unit 16. An avoidance angle that is within the lower limit range and that can avoid diffracted X-rays is selected.

制御手段15が、選択手段18を用いて、選択された回避角度ωを記憶し、試料Sの測定点の座標に応じて、前記記憶した回避角度ωの中から測定点の座標に最も近い回避角度ωを読み出して、回転手段11を制御して前記読み出した回避角度ωに試料Sを設定し、平行移動手段12を制御して、設定された回避角度ωを維持した状態で試料Sを移動させて測定点を検出器7の視野Vの中心Pに合致させる。   The control means 15 uses the selection means 18 to store the selected avoidance angle ω, and according to the measurement point coordinates of the sample S, the closest avoidance angle ω among the stored avoidance angles ω. The angle ω is read, the sample S is set to the read avoidance angle ω by controlling the rotating means 11, and the sample S is moved while the set avoidance angle ω is maintained by controlling the parallel moving means 12. The measurement point is made to coincide with the center P of the field of view V of the detector 7.

2つの仮想線H、Mが試料SのR−θ座標において試料Sの測定面上に位置することができる、試料Sの平行移動範囲の上下限値のθ座標について、以下に説明する。測定点B(R、−90)と検出器7の視野Vとの位置が図5に示す状態であると、右側仮想線Mが試料Sの測定面上の外側にあり、1次X線2が試料Sの右側エッジに当たり、散乱線が発生する。また、1次X線2が試料Sの下方に(図5の紙面奥方向)存在する装置構造材に照射され散乱線と不純線(試料Sの下方に存在する装置構造材から発生する蛍光X線)が発生する。このようにして発生した最初の散乱線と不純線が、さらなる散乱線と不純線を発生させる。最初の散乱線と不純線、および、さらなる散乱線と不純線が検出器7に入射する。   The following will describe the θ coordinates of the upper and lower limit values of the parallel movement range of the sample S in which the two virtual lines H and M can be positioned on the measurement surface of the sample S in the R-θ coordinate of the sample S. When the positions of the measurement point B (R, −90) and the visual field V of the detector 7 are in the state shown in FIG. 5, the right virtual line M is outside the measurement surface of the sample S, and the primary X-ray 2 Hits the right edge of the sample S, and scattered rays are generated. Further, the primary X-ray 2 is irradiated on the device structural material existing below the sample S (in the depth direction of the drawing in FIG. 5), and the scattered X rays and impurity lines (fluorescence X generated from the device structural material existing below the sample S). Line) occurs. The first scattered and impure lines generated in this way generate further scattered and impure lines. First scattered rays and impure rays, and further scattered rays and impure rays enter the detector 7.

一方、測定点C(R、−θ1)と検出器7の視野Vとの位置が図6に示す状態であると、左側仮想線Hは試料Sの測定面上にあり、右側仮想線Mは試料Sの右側側面に接している。したがって、一部の1次X線2が試料Sの右側エッジや試料Sの下方に存在する装置構造材に照射されても、それらの個所から発生した散乱線および不純線は、検出器7の視野Vの外側に進行し、検出器7には入射しない。   On the other hand, when the positions of the measurement point C (R, −θ1) and the visual field V of the detector 7 are in the state shown in FIG. 6, the left virtual line H is on the measurement surface of the sample S, and the right virtual line M is It contacts the right side surface of the sample S. Therefore, even if a part of the primary X-rays 2 is irradiated to the right side edge of the sample S or the apparatus structural material existing below the sample S, scattered rays and impure lines generated from those portions are not detected by the detector 7. The light travels outside the field of view V and does not enter the detector 7.

このように、左側仮想線Hと右側仮想線Mの2つの仮想線がともに試料Sの測定面上に位置するように平行移動手段12によって試料Sを配置すると、散乱線および不純線が検出器7に入射しないようにすることができる。   As described above, when the sample S is arranged by the parallel moving means 12 so that the two virtual lines of the left virtual line H and the right virtual line M are both located on the measurement surface of the sample S, the scattered rays and the impure lines are detected by the detector. 7 can be prevented from entering.

図7に示す測定点D(R、−θ2)については、左側仮想線Hと右側仮想線Mはともに試料Sの測定面上にあり、測定点Cのθ1(図6)と測定点Dのθ2の角度関係は、θ1>θ2である。これから分かるように、測定点の位置が0〜−θ1の角度範囲であれば、散乱線および不純線が検出器7に入射しないようにすることができる。   For the measurement point D (R, −θ2) shown in FIG. 7, the left imaginary line H and the right imaginary line M are both on the measurement surface of the sample S, and θ1 (FIG. 6) of the measurement point C and the measurement point D The angle relationship of θ2 is θ1> θ2. As can be seen, if the position of the measurement point is in the angle range of 0 to −θ1, scattered rays and impure rays can be prevented from entering the detector 7.

