JP2016210699A - Manufacturing method of 4-hydroxy benzoic acid long chain ester - Google Patents

Manufacturing method of 4-hydroxy benzoic acid long chain ester Download PDF

Info

Publication number
JP2016210699A
JP2016210699A JP2015093389A JP2015093389A JP2016210699A JP 2016210699 A JP2016210699 A JP 2016210699A JP 2015093389 A JP2015093389 A JP 2015093389A JP 2015093389 A JP2015093389 A JP 2015093389A JP 2016210699 A JP2016210699 A JP 2016210699A
Authority
JP
Japan
Prior art keywords
chain ester
hydroxybenzoic acid
reaction
hydroxybenzoate
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015093389A
Other languages
Japanese (ja)
Other versions
JP6747780B2 (en
Inventor
裕介 喜田
Yusuke Kida
裕介 喜田
利豪 小松
Toshihide Komatsu
利豪 小松
久野 貴矢
Takaya Hisano
貴矢 久野
邦代 柳川瀬
Kuniyo Yanagase
邦代 柳川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Original Assignee
Ueno Fine Chemicals Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2015093389A priority Critical patent/JP6747780B2/en
Priority to US15/130,180 priority patent/US9790165B2/en
Priority to ES16166386.9T priority patent/ES2643744T3/en
Priority to EP16166386.9A priority patent/EP3088379B1/en
Priority to TW105112803A priority patent/TWI703125B/en
Priority to KR1020160052050A priority patent/KR102560812B1/en
Priority to CN201610273034.7A priority patent/CN106083593B/en
Publication of JP2016210699A publication Critical patent/JP2016210699A/en
Application granted granted Critical
Publication of JP6747780B2 publication Critical patent/JP6747780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing 4-hydroxy benzoic acid long chain ester represented by the formula (3) at high purity by suppressing generation of byproducts.SOLUTION: By transesterification of 4-hydroxy benzoic acid short chain ester and a long chain alcohol by using a metal catalyst as a catalyst, generation of byproducts is suppressed and 4-hydroxy benzoic acid long chain ester can be manufactured at high purity. (In the formula, n represents an integer of 15 to 23.)SELECTED DRAWING: None

Description

本発明は、4−ヒドロキシ安息香酸長鎖エステルの製造方法に関する。   The present invention relates to a method for producing a 4-hydroxybenzoic acid long chain ester.

4−ヒドロキシ安息香酸長鎖エステルは、水酸基と疎水基を有する構造を有し、その構造的特徴から、可塑剤、相溶化剤、界面活性剤などの用途が提案されている。   4-Hydroxybenzoic acid long-chain ester has a structure having a hydroxyl group and a hydrophobic group, and uses such as a plasticizer, a compatibilizing agent and a surfactant have been proposed because of its structural characteristics.

一般的に化合物のエステル化は、原料カルボン酸とアルコールとを、硫酸等のプロトン酸触媒の存在下で反応させ、得られた反応液から触媒と未反応のカルボン酸を除去し、必要により晶析や蒸留などの精製を行うことによって製造する方法が知られている(特許文献1)。   In general, esterification of a compound is performed by reacting a raw material carboxylic acid and an alcohol in the presence of a protonic acid catalyst such as sulfuric acid, and removing the catalyst and unreacted carboxylic acid from the resulting reaction solution, and if necessary, crystallizing. A method of producing by purification such as precipitation or distillation is known (Patent Document 1).

4−ヒドロキシ安息香酸のエステル化に関しても、炭素原子数1〜6の短鎖アルコールとの反応によって、比較的容易に4−ヒドロキシ安息香酸短鎖エステルを得ることが知られている。   Regarding esterification of 4-hydroxybenzoic acid, it is known that 4-hydroxybenzoic acid short-chain ester is obtained relatively easily by reaction with a short-chain alcohol having 1 to 6 carbon atoms.

しかしながら、4−ヒドロキシ安息香酸を、炭素原子数が16以上の長鎖アルコールと反応させて4−ヒドロキシ安息香酸長鎖エステルを得ようとした場合、同様にプロトン酸触媒の存在下で反応させると、長鎖アルコールが2量化したエーテル体や、長鎖アルコールとプロトン酸触媒との反応による硫酸エステルなどの副生物の生成が避けられないものであった。   However, when 4-hydroxybenzoic acid is reacted with a long-chain alcohol having 16 or more carbon atoms to obtain 4-hydroxybenzoic acid long-chain ester, the reaction is similarly performed in the presence of a protonic acid catalyst. In addition, by-products such as ethers obtained by dimerizing long-chain alcohols and sulfates by reaction of long-chain alcohols with protonic acid catalysts are inevitable.

これらの副生物は、目的物である4−ヒドロキシ安息香酸長鎖エステルと類似した物性であるため、晶析や蒸留によって除去することが困難であり、高純度の4−ヒドロキシ安息香酸長鎖エステルが得られないという問題があった。   Since these by-products have physical properties similar to the target 4-hydroxybenzoic acid long chain ester, it is difficult to remove by crystallization or distillation, and high purity 4-hydroxybenzoic acid long chain ester There was a problem that could not be obtained.

特開2014−108928号公報JP 2014-108928 A

本発明の目的は、副生物の生成が抑制された4−ヒドロキシ安息香酸長鎖エステルの製造方法を提供することにある。また、本発明の別の目的は、高純度の4−ヒドロキシ安息香酸長鎖エステルが得られる製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of 4-hydroxy benzoic acid long chain ester by which the production | generation of the by-product was suppressed. Another object of the present invention is to provide a method for producing a high purity 4-hydroxybenzoic acid long chain ester.

本発明者らは、4−ヒドロキシ安息香酸長鎖エステルの製造方法について鋭意検討した結果、触媒として金属触媒を用いて、4−ヒドロキシ安息香酸短鎖エステルと長鎖アルコールとを、いわゆるエステル交換反応させることにより、副生物の生成を抑制し、高純度の4−ヒドロキシ安息香酸長鎖エステルが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies on a method for producing 4-hydroxybenzoic acid long-chain ester, the present inventors have used a metal catalyst as a catalyst, and a so-called transesterification reaction between 4-hydroxybenzoic acid short-chain ester and long-chain alcohol. As a result, it was found that by-product formation was suppressed, and a high-purity 4-hydroxybenzoic acid long-chain ester was obtained, and the present invention was completed.

すなわち本発明は、金属触媒の存在下、式(1)で表される4−ヒドロキシ安息香酸短鎖エステルと、式(2)で表される脂肪族アルコールとを反応させる工程を含む、式(3)で表される4−ヒドロキシ安息香酸長鎖エステルの製造方法を提供する。

Figure 2016210699
Figure 2016210699
Figure 2016210699
(式中、mは1〜11の整数を示し、nは15〜23の整数を示す。) That is, the present invention includes a step of reacting a 4-hydroxybenzoic acid short chain ester represented by the formula (1) with an aliphatic alcohol represented by the formula (2) in the presence of a metal catalyst. A method for producing a 4-hydroxybenzoic acid long chain ester represented by 3) is provided.
Figure 2016210699
Figure 2016210699
Figure 2016210699
(In the formula, m represents an integer of 1 to 11, and n represents an integer of 15 to 23.)

本発明によれば、通常のエステル化反応で副生する、長鎖アルコールが2量化したエーテル体や、長鎖アルコールと触媒が反応した硫酸エステルなどの副生物の生成を抑止し、高純度の4−ヒドロキシ安息香酸長鎖エステルを得ることができる。
また、本発明によれば、煩雑な精製を行うことなく、簡易な方法でより高純度の4−ヒドロキシ安息香酸長鎖エステルを得ることができる。
According to the present invention, it is possible to suppress the formation of by-products such as ethers in which long-chain alcohols are dimerized and sulfate esters in which long-chain alcohols are reacted with catalysts, which are by-produced in normal esterification reactions, and have high purity. 4-hydroxybenzoic acid long chain ester can be obtained.
Furthermore, according to the present invention, a higher purity 4-hydroxybenzoic acid long chain ester can be obtained by a simple method without complicated purification.

