JP2016211013A - Aluminum alloy material for structural member and manufacturing method therefor - Google Patents

Aluminum alloy material for structural member and manufacturing method therefor Download PDF

Info

Publication number
JP2016211013A
JP2016211013A JP2015092434A JP2015092434A JP2016211013A JP 2016211013 A JP2016211013 A JP 2016211013A JP 2015092434 A JP2015092434 A JP 2015092434A JP 2015092434 A JP2015092434 A JP 2015092434A JP 2016211013 A JP2016211013 A JP 2016211013A
Authority
JP
Japan
Prior art keywords
orientation
alloy material
factor
mpa
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015092434A
Other languages
Japanese (ja)
Other versions
JP6521722B2 (en
Inventor
中井 学
Manabu Nakai
学 中井
慶太 岡田
Keita Okada
慶太 岡田
雅是 堀
Masasada Hori
雅是 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015092434A priority Critical patent/JP6521722B2/en
Publication of JP2016211013A publication Critical patent/JP2016211013A/en
Application granted granted Critical
Publication of JP6521722B2 publication Critical patent/JP6521722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy material for structural member with higher strength and a manufacturing method therefor.SOLUTION: The aluminum alloy material for structural member is formed by A6061 alloy defined in JIS H 4000:2014 and having percentage of an aggregate structure in a P direction, a PP direction, an RG direction, a Goss direction and a Brass direction of {110}//ND orientation of 25% or more and area having 0.2% bearing force of 320 MPa or more of 70% or more of wall thickness.SELECTED DRAWING: None

Description

本発明は、構造部材用アルミニウム合金材及びその製造方法に関する。   The present invention relates to an aluminum alloy material for a structural member and a method for producing the same.

JIS H 4000:2014に規定されているA6061合金は、強度及び耐食性が良好であるため、船舶、車両、陸上構造物、光学機器などの構造部材に用いられている。前記した構造部材は、A6061合金で作製した所定の形状のアルミニウム合金材に対して鍛造や圧延、押出しなどの熱間加工を行い、不要な部分を削るなどして製造される。当該熱間加工については種々の条件があり、製造しようとする構造部材に応じて適宜設定されている。A6061合金で製造したアルミニウム合金材から構造部材を製造する際の熱間加工条件が、例えば、非特許文献1に記載されている。   Since A6061 alloy prescribed in JIS H 4000: 2014 has good strength and corrosion resistance, it is used for structural members such as ships, vehicles, land structures and optical equipment. The above-described structural member is manufactured by subjecting an aluminum alloy material having a predetermined shape made of A6061 alloy to hot working such as forging, rolling, and extruding, and cutting unnecessary portions. There are various conditions for the hot working, and they are set as appropriate according to the structural member to be manufactured. Non-Patent Document 1, for example, describes hot working conditions when a structural member is manufactured from an aluminum alloy material manufactured from an A6061 alloy.

非特許文献1の第22頁には、具体的には、材料の変形抵抗は、ひずみ量、ひずみ速度、温度及び合金材質によって変化する旨が記載されている。また、非特許文献1の第23頁の図1.12(A)に、A6061合金の変形抵抗に及ぼすひずみ、ひずみ速度、温度の影響について図示されている。さらに、非特許文献1の第25頁の表1.15には、A6061合金の推奨鍛造温度が435〜480℃であると記載されている。また、非特許文献1の第69頁の表4.4には、A6061合金の鍛造温度として、ハンマによる場合は430〜460℃、プレスによる場合は440〜470℃とすることが記載されている。これらに加えて、非特許文献1の第85頁には、アルミニウム合金を鍛造する場合は、潤滑を行う必要がある旨と、素材への潤滑剤のコーティングを行ったり、金型を表面処理することなどが記載されている。   Specifically, page 22 of Non-Patent Document 1 describes that the deformation resistance of a material changes depending on the amount of strain, strain rate, temperature, and alloy material. Further, FIG. 1.12 (A) on page 23 of Non-Patent Document 1 illustrates the effects of strain, strain rate, and temperature on the deformation resistance of the A6061 alloy. Further, Table 1.15 on page 25 of Non-Patent Document 1 describes that the recommended forging temperature of the A6061 alloy is 435 to 480 ° C. Further, Table 4.4 on page 69 of Non-Patent Document 1 describes that the forging temperature of the A6061 alloy is 430 to 460 ° C. when using a hammer, and 440 to 470 ° C. when using a press. . In addition to these, page 85 of Non-Patent Document 1 states that when forging an aluminum alloy, it is necessary to lubricate, and the material is coated with a lubricant, or the mold is surface-treated. It is described.

「鍛造技術講座アルミニウム鍛造」、日本国、財団法人鍛造技術研究所発行、昭和62年6月、第22頁、第23頁、第25頁、第69頁、第85頁"Forging Technology Course Aluminum Forging", Japan, Forging Technology Research Institute, June 1987, pages 22, 23, 25, 69, 85

非特許文献1に記載されている熱間加工条件でアルミニウム合金材を製造し、これを用いて構造部材を製造することはできるが、産業界からは、より高強度の構造部材用アルミニウム合金材の開発が切望されていた。   Although an aluminum alloy material can be manufactured under the hot working conditions described in Non-Patent Document 1 and a structural member can be manufactured using the aluminum alloy material, a higher-strength aluminum alloy material for a structural member is used from the industry. The development of was eagerly desired.

本発明はこのような状況に鑑みてなされたものであり、より高強度の構造部材用アルミニウム合金材及びその製造方法を提供することを課題とする。   This invention is made | formed in view of such a condition, and makes it a subject to provide the aluminum alloy material for structural members with higher intensity | strength, and its manufacturing method.

前記課題を解決した本発明に係る構造部材用アルミニウム合金材は、JIS H 4000:2014に規定されているA6061合金で形成されており、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上、且つ、0.2%耐力が320MPa以上の領域が肉厚の70%以上としている。   An aluminum alloy material for a structural member according to the present invention that has solved the above problems is formed of an A6061 alloy specified in JIS H 4000: 2014, and has a {110} // ND orientation P orientation, PP orientation, RG A region in which the texture of the orientation, Goss orientation, and Brass orientation occupies 25% or more and the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness.

本発明に係る構造部材用アルミニウム合金材は、A6061合金を用い、その集合組織を特定の態様とし、さらに、0.2%耐力が320MPa以上の領域を肉厚の70%以上としている。そのため、A6061合金を用いたものとしては従来成し得ない程高い強度を有する構造部材用アルミニウム合金材を具現することができる。   The aluminum alloy material for a structural member according to the present invention uses an A6061 alloy, the texture is a specific aspect, and the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness. Therefore, an aluminum alloy material for a structural member that has a strength that cannot be achieved by using an A6061 alloy can be realized.

本発明に係る構造部材用アルミニウム合金材の製造方法は、前記した本発明に係る構造部材用アルミニウム合金材を製造する製造方法であって、JIS H 4000:2014に規定されているA6061合金に対して、温度補償ひずみ速度Z因子が105-1以上1012-1以下、対数ひずみεが0.7以上3以下、摩擦係数μが0.01以上0.5以下であり、前記Z因子が109-1未満では、〔式1〕μ≦0.08(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967を満たし、前記Z因子が109-1以上では、〔式2〕μ≦−0.1(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967を満たす熱間加工条件で製造する。 The manufacturing method of the aluminum alloy material for structural members according to the present invention is a manufacturing method for manufacturing the above-described aluminum alloy material for structural members according to the present invention, which is based on the A6061 alloy defined in JIS H 4000: 2014. The temperature compensated strain rate Z factor is 10 5 s −1 or more and 10 12 s −1 or less, the logarithmic strain ε is 0.7 or more and 3 or less, and the friction coefficient μ is 0.01 or more and 0.5 or less. When the factor is less than 10 9 s −1 , [Equation 1] μ ≦ 0.08 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.1979ε + 0.0967 is satisfied, and the Z factor is 10 9. At s −1 or more, the film is produced under hot working conditions satisfying [Equation 2] μ ≦ −0.1 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.1979ε + 0.0967.