試料Sの第1象限座標について説明したが、第2象限座標についても同様に考えられ、測定点の位置が0〜+θ1の角度範囲内であれば、散乱線と不純線ともに検出器7に入射しないようにすることができる。すなわち、測定点の位置が−θ1〜+θ1の角度範囲内であれば、散乱線と不純線ともに検出器7に入射しないようにすることができ、+θ1が上限角度、−θ1が下限角度となり、絶対値の角度範囲としては2θ1となる。   Although the first quadrant coordinate of the sample S has been described, the same applies to the second quadrant coordinate. If the position of the measurement point is within the angle range of 0 to + θ1, both scattered rays and impure lines are incident on the detector 7. You can avoid it. That is, if the position of the measurement point is within the angle range of −θ1 to + θ1, it is possible to prevent both scattered rays and impure lines from entering the detector 7, where + θ1 is the upper limit angle and −θ1 is the lower limit angle, The angle range of the absolute value is 2θ1.

図6に示すように、上限角度θ1、試料Sの半径Rおよび検出器7の視野Vの半径Tとの間には、下記の(1)式の関係が成立する。   As shown in FIG. 6, the following equation (1) is established among the upper limit angle θ1, the radius R of the sample S, and the radius T of the field of view V of the detector 7.

sinθ1=(R−T)/R (1) sin θ1 = (R−T) / R (1)

検出器7は装置の所定の部位に固定されており、その検出器7の視野Vの半径Tも一定であり、試料Sの半径Rによって上限角度θ1を求めることができる。 The detector 7 is fixed to a predetermined part of the apparatus, the radius T of the field of view V of the detector 7 is also constant, and the upper limit angle θ1 can be obtained from the radius R of the sample S.

演算記憶手段17には、上記(1)式および検出器視野の半径Tが格納されており、入力手段19によって試料半径Rが入力されると、演算して上下限角度±θ1および2θ1を求め、表示手段16に表示するとともに記憶する。   The calculation storage means 17 stores the above equation (1) and the radius T of the detector field. When the sample radius R is input by the input means 19, the calculation is performed to obtain the upper and lower limit angles ± θ1 and 2θ1. Are displayed on the display means 16 and stored.

次に、第1実施形態のX線分析装置の動作とともに、本発明の第2実施形態のX線分析方法について説明する。直径200mmの試料Sの全反射蛍光X線分析に先立って、試料Sの360°の回折パターンを取得する。   Next, along with the operation of the X-ray analyzer of the first embodiment, the X-ray analysis method of the second embodiment of the present invention will be described. Prior to the total reflection X-ray fluorescence analysis of the sample S having a diameter of 200 mm, a 360 ° diffraction pattern of the sample S is acquired.

すなわち、試料Sが試料搬送手段(図示なし)によって図1に示す試料台8に載置される。試料Sが試料台8に載置された初期位置から平行移動手段12によって移動され、図8に示すように試料エッジからの散乱線の影響が少ない測定点E(R1、0)に設定される。回転手段11によって試料台8および試料Sを、試料Sの中心Oの周りに時計方向に360°回転させながら、測定点EにX線源1から1次X線2を照射し、試料Sから発生する蛍光X線および回折X線を含んだ2次X線4を検出器7により検出する。これによって、図3に示す回折パターンが表示手段16に表示されるとともに制御手段15に記憶される。図3では、測定されたW−Lβ線(W)の回折パターンを示しており、横軸は試料Sの回転角度ω、縦軸はW−Lβ線のX線強度を表している。 That is, the sample S is placed on the sample table 8 shown in FIG. 1 by a sample transport means (not shown). The sample S is moved from the initial position on the sample stage 8 by the parallel moving means 12, and is set to a measurement point E (R1, 0) that is less affected by scattered rays from the sample edge as shown in FIG. . The sample stage 8 and the sample S by the rotating means 11, while 360 ° rotation it clockwise around the center O of the sample S, is irradiated from the X-ray source 1 to the measuring point E 1 primary X-rays 2, the sample S The secondary X-ray 4 including the fluorescent X-ray and the diffracted X-ray generated from is detected by the detector 7. As a result, the diffraction pattern shown in FIG. 3 is displayed on the display means 16 and stored in the control means 15. FIG. 3 shows the measured diffraction pattern of the W-Lβ line (W), where the horizontal axis represents the rotation angle ω of the sample S and the vertical axis represents the X-ray intensity of the W-Lβ line.