本発明において、出発原料である式(1)で表される4−ヒドロキシ安息香酸短鎖エステルは、4−ヒドロキシ安息香酸と、直鎖または分岐を有してもよい炭素原子数1〜11のアルコールとのエステル体である。   In the present invention, the 4-hydroxybenzoic acid short-chain ester represented by the formula (1) as a starting material has 4-hydroxybenzoic acid and a linear or branched carbon atom having 1 to 11 carbon atoms. It is an ester form with alcohol.

式(1)で表される4−ヒドロキシ安息香酸短鎖エステルの具体例としては、4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸イソプロピル、4−ヒドロキシ安息香酸ブチル、4−ヒドロキシ安息香酸イソブチル、4−ヒドロキシ安息香酸ペンチル、4−ヒドロキシ安息香酸ヘキシル、4−ヒドロキシ安息香酸へプチル、4−ヒドロキシ安息香酸オクチル、4−ヒドロキシ安息香酸ノナチル、4−ヒドロキシ安息香酸デシル、4−ヒドロキシ安息香酸ウンデシルおよび4−ヒドロキシ安息香酸2−エチルヘキシル等が挙げられる。

Figure 2016210699
(mは1〜11の整数を表す) Specific examples of the 4-hydroxybenzoic acid short chain ester represented by the formula (1) include methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, isopropyl 4-hydroxybenzoate, 4-hydroxybenzoate butyl, 4-hydroxybenzoate isobutyl, 4-hydroxybenzoate pentyl, 4-hydroxybenzoate hexyl, 4-hydroxybenzoate heptyl, 4-hydroxybenzoate octyl, 4-hydroxybenzoate nonatinyl, Examples include decyl 4-hydroxybenzoate, undecyl 4-hydroxybenzoate, and 2-ethylhexyl 4-hydroxybenzoate.
Figure 2016210699
(M represents an integer of 1 to 11)

これらの中でも、入手容易性および反応性に優れる点で、4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸イソプロピル、4−ヒドロキシ安息香酸ブチルおよび4−ヒドロキシ安息香酸イソブチルが好ましく、特に反応性に優れることから、4−ヒドロキシ安息香酸メチルがより好ましい。   Among these, in terms of easy availability and reactivity, methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, isopropyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate and Isobutyl 4-hydroxybenzoate is preferable, and methyl 4-hydroxybenzoate is more preferable because it is particularly excellent in reactivity.

本発明に使用される4−ヒドロキシ安息香酸短鎖エステルは、市販のものを用いてもよく、また、4−ヒドロキシ安息香酸と炭素原子数1〜11の脂肪族アルコールとを、プロトン酸触媒の存在下で反応させる一般的なエステル化反応によって得られたものを用いてもよい。   As the 4-hydroxybenzoic acid short chain ester used in the present invention, a commercially available one may be used, and 4-hydroxybenzoic acid and an aliphatic alcohol having 1 to 11 carbon atoms may be used as a proton acid catalyst. You may use what was obtained by the general esterification reaction made to react in presence.

本発明に使用される脂肪族アルコールは、式(2):

Figure 2016210699
(nは15〜23の整数を表す)
で表される炭素原子数16〜24の脂肪族アルコールである。その具体的としては、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、イコサノール、ヘンイコサノール、ドコサノール、トリコサノールおよびテトラコサノールからなる群から選択される1種以上が挙げられる。 The aliphatic alcohol used in the present invention has the formula (2):
Figure 2016210699
(N represents an integer of 15 to 23)
Is an aliphatic alcohol having 16 to 24 carbon atoms. Specific examples thereof include one or more selected from the group consisting of hexadecanol, heptadecanol, octadecanol, nonadecanol, icosanol, heicosanol, docosanol, tricosanol and tetracosanol.

本発明に使用される脂肪族アルコールは、市販のものを用いてもよく、また当業者に知られた方法で製造したものを用いてもよい。   As the aliphatic alcohol used in the present invention, commercially available products may be used, or those produced by methods known to those skilled in the art may be used.

本発明に使用される脂肪族アルコールは、4−ヒドロキシ安息香酸短鎖エステル1モルに対し、0.1〜3モル、好ましくは0.5〜1.5モル、より好ましくは0.8〜1.2モル、特に好ましくは0.9〜0.98モル反応させるのがよい。   The aliphatic alcohol used in the present invention is 0.1 to 3 mol, preferably 0.5 to 1.5 mol, more preferably 0.8 to 1 mol per mol of 4-hydroxybenzoic acid short chain ester. .2 mol, particularly preferably 0.9 to 0.98 mol is preferably reacted.

4−ヒドロキシ安息香酸短鎖エステル1モルに対し、脂肪族アルコールの量が0.1モルを下回る場合、副生反応を生じ易くなる傾向があるとともに、4−ヒドロキシ安息香酸短鎖エステルが過剰となり原料の無駄となる。脂肪族アルコールの量が3モルを上回る場合、過剰量の脂肪族アルコールが残存し、純度が低下する傾向がある。   When the amount of the aliphatic alcohol is less than 0.1 mol with respect to 1 mol of 4-hydroxybenzoic acid short chain ester, it tends to cause a by-product reaction, and 4-hydroxybenzoic acid short chain ester becomes excessive. It is a waste of raw materials. When the amount of the aliphatic alcohol exceeds 3 mol, an excessive amount of the aliphatic alcohol remains and the purity tends to be lowered.

本発明においては、4−ヒドロキシ安息香酸短鎖エステルと炭素原子数16〜24の脂肪族アルコールとの反応に際し、金属触媒を存在させることによって、長鎖アルコールの2量化エーテル体や、長鎖アルコールと触媒との反応による硫酸エステルなどの副生物の生成を抑止し、高純度の4−ヒドロキシ安息香酸長鎖エステルを得ることができる。   In the present invention, in the reaction of 4-hydroxybenzoic acid short-chain ester with an aliphatic alcohol having 16 to 24 carbon atoms, a dimerized ether form of long-chain alcohol or long-chain alcohol is obtained by the presence of a metal catalyst. The production of by-products such as sulfate ester due to the reaction between the catalyst and the catalyst can be suppressed, and a high-purity 4-hydroxybenzoic acid long chain ester can be obtained.

本発明に使用される金属触媒としては、チタン系触媒、スズ系触媒、アンチモン系触媒およびジルコニウム系触媒からなる群から選択される1種以上が挙げられるが、入手容易性および反応性に優れる点で、チタン系触媒が好適に使用される。   Examples of the metal catalyst used in the present invention include one or more selected from the group consisting of a titanium-based catalyst, a tin-based catalyst, an antimony-based catalyst, and a zirconium-based catalyst, but are excellent in availability and reactivity. Thus, a titanium-based catalyst is preferably used.

チタン系触媒の具体例としては、テトラメトキシチタン、テトラエトキシチタン、テトラn−プロポキシチタン、テトライソプロポキシチタン、テトラn−ブトキシチタン、テトライソブトキシチタン、テトラ2−エチルヘキソキシチタンおよびテトラオクタデソキシチタンが挙げられる。反応性および入手容易性に優れる点で、テトライソプロポキシチタンが好ましい。   Specific examples of the titanium-based catalyst include tetramethoxy titanium, tetraethoxy titanium, tetra n-propoxy titanium, tetraisopropoxy titanium, tetra n-butoxy titanium, tetraisobutoxy titanium, tetra 2-ethylhexoxy titanium, and tetraoctade. Soxy titanium is mentioned. Tetraisopropoxy titanium is preferable in terms of excellent reactivity and availability.