本発明に係る構造部材用アルミニウム合金材の製造方法は、A6061合金を用い、熱間加工条件を特定の条件とすることによって、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上、且つ、0.2%耐力が320MPa以上の領域が肉厚の70%以上である構造部材用アルミニウム合金材を製造することができる。   The method for producing an aluminum alloy material for a structural member according to the present invention uses an A6061 alloy and the hot working condition is a specific condition, whereby the P orientation of {110} // ND orientation, PP orientation, RG orientation, It is possible to manufacture an aluminum alloy material for a structural member in which the ratio of the texture in the Goss orientation and the Brass orientation is 25% or more and the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness.

本発明に係る構造部材用アルミニウム合金材は、A6061合金を用い、その集合組織を特定の態様とし、さらに、0.2%耐力が320MPa以上の領域を肉厚の70%以上としているため、より高強度なものとすることができる。   The aluminum alloy material for structural members according to the present invention uses A6061 alloy, the texture is a specific aspect, and the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness. High strength can be achieved.

本発明に係る構造部材用アルミニウム合金材の製造方法は、A6061合金を用い、熱間加工条件を特定の条件としているため、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上、且つ、0.2%耐力が320MPa以上の領域が肉厚の70%以上である構造部材用アルミニウム合金材を製造することができる。すなわち、より高強度な構造部材用アルミニウム合金材を製造することができる。   Since the manufacturing method of the aluminum alloy material for structural members according to the present invention uses A6061 alloy and the hot working condition is a specific condition, the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss It is possible to produce an aluminum alloy material for a structural member in which the proportion of the texture of the orientation and the Brass orientation is 25% or more and the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness. That is, a higher strength aluminum alloy material for structural members can be produced.

表1のNo.1〜17に係るAl合金材の対数ひずみと、摩擦係数と、Z因子を3軸に配した3軸グラフのイメージ図である。No. in Table 1 It is an image figure of the triaxial graph which distribute | arranged the logarithmic distortion of the Al alloy material which concerns on 1-17, a friction coefficient, and Z factor to 3 axis | shafts. 図1のうち、表1のNo.1〜17に係るAl合金材の対数ひずみと摩擦係数の関係に注目したグラフである。なお、図2の横軸が対数ひずみεであり、縦軸が摩擦係数μである。In FIG. It is the graph which paid its attention to the relationship between the logarithmic distortion of the Al alloy material which concerns on 1-17, and a friction coefficient. In FIG. 2, the horizontal axis is logarithmic strain ε, and the vertical axis is the friction coefficient μ. 図2のうち、対数ひずみεが0.5である場合のZ因子と摩擦係数に関するグラフである。図3における横軸はZ因子(s-1)であり、縦軸は摩擦係数μである。FIG. 3 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 0.5. The horizontal axis in FIG. 3 is the Z factor (s −1 ), and the vertical axis is the friction coefficient μ. 図2のうち、対数ひずみεが0.72である場合のZ因子と摩擦係数に関するグラフである。図4における横軸はZ因子(s-1)であり、縦軸は摩擦係数μである。FIG. 3 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 0.72. The horizontal axis in FIG. 4 is the Z factor (s −1 ), and the vertical axis is the friction coefficient μ. 図2のうち、対数ひずみεが1.24である場合のZ因子と摩擦係数に関するグラフである。図5における横軸はZ因子(s-1)であり、縦軸は摩擦係数μである。FIG. 3 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 1.24. The horizontal axis in FIG. 5 is the Z factor (s −1 ), and the vertical axis is the friction coefficient μ. 図2のうち、対数ひずみεが2.0である場合のZ因子と摩擦係数に関するグラフである。図6における横軸はZ因子(s-1)であり、縦軸は摩擦係数μである。FIG. 3 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 2.0. The horizontal axis in FIG. 6 is the Z factor (s −1 ), and the vertical axis is the friction coefficient μ.

以下、適宜図面を参照して本発明に係る構造部材用アルミニウム合金材及びその製造方法の実施形態について詳細に説明する。   Hereinafter, embodiments of an aluminum alloy material for a structural member and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings as appropriate.

(構造部材用アルミニウム合金材)
本発明に係る構造部材用アルミニウム合金材(以下、「Al合金材」という。)は、JIS H 4000:2014に規定されているA6061合金で形成されている。なお、構造部材としては、例えば、船舶、車両、陸上構造物、光学機器などが挙げられるがこれに限定されるものではない。Al合金材は、前記した構造部材(製品)を製造するために製造された半製品である。Al合金材を製品とするには、バリの除去や余分な肉厚の除去、ねじ穴などの形成を行う。このAl合金材は、例えば、熱間鍛造(鋳塊鍛造)、熱間圧延、熱間押出などの熱間加工によって所定の形状に製造される。
(Aluminum alloy material for structural members)
The aluminum alloy material for structural members according to the present invention (hereinafter referred to as “Al alloy material”) is formed of an A6061 alloy defined in JIS H 4000: 2014. In addition, as a structural member, a ship, a vehicle, a land structure, an optical apparatus etc. are mentioned, for example, It is not limited to this. The Al alloy material is a semi-finished product manufactured for manufacturing the above-described structural member (product). In order to use an Al alloy material as a product, burrs are removed, excess thickness is removed, and screw holes are formed. This Al alloy material is manufactured into a predetermined shape by hot working such as hot forging (ingot forging), hot rolling, and hot extrusion.

そして、本発明に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上という構成としている。つまり、熱間加工によって製造された製品の表面に垂直な方位と平行な方位における{110}面のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の割合が25%以上としている。   The Al alloy material according to the present invention is configured such that the proportion of the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is 25% or more. That is, the proportion of the texture of the P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation of the {110} plane in an orientation parallel to the orientation perpendicular to the surface of the product manufactured by hot working is 25% or more. Yes.

{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上であると、集合組織が適切であるため、0.2%耐力を320MPa以上とすることができる。その一方で、集合組織に占める前記割合が25%未満になると、集合組織が適切でないため、0.2%耐力が320MPa以上とならない。
{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合は、0.2%耐力をより向上させる観点から、44%以上とするのが好ましく、54%以上とするのがより好ましく、65%以上とするのがさらに好ましい。
{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合を25%以上とするには、後記する製造方法で述べる熱間加工条件でAl合金材を製造すればよい。
When the proportion of the texture of the {110} // ND orientation of the P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is 25% or more, the texture is appropriate. It can be set to 320 MPa or more. On the other hand, if the proportion of the texture is less than 25%, the texture is not appropriate, and the 0.2% proof stress is not 320 MPa or more.
The proportion of the texture of {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is preferably 44% or more from the viewpoint of further improving 0.2% yield strength. 54% or more, more preferably 65% or more.
In order to make the proportion of the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation 25% or more, an Al alloy is used under the hot working conditions described in the manufacturing method described later. What is necessary is just to manufacture a material.

また、本発明に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上という構成としている。なお、0.2%耐力が320MPa以上の領域が肉厚の70%以上あると、製品全体としての強度を高く維持することができる。他方、0.2%耐力が320MPa以上の領域が肉厚の70%未満になると、製品全体としての強度を高く維持することができない。
0.2%耐力が320MPa以上の領域は多いほど好ましく、例えば、肉厚の80%以上としてもよく、さらに90%以上としてもよく、100%であってもよい。
0.2%耐力が320MPa以上の領域を肉厚の70%以上とするためには、後記する製造方法で述べる熱間加工条件でAl合金材を製造すればよいが、必要に応じて0.2%耐力が320MPa未満である領域を機械的に除去してもよい。
Moreover, the Al alloy material according to the present invention is configured such that the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness. In addition, when the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness, the strength of the entire product can be maintained high. On the other hand, if the region where the 0.2% proof stress is 320 MPa or more is less than 70% of the wall thickness, the strength of the entire product cannot be maintained high.
The more the region where the 0.2% proof stress is 320 MPa or more is more preferable, for example, 80% or more of the wall thickness, 90% or more, or 100% may be used.
In order to make the region where the 0.2% proof stress is 320 MPa or more 70% or more of the wall thickness, an Al alloy material may be manufactured under the hot working conditions described in the manufacturing method described later. The region where the 2% proof stress is less than 320 MPa may be mechanically removed.