次に、測定者が入力手段19から演算記憶手段17に試料Sの半径Rを入力する。演算記憶手段17は試料Sの半径Rが入力されると、上記(1)式に基づいて、演算して上下限角度±θ1および2θ1を求め、表示手段16に表示するとともに記憶する。本実施形態では、検出器視野の半径Tが10mm、試料半径Rは100mmであり、θ1として64°、2θ1として128°が求まる。   Next, the measurer inputs the radius R of the sample S from the input unit 19 to the calculation storage unit 17. When the radius R of the sample S is inputted, the calculation storage means 17 calculates the upper and lower limit angles ± θ1 and 2θ1 based on the above equation (1), and displays and stores them on the display means 16. In the present embodiment, the detector visual field radius T is 10 mm, the sample radius R is 100 mm, and θ1 is 64 ° and 2θ1 is 128 °.

上記の例では、試料Sの半径Rを入力し、演算記憶手段17によって演算して上下限角度±θ1および2θ1を求めたが、結晶構造を有する試料Sであるシリコンウエーハ、液晶ガラス、ハードディスク、磁気ディスクなどは、半導体業界において、その直径は、50mm(2インチ)、76mm(3インチ)、100mm、125mm、150mm、200mm、300mmなどに規格化されているので、演算記憶手段17に試料直径に対応した上下限角度±θ1および2θ1を記憶させ、測定時にそれを読み出してもよい。   In the above example, the radius R of the sample S is input and calculated by the calculation storage means 17 to obtain the upper and lower limit angles ± θ1 and 2θ1, but a silicon wafer, a liquid crystal glass, a hard disk, which is the sample S having a crystal structure, In the semiconductor industry, the diameter of a magnetic disk or the like is standardized to 50 mm (2 inches), 76 mm (3 inches), 100 mm, 125 mm, 150 mm, 200 mm, 300 mm, and the like. It is also possible to store the upper and lower limit angles ± θ1 and 2θ1 corresponding to and read them at the time of measurement.

次に、測定者が、表示手段16に表示された図3の回折パターンの中から回折X線の強度が低く、近接する角度位置において急激な強度増加を示さない、回折X線を回避する回避角度を選択手段18によって選択する。このとき、選択された回避角度の隣り合う角度位置の角度幅が、演算記憶手段17によって演算された角度範囲2θ1未満の角度、本実施形態では128°未満になるように、例えば、25°、95°、180°、260°、345°を選択する。選択手段18によって選択した回避角度を登録する。登録されると、制御手段15がその回避角度を測定条件として記憶し、表示手段16に表示された回折パターン上に回避角度25°、95°、180°、260°、345°のそれぞれの位置に縦線の回避角度マークが表示される。   Next, the measurer avoids the diffracted X-rays in which the intensity of the diffracted X-rays is low in the diffraction pattern shown in FIG. 3 displayed on the display means 16 and does not show a sharp intensity increase at the adjacent angular position. The angle is selected by the selection means 18. At this time, for example, 25 °, so that the angle width of the adjacent angular position of the selected avoidance angle is less than the angle range 2θ1 calculated by the calculation storage means 17, in this embodiment, less than 128 °. Select 95 °, 180 °, 260 °, 345 °. The avoidance angle selected by the selection means 18 is registered. When registered, the control means 15 stores the avoidance angle as a measurement condition, and each position of the avoidance angles 25 °, 95 °, 180 °, 260 °, and 345 ° on the diffraction pattern displayed on the display means 16. A vertical line avoidance angle mark is displayed on the screen.

このように、選択された回避角度マークが回折パターン上に表示されるので、選択した回避角度の隣り合う角度位置の角度幅が128°未満の回避角度になっているか、否かを容易に視認することができる。さらに、角度幅が128°を超えている場合には、登録することができない。このように、角度幅を128°未満の回避角度に確実に設定できるようになっている。   In this way, since the selected avoidance angle mark is displayed on the diffraction pattern, it is easily visible whether the angle width of the adjacent angular position of the selected avoidance angle is an avoidance angle of less than 128 °. can do. Furthermore, when the angle width exceeds 128 °, it cannot be registered. Thus, the angle width can be reliably set to an avoidance angle of less than 128 °.

次に、測定を開始すると、制御手段15が記憶した回避角度の中から測定点のθ座標に最も近い回避角度ω1を読み出して、回転手段11によって回避角度ω1に試料Sを設定する。回転手段11によって試料Sが回避角度ω1に設定されると、測定点は検出器7の視野Vから時計方向に角度ω1−θずれるので、制御手段15が平行移動手段12を制御して、設定された回避角度ω1を維持した状態で試料Sを移動させて測定点を検出器7の視野Vの中心Pに合致させる。 Next, when the measurement is started, the avoidance angle ω1 closest to the θ coordinate of the measurement point is read from the avoidance angles stored by the control means 15, and the sample S is set to the avoidance angle ω1 by the rotation means 11. When the sample S by the rotation means 11 is set to avoid the angle .omega.1, since the measurement points in the visual field V or et when total direction of the detector 7 angle .omega.1 - [theta] shifted, the control unit 15 controls the translation means 12 The sample S is moved in a state where the set avoidance angle ω1 is maintained, and the measurement point is made to coincide with the center P of the visual field V of the detector 7.

