JP4961821B2 - Method for producing 1,2,3-propanetricarboxylic acid plate crystal - Google Patents

Method for producing 1,2,3-propanetricarboxylic acid plate crystal Download PDF

Info

Publication number
JP4961821B2
JP4961821B2 JP2006122208A JP2006122208A JP4961821B2 JP 4961821 B2 JP4961821 B2 JP 4961821B2 JP 2006122208 A JP2006122208 A JP 2006122208A JP 2006122208 A JP2006122208 A JP 2006122208A JP 4961821 B2 JP4961821 B2 JP 4961821B2
Authority
JP
Japan
Prior art keywords
acid
reaction
crystal
ptc
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122208A
Other languages
Japanese (ja)
Other versions
JP2007291029A (en
Inventor
義博 木原
美奈子 帯田
栄次 徳保
幸緒 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2006122208A priority Critical patent/JP4961821B2/en
Publication of JP2007291029A publication Critical patent/JP2007291029A/en
Application granted granted Critical
Publication of JP4961821B2 publication Critical patent/JP4961821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、1,2,3−プロパントリカルボン酸板状結晶の製造方法に関し、更に詳しくは、1,2,3−プロパントリカルボン酸水溶液から晶析操作により、高純度の1,2,3−プロパントリカルボン酸を濾過分離特性の優れた板状結晶として製造する方法に関する。   The present invention relates to a method for producing a 1,2,3-propanetricarboxylic acid plate-like crystal, and more specifically, a high-purity 1,2,3-polyamide by crystallization from a 1,2,3-propanetricarboxylic acid aqueous solution. The present invention relates to a method for producing propanetricarboxylic acid as a plate-like crystal having excellent filtration separation characteristics.

近年、1,2,3−プロパントリカルボン誘導体(特にアミド系化合物)は、ポリオレフィン樹脂の透明性、結晶性及び剛性を改善する樹脂添加剤として注目されている(特許文献1〜3参照)。   In recent years, 1,2,3-propanetricarboxylic derivatives (particularly amide compounds) have attracted attention as resin additives that improve the transparency, crystallinity and rigidity of polyolefin resins (see Patent Documents 1 to 3).

これまで1,2,3−プロパントリカルボン酸及びそのトリエステルの製造方法の典型例としては次のものがある。
(a)マレイン酸ジエチルとマロン酸ジエチルとをナトリウムエチラート触媒の存在下に反応させ、得られたマイケル付加物を塩酸水溶液中で加水分解し、脱炭酸する方法(非特許文献1、2参照)。
(b)クエン酸トリエチルエステルをCuO−Al2O3 触媒存在下、テトラヒドロフラン溶剤中、175℃及び10バールにおいて水素化反応させる方法(特許文献4参照)。(c)2−(2’−ブテニル)コハク酸を触媒の存在下に硝酸で酸化する方法(特許文献5参照)。
The following are typical examples of methods for producing 1,2,3-propanetricarboxylic acid and triesters thereof.
(A) A method in which diethyl maleate and diethyl malonate are reacted in the presence of a sodium ethylate catalyst, and the resulting Michael adduct is hydrolyzed in an aqueous hydrochloric acid solution and decarboxylated (see Non-Patent Documents 1 and 2). ).
(B) A method in which citric acid triethyl ester is hydrogenated in a tetrahydrofuran solvent at 175 ° C. and 10 bar in the presence of a CuO—Al 2 O 3 catalyst (see Patent Document 4). (C) A method of oxidizing 2- (2′-butenyl) succinic acid with nitric acid in the presence of a catalyst (see Patent Document 5).

1,2,3−プロパントリカルボン酸の工業的生産を想定した場合は、上記のいずれの製造方法によるとしても、反応終了後、1,2,3−プロパントリカルボン酸を含む水溶液から1,2,3−プロパントリカルボン酸を単離し、最終的に製品として取得するためには、晶析操作が不可欠である。   Assuming industrial production of 1,2,3-propanetricarboxylic acid, any of the above-described production methods can be carried out from an aqueous solution containing 1,2,3-propanetricarboxylic acid after completion of the reaction. In order to isolate 3-propanetricarboxylic acid and finally obtain it as a product, a crystallization operation is indispensable.

しかしながら、上記いずれの方法においても、1,2,3−プロパントリカルボン酸水溶液から晶析法により1,2,3−プロパントリカルボン酸結晶を得ようとすると、室温での溶解度が大きいため、工業的に大量に1,2,3−プロパントリカルボン酸を取得できないという欠点を有している。そのため、この欠点を補うために高濃度の1,2,3−プロパントリカルボン酸水溶液から晶析を行うか又は過剰な冷却を行う必要があった。   However, in any of the above methods, when 1,2,3-propanetricarboxylic acid crystals are obtained from a 1,2,3-propanetricarboxylic acid aqueous solution by a crystallization method, the solubility at room temperature is large. In addition, a large amount of 1,2,3-propanetricarboxylic acid cannot be obtained. Therefore, in order to compensate for this defect, it was necessary to perform crystallization from a high concentration 1,2,3-propanetricarboxylic acid aqueous solution or to perform excessive cooling.