さらに、前記した領域の0.2%耐力は320MPa以上とするが、高いほど好ましく、例えば、330MPa以上、335MPa以上、340MPa以上、345MPa以上などとすることができる。また、前記した領域の0.2%耐力は355MPa以上とするのがより好ましい。このようにすると、より高強度なAl合金材を得ることができる。   Further, the 0.2% proof stress of the above-described region is set to 320 MPa or more, but it is preferably as high as possible. For example, it can be set to 330 MPa or more, 335 MPa or more, 340 MPa or more, 345 MPa or more. The 0.2% proof stress of the above-described region is more preferably 355 MPa or more. In this way, a higher strength Al alloy material can be obtained.

{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合は、走査電子顕微鏡−後方散乱電子回折(Scanning Electron Microscope - Electron Back Scatter Diffraction:SEM−EBSD)により求めることができる。   The ratio of the texture of {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is as follows. EBSD).

(Al合金材の製造方法)
本発明に係るAl合金材の製造方法は、前記した本発明に係るAl合金材を製造するものである。
本製造方法では、JIS H 4000:2014に規定されているA6061合金を用いる。そして、当該合金に対して、下記を満たす熱間加工条件でAl合金材を製造する。なお、熱間加工としては、前記したように、熱間鍛造(鋳塊鍛造)、熱間圧延、熱間押出などが挙げられる。本製造方法では、この熱間加工に先立って、鋳塊の製造及び均質化熱処理がこの順で行われる。そして、前記した熱間加工に続けて、溶体化処理、焼き入れ、人工時効処理及び高温時効処理などがこの順で行われる。なお、溶体化処理、焼き入れ、人工時効処理及び高温時効処理は任意に行う処理であり、行わなくてもよい。
(Al alloy material manufacturing method)
The method for producing an Al alloy material according to the present invention is to produce the Al alloy material according to the present invention described above.
In this production method, an A6061 alloy defined in JIS H 4000: 2014 is used. And with respect to the said alloy, Al alloy material is manufactured on the hot processing conditions which satisfy | fill the following. In addition, as above-mentioned as hot processing, hot forging (ingot forging), hot rolling, hot extrusion, etc. are mentioned. In this manufacturing method, prior to the hot working, ingot manufacturing and homogenization heat treatment are performed in this order. Then, following the hot working described above, solution treatment, quenching, artificial aging treatment, high temperature aging treatment, and the like are performed in this order. Note that the solution treatment, quenching, artificial aging treatment, and high temperature aging treatment are optional treatments and may not be performed.

鋳塊の製造、均質化熱処理、熱間鍛造、熱間圧延、熱間押出、溶体化処理、焼き入れ及び人工時効処理はいずれも一般的な設備及び条件で行うことができる。なお、特に限定されるものではないが、これらの処理の条件を例示すると以下のようになる。   Ingot production, homogenization heat treatment, hot forging, hot rolling, hot extrusion, solution treatment, quenching, and artificial aging treatment can all be performed with general equipment and conditions. Although not particularly limited, the conditions of these processes are exemplified as follows.

鋳塊の製造は、Al合金の溶湯を鋳造して鋳塊を作製する。鋳塊の製造では、所定の組成範囲内に溶解調整されたAl合金(JIS H 4000:2014に規定されているA6061合金)の溶湯を、連続鋳造法(例えば、ホットトップ鋳造法)や半連続鋳造法(DC鋳造法:Direct Chill casting process)などの通常の溶解鋳造法を適宜選択して鋳造する。   The ingot is produced by casting an Al alloy melt. In the production of an ingot, a molten Al alloy (A6061 alloy defined in JIS H 4000: 2014) adjusted to be dissolved within a predetermined composition range is used for a continuous casting method (for example, a hot top casting method) or a semi-continuous method. A normal melt casting method such as a casting method (DC casting method) is appropriately selected for casting.

均質化熱処理は、鋳造されたAl合金の鋳塊を熱処理し、鋳塊組織中の結晶粒内の偏析をなくして、ミクロ組織の均質化を図り、晶出物を微細化する。均質化熱処理は、例えば、前記鋳塊を470〜575℃で1〜24時間の熱処理を行うことを挙げることができる。この均質化熱処理後は、ファンなどによってビレット(鋳塊)を強制的に急冷して、冷却速度を速める方が好ましい。冷却速度の目安は、室温を含む300℃以下の温度まで、80℃/hr以上とすることが好ましい。   In the homogenization heat treatment, the ingot of the cast Al alloy is heat-treated to eliminate segregation in the crystal grains in the ingot structure, to homogenize the microstructure, and to refine the crystallized product. The homogenization heat treatment can include, for example, heat treatment of the ingot at 470 to 575 ° C. for 1 to 24 hours. After this homogenization heat treatment, it is preferable to forcibly quench the billet (ingot) with a fan or the like to increase the cooling rate. The standard of the cooling rate is preferably 80 ° C./hr or higher up to a temperature of 300 ° C. or lower including room temperature.

熱間鍛造の場合、均質化熱処理後の鋳塊を再加熱し、350〜575℃の範囲で所望の厚みと形状に熱間鍛造して、所望の肉厚の熱間鍛造材とし、その後に調質処理する。高強度(調質後の耐力)化には、鍛造温度の高温化によるファイバー組織化が有効であり、このためには鍛造温度は400℃以上が望ましい。なお、575℃を超える高温では、局部融解(バーニング)等が生じるおそれがある。   In the case of hot forging, the ingot after the homogenization heat treatment is reheated and hot forged to a desired thickness and shape in the range of 350 to 575 ° C. to obtain a hot forged material having a desired thickness. Temper processing. In order to increase the strength (strength after tempering), fiber organization by increasing the forging temperature is effective. For this purpose, the forging temperature is preferably 400 ° C. or higher. In addition, at high temperature exceeding 575 degreeC, there exists a possibility that local melting (burning) etc. may arise.

熱間押出の場合、均質化熱処理後の鋳塊を再加熱し、350〜575℃の範囲で所望の厚みと形状に熱間押出し、更に必要に応じて所望の形状・肉厚に冷間押出(抽芯加工)し、その後に調質処理する。高強度(調質後の耐力)化には、押出温度の高温化によるファイバー組織化が有効であり、このためには押出温度は400℃以上が望ましい。   In the case of hot extrusion, the ingot after the homogenization heat treatment is reheated, hot extruded to a desired thickness and shape in the range of 350 to 575 ° C, and further cold-extruded to a desired shape and thickness as necessary. (Drawing processing), and then tempering. In order to increase the strength (proof strength after tempering), fiber organization by increasing the extrusion temperature is effective. For this purpose, the extrusion temperature is preferably 400 ° C. or higher.

熱間圧延の場合、均質化熱処理後の鋳塊を、熱間圧延温度まで冷却するか、一旦室温まで冷却後に熱間圧延温度まで再加熱して、熱間圧延し、所望の板厚の熱間圧延板を得るか、更に必要に応じて冷間圧延して、所望の板厚の冷間圧延板とし、その後に調質処理する。熱間圧延温度は、350〜575℃の範囲で適宜選択する。   In the case of hot rolling, the ingot after the homogenization heat treatment is cooled to the hot rolling temperature, or once cooled to room temperature and then reheated to the hot rolling temperature, hot rolled, and heated to a desired thickness. A cold-rolled sheet is obtained or cold-rolled as necessary to obtain a cold-rolled sheet having a desired thickness, and then tempered. The hot rolling temperature is appropriately selected within the range of 350 to 575 ° C.