例えば、測定点F(100、−30)の測定を開始すると、制御手段15が記憶している回避角度の中から測定点Fのθ座標の角度位置に最も近い回避角度−15°(345°)を読み出して、回転手段11によって回避角度−15°に試料Sを設定する。回転手段11によって試料Sが−15°に回転されると、測定点Fは検出器7の視野Vから時計方向に15°ずれるので、図9に示すように、制御手段15が平行移動手段12を制御して、設定された回避角度−15°を維持した状態で試料Sを移動させて測定点Fを検出器7の視野Vの中心Pに合致させる。 For example, when measurement of the measurement point F (100, −30) is started, the avoidance angle −15 ° (345 °) closest to the angle position of the θ coordinate of the measurement point F from the avoidance angles stored in the control unit 15. ) And the sample S is set by the rotating means 11 at an avoidance angle of −15 °. When the sample S is rotated to -15 ° by the rotating means 11, the measuring point F is shifted 15 ° in view V or et when total direction of the detector 7, as shown in FIG. 9, the control unit 15 is parallel movement The means 12 is controlled to move the sample S while maintaining the set avoidance angle of −15 ° so that the measurement point F coincides with the center P of the field of view V of the detector 7.

これにより、試料Sは回折X線を回避した回避角度−15°(345°)に設定され、試料Sの測定点FにX線源1から1次X線2が照射されて、試料Sから発生する2次X線4を検出器7により検出して分析する。その他の測定点についても座標に応じて、制御手段15が回転手段11を制御して試料Sからの回折X線を回避する回避角度25°、95°、180°、260°、345°に設定し、平行移動手段12を制御して試料Sの測定点を1次X線の照射位置に設定して分析する。試料Sの縁近傍以外の測定点についても同様にして分析される。   Accordingly, the sample S is set to an avoidance angle of −15 ° (345 °) avoiding the diffracted X-ray, and the measurement point F of the sample S is irradiated with the primary X-ray 2 from the X-ray source 1, The generated secondary X-ray 4 is detected by a detector 7 and analyzed. For other measurement points, the control unit 15 controls the rotation unit 11 according to the coordinates to avoid diffracted X-rays from the sample S. The avoidance angles are set to 25 °, 95 °, 180 °, 260 °, and 345 °. Then, the parallel moving means 12 is controlled to set the measurement point of the sample S to the irradiation position of the primary X-ray and analyze it. The measurement points other than the vicinity of the edge of the sample S are similarly analyzed.

直径200mmの試料Sについて説明したが、その他の直径の試料Sについても、同様に分析される。   Although the sample S having a diameter of 200 mm has been described, the samples S having other diameters are similarly analyzed.

このように、第1の実施形態のX線分析装置および第2の実施形態の方法によれば、結晶構造を有する試料Sの直径Rに応じて試料Sの縁近傍ならびに試料S近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料Sから発生する回折X線を回避することによって、簡単に精度のよい分析をすることができる。   As described above, according to the X-ray analysis apparatus of the first embodiment and the method of the second embodiment, the apparatus structure near the edge of the sample S and the vicinity of the sample S according to the diameter R of the sample S having a crystal structure. By avoiding suppressing scattered rays and impure rays generated from an object, and avoiding diffracted X-rays generated from the sample S, it is possible to easily perform a highly accurate analysis.

次に、本発明の第3実施形態のX線分析装置について説明する。図10に示すように、この装置は第1実施形態のX線分析装置の制御手段15と選択手段18とを備えず、それに換わって制御選択手段20を備え、その他の構成は同じであるので、異なる構成のみについて説明する。   Next, an X-ray analyzer according to a third embodiment of the present invention will be described. As shown in FIG. 10, this apparatus does not include the control means 15 and the selection means 18 of the X-ray analysis apparatus of the first embodiment, but includes a control selection means 20 instead, and the other configurations are the same. Only different configurations will be described.

制御選択手段20は、試料Sを試料Sの所定点周りに回転手段11によって360°回転させながらX線源1から1次X線2を照射させ、試料Sから発生して検出器7に入射する2次X線4の強度を試料Sの回転角度と対応させた回折パターンを表示手段16に表示させ、その回折パターンを記憶する。記憶した回折パターン(図3)を所定のX線強度閾値で走査して、この閾値以下のX線強度が所定の角度範囲、例えば、3°〜5°にわたって存在していると、この所定の角度範囲の中心角度位置を回避角度として記憶する。この中心角度位置は、例えば、25°、95°、180°、260°、345°などである。   The control selection means 20 emits the primary X-ray 2 from the X-ray source 1 while rotating the sample S around the predetermined point of the sample S by 360 ° by the rotation means 11, and is generated from the sample S and incident on the detector 7. A diffraction pattern in which the intensity of the secondary X-ray 4 is made to correspond to the rotation angle of the sample S is displayed on the display means 16 and the diffraction pattern is stored. The stored diffraction pattern (FIG. 3) is scanned with a predetermined X-ray intensity threshold, and if an X-ray intensity below this threshold exists over a predetermined angular range, for example, 3 ° to 5 °, this predetermined The center angle position of the angle range is stored as an avoidance angle. The central angle position is, for example, 25 °, 95 °, 180 °, 260 °, 345 °, or the like.