本発明者らが予備的に高濃度条件で撹拌又は無撹拌下で空冷により晶析を行った結果、水溶液全体に、一気に針状結晶が析出し、攪拌・固液分離の操作が困難になることがわかった。また、1,2,3−プロパントリカルボン酸の室温での溶解度(例えば、25℃で約38重量%)が、非常に大きいため、晶析、濾過後、得られた結晶表面の付着母液を除去するため水ですすいだ場合、収量が低下し、生産性が著しく悪くなることもわかった。   As a result of the inventors preliminarily performing crystallization by air cooling under high concentration conditions with stirring or without stirring, needle-like crystals precipitate all at once in the entire aqueous solution, making it difficult to perform stirring and solid-liquid separation. I understood it. In addition, the solubility of 1,2,3-propanetricarboxylic acid at room temperature (for example, about 38% by weight at 25 ° C.) is very large, and thus the mother liquor on the obtained crystal surface is removed after crystallization and filtration. It was also found that when rinsing with water to reduce the yield, the productivity was significantly worsened.

これまでに、1,2,3−プロパントリカルボン酸の再結晶の際に、溶媒として水を用いることができることが記載されている(非特許文献2参照)。しかしながら、この文献には、水を用いた場合の再結晶条件、得られる結晶の純度や結晶形状については全く言及されていない。また、上記問題点があるために晶析法が工業的に積極的に用いられることがなかったというのが実状である。これまで、1,2,3−プロパントリカルボン酸水溶液から晶析により、1,2,3−プロパントリカルボン酸板状結晶が得られることについては知られておらず、当然その製造条件についても何ら記載、示唆されていなかった。   It has been described so far that water can be used as a solvent in the recrystallization of 1,2,3-propanetricarboxylic acid (see Non-Patent Document 2). However, this document makes no mention of recrystallization conditions in the case of using water, and the purity and crystal shape of the crystals obtained. In addition, the fact is that the crystallization method has not been actively used industrially due to the above problems. Until now, it has not been known that 1,2,3-propanetricarboxylic acid plate-like crystals can be obtained by crystallization from an aqueous 1,2,3-propanetricarboxylic acid solution, and the production conditions are of course described at all. Was not suggested.

Org.Syn.Coll.Vol.1,272Org. Syn. Coll. Vol. 1,272 Org.Syn.Coll.Vol.1,523Org. Syn. Coll. Vol. 1,523 日本特許第3401868号公報Japanese Patent No. 3401868 特開平7−242610号公報Japanese Patent Laid-Open No. 7-242610 WO00/52089号公報WO00 / 52089 特開平6−192167号公報JP-A-6-192167 フランス特許第1515153号French Patent No. 1515153

本発明の目的は、晶析操作により高純度の1,2,3−プロパントリカルボン酸を、濾過分離特性の優れた板状結晶として製造する方法を提供することにある。   An object of the present invention is to provide a method for producing high-purity 1,2,3-propanetricarboxylic acid as a plate-like crystal having excellent filtration separation characteristics by a crystallization operation.

本発明者らは、かかる現状に鑑み、上記課題を解決すべく鋭意検討した結果、特定の濃度の1,2,3−プロパントリカルボン酸水溶液を、特定の撹拌速度で撹拌しながら、特定の条件下で冷却晶析することにより、濾過分離特性に優れ、しかも純度の高い1,2,3−プロパントリカルボン酸板状結晶を収率良く得られることを見出し、本発明を完成するに至った。   In view of the present situation, the present inventors have intensively studied to solve the above problems, and as a result, while stirring a 1,2,3-propanetricarboxylic acid aqueous solution having a specific concentration at a specific stirring speed, specific conditions are satisfied. By cooling and crystallizing under the above, it has been found that 1,2,3-propanetricarboxylic acid plate-like crystals having excellent filtration separation characteristics and high purity can be obtained with good yield, and the present invention has been completed.

即ち、本発明は以下の1,2,3−プロパントリカルボン酸板状結晶の製造方法を提供するものである。   That is, the present invention provides the following method for producing 1,2,3-propanetricarboxylic acid plate crystals.

[項1] 1,2,3−プロパントリカルボン酸水溶液から、1,2,3−プロパントリカルボン酸を晶析するにあたり、1,2,3−プロパントリカルボン酸濃度が45〜60重量%の水溶液を、60℃〜30℃の温度範囲内において、撹拌レイノルズ数が3,000〜20,000、冷却速度が15℃/時間以下の条件で晶析をおこなうことを特徴とする1,2,3−プロパントリカルボン酸板状結晶の製造方法。   [Item 1] In crystallization of 1,2,3-propanetricarboxylic acid from a 1,2,3-propanetricarboxylic acid aqueous solution, an aqueous solution having a 1,2,3-propanetricarboxylic acid concentration of 45 to 60% by weight is obtained. In the temperature range of 60 ° C. to 30 ° C., crystallization is performed under conditions where the stirring Reynolds number is 3,000 to 20,000 and the cooling rate is 15 ° C./hour or less. Propane tricarboxylic acid plate crystal production method.