スズ系触媒の具体例としては、モノブチルスズオキシド、ジブチルスズオキシド、ジブチルスズラウレート、ジオクチルスズラウレートおよびジブチルジイソプロポキシスズが挙げられる。反応性および入手容易性に優れる点で、モノブチルスズオキシドおよびジブチルスズオキシドが好ましい。   Specific examples of the tin-based catalyst include monobutyltin oxide, dibutyltin oxide, dibutyltin laurate, dioctyltin laurate and dibutyldiisopropoxytin. Monobutyltin oxide and dibutyltin oxide are preferable in terms of excellent reactivity and availability.

アンチモン系触媒の具体例としては、酢酸アンチモン、三酸化アンチモン、五酸化二アンチモン、トリメトキシアンチモン、トリエトキシアンチモン、トリn−プロポキシアンチモンおよびトリフェニルアンチモン等が挙げられる。反応性および入手容易性に優れる点で、酢酸アンチモンが好ましい。   Specific examples of the antimony catalyst include antimony acetate, antimony trioxide, diantimony pentoxide, trimethoxyantimony, triethoxyantimony, tri-n-propoxyantimony, and triphenylantimony. Antimony acetate is preferred because of its excellent reactivity and availability.

ジルコニウム系触媒の具体例としては、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラn−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラn−ブトキシジルコニウム、テトライソブトキシジルコニウム、テトラ2−エチルヘキソキシジルコニウム、テトラオクタデソキシジルコニウムおよび酢酸酸化ジルコニウムが挙げられる。反応性および入手容易性に優れる点で、テトラn−ブトキシジルコニウムが好ましい。   Specific examples of the zirconium-based catalyst include tetramethoxy zirconium, tetraethoxy zirconium, tetra n-propoxy zirconium, tetraisopropoxy zirconium, tetra n-butoxy zirconium, tetraisobutoxy zirconium, tetra 2-ethylhexoxy zirconium, tetraoctade. Soxyzirconium and zirconium acetate oxide are mentioned. Tetra n-butoxyzirconium is preferable in terms of excellent reactivity and availability.

これらの触媒は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明に使用される金属触媒の量は、4−ヒドロキシ安息香酸短鎖エステル100重量部に対し、0.1〜10重量部、好ましくは0.5〜7重量部、より好ましくは1〜5重量部であるのが良い。
These catalysts may be used alone or in combination of two or more.
The amount of the metal catalyst used in the present invention is 0.1 to 10 parts by weight, preferably 0.5 to 7 parts by weight, more preferably 1 to 5 parts per 100 parts by weight of the 4-hydroxybenzoic acid short chain ester. It should be part by weight.

4−ヒドロキシ安息香酸短鎖エステル100重量部に対し、金属触媒の量が0.1重量部を下回る場合、反応が十分進行しない傾向がある。金属触媒の量が10重量部を上回る場合、脂肪族アルコールの2量化エーテル体等の副生物が生成する傾向があるとともに、経済的にも不利となる。   When the amount of the metal catalyst is less than 0.1 parts by weight with respect to 100 parts by weight of 4-hydroxybenzoic acid short chain ester, the reaction tends to not proceed sufficiently. When the amount of the metal catalyst exceeds 10 parts by weight, by-products such as dimerized ethers of aliphatic alcohols tend to be generated, and this is economically disadvantageous.

4−ヒドロキシ安息香酸短鎖エステルと、炭素原子数16〜24の脂肪族アルコールとの反応は、120〜200℃の温度下で行うのが好ましく、150〜180℃の温度下で行うのがより好ましい。反応温度が120℃を下回る場合、反応が十分に進行しない傾向があり、反応温度が200℃を上回る場合、副生物が生成する傾向があるとともに、エネルギーの損失となる。   The reaction between the 4-hydroxybenzoic acid short-chain ester and the aliphatic alcohol having 16 to 24 carbon atoms is preferably performed at a temperature of 120 to 200 ° C, more preferably at a temperature of 150 to 180 ° C. preferable. When the reaction temperature is lower than 120 ° C, the reaction tends not to proceed sufficiently. When the reaction temperature is higher than 200 ° C, a by-product tends to be generated and energy is lost.

反応時間は、反応温度等の条件によって変動するため特に限定されないが、1〜20時間、好ましくは3〜15時間、より好ましくは5〜10時間の間で適宜選択される。   The reaction time is not particularly limited because it varies depending on conditions such as the reaction temperature, but is appropriately selected from 1 to 20 hours, preferably 3 to 15 hours, more preferably 5 to 10 hours.

本発明において、4−ヒドロキシ安息香酸短鎖エステルと、炭素原子数16〜24の脂肪族アルコールとの反応は、窒素気流下またはバブリング下、もしくは減圧条件下で行うのが好ましい。このような条件下で反応させることによって、酸素や水分による反応阻害や触媒失活を回避し、反応から副生される短鎖アルコールを容易に除去し、反応を円滑に進行させることが可能となる。   In the present invention, the reaction between the 4-hydroxybenzoic acid short chain ester and the aliphatic alcohol having 16 to 24 carbon atoms is preferably carried out under a nitrogen stream or bubbling or under reduced pressure. By reacting under such conditions, it is possible to avoid reaction inhibition and catalyst deactivation due to oxygen and moisture, easily remove short-chain alcohol by-produced from the reaction, and proceed the reaction smoothly. Become.

かかるエステル交換反応により得られた反応液を分液、再結晶、分取操作等の公知の方法により分離し、回収することにより、式(3):

Figure 2016210699
(式中、nは15〜23の整数を示す)
で表される4−ヒドロキシ安息香酸長鎖エステルが得られる。 By separating and recovering the reaction solution obtained by the transesterification reaction by a known method such as liquid separation, recrystallization, and preparative operation, the formula (3):
Figure 2016210699
(In the formula, n represents an integer of 15 to 23)
4-hydroxybenzoic acid long chain ester represented by the following formula is obtained.

具体的には、式(3)で表される4−ヒドロキシ安息香酸長鎖エステルとしては、4−ヒドロキシ安息香酸ヘキサデシル、4−ヒドロキシ安息香酸ヘプタデシル、4−ヒドロキシ安息香酸オクタデシル、4−ヒドロキシ安息香酸ノナデシル、4−ヒドロキシ安息香酸イコシル、4−ヒドロキシ安息香酸ヘンイコシル、4−ヒドロキシ安息香酸ドコシル、4−ヒドロキシ安息香酸トリコシルおよび4−ヒドロキシ安息香酸テトラコシルが挙げられる。   Specifically, as the 4-hydroxybenzoic acid long chain ester represented by the formula (3), hexadecyl 4-hydroxybenzoate, heptadecyl 4-hydroxybenzoate, octadecyl 4-hydroxybenzoate, 4-hydroxybenzoic acid Nonadecyl, icosyl 4-hydroxybenzoate, heicosyl 4-hydroxybenzoate, docosyl 4-hydroxybenzoate, tricosyl 4-hydroxybenzoate and tetracosyl 4-hydroxybenzoate.

このようにして、副生物の生成が抑制された高純度の4−ヒドロキシ安息香酸長鎖エステルが得られるが、さらに高純度化するために、得られた4−ヒドロキシ安息香酸長鎖エステルを精製操作に供することができる。精製方法としては、特に限定されないが、例えば得られた4−ヒドロキシ安息香酸長鎖エステルを溶融した後、あるいは非水溶性溶媒で希釈した後、水またはアルカリ水で抽出する方法、および得られた生成物を固化し、水またはアルカリ水で懸濁洗浄する方法等が挙げられる。これらの精製方法は、単独でまたは組み合わせて行うことができる。   In this way, a high-purity 4-hydroxybenzoic acid long-chain ester in which the production of by-products is suppressed is obtained, but the obtained 4-hydroxybenzoic acid long-chain ester is purified for further purification. Can be used for operation. The purification method is not particularly limited. For example, the obtained 4-hydroxybenzoic acid long-chain ester is melted or diluted with a non-water-soluble solvent, and then extracted with water or alkaline water. Examples thereof include a method of solidifying the product and suspension washing with water or alkaline water. These purification methods can be performed alone or in combination.