制御選択手段20は、演算記憶手段17によって演算および/または記憶されたθ座標の上下限値、ならびに表示手段16に表示された回折パターンに基づいて、隣り合う間隔がθ座標の上下限値範囲内の角度であって、前記回折パターンにおいて所定の閾値以下のX線強度であって回折X線を回避できる回避角度ω1を選択して記憶し、試料Sの測定点の座標に応じて、前記記憶した回避角度ω1の中から測定点の座標に最も近い回避角度ω1を読み出して、その回避角度ω1に試料Sを設定するように回転手段11を制御する。回転手段11によって試料Sが回避角度ω1に設定されると、測定点は検出器7の視野Vから時計方向に角度ω1−θずれるので、制御選択手段20が平行移動手段12を制御して、設定された回避角度ω1を維持した状態で測定点を検出器7の視野Vの中心Pに移動させる。 Based on the upper and lower limit values of the θ coordinate calculated and / or stored by the calculation storage unit 17 and the diffraction pattern displayed on the display unit 16, the control selection unit 20 sets the adjacent interval between the upper and lower limit value ranges of the θ coordinate. And an avoidance angle ω1 that is an X-ray intensity equal to or less than a predetermined threshold in the diffraction pattern and that can avoid the diffraction X-ray is selected and stored, and according to the coordinates of the measurement point of the sample S, The avoidance angle ω1 closest to the coordinates of the measurement point is read from the stored avoidance angle ω1, and the rotating means 11 is controlled so as to set the sample S at the avoidance angle ω1. When the sample S by the rotation means 11 is set to avoid the angle .omega.1, since the measurement points deviate field V or et at total direction angle .omega.1 - [theta] of the detector 7, the control selection means 20 controls the translation means 12 The measurement point is moved to the center P of the visual field V of the detector 7 while maintaining the set avoidance angle ω1.

次に、第3実施形態のX線分析装置の動作とともに、第4実施形態のX線分析方法について説明する。第3実施形態の装置は、第1実施形態の装置の制御手段15と選択手段18とを備えず、それに換わって制御選択手段20を備え、その他の構成は同じであるので、異なる動作のみについて説明する。   Next, the X-ray analysis method of the fourth embodiment will be described together with the operation of the X-ray analysis apparatus of the third embodiment. The apparatus according to the third embodiment does not include the control means 15 and the selection means 18 of the apparatus according to the first embodiment, but includes a control selection means 20 instead. The other configurations are the same, and therefore only different operations are performed. explain.

第1実施形態の装置では、測定者が表示手段16に表示された回折パターンの中から回折X線の強度が低く、近接する角度位置において急激な強度増加を示さない、回折X線を回避する回避角度を選択手段18によって選択したが、第3実施形態の装置では、制御選択手段20が回避角度を自動選択して記憶し、記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、平行移動手段12と回転手段11とを制御して、その回避角度に試料Sを自動設定するとともに、設定された回避角度を維持した状態で測定点を検出器7の視野Vの中心Pに移動させて分析する。   In the apparatus of the first embodiment, the measurer avoids the diffracted X-rays in which the intensity of the diffracted X-rays is low from the diffraction patterns displayed on the display means 16 and does not show a sharp increase in intensity at the adjacent angular positions. Although the avoidance angle is selected by the selection means 18, in the apparatus of the third embodiment, the control selection means 20 automatically selects and stores the avoidance angle, and the avoidance angle closest to the coordinates of the measurement point among the stored avoidance angles. And the parallel movement means 12 and the rotation means 11 are controlled to automatically set the sample S at the avoidance angle, and the measurement point is set in the field of view V of the detector 7 while the set avoidance angle is maintained. Move to center P and analyze.

第3の実施形態のX線分析装置および第4実施形態の方法によれば、自動的に、結晶構造を有する試料Sの直径に応じて試料Sの縁近傍ならびに試料S近傍の装置構造物から発生する散乱線および不純線を抑制回避するとともに、試料Sから発生する回折X線を回避することによって、より簡単に精度のよい分析をすることができる。   According to the X-ray analysis apparatus of the third embodiment and the method of the fourth embodiment, automatically from the vicinity of the edge of the sample S and the apparatus structure near the sample S according to the diameter of the sample S having a crystal structure. By avoiding suppressing scattered rays and impure rays that are generated, and avoiding diffracted X-rays generated from the sample S, it is possible to perform analysis more easily and accurately.