[項2] さらに、上記水溶液に種晶を入れて晶析することを特徴とする上記項1に記載の製造方法。   [Item 2] The production method according to Item 1, wherein the aqueous solution is further seeded with a seed crystal.

[項3] 上記板状結晶の平均粒径が50〜500μmの範囲内にある上記項1又は2に記載の製造方法。   [Item 3] The method according to Item 1 or 2, wherein the plate-like crystal has an average particle size in the range of 50 to 500 μm.

[項4] 1,2,3−プロパントリカルボン酸板状結晶を晶析させた後、固液分離して得られる母液を、1,2,3−プロパントリカルボン酸水溶液として再使用する上記項1〜3のいずれかに記載の製造方法。   [Item 4] The item 1, wherein a mother liquor obtained by solid-liquid separation after crystallization of 1,2,3-propanetricarboxylic acid plate crystals is reused as an aqueous 1,2,3-propanetricarboxylic acid solution. The manufacturing method in any one of -3.

[項5] 上記水溶液が、(i)マレイン酸ジエステルとマロン酸ジエステルとを、アルカリ触媒存在下に反応させてマイケル反応付加物を得、次いで、使用したアルカリ触媒を除去後、(ii)得られたマイケル反応付加物を酸触媒下、加水分解して得られる反応水溶液である上記項1〜4のいずれかに記載の製造方法。   [Item 5] The above aqueous solution is obtained by reacting (i) maleic acid diester and malonic acid diester in the presence of an alkali catalyst to obtain a Michael reaction adduct, and then removing the used alkali catalyst and obtaining (ii) Item 5. The production method according to any one of Items 1 to 4, which is a reaction aqueous solution obtained by hydrolyzing the obtained Michael reaction adduct in the presence of an acid catalyst.

[項6] 1,2,3−プロパントリカルボン酸板状結晶を晶析させた後、固液分離して得られる母液を、上記項5における(ii)段階の加水分解反応に用いる上記項5に記載の製造方法。   [Item 6] The item 5 above, wherein the mother liquor obtained by solid-liquid separation after crystallizing the 1,2,3-propanetricarboxylic acid plate crystal is used for the hydrolysis reaction at the stage (ii) in the item 5. The manufacturing method as described in.

本発明の製造方法により、1,2,3−プロパントリカルボン酸を板状結晶で得ることができる。かかる板状結晶は、固液分離性が良好であり、不純物が溶存する母液の結晶への付着率が低減できるため、高純度1,2,3−プロパントリカルボン酸を得ることができる。   By the production method of the present invention, 1,2,3-propanetricarboxylic acid can be obtained as plate crystals. Such plate crystals have good solid-liquid separability and can reduce the adhesion rate of the mother liquor in which impurities are dissolved to the crystals, so that high-purity 1,2,3-propanetricarboxylic acid can be obtained.

以下に本発明を実施するための最良の形態を詳細に説明する。   The best mode for carrying out the present invention will be described in detail below.

[1,2,3−プロバントリカルボン酸]
本発明に係る1,2,3−プロパントリカルボン酸(以下、「PTC」と略記する。)の製造方法には特に制限はなく、いずれの方法で作られたものであってもよい。具体的には、上記(a)〜(c)に例示される従来公知の方法の他、(d)2−(2’−アルケニル)コハク酸をリン・タングステン酸触媒の存在下、過酸化水素により酸化開裂する方法などが例示されるが、これらに限定されるものではない。
[1,2,3-Provantricarboxylic acid]
There is no particular limitation on the method for producing 1,2,3-propanetricarboxylic acid (hereinafter abbreviated as “PTC”) according to the present invention, and it may be produced by any method. Specifically, in addition to the conventionally known methods exemplified in the above (a) to (c), (d) 2- (2′-alkenyl) succinic acid is treated with hydrogen peroxide in the presence of a phosphorus / tungstic acid catalyst. Examples of the method include oxidative cleavage, but are not limited thereto.

上記(a)製造方法によるPTCの製造例について以下に説明する。
(a)製造方法は、マレイン酸ジエステルとマロン酸ジエステルとを、アルコラート等の塩基触媒存在下に、溶媒中又は無溶媒で付加反応させ対応するテトラエステルを得るマイケル付加工程、及び得られたテトラエステルを、酸触媒存在下に加水分解させPTCを得る加水分解工程からなる。
A production example of PTC by the production method (a) will be described below.
(A) The production method includes a Michael addition step in which a maleic acid diester and a malonic acid diester are subjected to an addition reaction in the presence of a base catalyst such as an alcoholate in a solvent or without solvent to obtain a corresponding tetraester, and the obtained tetra The hydrolysis step comprises hydrolysis of an ester in the presence of an acid catalyst to obtain PTC.