溶体化処理は、前記Al合金の成分組成との関係や、続く高温での人工時効硬化処理により強度向上に寄与する時効析出物を十分粒内に析出させる。溶体化処理は、好ましくは、510〜570℃で0.5〜20時間の所定時間保持する条件で行う。この溶体化処理後、直ちに1℃/秒以上(肉厚中心部位)の平均冷却速度(400℃から290℃)で焼入れ処理(急冷処理)を行う。焼き入れは、例えば、90℃以下の水中で行うことができる。この溶体化処理後の焼入れ処理の冷却速度が遅いと、粒内、粒界上にSiや、Mg−Si系金属間化合物などが析出し易くなり、製品の強度、耐食性を低下させる。溶体化処理及び焼入れ処理に使用する熱処理炉は、バッチ炉、連続炉、溶融塩浴炉のいずれを用いてもよい。また、溶体化処理後の焼入れ処理は、水浸漬、水噴射、ミスト噴射、空気噴射、空気中放冷のいずれを用いてもよい。   In the solution treatment, aging precipitates that contribute to strength improvement are sufficiently precipitated in the grains by the relationship with the component composition of the Al alloy and the subsequent artificial age hardening treatment at a high temperature. The solution treatment is preferably performed under the condition of holding at 510 to 570 ° C. for a predetermined time of 0.5 to 20 hours. Immediately after this solution treatment, quenching (rapid cooling) is performed at an average cooling rate (400 ° C. to 290 ° C.) of 1 ° C./second or more (thickness center portion). Quenching can be performed in water at 90 ° C. or lower, for example. When the cooling rate of the quenching treatment after the solution treatment is slow, Si, Mg—Si intermetallic compounds and the like are likely to precipitate on the grains and on the grain boundaries, and the strength and corrosion resistance of the product are lowered. Any of a batch furnace, a continuous furnace, and a molten salt bath furnace may be used as the heat treatment furnace used for the solution treatment and the quenching process. The quenching treatment after the solution treatment may be any of water immersion, water jetting, mist jetting, air jetting, and air cooling.

高温時効処理は、前記した溶体化処理及び焼入れ処理の後に、強度など機械的諸特性並びに耐食性を向上させるために行う処理である。高温時効処理は、溶体化処理及び焼入れ処理の後に、160〜240℃で1〜48時間熱処理を施すことによって行うことができる。高温時効処理の温度は、製造上、優れた特性を有した製品を得る観点から、170〜220℃が好ましい。高温時効処理の時間は、製造上、優れた特性を有した製品を得る観点から、1時間以上が好ましく、3時間以上がさらに好ましい。高温時効処理は、溶体化処理及び焼入れ処理後に直ちに行うことが好ましい。高温時効処理は、例えば、JIS H 0001:1998に記載の熱処理条件内にて行うものであり、調質記号でT6、T7の調質処理である。高温時効処理は、バッチ炉、連続炉、オイルバス、温湯浴槽等のいずれの装置を用いてもよい。   The high temperature aging treatment is a treatment performed for improving mechanical properties such as strength and corrosion resistance after the above-described solution treatment and quenching treatment. The high temperature aging treatment can be performed by performing a heat treatment at 160 to 240 ° C. for 1 to 48 hours after the solution treatment and the quenching treatment. The temperature of the high temperature aging treatment is preferably 170 to 220 ° C. from the viewpoint of obtaining a product having excellent characteristics in production. The time for the high temperature aging treatment is preferably 1 hour or longer, more preferably 3 hours or longer, from the viewpoint of obtaining a product having excellent characteristics in production. The high temperature aging treatment is preferably performed immediately after the solution treatment and the quenching treatment. The high temperature aging treatment is performed, for example, within the heat treatment conditions described in JIS H 0001: 1998, and is a tempering treatment of T6 and T7 with a tempering symbol. Any device such as a batch furnace, a continuous furnace, an oil bath, or a hot water bath may be used for the high temperature aging treatment.

温度補償ひずみ速度Z因子(Zener - Hollomon parameter)を105-1以上1012-1以下とし、対数ひずみεを0.7以上3以下とし、摩擦係数μを0.01以上0.5以下とする。なお、前記した温度補償ひずみ速度Z因子は、「Z因子」、「Zパラメータ」や「因子Z」などとも呼称されている。温度補償ひずみ速度Z因子は、下記式(1)によって表される(温度補償ひずみ速度Z因子は、式(1)において「Z」で示している。)。平均加工度の算出には、対数ひずみを適用することができる。熱間加工条件は、Z因子(温度補償ひずみ速度Z因子)を用いて整理することができる。Z因子は、式(1)で定義されているように、熱間加工の温度が低くなるにつれて、またひずみ速度が大きくなるにつれて高くなる。この場合の温度T(K)は素材温度であり、素材を熱間加工する前に、雰囲気炉中で一定時間保持することによって、または、誘導加熱装置で上昇加熱することによって制御することができる。初期ひずみ速度(s-1)は、鍛造の場合であれば、クロスヘッド速度を被加工物の初期高さ(mm)で除した値で示される。初期ひずみ速度は、クロスヘッド速度の調整により制御することができ、油圧プレス機、メカニカルプレス機、リンクモーションプレス機、サーボプレス機などの代表的なプレス機の中で、特にサーボプレス機は任意の速度を選定し易い。また、平均加工度の算出に適用した対数ひずみεは、被加工物の初期高さh0、加工後の高さh1より、自然対数を用いてln(h0/h1)で示すことができる。摩擦係数μは、金型の表面、Al合金材製造用の鋳塊の表面の性状、用いる潤滑剤によって制御することができる。 Temperature compensated strain rate Z factor (Zener-Hollomon parameter) is 10 5 s −1 or more and 10 12 s −1 or less, logarithmic strain ε is 0.7 or more and 3 or less, and friction coefficient μ is 0.01 or more and 0.5 or less. The following. The temperature-compensated strain rate Z factor is also referred to as “Z factor”, “Z parameter”, “factor Z”, or the like. The temperature compensated strain rate Z factor is expressed by the following equation (1) (the temperature compensated strain rate Z factor is indicated by “Z” in equation (1)). Logarithmic strain can be applied to calculate the average degree of processing. The hot working conditions can be organized using the Z factor (temperature compensated strain rate Z factor). The Z-factor increases as the hot working temperature decreases and the strain rate increases, as defined by equation (1). The temperature T (K) in this case is a material temperature, and can be controlled by holding the material in an atmospheric furnace for a certain period of time before hot working, or by heating up with an induction heating device. . In the case of forging, the initial strain rate (s −1 ) is represented by a value obtained by dividing the crosshead speed by the initial height (mm) of the workpiece. The initial strain rate can be controlled by adjusting the crosshead speed. Among typical press machines such as hydraulic press machines, mechanical press machines, link motion press machines, servo press machines, servo press machines are optional. It is easy to select the speed. In addition, the logarithmic strain ε applied to the calculation of the average degree of processing can be expressed as ln (h0 / h1) using a natural logarithm from the initial height h0 of the workpiece and the height h1 after processing. The friction coefficient μ can be controlled by the surface of the mold, the properties of the surface of the ingot for producing the Al alloy material, and the lubricant used.

Figure 2016211013
Figure 2016211013

Figure 2016211013
Figure 2016211013

なお、温度が623.15K未満になると、Z因子が高くなる傾向にある。つまり、Z因子が1012-1を超えてしまうおそれが高くなる。Z因子が1012-1を超えると、0.2%耐力が320MPa以上とならなかったり、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならなかったり、粗大な再結晶粒が発生したりするおそれがある。ここで、粗大とは500μm以上の粒径(最大長)を含むミクロ組織を示す。その一方で、温度が813.15Kを超えると、Z因子が105-1未満となるおそれが高くなるとともに、熱間加工時にバーニング(局所的な溶融)が生じるおそれがある。 In addition, when temperature becomes less than 623.15K, it exists in the tendency for Z factor to become high. That is, there is a high possibility that the Z factor will exceed 10 12 s −1 . When the Z factor exceeds 10 12 s −1 , the 0.2% proof stress does not become 320 MPa or more, or the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation There is a possibility that the ratio of the occupancy is not 25% or more, or coarse recrystallized grains are generated. Here, coarse refers to a microstructure including a particle size (maximum length) of 500 μm or more. On the other hand, when the temperature exceeds 813.15 K, the Z factor is likely to be less than 10 5 s −1, and burning (local melting) may occur during hot working.