本実施形態のX線分析装置では、全反射蛍光X線分析装置について説明したが、全反射型でないエネルギー分散型蛍光X線分析装置、波長分散型蛍光X線分析装置などであってもよい。本発明は、結晶構造を有する試料Sから発生する散乱線および不純線を抑制回避し、回折X線を回避する必要のあるX線分析装置であればよく、例えば、蛍光X線分析装置、X線反射率測定装置、X線回折装置などが組み合わされた複合型のX線分析装置であってもよい。   In the X-ray analysis apparatus of the present embodiment, the total reflection X-ray fluorescence analysis apparatus has been described. However, an energy dispersion type X-ray fluorescence analysis apparatus, a wavelength dispersion type X-ray fluorescence analysis apparatus, or the like that is not a total reflection type may be used. The present invention may be any X-ray analyzer that needs to avoid scattering and impurity lines generated from the sample S having a crystal structure and avoid diffracted X-rays. For example, a fluorescent X-ray analyzer, X It may be a composite X-ray analyzer in which a line reflectivity measuring device, an X-ray diffractometer or the like is combined.

1 X線源
2 1次X線
4 2次X線
7 検出器
8 試料台
11 回転手段
12 平行移動手段
15 制御手段
16 表示手段
17 演算記憶手段
18 選択手段
20 制御選択手段
S 試料
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 4 Secondary X-ray 7 Detector 8 Sample stand 11 Rotating means 12 Parallel moving means 15 Control means 16 Display means 17 Calculation storage means 18 Selection means 20 Control selection means S Sample

Claims (3)