マレイン酸ジエステル及びマロン酸ジエステルは、市販品を入手できる他に従来公知の方法に従い、それぞれの酸とアルコールとのエステル化反応により容易に製造できる化合物である。   Maleic acid diesters and malonic acid diesters are compounds that can be easily obtained by an esterification reaction of each acid and an alcohol in accordance with a conventionally known method, in addition to obtaining commercially available products.

マレイン酸ジエステルとしては、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジn−プロピル、マレイン酸ジイソプロピル、マレイン酸ジn−ブチル、マレイン酸ジsec−ブチル、マレイン酸ジn−ペンチル、マレイン酸ジ−ヘキシル等のマレイン酸と炭素数1〜6の直鎖又は分岐アルコールとのマレイン酸ジエステルが好ましく、なかでも、マレイン酸ジエチル、マレイン酸ジメチルが工業的に入手が容易である点で好ましく、特にマレイン酸ジメチルが好ましい。   As maleic acid diesters, dimethyl maleate, diethyl maleate, di-n-propyl maleate, diisopropyl maleate, di-n-butyl maleate, di-sec-butyl maleate, di-n-pentyl maleate, di-maleate Maleic acid diesters of maleic acid such as hexyl and straight-chain or branched alcohols having 1 to 6 carbon atoms are preferred. Among them, diethyl maleate and dimethyl maleate are preferred because they are easily available industrially. Dimethyl acid is preferred.

マロン酸ジエステルとしては、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn−プロピル、マロン酸ジイソプロピル、マロン酸ジn−ブチル、マロン酸ジsec−ブチル、マロン酸ジn−ペンチル、マロン酸ジn−ヘキシル等のマロン酸と炭素数1〜6の直鎖又は分岐アルコールとのマロン酸ジエステルが好ましく、なかでも、マロン酸ジエチル、マロン酸ジメチルが工業的に入手が容易である点で好ましく、特に、マロン酸ジメチルが推奨される。   Malonic acid diesters include dimethyl malonate, diethyl malonate, di-n-propyl malonate, diisopropyl malonate, di-n-butyl malonate, di-sec-butyl malonate, di-n-pentyl malonate, di-n-malonate. -Malonic acid diesters of malonic acid such as hexyl and linear or branched alcohols having 1 to 6 carbon atoms are preferable, and among them, diethyl malonate and dimethyl malonate are preferable in terms of industrial availability, especially Dimethyl malonate is recommended.

そのマロン酸ジエステルの使用量は、マレイン酸ジエステル1モルに対して、0.5〜2モル、好ましくは、0.8〜1.2モル、さらに好ましくは0.95〜1.05モルが好ましい。   The amount of malonic acid diester used is preferably 0.5 to 2 mol, preferably 0.8 to 1.2 mol, more preferably 0.95 to 1.05 mol, per mol of maleic acid diester. .

マイケル付加工程に用いられる塩基触媒としては、ナトリウムメチラート、ナトリウムエチラート、カリウムt−ブチラートなどのアルコラート、水酸化ナトリウム、水酸化カリウム、ナトリウムアミド、水素化ナトリウム等が挙げられる。これらのうち反応性の点でアルコラートが好ましく、特に、ナトリウムメチラート又はナトリウムエチラートを用いるのが好ましい。これらのアルコラートは1種又は2種以上で用いることができる。その使用量は、マロン酸ジエステルに対して、0.01〜10mol%が好ましく、0.5〜5mol%がさらに好ましい。   Examples of the base catalyst used in the Michael addition step include alcoholates such as sodium methylate, sodium ethylate and potassium t-butylate, sodium hydroxide, potassium hydroxide, sodium amide, sodium hydride and the like. Of these, alcoholate is preferable in view of reactivity, and sodium methylate or sodium ethylate is particularly preferable. These alcoholates can be used alone or in combination of two or more. The amount to be used is preferably 0.01 to 10 mol%, more preferably 0.5 to 5 mol%, based on malonic acid diester.

溶媒は用いても用いなくてもよいが、無溶媒で行うほうが製造面や経済面で有利なことからさらに好ましい。溶媒を用いる場合、トルエン,ベンゼンなどの芳香族系炭化水素,メタノール,エタノール,イソプロピルアルコールなどのアルコール類,ジオキサン,テトラヒドロフランなどのエーテル類,N,N−ジメチルホルムアミド,ジメチルスルホキシドなどが使用できる。特に、エタノール、トルエン,N,N−ジメチルホルムアミドが好適である。溶媒量は特に制限が無く、1〜10倍重量があれば十分である。   A solvent may or may not be used, but it is more preferable to carry out without a solvent because it is advantageous in terms of production and economy. When a solvent is used, aromatic hydrocarbons such as toluene and benzene, alcohols such as methanol, ethanol and isopropyl alcohol, ethers such as dioxane and tetrahydrofuran, N, N-dimethylformamide, dimethyl sulfoxide and the like can be used. In particular, ethanol, toluene, N, N-dimethylformamide is preferable. There is no restriction | limiting in particular in the amount of solvent, and if it is 1-10 times weight, it is enough.