そして、本発明においては、対数ひずみε及び摩擦係数μをそれぞれ前記した範囲としつつ、前記したZ因子が109-1未満である場合(換言すれば、105-1以上109-1未満である場合)は、下記〔式1〕を満たす熱間加工条件とし、前記したZ因子が109-1以上である場合(換言すれば、109-1以上1012-1以下である場合)は、下記〔式2〕を満たす熱間加工条件とする。

〔式1〕
μ≦0.08(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967

〔式2〕
μ≦−0.1(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967

ここで、〔式1〕及び〔式2〕のそれぞれの式において右辺にて算出された値を、本明細書における記載の便宜上、単に「解析値」ということがある。つまり、〔式1〕及び〔式2〕のそれぞれにおいて、「μ≦解析値」となる。
In the present invention, the logarithmic strain ε and the friction coefficient μ are within the above ranges, and the Z factor is less than 10 9 s −1 (in other words, 10 5 s −1 or more and 10 9 s or more). Is less than −1 ), it is a hot working condition that satisfies the following [Formula 1], and when the above-described Z factor is 10 9 s −1 or more (in other words, 10 9 s −1 or more and 10 12 s). -1 or less), the hot working conditions satisfy the following [Formula 2].

[Formula 1]
μ ≦ 0.08 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967

[Formula 2]
μ ≦ −0.1 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967

Here, the value calculated on the right side in each of [Expression 1] and [Expression 2] may be simply referred to as “analysis value” for convenience of description in this specification. That is, in each of [Expression 1] and [Expression 2], “μ ≦ analysis value”.

なお、〔式1〕及び〔式2〕中のZには、前記式(1)で求められた値が代入される。また、〔式1〕及び〔式2〕において、μ、εはそれぞれ前記したものと同義である。〔式1〕及び〔式2〕における各係数は、本発明者が実験・研究を行い、効果を奏するものと奏しないものを峻別することにより導き出したものである。Z因子、対数ひずみε及び摩擦係数μをそれぞれ前記した範囲とすることも同様にして導き出したものである。   It should be noted that the value obtained by the expression (1) is substituted for Z in [Expression 1] and [Expression 2]. In [Formula 1] and [Formula 2], μ and ε have the same meanings as described above. Each coefficient in [Formula 1] and [Formula 2] is derived by conducting an experiment / research by the present inventor and discriminating between those that are effective and those that are not. The Z factor, logarithmic strain ε, and friction coefficient μ are each derived in the same manner as described above.

前記した全ての条件を満たす熱間加工条件で熱間加工を行うと、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上、且つ、0.2%耐力が320MPa以上の領域が肉厚の70%以上であるAl合金材を製造することができるが、前記した熱間加工条件のうちの1つでも満たさない場合は、本発明に係るAl合金材を製造することができない。   When hot working is performed under the hot working conditions that satisfy all of the above conditions, the proportion of the texture of P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation of the {110} // ND orientation is 25%. As described above, an Al alloy material having a 0.2% proof stress of 320 MPa or more in an area of 70% or more of the wall thickness can be manufactured. However, when one of the hot working conditions described above is not satisfied, The Al alloy material according to the present invention cannot be manufactured.

例えば、温度補償ひずみ速度Z因子が105-1未満であると、熱間加工中に回復が進み過ぎ加工組織となり難く、高い強度を得ることができない可能性が高い。その一方で、温度補償ひずみ速度Z因子が1012-1を超えると、熱間加工中の蓄積される転位密度が高くなり過ぎ、熱間加工の終了直後、熱間加工の終了直後から冷却途中、溶体化処理温度への再加熱中、および溶体化処理温度での保持中のうちの少なくとも一つにおいて粒成長が生じる。また、転位密度の程度によっては再結晶が生じ、粗大な粒へと成長するため、高い強度を得ることができない。 For example, if the temperature-compensated strain rate Z factor is less than 10 5 s −1 , recovery is too advanced during hot working, and it is difficult to obtain a processed structure, and there is a high possibility that high strength cannot be obtained. On the other hand, when the temperature-compensated strain rate Z factor exceeds 10 12 s −1 , the accumulated dislocation density during hot working becomes too high, and cooling is started immediately after the end of hot working and immediately after the end of hot working. During the course, grain growth occurs during at least one of reheating to the solution treatment temperature and holding at the solution treatment temperature. Further, depending on the degree of dislocation density, recrystallization occurs and grows into coarse grains, so that high strength cannot be obtained.

対数ひずみεが0.7未満であると、蓄積される転位密度は小さく、加工組織となり難いため、高い強度を得ることが困難となる。その一方で、対数ひずみεが3(より詳しくは3.0)を超えると、転位密度が高くなり過ぎ、熱間加工中の蓄積される転位密度が高くなり過ぎるので、熱間加工の終了直後、終了直後から冷却途中、溶体化処理温度への再加熱中、溶体化処理温度での保持中のうちの少なくとも一つにおいて粒成長が生じる。また、転位密度の程度によっては再結晶が生じ、粗大な粒へと成長するため、高い強度を得ることができない。さらに、被加工物の表面に焼き付きが生じ易くなり、製品となり難い。また、金型へのダメージも大きく、金型の保守及び修正等が必要となる。   When the logarithmic strain ε is less than 0.7, the accumulated dislocation density is small and it is difficult to obtain a processed structure, so that it is difficult to obtain high strength. On the other hand, when the logarithmic strain ε exceeds 3 (more specifically, 3.0), the dislocation density becomes too high, and the accumulated dislocation density during hot working becomes too high. Grain growth occurs in at least one of immediately after completion, during cooling, during reheating to the solution treatment temperature, and during holding at the solution treatment temperature. Further, depending on the degree of dislocation density, recrystallization occurs and grows into coarse grains, so that high strength cannot be obtained. Further, seizure is likely to occur on the surface of the workpiece, making it difficult to produce a product. In addition, the damage to the mold is great, and the mold needs to be maintained and corrected.

摩擦係数μが0.5を超えると、被加工物の表面に焼き付きが生じ易くなり、製品となり難い。また、金型へのダメージも大きく、金型の保守及び修正等が必要となる。
Z因子が109-1未満の場合に〔式1〕が「μ≦解析値」とならないと、0.2%耐力が320MPa以上の領域が肉厚の70%以上となる製品を製造することができない。
Z因子が109-1以上の場合に〔式2〕が「μ≦解析値」とならないと、0.2%耐力が320MPa以上の領域が肉厚の70%以上となる製品を製造することができない。
When the friction coefficient μ exceeds 0.5, seizure is likely to occur on the surface of the workpiece, and it is difficult to obtain a product. In addition, the damage to the mold is great, and the mold needs to be maintained and corrected.
When [Formula 1] does not satisfy “μ ≦ analyzed value” when the Z factor is less than 10 9 s −1 , a product in which the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness is manufactured. I can't.
When [Formula 2] does not satisfy “μ ≦ analysis value” when the Z factor is 10 9 s −1 or more, a product in which the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness is manufactured. I can't.

次に、本発明の効果を確認した実施例とそうでない比較例とを参照して、本発明の内容について具体的に説明する。   Next, the content of the present invention will be described in detail with reference to examples in which the effects of the present invention have been confirmed and comparative examples that do not.