結晶構造を有する円板状の試料が載置される試料台と、
試料に1次X線を照射するX線源と、
試料から発生する2次X線を検出する検出器と、
試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、
試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、
を備え、
試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定するX線分析装置であって、
試料を試料の所定点周りに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを表示手段に表示させ、その回折パターンを記憶する制御手段と、
試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算および/または記憶する演算記憶手段と、
sinθ1=(R−T)/R (1)
測定者が前記演算記憶手段によって演算および/または記憶された前記角度範囲2θ1、ならびに前記表示手段に表示された回折パターンに基づいて、回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択するための選択手段と、
を備え、
前記制御手段が、測定者によって前記選択手段を用いて選択された回避角度を記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段を制御して前記読み出した回避角度に試料を設定し、前記平行移動手段を制御して試料の測定点を1次X線の照射位置に設定するX線分析装置。
A sample stage on which a disk-shaped sample having a crystal structure is placed;
An X-ray source for irradiating the sample with primary X-rays;
A detector for detecting secondary X-rays generated from the sample;
Translation means for translating the sample stage so as to irradiate the primary X-rays at an arbitrary position on the sample measurement surface;
A rotating means for rotating the sample stage around an axis perpendicular to the sample measurement surface;
With
An X-ray analyzer that measures an arbitrary measurement site in the vicinity of the edge of a sample by being positioned so that primary X-rays are irradiated from the region above the sample and reflected outside the region,
The sample is irradiated with primary X-rays from the X-ray source while rotating the sample around a predetermined point of the sample by 360 ° by the rotating means, and the intensity of the secondary X-rays generated from the sample and incident on the detector is measured. Control means for displaying the diffraction pattern corresponding to the rotation angle on the display means, and storing the diffraction pattern;
Calculation storage means for calculating and / or storing the angular range 2θ1 obtained from the following formula (1) based on the radius R of the sample and the radius T of the field of view of the detector on the measurement surface of the sample for each diameter of the sample. When,
sin θ1 = (R−T) / R (1)
Based on the angle range 2θ1 calculated and / or stored by the calculation storage means by the measurer and the diffraction pattern displayed on the display means , there are a plurality of avoidance angles that can avoid the diffracted X-rays. selection means for spacing adjacent to each other to select the avoidance angle is within the angular range 2.theta.1,
With
The control means stores the avoidance angle selected by the measurer using the selection means, and according to the measurement point coordinates of the sample, the avoidance angle closest to the measurement point coordinates among the stored avoidance angles X-ray analysis apparatus that reads the signal, sets the sample to the read avoidance angle by controlling the rotating means, and sets the measurement point of the sample to the irradiation position of the primary X-ray by controlling the parallel moving means.
結晶構造を有する円板状の試料が載置される試料台と、
試料に1次X線を照射するX線源と、
試料から発生する2次X線を検出する検出器と、
試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、
試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、
を備え、
試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定するX線分析装置であって、
試料を試料の所定点周りに前記回転手段によって360°回転させながら前記X線源から1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを表示手段に表示させ、その回折パターンを記憶する制御選択手段と、
試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算および/または記憶する演算記憶手段と、
を備え、
sinθ1=(R−T)/R (1)
前記制御選択手段が、前記演算記憶手段によって演算および/または記憶された前記角度範囲2θ1、ならびに前記表示手段に表示された回折パターンに基づいて、前記回折パターンにおいて所定の閾値以下のX線強度で回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択して記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段を制御して前記読み出した回避角度に試料を設定し、前記平行移動手段を制御して試料の測定点を1次X線の照射位置に設定するX線分析装置。
A sample stage on which a disk-shaped sample having a crystal structure is placed;
An X-ray source for irradiating the sample with primary X-rays;
A detector for detecting secondary X-rays generated from the sample;
Translation means for translating the sample stage so as to irradiate the primary X-rays at an arbitrary position on the sample measurement surface;
A rotating means for rotating the sample stage around an axis perpendicular to the sample measurement surface;
With
An X-ray analyzer that measures an arbitrary measurement site in the vicinity of the edge of a sample by being positioned so that primary X-rays are irradiated from the region above the sample and reflected outside the region,
The sample is irradiated with primary X-rays from the X-ray source while rotating the sample around a predetermined point of the sample by 360 ° by the rotating means, and the intensity of the secondary X-rays generated from the sample and incident on the detector is measured. A control selection means for displaying the diffraction pattern corresponding to the rotation angle on the display means, and storing the diffraction pattern;
Calculation storage means for calculating and / or storing the angular range 2θ1 obtained from the following formula (1) based on the radius R of the sample and the radius T of the field of view of the detector on the measurement surface of the sample for each diameter of the sample. When,
With
sin θ1 = (R−T) / R (1)
Based on the angle range 2θ1 calculated and / or stored by the calculation storage means and the diffraction pattern displayed on the display means, the control selection means has an X-ray intensity below a predetermined threshold in the diffraction pattern. A plurality of avoidance angles that can avoid the diffracted X-rays, and an avoidance angle in which an interval between adjacent avoidance angles is within the angle range 2θ1 is selected and stored, and the storage is performed according to the coordinates of the measurement point of the sample. The avoidance angle closest to the coordinates of the measurement point is read out from the avoidance angles, the sample is set to the read avoidance angle by controlling the rotating means, and the measurement point of the sample is controlled by controlling the parallel moving means. X-ray analyzer set at the primary X-ray irradiation position.
結晶構造を有する円板状の試料が載置される試料台と、
試料に1次X線を照射するX線源と、
試料から発生する2次X線を検出する検出器と、
試料測定面の任意の位置に1次X線を照射させるように前記試料台を平行移動させる平行移動手段と、
試料測定面に垂直な軸を中心に前記試料台を回転させる回転手段と、
を備え、
試料の縁近傍にある任意の測定部位について、試料の上方の領域から1次X線が照射されて前記領域外へ反射するように位置させて測定するX線分析装置を用いるX線分析方法であって、
前記試料台に載置された試料を前記回転手段によって試料の所定点周りに360°回転させながら1次X線を照射させ、試料から発生して前記検出器に入射する2次X線の強度を試料の回転角度と対応させた回折パターンを取得し、
試料の半径Rおよび試料の測定面上における前記検出器の視野の半径Tに基づいて次式(1)から求められる角度範囲2θ1を、試料の直径ごとに、演算して記憶し、
sinθ1=(R−T)/R (1)
演算記憶された前記角度範囲2θ1、および前記表示手段に表示された回折パターンに基づいて、回折X線を回避できる複数の回避角度であって、回避角度同士の隣り合う間隔が前記角度範囲2θ1内である回避角度を選択して記憶し、試料の測定点の座標に応じて、前記記憶した回避角度の中から測定点の座標に最も近い回避角度を読み出して、前記回転手段によって前記読み出した回避角度に試料を設定し、前記平行移動手段によって試料の測定点を1次X線の照射位置に設定して分析するX線分析方法。
A sample stage on which a disk-shaped sample having a crystal structure is placed;
An X-ray source for irradiating the sample with primary X-rays;
A detector for detecting secondary X-rays generated from the sample;
Translation means for translating the sample stage so as to irradiate the primary X-rays at an arbitrary position on the sample measurement surface;
A rotating means for rotating the sample stage around an axis perpendicular to the sample measurement surface;
With
An X-ray analysis method using an X-ray analysis apparatus that measures an arbitrary measurement site in the vicinity of the edge of a sample by positioning it so that primary X-rays are irradiated from the region above the sample and reflected outside the region. There,
The intensity of the secondary X-ray generated from the sample and incident on the detector is irradiated with primary X-rays while the sample placed on the sample stage is rotated 360 ° around a predetermined point of the sample by the rotating means. To obtain a diffraction pattern corresponding to the rotation angle of the sample,
An angle range 2θ1 obtained from the following equation (1) based on the radius R of the sample and the radius T of the field of view of the detector on the measurement surface of the sample is calculated and stored for each sample diameter,
sin θ1 = (R−T) / R (1)
Based on the calculated and stored angle range 2θ1 and the diffraction pattern displayed on the display means, a plurality of avoidance angles that can avoid diffracted X-rays, and the adjacent intervals between the avoidance angles are within the angle range 2θ1. storing the avoidance angle is selected and, depending on the coordinates of the measuring points of the sample, read the closest avoidance angle coordinates of the measuring point from the avoidance angle to said storage, and read out the by said rotating means An X-ray analysis method in which a sample is set at an avoidance angle, and a measurement point of the sample is set as a primary X-ray irradiation position by the parallel moving means.
JP2010193677A 2010-08-31 2010-08-31 X-ray analysis apparatus and method Active JP4884553B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010193677A JP4884553B1 (en) 2010-08-31 2010-08-31 X-ray analysis apparatus and method
PCT/JP2011/061303 WO2012029358A1 (en) 2010-08-31 2011-05-17 X-ray analysis device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193677A JP4884553B1 (en) 2010-08-31 2010-08-31 X-ray analysis apparatus and method