反応は、マロン酸ジエステル、塩基触媒、必要に応じて溶媒を仕込み、所定の反応温度に昇温後、発熱による昇温を抑制できる速度でマレイン酸ジエステルを滴下し、続いて、所定の反応温度で、所定の時間加熱撹拌を行い進行させることが好ましい。   In the reaction, malonic acid diester, a base catalyst, and a solvent as necessary are added. After the temperature is raised to a predetermined reaction temperature, maleic acid diester is dropped at a rate that can suppress the temperature rise due to heat generation, and then the predetermined reaction temperature is reached. Therefore, it is preferable to proceed with heating and stirring for a predetermined time.

その反応温度としては、通常、0℃〜100℃の温度範囲、好ましくは20〜80℃の範囲であり、0℃に満たない場合は反応が遅延し、100℃を越える場合は副生物の生成が見られ、目的化合物の反応収率低下の傾向がある。   The reaction temperature is usually in the temperature range of 0 ° C. to 100 ° C., preferably in the range of 20 ° C. to 80 ° C. When the temperature is less than 0 ° C., the reaction is delayed, and when it exceeds 100 ° C., by-products are formed. The reaction yield of the target compound tends to decrease.

反応時間としては、マロン酸ジエステル、マレイン酸ジエステルの種類、触媒量及びその濃度、反応温度等により変わり得るが、通常1〜30時間、好ましくは2〜10時間程度である。   The reaction time may vary depending on the type of malonic acid diester and maleic acid diester, the amount and concentration of the catalyst, the reaction temperature, and the like, but is usually 1 to 30 hours, preferably about 2 to 10 hours.

反応は、大気下でも実施することができるが、安全性の観点からは、窒素、アルゴンなどの不活性ガス雰囲気下で行うのが好ましい。   The reaction can be carried out in the air, but from the viewpoint of safety, the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.

マイケル付加反応終了後、使用した塩基触媒を除去するため中和・水洗又は水洗を行い、次いで、溶媒を常圧〜減圧下で留去することにより得られるテトラエステルは次の加水分解工程の原料としてそのまま使用することができる。特に、無溶媒で反応した場合、中和・水洗又は水洗を行うだけでよくプロセスの効率化を図ることができる。さらに必要に応じて、得られたテトラエステルを減圧蒸留して、加水分解工程の原料としてもよい。   After the completion of the Michael addition reaction, neutralization, water washing or water washing is performed to remove the used base catalyst, and then the tetraester obtained by distilling off the solvent under normal pressure to reduced pressure is the raw material for the next hydrolysis step. Can be used as is. In particular, when the reaction is carried out without a solvent, it is only necessary to carry out neutralization, washing with water or washing with water, and the efficiency of the process can be improved. Further, if necessary, the obtained tetraester may be distilled under reduced pressure and used as a raw material for the hydrolysis step.

次に得られたテトラエステルの加水分解工程について記載する。
加水分解反応は、平衡反応であるので、通常、生成するアルコールを反応系外へ留去しながら実施するのが有利である。そのため、加水分解反応を、生成したアルコールを含有する水の留出量に相当する量の水を連続的に又は間欠的に追加しながら行うことが好ましく、アルコールの留出が見られなくなったら加水分解は終了する。
Next, it describes about the hydrolysis process of the obtained tetraester.
Since the hydrolysis reaction is an equilibrium reaction, it is usually advantageous to carry out the distillation while distilling off the produced alcohol to the outside of the reaction system. Therefore, it is preferable to carry out the hydrolysis reaction while continuously or intermittently adding an amount of water corresponding to the amount of distilled water containing the produced alcohol. The decomposition ends.

加水分解反応に使用する酸触媒としては、有機スルホン酸が好ましく、p−トルエンスルホン酸 、メタンスルホン酸、エタンスルホン酸 、ベンゼンスルホン酸 などが挙げられるが、一般的にはp−トルエンスルホン酸が用いられる。   The acid catalyst used for the hydrolysis reaction is preferably an organic sulfonic acid, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, and benzenesulfonic acid. Generally, p-toluenesulfonic acid is used. Used.