JIS H 4000:2014に規定されているA6061合金を用いて、鋳塊を鋳造後、均質化熱処理、熱間鍛造、溶体化処理、焼き入れ、人工時効処理を順に施し、No.1〜17に係るAl合金材を製造した。なお、A6061合金の具体的な化学組成は、Si:0.74質量%、Fe:0.22質量%、Cu:0.23質量%、Mn:0.004質量%、Mg:0.96質量%、Cr:0.12質量%、Zn:0.004質量%、Ti:0.02質量%、残部Al及び不可避的不純物である。   Using an A6061 alloy specified in JIS H 4000: 2014, after casting the ingot, homogenization heat treatment, hot forging, solution treatment, quenching, and artificial aging treatment are performed in order. Al alloy materials according to 1 to 17 were produced. The specific chemical composition of the A6061 alloy is as follows: Si: 0.74 mass%, Fe: 0.22 mass%, Cu: 0.23 mass%, Mn: 0.004 mass%, Mg: 0.96 mass% %, Cr: 0.12% by mass, Zn: 0.004% by mass, Ti: 0.02% by mass, the balance Al and inevitable impurities.

鋳塊の鋳造は、溶湯温度700〜720℃で行い、均質化熱処理は、500℃で4時間とした。そして、鋳塊の外表面を面削し、さらに切断して、高さ(肉厚)90mm、直径60mmの円柱形状の試料とした。
熱間鍛造は、表1に示す初期ひずみ速度(s-1)、温度(K)、Z因子(s-1)、平均加工度(対数ひずみ)、摩擦係数にて行った。なお、熱間鍛造は、軸圧縮により高さ90mmの試料を高さ26mmに加工した。
そして、溶体化処理は540℃で3時間とし、焼き入れは80℃以下の水中で行い、人工時効処理は180℃で8時間とした。
このようにして作製したNo.1〜17に係るAl合金材に対し、下記のようにして、引張試験および集合組織(ミクロ組織)の解析を行うとともに、肉厚に対する0.2%耐力が320MPa以上の領域の割合を求めた。
The ingot was cast at a molten metal temperature of 700 to 720 ° C., and the homogenization heat treatment was performed at 500 ° C. for 4 hours. Then, the outer surface of the ingot was chamfered and further cut to obtain a cylindrical sample having a height (wall thickness) of 90 mm and a diameter of 60 mm.
Hot forging was performed at the initial strain rate (s −1 ), temperature (K), Z factor (s −1 ), average degree of work (logarithmic strain), and friction coefficient shown in Table 1. In the hot forging, a sample having a height of 90 mm was processed to a height of 26 mm by axial compression.
The solution treatment was performed at 540 ° C. for 3 hours, the quenching was performed in water at 80 ° C. or less, and the artificial aging treatment was performed at 180 ° C. for 8 hours.
No. 1 produced in this way. The Al alloy materials according to Nos. 1 to 17 were subjected to a tensile test and a texture (microstructure) analysis as described below, and the ratio of the region where the 0.2% proof stress with respect to the wall thickness was 320 MPa or more was obtained. .

(引張試験)
JIS Z 2241:2011に準じて長手方向がLT(Long Transverse)方向となる試験片(Al合金材の中心軸から28mmの位置、且つt/2の試料深さ(なお、tは肉厚を表す。つまり、t/2は肉厚中心部を表す。))を作製し、引張試験を行った。
(Tensile test)
Specimen whose longitudinal direction is the LT (Long Transverse) direction according to JIS Z 2241: 2011 (28 mm from the central axis of the Al alloy material, and t / 2 sample depth (where t represents the thickness) That is, t / 2 represents the thickness center portion))) and a tensile test was performed.

(集合組織の解析)
また、SEM−EBSDにより集合組織の解析を行った。集合組織の解析は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合、および、粗大な再結晶粒の発生の有無について行った。なお、粗大な再結晶粒とは500μm以上の粒径(最大長)であるものをいう。
これらの解析は、Al合金材の中心から28mmの位置にてL−ST面に対し、試料表面を含む表層部、t/2、t/4、t/8、t/16の試料深さについて行った。
(Analysis of texture)
In addition, the texture was analyzed by SEM-EBSD. The analysis of the texture was performed with respect to the proportion of the texture of the {110} // ND orientation, P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation, and the presence of coarse recrystallized grains. The coarse recrystallized grains mean grains having a grain size (maximum length) of 500 μm or more.
These analyzes are performed on the surface layer portion including the sample surface, the sample depth of t / 2, t / 4, t / 8, and t / 16 with respect to the L-ST plane at a position 28 mm from the center of the Al alloy material. went.

(肉厚に対する0.2%耐力が320MPa以上の領域の割合)
Al合金材の中心軸から28mmの位置にて、t/2の試料深さを中心に所定の厚さをもって採取した試験片と、試料の深さ位置をt/2からずらし、所定の厚さをもって採取した複数の試験片と、を作製し、引張試験を行った。そして、Al合金材の高さ26mmに対する、0.2%耐力が320MPa以上であることが確認された部位の寸法の割合を算出することで、肉厚に対する0.2%耐力が320MPa以上の領域の割合を求めた。
(Ratio of 0.2% proof stress with respect to wall thickness of 320 MPa or more)
A specimen taken with a predetermined thickness centered on a sample depth of t / 2 at a position 28 mm from the center axis of the Al alloy material, and the depth position of the sample is shifted from t / 2 to a predetermined thickness A plurality of test pieces collected with the above were prepared and subjected to a tensile test. Then, by calculating the ratio of the dimension of the portion where the 0.2% proof stress is confirmed to be 320 MPa or more with respect to the height of 26 mm of the Al alloy material, the region where the 0.2% proof stress to the wall thickness is 320 MPa or more. The ratio was calculated.

{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合(表1において、「{110}//ND方位のP方位などの集合組織の占める割合」と示す)が25%以上、且つ、肉厚に対する0.2%耐力が320MPa以上の領域の割合が70%以上であるものを総合判定「○」とし、そうでないものを総合判定「×」とした。表1において本発明の効果を奏しない原因となるものに下線を付して表した。   Percentage of texture of {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, Brass orientation (in Table 1, “{110} // ND orientation is occupied by texture such as P orientation) The ratio of the area where the 0.2% proof stress with respect to the wall thickness is 320 MPa or more is 70% or more, and the overall judgment is “good”. " In Table 1, the cause which does not show the effect of this invention was underlined.

Figure 2016211013
Figure 2016211013

表1のNo.1〜9に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上であり、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上であった(総合判定○、実施例)。さらに、粗大な再結晶粒の発生も認められなかった。   No. in Table 1 In the Al alloy materials according to 1 to 9, the region where the 0.2% proof stress is 320 MPa or more is 70% or more of the thickness, and the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, The ratio of the texture of the Brass orientation was 25% or more (overall judgment ○, example). Furthermore, generation of coarse recrystallized grains was not observed.

これに対し、No.10〜17に係るAl合金材は、0.2%耐力が320MPa未満であったり、0.2%耐力が320MPa以上であったとしても、この領域が肉厚の70%未満であったりした(総合判定×、比較例)。また、ミクロ組織を観察したところ、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%未満のものもあった。さらに、粗大な再結晶粒が発生しているものもあった。   In contrast, no. The Al alloy material according to 10 to 17 had a 0.2% proof stress of less than 320 MPa, or even if the 0.2% proof stress was 320 MPa or more, this region was less than 70% of the wall thickness ( Comprehensive judgment x, comparative example). Further, when the microstructure was observed, the proportion of the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation was less than 25%. Furthermore, there were some in which coarse recrystallized grains were generated.

具体的に説明すると、No.10に係るAl合金材は、熱間鍛造時の条件において、対数ひずみεが0.7未満であり、且つ、〔式2〕が「μ≦解析値」とならなかった。そのため、No.10に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならず、0.2%耐力も320MPa以上とならなかった。また、No.10に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならなかった。   More specifically, no. In the Al alloy material according to No. 10, the logarithmic strain ε was less than 0.7 under the conditions for hot forging, and [Equation 2] did not satisfy “μ ≦ analyzed value”. Therefore, no. In the Al alloy material according to No. 10, the proportion of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is not 25% or more, and the 0.2% proof stress is It was not over 320 MPa. No. In the Al alloy material according to No. 10, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness.