本発明では、4−ヒドロキシ安息香酸短鎖エステルと脂肪族アルコールとのエステル交換反応により得られた反応液中に残存する金属触媒を除去した後、精製するのが好ましい。この場合、触媒除去および精製は、特に限定されないが、4−ヒドロキシ安息香酸短鎖エステルと脂肪族アルコールとの反応によって得られた反応液に酸水溶液を添加して有機層と水層に分離した後、有機層を抽出する工程、および抽出した有機層に有機溶媒を添加して晶析する工程によって行うことができる。   In this invention, it is preferable to refine | purify after removing the metal catalyst which remains in the reaction liquid obtained by transesterification with 4-hydroxy benzoic acid short chain ester and aliphatic alcohol. In this case, the catalyst removal and purification are not particularly limited, but an acid aqueous solution was added to the reaction solution obtained by the reaction of 4-hydroxybenzoic acid short-chain ester with an aliphatic alcohol to separate into an organic layer and an aqueous layer. Then, it can carry out by the process of extracting an organic layer, and the process of adding an organic solvent to the extracted organic layer, and crystallizing.

反応液に酸水溶液を添加して有機層と水層に分離した後、有機層を抽出する工程(以下、抽出工程という)は、具体的には、反応液に酸水溶液を添加した後、攪拌下で加熱して反応液中の有機物を溶融し、攪拌を継続することによって触媒を失活させる。その後、反応系を静置して有機層と水層に分離し、有機層を回収することにより行われる。   The step of extracting the organic layer after adding an aqueous acid solution to the reaction solution and separating the organic layer and the aqueous layer (hereinafter referred to as the extraction step) is specifically performed after adding the aqueous acid solution to the reaction solution and stirring. Under heating, the organic substance in the reaction solution is melted, and the catalyst is deactivated by continuing stirring. Thereafter, the reaction system is allowed to stand to separate into an organic layer and an aqueous layer, and the organic layer is recovered.

抽出工程において酸水溶液に用いる溶媒は、水と低級アルコールとの混合物が好ましい。低級アルコールとしては、メタノール、エタノール、1−プロパノールおよび2−プロパノールからなる群から選択される1種以上が挙げられ、これらの中でも、収率および経済性に優れる点でメタノールが好ましく使用される。   The solvent used for the acid aqueous solution in the extraction step is preferably a mixture of water and a lower alcohol. As a lower alcohol, 1 or more types selected from the group which consists of methanol, ethanol, 1-propanol, and 2-propanol are mentioned, Among these, methanol is preferably used at the point which is excellent in a yield and economical efficiency.

水と低級アルコールの重量比(水/低級アルコール)は、用いるアルコールの種類によって変動するため特に限定されないが、5/5〜2/8、好ましくは4/6〜2/8であるのが良い。   The weight ratio of water to lower alcohol (water / lower alcohol) is not particularly limited because it varies depending on the type of alcohol used, but it should be 5/5 to 2/8, preferably 4/6 to 2/8. .

水と低級アルコールの重量比が5/5を上回る場合、反応液と酸水溶液が乳化し、触媒が十分に除去できない傾向があり、水と低級アルコールの重量比が2/8を下回る場合、反応系全体が均一な溶液となるため、やはり触媒を十分に除去できない傾向がある。   When the weight ratio of water and lower alcohol exceeds 5/5, the reaction solution and the acid aqueous solution are emulsified, and the catalyst tends not to be sufficiently removed. When the weight ratio of water to lower alcohol is less than 2/8, the reaction Since the entire system becomes a uniform solution, there is a tendency that the catalyst cannot be sufficiently removed.

酸水溶液に用いる酸は、触媒を不活性化させるものであり、具体的には、塩酸、硫酸、硝酸、リン酸、酢酸、カルボン酸およびスルホン酸からなる群から選択される1種以上が挙げられる。これらの中でも、得られる4−ヒドロキシ安息香酸長鎖エステルの色調が改善される点でリン酸が好ましい。   The acid used in the acid aqueous solution inactivates the catalyst, and specifically includes at least one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, carboxylic acid and sulfonic acid. It is done. Among these, phosphoric acid is preferable in that the color tone of the obtained 4-hydroxybenzoic acid long chain ester is improved.

酸水溶液に用いる溶媒と酸の量は、溶媒に対して酸が0.1〜10重量%、好ましくは0.5〜8重量%、より好ましくは1〜5重量%であるのが良い。   The amount of the solvent and acid used in the aqueous acid solution is 0.1 to 10% by weight, preferably 0.5 to 8% by weight, more preferably 1 to 5% by weight, based on the solvent.

酸の量が溶媒に対して0.1重量%を下回る場合、触媒を十分に除去できない傾向があり、10重量%を超える場合、酸が不純物として残存する傾向がある。   When the amount of the acid is less than 0.1% by weight with respect to the solvent, the catalyst tends not to be sufficiently removed, and when it exceeds 10% by weight, the acid tends to remain as an impurity.

酸水溶液の量は、原料の4−ヒドロキシ安息香酸短鎖エステルに対し、3倍重量以上、好ましくは5倍重量以上とするのが良い。酸水溶液の量が3倍重量を下回る場合、有機層と水層の分液性が悪くなり、触媒を十分に除去できない傾向がある。   The amount of the acid aqueous solution is 3 times or more, preferably 5 times or more, by weight of the raw material 4-hydroxybenzoic acid short chain ester. When the amount of the aqueous acid solution is less than 3 times the weight, the liquid separation property of the organic layer and the aqueous layer is deteriorated, and the catalyst tends not to be sufficiently removed.

抽出工程は、反応系内の有機物を溶融させるために、50℃以上、好ましくは60℃以上に加熱し、その温度下で撹拌を継続して触媒を失活させた後、有機層と水層とが十分に分離するまで反応系を静置し、分離した有機層を回収する。   In the extraction step, in order to melt the organic matter in the reaction system, the mixture is heated to 50 ° C. or higher, preferably 60 ° C. or higher, and stirring is continued at that temperature to deactivate the catalyst. The reaction system is allowed to stand until and are sufficiently separated, and the separated organic layer is recovered.

抽出工程で回収された有機層は、次いで抽出した有機層に有機溶媒を添加して晶析する工程(以下、晶析工程という)に供される。晶析工程は、有機層に有機溶媒を添加し、加熱して溶解させた後、冷却することによって目的物を晶析させる。析出した結晶を濾過等により固液分離し、洗浄、乾燥することによって、高純度の4−ヒドロキシ安息香酸長鎖エステルを得ることができる。   The organic layer recovered in the extraction step is then subjected to a step of crystallization by adding an organic solvent to the extracted organic layer (hereinafter referred to as a crystallization step). In the crystallization step, an organic solvent is added to the organic layer, heated and dissolved, and then cooled to cool the target product. A high-purity 4-hydroxybenzoic acid long-chain ester can be obtained by solid-liquid separation of the precipitated crystals by filtration or the like, washing and drying.