他の酸性触媒、例えばリン酸、硫酸、塩酸などの強酸、ダイヤイオン SK1BH(商品名、三菱化学(株)製)、アンバーライト IR−120B(商品名、ローム アンド ハース社製)Nafion NR−50(商品名、デュポン社製)等の強酸性イオン交換樹脂も使用できる。   Other acidic catalysts, for example, strong acids such as phosphoric acid, sulfuric acid, hydrochloric acid, Diaion SK1BH (trade name, manufactured by Mitsubishi Chemical Corporation), Amberlite IR-120B (trade name, manufactured by Rohm and Haas) Nafion NR-50 A strongly acidic ion exchange resin such as (trade name, manufactured by DuPont) can also be used.

使用する酸触媒の量は、テトラエステルに対して0.1〜10重量%、好ましくは0.5〜8重量%、さらに好ましくは1〜5重量%である。0.1重量%に満たない場合は、加水分解反応速度が遅く、一方、10重量%を超えた場合は、添加量に相応する速度上昇を得ることができず経済的ではない。   The amount of the acid catalyst used is 0.1 to 10% by weight, preferably 0.5 to 8% by weight, more preferably 1 to 5% by weight, based on the tetraester. When the amount is less than 0.1% by weight, the hydrolysis reaction rate is slow. On the other hand, when the amount exceeds 10% by weight, a rate increase corresponding to the amount added cannot be obtained, which is not economical.

加水分解反応での水の使用量は、通常、テトラエステルに対して、好ましくは0.5〜20倍当量、好ましくは0.5〜10倍当量、さらに好ましくは、0.5〜5倍当量である。   The amount of water used in the hydrolysis reaction is usually preferably 0.5 to 20 times equivalent, preferably 0.5 to 10 times equivalent, more preferably 0.5 to 5 times equivalent to the tetraester. It is.

反応温度としては、通常、50〜150℃、好ましくは90〜110℃である。反応時間は、他の反応条件により異なってくるが、通常、3〜30時間、好ましくは10〜25時間である。   As reaction temperature, it is 50-150 degreeC normally, Preferably it is 90-110 degreeC. The reaction time varies depending on other reaction conditions, but is usually 3 to 30 hours, preferably 10 to 25 hours.

このようにして得られたPTCを含有する加水分解終了後の水溶液から、溶媒を留去するなどして粗PTC結晶を単離してもよいが、PTCを含有する水溶液としてそのまま、本発明に供することもできる。   Crude PTC crystals may be isolated from the aqueous solution containing PTC thus obtained after completion of hydrolysis by distilling off the solvent or the like. However, the aqueous solution containing PTC is used as it is for the present invention. You can also

次に、(d)製造方法によるPTCの製造例について以下に記載する。
(d)製造方法は、2−(2’−アルケニル)コハク酸或いはその無水物を、水又は水と混和可能な溶媒中、タングステン酸、モリブデン酸、及びこれらのヘテロポリ酸を触媒として、過酸化水素により酸化することによりPTCを製造する方法である。
Next, a manufacturing example of PTC by (d) manufacturing method will be described below.
(D) The production method comprises peroxidation of 2- (2′-alkenyl) succinic acid or its anhydride in water or a solvent miscible with water, using tungstic acid, molybdic acid, and their heteropolyacid as a catalyst. This is a method for producing PTC by oxidation with hydrogen.

ここにいうヘテロポリ酸とは、2種以上の酸素酸からなる縮合酸であり、ポリ酸原子としては、タングステン及びモリブデンであり、ヘテロ原子としては、P、As、Si、Ti、Co、Fe、B、V、Be、I、Ni、Ga等が例示される。触媒の使用量としては、触媒活性が発揮されるのに有効な量である限り、広い範囲から選択される。しかし、反応速度及び触媒のコストの観点からは、遊離酸(タングステン酸、モリブデン酸又はこれらのヘテロポリ酸)換算で、2−(2’−アルケニル)コハク酸に対し0.01〜30重量%、好ましくは1〜10重量%が推奨される。   The heteropolyacid here is a condensed acid composed of two or more oxygen acids, the polyacid atoms are tungsten and molybdenum, and the heteroatoms are P, As, Si, Ti, Co, Fe, Examples include B, V, Be, I, Ni, Ga, and the like. The amount of catalyst used is selected from a wide range as long as it is an amount effective for exhibiting catalytic activity. However, from the viewpoint of the reaction rate and the cost of the catalyst, 0.01 to 30% by weight based on 2- (2′-alkenyl) succinic acid in terms of free acid (tungstic acid, molybdic acid or their heteropolyacid), 1 to 10% by weight is recommended.

反応溶媒としては、水、水と混和可能な有機溶媒、例えば炭素数1〜4のアルコール、ジオキサン、テトラヒドロフラン、ジメチルホルムアミド等を単独で使用し、又は均一相を保つ範囲で水と併用することも可能である。なかでも水、炭素数1〜4の水混和性溶媒、又はこれらの混合溶媒が好ましく、特に水が好ましい。   As the reaction solvent, water, an organic solvent miscible with water, for example, alcohol having 1 to 4 carbon atoms, dioxane, tetrahydrofuran, dimethylformamide or the like may be used alone, or may be used in combination with water as long as a uniform phase is maintained. Is possible. Of these, water, a water-miscible solvent having 1 to 4 carbon atoms, or a mixed solvent thereof is preferable, and water is particularly preferable.