No.11に係るAl合金材は、熱間鍛造時の条件において、〔式1〕が「μ≦解析値」とならなかった。そのため、No.11に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならなかった。   No. In the Al alloy material according to No. 11, [Formula 1] did not satisfy “μ ≦ analyzed value” under the conditions for hot forging. Therefore, no. In the Al alloy material according to No. 11, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness.

No.12に係るAl合金材は、熱間鍛造時の条件において、Z因子が1012-1を超えていた。そのため、No.12に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならず、0.2%耐力も320MPa以上とならなかった。また、No.12に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならず、粗大な再結晶粒が発生していた。 No. In the Al alloy material according to No. 12, the Z factor exceeded 10 12 s −1 under conditions during hot forging. Therefore, no. In the Al alloy material according to No. 12, the proportion of the texture of {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is not 25% or more, and 0.2% proof stress It was not over 320 MPa. No. In the Al alloy material according to No. 12, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness, and coarse recrystallized grains were generated.

No.13に係るAl合金材は、熱間鍛造時の条件において、Z因子が1012-1を超えており、且つ、〔式2〕が「μ≦解析値」とならなかった。そのため、No.13に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならず、0.2%耐力も320MPa以上とならなかった。また、No.13に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならず、粗大な再結晶粒が発生していた。 No. In the Al alloy material according to No. 13, the Z factor exceeded 10 12 s −1 under the conditions during hot forging, and [Equation 2] did not satisfy “μ ≦ analyzed value”. Therefore, no. In the Al alloy material according to No. 13, the proportion of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation is not more than 25%, and the 0.2% proof stress is It was not over 320 MPa. No. In the Al alloy material according to No. 13, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness, and coarse recrystallized grains were generated.

No.14に係るAl合金材は、熱間鍛造時の条件において、〔式2〕が「μ≦解析値」とならなかった。そのため、No.14に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならず、0.2%耐力も320MPa以上とならなかった。また、No.14に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならず、粗大な再結晶粒が発生していた。   No. In the Al alloy material according to No. 14, [Formula 2] did not satisfy “μ ≦ analyzed value” under the conditions during hot forging. Therefore, no. In the Al alloy material according to No. 14, the proportion of the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation does not exceed 25%, and the 0.2% proof stress is It was not over 320 MPa. No. In the Al alloy material according to 14, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness, and coarse recrystallized grains were generated.

No.15に係るAl合金材は、熱間鍛造時の条件において、摩擦係数μが0.5を超えていたので、熱間鍛造時に表面が焼き付いた。   No. In the Al alloy material according to No. 15, the friction coefficient μ exceeded 0.5 under the conditions during hot forging, so the surface was seized during hot forging.

No.16に係るAl合金材は、熱間鍛造時の条件において、〔式2〕が「μ≦解析値」とならなかった。そのため、No.16に係るAl合金材は、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とならず、0.2%耐力も320MPa以上とならなかった。また、No.16に係るAl合金材は、0.2%耐力が320MPa以上の領域が肉厚の70%以上とならず、粗大な再結晶粒が発生していた。   No. In the Al alloy material according to No. 16, [Formula 2] did not satisfy “μ ≦ analyzed value” under the conditions during hot forging. Therefore, no. In the Al alloy material according to No. 16, the proportion of the texture of the {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation does not exceed 25%, and the 0.2% proof stress is It was not over 320 MPa. No. In the Al alloy material according to No. 16, the region where the 0.2% proof stress was 320 MPa or more did not become 70% or more of the wall thickness, and coarse recrystallized grains were generated.

No.17に係るAl合金材は、熱間鍛造時の条件において、対数ひずみが3を超えたので、熱間鍛造時に表面が焼き付いた。   No. In the Al alloy material according to No. 17, the logarithmic strain exceeded 3 under the conditions at the time of hot forging, so the surface was seized at the time of hot forging.

以上に述べたNo.1〜17に係るAl合金材の熱間加工条件(熱間鍛造条件)の条件と、引張試験と、ミクロ組織との関係を総括すると、以下のようにまとめることができる。   No. described above. Summarizing the relationship between the conditions of hot working conditions (hot forging conditions) of Al alloy materials 1 to 17, the tensile test, and the microstructure can be summarized as follows.

No.1〜17に係るAl合金材の引張試験によって求めた0.2%耐力と、ミクロ組織の解析の結果、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が多いほど0.2%耐力が高いことが分かった。   No. As a result of analysis of 0.2% proof stress and microstructure of Al alloy materials according to Nos. 1 to 17, {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, Brass orientation It turned out that 0.2% yield strength is so high that the ratio which the texture of occupies increases.

また、No.1〜17に係るAl合金材の引張試験によって求めた0.2%耐力と、相当塑性ひずみの関係から、0.2%耐力を320MPa以上とするためには、{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上とすることが必要であることがわかった。   No. From the relationship between the 0.2% proof stress obtained by the tensile test of the Al alloy materials according to Nos. 1 to 17 and the equivalent plastic strain, in order to set the 0.2% proof stress to 320 MPa or more, {110} // ND orientation It was found that the proportion of the texture of the P orientation, PP orientation, RG orientation, Goss orientation, and Brass orientation must be 25% or more.

図1は、表1のNo.1〜17に係るAl合金材の対数ひずみと、摩擦係数と、Z因子を三軸に配した三軸グラフのイメージ図である。
そして、図2は、図1のうち、表1のNo.1〜17に係るAl合金材の対数ひずみと摩擦係数の関係に注目したグラフである。なお、図2の横軸が対数ひずみεであり、縦軸が摩擦係数μである。図2中の四角枠は、対数ひずみεが0.7以上3以下であり、摩擦係数μが0.01以上0.5以下であることを示している。図2中の「◇」は表1のNo.1〜9に係るAl合金材に関するプロットであり、「×」は表1のNo.10〜17に係るAl合金材に関するプロットである。
図2をみて分かるように、比較例であるNo.10、15、17に係るAl合金材は、図2中の四角枠の外側であったが、その他の比較例に係るAl合金材は当該四角枠の内側にあった。
FIG. It is an image figure of the triaxial graph which has arranged logarithmic distortion of the Al alloy material which concerns on 1-17, a friction coefficient, and Z factor to three axes.
2 is the same as FIG. It is the graph which paid its attention to the relationship between the logarithmic distortion of the Al alloy material which concerns on 1-17, and a friction coefficient. In FIG. 2, the horizontal axis is logarithmic strain ε, and the vertical axis is the friction coefficient μ. The square frame in FIG. 2 indicates that the logarithmic strain ε is 0.7 or more and 3 or less, and the friction coefficient μ is 0.01 or more and 0.5 or less. “◇” in FIG. 1 to 9 are plots relating to the Al alloy material. It is a plot regarding Al alloy material which concerns on 10-17.
As can be seen from FIG. The Al alloy materials according to 10, 15, and 17 were outside the square frame in FIG. 2, but the Al alloy materials according to other comparative examples were inside the square frame.

そこで、本発明者は、図2中の四角枠の内側にプロットされた実施例及び比較例に係るAl合金材について詳細に検討するため、対数ひずみεに応じたグラフを作成した。そのグラフを図3〜6に示す。なお、図3は、図2のうち、対数ひずみεが0.5である場合のZ因子と摩擦係数に関するグラフである。図4は、図2のうち、対数ひずみεが0.72である場合のZ因子と摩擦係数に関するグラフである。図5は、図2のうち、対数ひずみεが1.24である場合のZ因子と摩擦係数に関するグラフである。図6は、図2のうち、対数ひずみεが2.0である場合のZ因子と摩擦係数に関するグラフである。図3〜6における横軸はいずれもZ因子(s-1)であり、縦軸はいずれも摩擦係数μである。そして、図3〜6中の四角枠は、Z因子が105-1以上1012-1以下であり、摩擦係数μが0.01以上0.5以下であることを示している。図3〜6中の「◇」及び「×」のプロットは、前記したものと同義である。 Therefore, the present inventor created a graph corresponding to the logarithmic strain ε in order to examine in detail the Al alloy materials according to Examples and Comparative Examples plotted inside the square frame in FIG. The graphs are shown in FIGS. FIG. 3 is a graph relating to the Z factor and the friction coefficient when the logarithmic strain ε is 0.5 in FIG. FIG. 4 is a graph relating to the Z factor and the friction coefficient when the logarithmic strain ε is 0.72 in FIG. FIG. 5 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 1.24 in FIG. FIG. 6 is a graph regarding the Z factor and the friction coefficient when the logarithmic strain ε is 2.0 in FIG. The horizontal axis in FIGS. 3 to 6 is the Z factor (s −1 ), and the vertical axis is the friction coefficient μ. 3 to 6 indicate that the Z factor is 10 5 s −1 or more and 10 12 s −1 or less, and the friction coefficient μ is 0.01 or more and 0.5 or less. The plots of “◇” and “x” in FIGS. 3 to 6 are synonymous with those described above.