Publications (2)

Publication Number Publication Date
JP4884553B1 true JP4884553B1 (en) 2012-02-29
JP2012052840A JP2012052840A (en) 2012-03-15

Family

ID=45772471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193677A Active JP4884553B1 (en) 2010-08-31 2010-08-31 X-ray analysis apparatus and method

Country Status (2)

Country Link
JP (1) JP4884553B1 (en)
WO (1) WO2012029358A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733185B2 (en) 2018-07-04 2023-08-22 Rigaku Corporation Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828795B2 (en) 2012-04-04 2015-12-09 信越化学工業株式会社 Method for evaluating degree of crystal orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, and method for producing single crystal silicon
JP2014001096A (en) 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Polycrystalline silicon crystal orientation degree evaluation method, polycrystalline silicon rod selection method, polycrystalline silicon rod, polycrystalline silicon ingot, and polycrystalline silicon fabrication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535675B2 (en) * 1990-06-28 1996-09-18 株式会社東芝 Total reflection X-ray fluorescence analyzer
JP2613513B2 (en) * 1991-11-05 1997-05-28 理学電機工業株式会社 X-ray fluorescence analysis method
JP2978450B2 (en) * 1997-04-08 1999-11-15 理学電機工業株式会社 X-ray fluorescence analysis method and apparatus
JP5027694B2 (en) * 2008-03-06 2012-09-19 株式会社リガク Total reflection X-ray fluorescence analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733185B2 (en) 2018-07-04 2023-08-22 Rigaku Corporation Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror

Also Published As

Publication number Publication date
WO2012029358A1 (en) 2012-03-08
JP2012052840A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
KR101277379B1 (en) Fluorescent x-ray analysis device and method
JP6261178B2 (en) Charged particle beam device, sample processing method using charged particle beam device, and sample processing computer program using charged particle beam device
CN110398506A (en) X-ray detection optical device for small angle X ray scattering measurement
KR101594794B1 (en) X-ray diffraction apparatus and x-ray diffraction measurement method
JP2017223539A (en) X-ray diffraction device
JP6886731B2 (en) X-ray analysis auxiliary device and X-ray analyzer
JP7168985B2 (en) Microstructure analysis method, device and program
JP4884553B1 (en) X-ray analysis apparatus and method
JP2016099308A (en) Fluorescence x-ray analysis device and fluorescence x-ray analysis method
JP5713357B2 (en) X-ray stress measurement method and apparatus
JP5092052B1 (en) X-ray analysis apparatus and method
JP6000696B2 (en) X-ray stress measuring apparatus and X-ray stress measuring method
JP5959057B2 (en) X-ray analyzer
JP2013137298A (en) X-ray analyzer
TWI588446B (en) X-ray non-destructive inspection device
JPH09113627A (en) Radiation source intensity measuring equipment
JP2007255932A (en) Sample position adjusting method of x-ray device, and the x-ray device
JP2012026757A (en) Surface analyzer and sample holder used for the same
JP3659553B2 (en) X-ray equipment
JP4514785B2 (en) Total reflection X-ray fluorescence analyzer
JP6217400B2 (en) X-ray measuring instrument and slit plate thereof
JP3422751B2 (en) X-ray fluorescence analysis method and apparatus
JPH0235343A (en) X-ray diffraction apparatus for minute region and specimen setting method for the apparatus
JPH08102478A (en) Crystal defect detecting equipment
JP2009075018A (en) Fluorescent x-ray analysis apparatus, and fluorescent x-ray analysis method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250