反応時の基質の濃度としては、特に限定されないが、その濃度は、2〜70重量%の範囲が好ましく、15〜60重量%の範囲がより好ましい。係る範囲内で反応を行うことにより、高収率、高純度で目的物が得られる傾向にある。   Although it does not specifically limit as a density | concentration of the substrate at the time of reaction, The range of 2-70 weight% is preferable, and the range of 15-60 weight% is more preferable. By carrying out the reaction within such a range, the target product tends to be obtained with high yield and high purity.

本反応に必要な過酸化水素の化学量論量は、2−(2’−アルケニル)コハク酸1モルに対し4モルであるが、通常4〜12モル、好ましくは6〜10モル使用するのが望ましい。反応混合物中の過酸化水素の濃度は、広い範囲から選択できる。その下限は、2−(2’−アルケニル)コハク酸を酸化した触媒が、過酸化水素により酸化能力を回復するのに充分な濃度であればよく、かなり稀薄なものでも反応速度の低下は避けられないが、酸化反応は進行する。また、上限は特に存在せず、かなりの高濃度であってもよい。しかしながら、反応速度を向上させ、かつ低濃度の過酸化水素を用いて製造コストの低減を図る観点からは、0.1ミリモル/L〜12モル/L、好ましくは10ミリモル/L〜8モル/Lが有利である。過酸化水素は、通常、5〜60重量%の水溶液の形態で供給され、いずれの濃度の過酸化水素も使用できるが、40〜60重量%の過酸化水素が好ましい。   The stoichiometric amount of hydrogen peroxide required for this reaction is 4 moles per mole of 2- (2′-alkenyl) succinic acid, but usually 4 to 12 moles, preferably 6 to 10 moles. Is desirable. The concentration of hydrogen peroxide in the reaction mixture can be selected from a wide range. The lower limit is that the concentration of the catalyst obtained by oxidizing 2- (2′-alkenyl) succinic acid is sufficient to restore the oxidation ability with hydrogen peroxide, and even if it is very dilute, avoid a decrease in reaction rate. Although not possible, the oxidation reaction proceeds. In addition, there is no particular upper limit, and a considerably high concentration may be used. However, from the viewpoint of improving the reaction rate and reducing the production cost using a low concentration of hydrogen peroxide, 0.1 mmol / L to 12 mol / L, preferably 10 mmol / L to 8 mol / L. L is advantageous. Hydrogen peroxide is usually supplied in the form of a 5 to 60% by weight aqueous solution, and any concentration of hydrogen peroxide can be used, but 40 to 60% by weight hydrogen peroxide is preferred.

反応温度としては、反応速度の点から、通常、20〜150℃、好ましくは60〜130℃の温度範囲が例示される。反応は、常圧下、加圧下又は減圧下のいずれでも行うことができる。反応速度の観点及び過酸化水素の分解を防止又は抑制する観点からは、60〜130℃、好ましくは80〜100℃、特に還流温度で反応を行なうのが好ましい。   Examples of the reaction temperature include a temperature range of usually 20 to 150 ° C., preferably 60 to 130 ° C., from the viewpoint of the reaction rate. The reaction can be carried out under normal pressure, under pressure or under reduced pressure. From the viewpoint of the reaction rate and from the viewpoint of preventing or suppressing the decomposition of hydrogen peroxide, the reaction is preferably performed at 60 to 130 ° C, preferably 80 to 100 ° C, particularly at the reflux temperature.

反応時間としては、2−(2’−アルケニル)コハク酸の種類、触媒及び過酸化水素の濃度、反応温度、副生する有機モノカルボン酸の留去の有無等により変わり得るが、通常1〜50時間、好ましくは5〜25時間、より好ましくは6〜20時間の範囲である。   The reaction time may vary depending on the type of 2- (2′-alkenyl) succinic acid, the concentration of the catalyst and hydrogen peroxide, the reaction temperature, whether or not the organic monocarboxylic acid produced as a by-product is distilled off, etc. It is in the range of 50 hours, preferably 5 to 25 hours, more preferably 6 to 20 hours.

また、副生する脂肪族モノカルボン酸は、反応系外に留去させることが好ましい。その方法としては、特に制限がないが、水とともに系外に蒸発、留去させる方法が簡便で好ましい。   Moreover, it is preferable to distill off the aliphatic monocarboxylic acid by-produced out of the reaction system. The method is not particularly limited, but a method of evaporating and distilling out of the system together with water is simple and preferable.