図5を見ると分かり易いが、四角枠の内側において「◇」と「×」が混在しているものの、これらの分布が、Z因子109-1を交点にして一定の境界線をもってこれらを峻別できることが分かった。また同時に、図3〜6におけるZ因子109-1を結んでいくと、図2に示すような二次曲線が得られることが分かった。当該二次曲線と摩擦係数μの関係から、次の不等式が導き出された。なお、μは摩擦係数であり、εは対数ひずみである。

μ≦0.3704ε2−0.1979ε+0.0967
Although it is easy to see from FIG. 5, “◇” and “×” are mixed inside the square frame, but these distributions have a certain boundary line with the Z factor 10 9 s -1 as an intersection. It was found that can be distinguished. At the same time, it was found that a quadratic curve as shown in FIG. 2 can be obtained by connecting the Z factor 10 9 s −1 in FIGS. From the relationship between the quadratic curve and the coefficient of friction μ, the following inequality was derived. Note that μ is a coefficient of friction and ε is a logarithmic strain.

μ ≦ 0.3704ε 2 −0.1979ε + 0.0967

そして、本発明者は、種々検討した結果、前記したようにして得られた知見から、Z因子109-1を境に下記〔式1〕及び〔式2〕とすれば、高強度のAl合金材を確実に製造できることを見出した。
つまり、熱間加工を行うにあたり、Z因子が109-1未満では、
〔式1〕
μ≦0.08(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967
を満たし、
Z因子が109-1以上では、
〔式2〕
μ≦−0.1(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967
を満たすようにすればよいことを見出した。
As a result of various studies, the present inventor has found that the following [formula 1] and [formula 2] with the Z factor 10 9 s -1 as a boundary from the knowledge obtained as described above. It has been found that an Al alloy material can be produced reliably.
In other words, when performing hot working, if the Z factor is less than 10 9 s −1 ,
[Formula 1]
μ ≦ 0.08 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967
The filling,
When the Z factor is 10 9 s -1 or more,
[Formula 2]
μ ≦ −0.1 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967
It was found that it should be satisfied.

Claims (2)

JIS H 4000:2014に規定されているA6061合金で形成されており、
{110}//ND方位のP方位、PP方位、RG方位、Goss方位、Brass方位の集合組織の占める割合が25%以上、且つ、
0.2%耐力が320MPa以上の領域が肉厚の70%以上であることを特徴とする構造部材用アルミニウム合金材。
It is made of A6061 alloy specified in JIS H 4000: 2014,
The proportion of the texture of {110} // ND orientation P orientation, PP orientation, RG orientation, Goss orientation, Brass orientation is 25% or more, and
An aluminum alloy material for a structural member, wherein a region where the 0.2% proof stress is 320 MPa or more is 70% or more of the wall thickness.
請求項1に記載の構造部材用アルミニウム合金材を製造する製造方法であって、
JIS H 4000:2014に規定されているA6061合金に対して、
温度補償ひずみ速度Z因子が105-1以上1012-1以下、
対数ひずみεが0.7以上3以下、
摩擦係数μが0.01以上0.5以下であり、
前記Z因子が109-1未満では、
〔式1〕
μ≦0.08(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967
を満たし、
前記Z因子が109-1以上では、
〔式2〕
μ≦−0.1(log(Z)−log(109))+0.3704ε2−0.1979ε+0.0967
を満たす熱間加工条件で製造することを特徴とする構造部材用アルミニウム合金材の製造方法。
It is a manufacturing method which manufactures the aluminum alloy material for structural members according to claim 1,
For the A6061 alloy specified in JIS H 4000: 2014,
Temperature compensated strain rate Z factor is 10 5 s -1 or more and 10 12 s -1 or less,
Logarithmic strain ε is 0.7 or more and 3 or less,
The friction coefficient μ is 0.01 or more and 0.5 or less,
If the Z factor is less than 10 9 s −1 ,
[Formula 1]
μ ≦ 0.08 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967
The filling,
When the Z factor is 10 9 s −1 or more,
[Formula 2]
μ ≦ −0.1 (log (Z) −log (10 9 )) + 0.3704ε 2 −0.19779ε + 0.0967
The manufacturing method of the aluminum alloy material for structural members characterized by manufacturing on the hot processing conditions which satisfy | fill.
JP2015092434A 2015-04-28 2015-04-28 Aluminum alloy material for structural member and method of manufacturing the same Active JP6521722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092434A JP6521722B2 (en) 2015-04-28 2015-04-28 Aluminum alloy material for structural member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092434A JP6521722B2 (en) 2015-04-28 2015-04-28 Aluminum alloy material for structural member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016211013A true JP2016211013A (en) 2016-12-15
JP6521722B2 JP6521722B2 (en) 2019-05-29

Family

ID=57549368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092434A Active JP6521722B2 (en) 2015-04-28 2015-04-28 Aluminum alloy material for structural member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6521722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459496B2 (en) 2019-12-13 2024-04-02 株式会社レゾナック Manufacturing method for aluminum alloy forgings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315938A (en) * 2003-04-18 2004-11-11 Kobe Steel Ltd Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2014101541A (en) * 2012-11-19 2014-06-05 Kobe Steel Ltd Aluminum alloy material for high-pressure hydrogen gas container and method of producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315938A (en) * 2003-04-18 2004-11-11 Kobe Steel Ltd Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2014101541A (en) * 2012-11-19 2014-06-05 Kobe Steel Ltd Aluminum alloy material for high-pressure hydrogen gas container and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459496B2 (en) 2019-12-13 2024-04-02 株式会社レゾナック Manufacturing method for aluminum alloy forgings

Also Published As

Publication number Publication date
JP6521722B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
CA2700250C (en) Al-cu-li alloy product suitable for aerospace application
US8372220B2 (en) Aluminum alloy forgings and process for production thereof
KR101501295B1 (en) High-strength aluminum-base alloy products and process for production thereof
JP6368087B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member
WO2014077391A1 (en) Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
WO2018012532A1 (en) Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
JP6758383B2 (en) Magnesium alloy plate material and its manufacturing method
JP7087476B2 (en) α + β type titanium alloy extruded profile
CA3016443C (en) Improved methods for finishing extruded titanium products
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
CN113302327A (en) 7xxx series aluminum alloy products
US10125410B2 (en) Heat resistant aluminum base alloy and wrought semifinsihed product fabrication method
JP7119840B2 (en) α+β type titanium alloy extruded shape
JP2006016655A (en) Magnesium alloy wrought material
EP3414352A1 (en) Al-Cu-Li-Mg-Mn-Zn ALLOY WROUGHT PRODUCT
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
TWI612150B (en) Steel wire for mechanical structural parts
KR102043786B1 (en) Magnesium alloy sheet and method for manufacturing the same
KR102156008B1 (en) Aluminum alloy extruded material having excellent machinability and method for manufacturing same
US9834833B2 (en) Aluminum alloy material exhibiting excellent bendability and method for producing the same
JP5125995B2 (en) Magnesium alloy wrought material
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP6521722B2 (en) Aluminum alloy material for structural member and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150