晶析工程で使用される有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、N,N’−ジメチルホルムアミド、N−メチルピロリドン、ピリジン等のアミド系化合物、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、シクロヘキサン等の炭化水素系化合物、クロロホルム、ジクロロメタン等の有機ハロゲン、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル類が挙げられる。これらの中でも、入手容易性および乾燥効率などの工業的生産性に優れる点で、メタノール、エタノール、1−プロパノール、2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸プロピル、ヘキサン、ヘプタン、トルエンおよびキシレンが好ましく、収率に優れる点から、メタノールが特に好ましい。   Examples of the organic solvent used in the crystallization process include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and ethylene glycol, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, methyl acetate, ethyl acetate, and acetic acid. Esters such as propyl and butyl acetate, amide compounds such as N, N′-dimethylformamide, N-methylpyrrolidone and pyridine, hydrocarbon compounds such as pentane, hexane, heptane, benzene, toluene, xylene and cyclohexane, chloroform And organic halogens such as dichloromethane, ethers such as diisopropyl ether, tetrahydrofuran and 1,4-dioxane. Among these, in terms of excellent industrial productivity such as availability and drying efficiency, methanol, ethanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, propyl acetate, Hexane, heptane, toluene and xylene are preferred, and methanol is particularly preferred from the viewpoint of excellent yield.

晶析工程で使用される有機溶媒の量は、用いる溶媒の種類によって変動するため特に限定されないが、原料の4−ヒドロキシ安息香酸短鎖エステルに対し1〜20倍重量、好ましくは3〜10倍重量、より好ましくは5〜7倍重量が良い。   The amount of the organic solvent used in the crystallization step is not particularly limited because it varies depending on the type of solvent used, but it is 1 to 20 times by weight, preferably 3 to 10 times the weight of the raw 4-hydroxybenzoic acid short chain ester. The weight, more preferably 5 to 7 times the weight is good.

有機溶媒の量が1倍重量を下回る場合、晶析時に撹拌不良が生じる傾向があり、20倍重量を超える場合、収率が低下する傾向があるとともに、経済的にも不利となる。   When the amount of the organic solvent is less than 1 times the weight, stirring failure tends to occur at the time of crystallization. When the amount exceeds 20 times the weight, the yield tends to decrease and it is economically disadvantageous.

晶析工程は、有機溶媒を添加した後、加熱して有機層中の有機物を完全に溶解させた後、撹拌を継続しながら、ゆっくりと冷却して晶析させることにより行われる。   The crystallization step is performed by adding an organic solvent, heating to completely dissolve the organic matter in the organic layer, and then slowly cooling and crystallization while continuing stirring.

晶析の際に過飽和現象が生じた場合は、種結晶を適宜添加して結晶化を促進させても良い。   When a supersaturation phenomenon occurs during crystallization, a seed crystal may be added as appropriate to promote crystallization.

晶析工程によって析出した結晶は濾過等の常套手段により固液分離し、目的物である4−ヒドロキシ安息香酸長鎖エステルを回収する。固液分離に際し、適宜有機溶媒を注いで結晶を洗浄するのが好ましい。固液分離の際に用いる有機溶媒としては、晶析工程で使用される有機溶媒と同様のものが使用される。   Crystals precipitated in the crystallization step are subjected to solid-liquid separation by conventional means such as filtration, and the target 4-hydroxybenzoic acid long chain ester is recovered. In the solid-liquid separation, it is preferable to wash the crystals by appropriately pouring an organic solvent. As the organic solvent used in the solid-liquid separation, the same organic solvent used in the crystallization step is used.

固液分離によって回収された結晶は、減圧下、50℃以下の温度下で結晶状態のまま乾燥するか、あるいは50℃以上に加熱して結晶を溶融させた後、溶媒を留去することによって、高純度の4−ヒドロキシ安息香酸長鎖エステルを得ることができる。   Crystals recovered by solid-liquid separation can be dried in a crystalline state under reduced pressure at a temperature of 50 ° C. or lower, or heated to 50 ° C. or higher to melt the crystals, and then the solvent is distilled off. High purity 4-hydroxybenzoic acid long chain ester can be obtained.

以下、実施例により本発明を詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.

[転化率および残存率]
脂肪族アルコールの仕込量に対する各成分の生成量のモル比を転化率とした。また、各出発物質の仕込量に対する残存量のモル比を残存率とした。
各成分の生成量および各出発物質の残存量は、以下の条件にて高速液体クロマトグラフィー(HLPC)およびガスクロマトグラフィー(GC)による定量分析により求めた。
[Conversion rate and residual rate]
The molar ratio of the production amount of each component to the charged amount of the aliphatic alcohol was defined as the conversion rate. Further, the molar ratio of the remaining amount to the charged amount of each starting material was defined as the remaining rate.
The production amount of each component and the remaining amount of each starting material were determined by quantitative analysis by high performance liquid chromatography (HLPC) and gas chromatography (GC) under the following conditions.

[高速液体クロマトグラフィー(HLPC)]
装置: Waters アライアンス 2487/2996
カラム型番: L−Column
流量: 1.0mL/分
溶媒比: HO(pH2.3)/CHOH=58/42(30分)→5分→10/90(55分)、グラジエント分析
波長: 229nm/254nm
カラム温度: 40℃
[High performance liquid chromatography (HLPC)]
Equipment: Waters Alliance 2487/2996
Column model number: L-Column
Flow rate: 1.0 mL / min Solvent ratio: H 2 O (pH 2.3) / CH 3 OH = 58/42 (30 minutes) → 5 minutes → 10/90 (55 minutes), gradient analysis Wavelength: 229 nm / 254 nm
Column temperature: 40 ° C

[ガスクロマトグラフィー(GC)]
装置: 株式会社島津製作所製GC−2014/GC−14A
カラム型番: G−100
注入量: 1.0μL
オーブン温度: 310℃
キャリアガス: ヘリウム
検出器: FID
[Gas chromatography (GC)]
Equipment: GC-2014 / GC-14A manufactured by Shimadzu Corporation
Column model number: G-100
Injection volume: 1.0 μL
Oven temperature: 310 ° C
Carrier gas: Helium Detector: FID

実施例1
撹拌機、温度センサーおよびディーンスターク装置を備えた1Lの4つ口フラスコに、ヘキサデカノール(CeOH)179gを加え、窒素気流下、70℃まで昇温し溶融させた。次いで、4−ヒドロキシ安息香酸メチル(MOB)125g、および触媒としてテトライソプロポキシチタン(TIPT)3.76gを加え、1時間かけて160℃まで昇温し、同温度で6時間反応させた。
Example 1
179 g of hexadecanol (CeOH) was added to a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a Dean-Stark apparatus, and the mixture was heated to 70 ° C. and melted under a nitrogen stream. Next, 125 g of methyl 4-hydroxybenzoate (MOB) and 3.76 g of tetraisopropoxytitanium (TIPT) as a catalyst were added, the temperature was raised to 160 ° C. over 1 hour, and the reaction was performed at the same temperature for 6 hours.

反応液を高速液体クロマトグラフィー(HPLC)およびガスクロマトグラフィー(GC)にて定量分析を行ったところ、仕込んだCeOHからの転化率は、4−ヒドロキシ安息香酸ヘキサデシル(CEPB)96.2mol%(91.5重量%)であり、MOB8.2mol%(3.5重量%)およびCeOH2.6mol%(1.6重量%)が残存した。また、エーテル体であるジセチルエーテル(CeO)および硫酸エステルであるp−トルエンスルホン酸ヘキサデシル(PTS−Ce)の生成は確認されなかった。 When the reaction solution was quantitatively analyzed by high performance liquid chromatography (HPLC) and gas chromatography (GC), the conversion rate from the charged CeOH was 96.2 mol% of hexadecyl 4-hydroxybenzoate (CEPB) (91 0.5 wt%), and MOB 8.2 mol% (3.5 wt%) and CeOH 2.6 mol% (1.6 wt%) remained. Further, generation of is dicetyl ether (Ce 2 O) and sulfuric acid ester ethers body p- toluenesulfonic acid hexadecyl (PTS-Ce) was not confirmed.

比較例1
撹拌機、温度センサーおよびディーンスターク装置を備えた1Lの4つ口フラスコに、CeOH258gを加え、窒素気流下、70℃まで昇温し溶融させた。次いで、4-ヒドロキシ安息香酸(POB)150g、p−トルエンスルホン酸一水和物5.0g、次亜リン酸2.4gを加え、1時間かけて130℃まで昇温し、同温度で8時間反応させた。反応液をHPLCおよびGCにて定量分析を行ったところ、仕込んだCeOHからの転化率は、CEPB92.9mol%(86.1重量%)であり、POB8.7mol%(2.8重量%)およびCeOH3.4mol%(1.4重量%)が残存した。また、エーテル体であるCeOの転化率は2.5mol%(1.8重量%)、硫酸エステルであるPTS−Ceの転化率は0.81mol%(1.0重量%)であり、副生物の生成が確認された。
Comparative Example 1
258 g of CeOH was added to a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a Dean-Stark apparatus, and the mixture was heated to 70 ° C. and melted under a nitrogen stream. Next, 150 g of 4-hydroxybenzoic acid (POB), 5.0 g of p-toluenesulfonic acid monohydrate and 2.4 g of hypophosphorous acid were added, and the temperature was raised to 130 ° C. over 1 hour. Reacted for hours. When the reaction solution was quantitatively analyzed by HPLC and GC, the conversion rate from the charged CeOH was 92.9 mol% (86.1 wt%) of CEPB, 8.7 mol% (2.8 wt%) of POB and CeOH 3.4 mol% (1.4 wt%) remained. Moreover, the conversion rate of Ce 2 O which is an ether form is 2.5 mol% (1.8 wt%), the conversion rate of PTS-Ce which is a sulfate ester is 0.81 mol% (1.0 wt%), By-product formation was confirmed.

実施例2
CeOHの代わりに、テトラコサノール(TcOH)263gを原料として加えた以外は実施例1と同様にして反応を行った。仕込んだTcOHからの転化率は、4−ヒドロキシ安息香酸テトラコシル(TCPB)94.8mol%(89.1重量%)であり、MOB9.5mol%(3.9重量%)およびTcOH3.8mol%(2.5重量%)が残存した。また、エーテル体であるジテトラコシルエーテル(TcO)および硫酸エステルであるp−トルエンスルホン酸テトラコシル(PTS−Tc)の生成は確認されなかった。
Example 2
The reaction was conducted in the same manner as in Example 1 except that 263 g of tetracosanol (TcOH) was added as a raw material instead of CeOH. The conversion from the charged TcOH was 94.8 mol% (89.1 wt%) tetracosyl 4-hydroxybenzoate (TCPB), 9.5 mol% (3.9 wt%) MOB and 3.8 mol% TcOH (2 0.5% by weight) remained. Further, generation of a di tetracosyl ether (Tc 2 O) and sulfuric acid ester ethers body p- toluenesulfonic acid tetracosyl (PTS-Tc) was observed.

比較例2
CeOHの代わりに、テトラコサノール(TcOH)347gを原料として加えた以外は比較例1と同様にして反応を行った。仕込んだTcOHからの転化率は、TCPB92.3mol%(88.6重量%)であり、POB9.0mol%(3.2重量%)およびTcOH3.7mol%(2.5重量%)が残存した。また、エーテル体であるTcOの転化率は2.7mol%(1.8重量%)、硫酸エステルであるPTS−Tcの転化率は0.90mol%(1.0重量%)であり、副生物の生成が確認された。
Comparative Example 2
The reaction was performed in the same manner as in Comparative Example 1 except that 347 g of tetracosanol (TcOH) was added as a raw material instead of CeOH. The conversion rate from the charged TcOH was TCPB 92.3 mol% (88.6 wt%), and POB 9.0 mol% (3.2 wt%) and TcOH 3.7 mol% (2.5 wt%) remained. Further, the conversion rate of Tc 2 O which is an ether form is 2.7 mol% (1.8 wt%), the conversion rate of PTS-Tc which is a sulfate ester is 0.90 mol% (1.0 wt%), By-product formation was confirmed.

実施例3
MOBの代わりに、4−ヒドロキシ安息香酸ブチル(NBE)を原料として加えた以外は実施例1と同様にして反応を行った。仕込んだCeOHからのCEPB転化率は70.3mol%であり、NBE43.8mol%およびCeOH29.7mol%が残存した。また、エーテル体であるジセチルエーテル(CeO)および硫酸エステルであるp−トルエンスルホン酸ヘキサデシルの生成は確認されなかった。
Example 3
The reaction was conducted in the same manner as in Example 1 except that butyl 4-hydroxybenzoate (NBE) was added as a raw material instead of MOB. The CEPB conversion from the charged CeOH was 70.3 mol%, and NBE 43.8 mol% and CeOH 29.7 mol% remained. Further, generation of dicetyl ether (Ce 2 O), and are sulfuric ester p- toluenesulfonic acid hexadecyl ethers member was not confirmed.

実施例4〜6
CeOHを表1に示す当量とし、反応温度を180℃および反応時間を4時間としたこと以外は、実施例1と同様にして反応を行った。結果を表1に示す。
Examples 4-6
The reaction was performed in the same manner as in Example 1 except that CeOH was set to the equivalent shown in Table 1, the reaction temperature was 180 ° C., and the reaction time was 4 hours. The results are shown in Table 1.

Figure 2016210699
Figure 2016210699

MOB:4−ヒドロキシ安息香酸メチル
CeOH:へキサデカノール
CEPB:4−ヒドロキシ安息香酸ヘキサデシル
CeO:ジセチルエーテル
PTS−Ce:p−トルエンスルホン酸ヘキサデシル
CeOH当量:原料MOBに対するCeOH仕込量のmol比
残存率:各出発物質の仕込量に対する残存する各出発物質のmol%
転化率:CeOH仕込量に対する生成した各成分のmol%
N.D.:検出限界以下
MOB: methyl 4-hydroxybenzoate CeOH: to Kisadekanoru CEPB: 4-hydroxybenzoic acid hexadecyl Ce 2 O: dicetyl ether PTS-Ce: p-toluenesulfonic acid hexadecyl CeOH equivalent: mol ratio of CeOH charged amount for material MOB remaining Rate: mol% of each starting material remaining relative to the charge of each starting material
Conversion rate: mol% of each component generated with respect to the amount of CeOH charged
N. D. : Below detection limit

実施例7〜10
CeOH当量、触媒、触媒量、反応温度および反応時間を表2に示す条件としたこと以外は、実施例1と同様にして反応を行った。実施例1とともに結果を表2に示す。
Examples 7-10
The reaction was carried out in the same manner as in Example 1 except that the conditions shown in Table 2 were used for the CeOH equivalent, catalyst, catalyst amount, reaction temperature, and reaction time. The results are shown in Table 2 together with Example 1.

Figure 2016210699
Figure 2016210699

TIPT:テトライソプロポキシチタン
PTS・HO:p−トルエンスルホン酸一水和物
MBTO:モノブチルスズオキシド
DBTO:ジブチルスズオキシド
Sb(OAc):酢酸アンチモン
Zr(OBu):テトラブトキシジルコニウム
TIPT: Tetraisopropoxytitanium PTS · H 2 O: p-Toluenesulfonic acid monohydrate MBTO: Monobutyltin oxide DBTO: Dibutyltin oxide Sb (OAc) 3 : Antimony acetate Zr (OBu) 4 : Tetrabutoxyzirconium

実施例11〜13
触媒量を表3に示す量としたこと以外は、実施例1と同様にして反応を行った。結果を表3に示す。
Examples 11-13
The reaction was performed in the same manner as in Example 1 except that the amount of catalyst was changed to the amount shown in Table 3. The results are shown in Table 3.

Figure 2016210699
Figure 2016210699

実施例14〜16
反応温度を表4に示す温度としたこと以外は、実施例1と同様にして反応を行った。結果を表4に示す。
Examples 14-16
The reaction was performed in the same manner as in Example 1 except that the reaction temperature was changed to the temperature shown in Table 4. The results are shown in Table 4.

Figure 2016210699
Figure 2016210699

実施例17〜19
反応時間を表5に示す時間としたこと以外は、実施例1と同様にして反応を行った。結果を表5に示す。
Examples 17-19
The reaction was performed in the same manner as in Example 1 except that the reaction time was set as shown in Table 5. The results are shown in Table 5.

Figure 2016210699
Figure 2016210699

実施例20
撹拌機、温度センサーおよび冷却管を備え、底部にコック付きの排出口を設けた1Lの底抜き4つ口フラスコに、水372g、メタノール875gおよび85重量%リン酸水溶液15gの混合溶液を仕込んだ。次いで、実施例1で得られた反応液273gを110℃まで冷却した後、混合溶液に加えた。溶液を60℃まで昇温して溶融させた後、同温度で1時間撹拌し、撹拌を停止して同温度で1時間静置することにより有機層と水層に分離し、下層の有機層を底部の排出口から回収した。
Example 20
A 1 L bottomed four-necked flask equipped with a stirrer, temperature sensor and cooling pipe and provided with a discharge port with a cock at the bottom was charged with a mixed solution of 372 g of water, 875 g of methanol and 15 g of 85 wt% aqueous phosphoric acid . Next, 273 g of the reaction solution obtained in Example 1 was cooled to 110 ° C. and then added to the mixed solution. After the solution was heated to 60 ° C. and melted, the solution was stirred at the same temperature for 1 hour, the stirring was stopped and the mixture was allowed to stand at the same temperature for 1 hour to separate into an organic layer and an aqueous layer. Was recovered from the bottom outlet.

回収した有機層にメタノール688gを加え、再度60℃まで昇温して溶解させた後、15℃まで冷却して晶析させた。晶析で得られた固形物を濾別によって取り出し、メタノール230gで洗浄した後、45℃、10mmHgの条件で乾燥させて、結晶236gを得た。   688 g of methanol was added to the collected organic layer, and the mixture was heated again to 60 ° C. and dissolved, and then cooled to 15 ° C. for crystallization. The solid matter obtained by crystallization was taken out by filtration, washed with 230 g of methanol, and then dried at 45 ° C. and 10 mmHg to obtain 236 g of crystals.

得られた結晶を、HPLCおよびGCにて定量分析を行ったところ、純度99.4重量%であり、CeOH0.2重量%、CE(PB)0.8重量%、チタン含有量1.2ppmであった。また、エーテル体であるジセチルエーテル(CeO)および硫酸エステルであるp−トルエンスルホン酸ヘキサデシルは検出されなかった。 When the obtained crystals were quantitatively analyzed by HPLC and GC, the purity was 99.4% by weight, CeOH 0.2% by weight, CE (PB) 2 0.8% by weight, titanium content 1.2 ppm. Met. Further, dicetyl ether (Ce 2 O) as an ether form and hexadecyl p-toluenesulfonate as a sulfate ester were not detected.

比較例3
撹拌機、温度センサーおよび冷却管を備え、底部にコック付きの排出口を設けた2Lの底抜き4つ口フラスコに、水450g、メタノール1050gおよび48重量%水酸化ナトリウム4.5gの混合溶液を仕込んだ。次いで、比較例1で得られた反応液386gを110℃まで冷却した後、混合溶液に加えた。溶液を60℃まで昇温して溶融させた後、同温度で1時間撹拌し、撹拌を停止して同温度で1時間静置することにより有機層と水層に分離した。
Comparative Example 3
A mixed solution of 450 g of water, 1050 g of methanol and 4.5 g of 48 wt% sodium hydroxide was added to a 2 L bottomed four-necked flask equipped with a stirrer, temperature sensor and cooling pipe and provided with a discharge port with a cock at the bottom. Prepared. Next, 386 g of the reaction solution obtained in Comparative Example 1 was cooled to 110 ° C. and then added to the mixed solution. The solution was heated to 60 ° C. and melted, and then stirred at the same temperature for 1 hour. The stirring was stopped and the mixture was allowed to stand at the same temperature for 1 hour to separate into an organic layer and an aqueous layer.

下層の有機層を底部の排出口より回収し、回収した有機層にメタノール825g加え、再度60℃まで昇温して溶解させた後、15℃まで冷却して晶析させた。晶析で得られた固形物を濾別によって取り出し、メタノール300gで洗浄した後、45℃、10mmHgの条件で乾燥させて、結晶352gを得た。   The lower organic layer was recovered from the bottom outlet, 825 g of methanol was added to the recovered organic layer, and the mixture was again heated to 60 ° C. and dissolved, and then cooled to 15 ° C. for crystallization. The solid matter obtained by crystallization was taken out by filtration, washed with 300 g of methanol, and then dried under conditions of 45 ° C. and 10 mmHg to obtain 352 g of crystals.

得られた結晶を、HPLCおよびGCにて定量分析を行ったところ、純度94.3重量%、POB0.04重量%、CeOH0.5重量%、CE(PB)0.61重量%であり、エーテル体であるCeOは2.0重量%残存した。 When the obtained crystals were quantitatively analyzed by HPLC and GC, the purity was 94.3% by weight, POB 0.04% by weight, CeOH 0.5% by weight, CE (PB) 2 0.61% by weight, Ce 2 O, which is an ether form, remained at 2.0% by weight.

実施例21
実施例2で得られた反応液395gを用いたこと以外は、実施例20と同様にして結晶349gを得た。得られた結晶を、HPLCおよびGCにて定量分析を行ったところ、純度98.0重量%、TcOH0.2重量%、TC(PB)1.5重量%、チタン含有量1.8ppmであり、エーテル体であるTcOおよび硫酸エステルであるPTS−Tcは検出されなかった。
Example 21
349 g of crystals were obtained in the same manner as in Example 20 except that 395 g of the reaction solution obtained in Example 2 was used. The obtained crystals were quantitatively analyzed by HPLC and GC. As a result, the purity was 98.0 wt%, TcOH 0.2 wt%, TC (PB) 2 1.5 wt%, and titanium content 1.8 ppm. In addition, Tc 2 O as an ether form and PTS-Tc as a sulfate ester were not detected.

比較例4
比較例2で得られた反応液520gを用いたこと以外は、比較例3と同様にして結晶480gを得た。得られた結晶を、HPLCおよびGCにて定量分析を行ったところ、純度94.0重量%、POB0.03重量%、TcOH0.6重量%、TC(PB)0.58重量%であり、エーテル体であるTcOは2.4重量%残存した。
Comparative Example 4
480 g of crystals were obtained in the same manner as in Comparative Example 3 except that 520 g of the reaction solution obtained in Comparative Example 2 was used. When the obtained crystals were quantitatively analyzed by HPLC and GC, the purity was 94.0% by weight, POB 0.03% by weight, TcOH 0.6% by weight, TC (PB) 2 0.58% by weight, 2.4% by weight of Tc 2 O, which is an ether form, remained.

このように、本発明によれば、出発原料である長鎖アルコールが2量化したエーテル体や、長鎖アルコールとプロトン酸触媒との反応による硫酸エステルなどの副生物を生成することなく、高純度の4−ヒドロキシ安息香酸長鎖エステルが得られることがわかる。また、反応液中の金属触媒を除去し、精製操作を行うことで、さらに高純度の4−ヒドロキシ安息香酸短鎖エステルが得られることが理解される。   As described above, according to the present invention, high purity can be achieved without producing by-products such as an ether form obtained by dimerizing a long-chain alcohol as a starting material, and a sulfate ester by a reaction between a long-chain alcohol and a protonic acid catalyst. It can be seen that 4-hydroxybenzoic acid long-chain ester is obtained. Moreover, it is understood that 4-hydroxybenzoic acid short chain ester of higher purity can be obtained by removing the metal catalyst in the reaction solution and performing a purification operation.

Claims (6)

金属触媒の存在下、式(1)で表される4−ヒドロキシ安息香酸短鎖エステルと、式(2)で表される脂肪族アルコールとを反応させる工程を含む、式(3)で表される4−ヒドロキシ安息香酸長鎖エステルの製造方法。
Figure 2016210699
Figure 2016210699
Figure 2016210699
(式中、mは1〜11の整数を示し、nは15〜23の整数を示す。)
In the presence of a metal catalyst, represented by formula (3), comprising a step of reacting a 4-hydroxybenzoic acid short chain ester represented by formula (1) with an aliphatic alcohol represented by formula (2). 4-hydroxybenzoic acid long-chain ester production method.
Figure 2016210699
Figure 2016210699
Figure 2016210699
(In the formula, m represents an integer of 1 to 11, and n represents an integer of 15 to 23.)
式(3)で表される4−ヒドロキシ安息香酸長鎖エステルが、4−ヒドロキシ安息香酸ヘキサデシルである、請求項1に記載の製造方法。   The production method according to claim 1, wherein the 4-hydroxybenzoic acid long chain ester represented by the formula (3) is hexadecyl 4-hydroxybenzoate. 式(1)で表される4−ヒドロキシ安息香酸短鎖エステルが、4−ヒドロキシ安息香酸メチルである、請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 whose 4-hydroxybenzoic acid short chain ester represented by Formula (1) is methyl 4-hydroxybenzoate. 4−ヒドロキシ安息香酸短鎖エステル1モルに対し、脂肪族アルコール0.1〜3モルを反応させる、請求項1〜3のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-3 with which 0.1-3 mol of aliphatic alcohol is made to react with respect to 1 mol of 4-hydroxybenzoic acid short chain ester. 4−ヒドロキシ安息香酸短鎖エステル100重量部に対し、金属触媒0.1〜10重量部を存在させる、請求項1〜4のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-4 which makes 0.1-10 weight part of metal catalysts exist with respect to 100 weight part of 4-hydroxybenzoic acid short chain ester. 4−ヒドロキシ安息香酸短鎖エステルと脂肪族アルコールとを、120〜200℃の温度で反応させる、請求項1〜5のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 5, wherein the 4-hydroxybenzoic acid short-chain ester and the aliphatic alcohol are reacted at a temperature of 120 to 200 ° C.
JP2015093389A 2015-04-30 2015-04-30 Method for producing 4-hydroxybenzoic acid long chain ester Active JP6747780B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015093389A JP6747780B2 (en) 2015-04-30 2015-04-30 Method for producing 4-hydroxybenzoic acid long chain ester
US15/130,180 US9790165B2 (en) 2015-04-30 2016-04-15 Production process and purification process of 4-hydroxy-benzoic acid long chain ester
EP16166386.9A EP3088379B1 (en) 2015-04-30 2016-04-21 Production process and purification process of 4-hydroxy-benzoic acid long chain ester
ES16166386.9T ES2643744T3 (en) 2015-04-30 2016-04-21 Production procedure and purification procedure of 4-hydroxybenzoic acid long chain ester
TW105112803A TWI703125B (en) 2015-04-30 2016-04-25 Production process and purification process of 4-hydroxy-benzoic acid long chain ester
KR1020160052050A KR102560812B1 (en) 2015-04-30 2016-04-28 Production process and purification process of 4-hydroxy-benzoic acid long chain ester
CN201610273034.7A CN106083593B (en) 2015-04-30 2016-04-28 Preparation method and purification method of 4-hydroxybenzoic acid long-chain ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093389A JP6747780B2 (en) 2015-04-30 2015-04-30 Method for producing 4-hydroxybenzoic acid long chain ester

Publications (2)

Publication Number Publication Date
JP2016210699A true JP2016210699A (en) 2016-12-15
JP6747780B2 JP6747780B2 (en) 2020-08-26

Family

ID=57550462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093389A Active JP6747780B2 (en) 2015-04-30 2015-04-30 Method for producing 4-hydroxybenzoic acid long chain ester

Country Status (1)

Country Link
JP (1) JP6747780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078178A (en) * 2018-12-21 2020-07-01 한국화학연구원 Composition comprising phase change material and method for producing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980636A (en) * 1982-10-30 1984-05-10 Ueno Seiyaku Oyo Kenkyusho:Kk Preparation of benzyl aromatic hydroxycarboxylate
JPH05320504A (en) * 1992-05-22 1993-12-03 Mitsubishi Kasei Corp Polyamide resin composition
JP2013060425A (en) * 2011-08-24 2013-04-04 Sumitomo Chemical Co Ltd Process for production of dihydroxy compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980636A (en) * 1982-10-30 1984-05-10 Ueno Seiyaku Oyo Kenkyusho:Kk Preparation of benzyl aromatic hydroxycarboxylate
JPH05320504A (en) * 1992-05-22 1993-12-03 Mitsubishi Kasei Corp Polyamide resin composition
JP2013060425A (en) * 2011-08-24 2013-04-04 Sumitomo Chemical Co Ltd Process for production of dihydroxy compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DYMICKY, M. ET AL, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 15, no. 6, JPN6018042239, 1979, pages 798 - 801 *
SUHAN, NATALIE D. ET AL: "Mesomorphic [2]Rotaxanes: Sheltering Ionic Cores with Interlocking Components", J. AM. CHEM. SOC., vol. vol.135, JPN6018042238, 2013, pages pp.400-408/Supporting Information S12 *
VOSMANN, K. ET AL, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER,BELIN, DE,, vol. Vol.80, JPN6018042241, 2008, pages 29 - 36 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200078178A (en) * 2018-12-21 2020-07-01 한국화학연구원 Composition comprising phase change material and method for producing thereof
WO2020130702A3 (en) * 2018-12-21 2020-10-15 한국화학연구원 Composition containing phase change material, and method for producing same
KR102211569B1 (en) * 2018-12-21 2021-02-02 한국화학연구원 Composition comprising phase change material and method for producing thereof

Also Published As

Publication number Publication date
JP6747780B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
EP3020704A2 (en) Crystalline polymorphs of clevidipine butyrate
EP2864286B1 (en) Process for the manufacture of alkylfluoroacrylate
JP6747780B2 (en) Method for producing 4-hydroxybenzoic acid long chain ester
JP5246516B2 (en) Method for isolating methyl-4-formylbenzoate and dimethyl terephthalate
JP6503227B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP6605311B2 (en) Process for producing 4-hydroxybenzoic acid long chain ester
JP6503220B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP2004300078A (en) Method for producing terephthalic acid diester
JP5463051B2 (en) Method for producing 1,4-dihydropyridine derivative
KR102560812B1 (en) Production process and purification process of 4-hydroxy-benzoic acid long chain ester
CN108314621B (en) Method for preparing long-chain diacid monoester
KR101341449B1 (en) Preparation of p-Chloromethylbenzoic acid and Benzoic acid from by-products in method for processing dimethyl terephthalate
JP2007031383A (en) Method for producing terephthalic acid diester
JP6503228B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP4961821B2 (en) Method for producing 1,2,3-propanetricarboxylic acid plate crystal
JP5790430B2 (en) Process for producing and purifying hydroxyadamantanecarboxylic acids
JP5229479B2 (en) Method for producing adamantane dialcohol
JP2010150220A (en) Method for producing adamantanecarboxylate
KR101521607B1 (en) Process of isolating methyl-4-formylbenzoate and dimethylterephtalate with high yield
JP6572399B1 (en) Method for purifying 2,15-hexadecanedione and method for producing 3-methylcyclopentadecenones
JP6518512B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP4397718B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP2009185040A (en) Method for producing terephthalic acid diester
JP2017149680A (en) Refining method of 4-hydroxybenzoic acid long-chain ester
JP2014169233A (en) Method for producing high purity optically active tartaric acid dialkyl ester

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6747780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250