反応は、常圧下または減圧下のいずれで行ってもよく、連続式またはバッチ式のいずれの方式で行ってもよい。また、反応は、大気下でも実施することができるが、安全性の観点からは、窒素、アルゴンなどの不活性ガス雰囲気下で行うのが好ましい。   The reaction may be carried out under normal pressure or reduced pressure, and may be carried out in either a continuous or batch manner. The reaction can also be carried out in the air, but from the viewpoint of safety, it is preferably carried out in an inert gas atmosphere such as nitrogen or argon.

このようにして得られたPTCを含有する酸化反応終了後の水溶液から、溶媒を留去するなどして粗PTC結晶を単離してもよく、また、PTCを含有する水溶液のまま、本発明に供することもできる。   Crude PTC crystals may be isolated from the aqueous solution after completion of the oxidation reaction containing PTC thus obtained by distilling off the solvent or the like, and the aqueous solution containing PTC can be used in the present invention. Can also be provided.

上記、(a)及び(d)製造方法では反応終了後に得られる水溶液をそのまま本発明に供することができる点で好ましく、特に、(a)製造方法により得られる反応水溶液が、得られるPTC板状結晶の収率、純度及び色相の点で特に好ましい。   In the above production methods (a) and (d), the aqueous solution obtained after the completion of the reaction is preferable in that it can be used as it is, and in particular, the aqueous reaction solution obtained by the production method (a) is a PTC plate obtained. It is particularly preferred in terms of crystal yield, purity and hue.

また、上記例示の(a)及び(d)以外の方法で得られたPTCを含有する水溶液を本発明に供することができる。これらの水溶液は、晶析前に、活性炭を用いて脱色処理することもできる。その使用量は、PTC100重量部に対して、0.01〜20重量部の範囲が好ましく、より好ましくは0.1〜10重量部の範囲、さらに好ましくは0.1〜5重量部の範囲である。処理温度は、通常、得られた反応水溶液から結晶が析出しない最低温度から100℃の範囲であり、好ましくは、結晶が析出しない最低温度から50℃の範囲である。処理時間は、通常1分〜10時間の範囲であるが、脱色効果が得られる範囲であれば特に限定されない。尚、粗PTCとは、その純度が75重量%〜95重量%未満のものをいう。   Moreover, the aqueous solution containing PTC obtained by methods other than the above-exemplified methods (a) and (d) can be used in the present invention. These aqueous solutions can also be decolorized using activated carbon before crystallization. The amount used is preferably in the range of 0.01 to 20 parts by weight, more preferably in the range of 0.1 to 10 parts by weight, and still more preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of PTC. is there. The treatment temperature is usually in the range of 100 ° C. from the lowest temperature at which crystals do not precipitate from the obtained reaction aqueous solution, and preferably in the range of 50 ° C. from the lowest temperature at which crystals do not precipitate. The treatment time is usually in the range of 1 minute to 10 hours, but is not particularly limited as long as a decoloring effect is obtained. The crude PTC means that the purity is 75% by weight to less than 95% by weight.

[PTCの晶析]
本願発明におけるPTC水溶液の濃度は、45〜60重量%、好ましくは45〜55重量%である。45重量%未満では、濾過性の悪い針状結晶が生成しやすく、作業効率及び目的物の純度が悪化する傾向が見られ、一方、60重量%を超えると、スラリー濃度が高くなるため攪拌、固液分離が困難となり、目的物の純度が低下する傾向が見られ好ましくない。上記(a)及び(d)製造方法のように、反応終了後にPTCの水溶液として得られたものをそのまま使用する場合には、前記濃度範囲となるよう、適宜、常圧或いは減圧下で水を蒸発させ濃縮したり、又は水を添加したりして調整した後で晶析をおこなう必要がある。
[Crystallization of PTC]
The concentration of the PTC aqueous solution in the present invention is 45 to 60% by weight, preferably 45 to 55% by weight. If it is less than 45% by weight, needle-like crystals with poor filterability are likely to be produced, and the working efficiency and the purity of the target product tend to be deteriorated. On the other hand, if it exceeds 60% by weight, the slurry concentration increases, so stirring. Solid-liquid separation becomes difficult, and the purity of the target product tends to decrease, which is not preferable. When the product obtained as an aqueous solution of PTC after completion of the reaction is used as it is as in the production methods (a) and (d) above, water is appropriately added under normal pressure or reduced pressure so as to be within the above concentration range. It is necessary to crystallize after adjusting by evaporating and concentrating or adding water.

板状結晶の生成率を向上するために、晶析の前にPTCの針状結晶を完全に溶解させることが好ましい。その為、PTC水溶液を60℃以上、好ましくは70℃以上、特に好ましくは90℃以上に加熱することが推奨される。PTCの針状結晶が溶解した後に、所定の冷却速度及び撹拌条件で晶析を行うことにより、板状結晶を優先的に析出させることができる。   In order to improve the production rate of plate crystals, it is preferable to completely dissolve the PTC needle crystals before crystallization. Therefore, it is recommended to heat the PTC aqueous solution to 60 ° C. or higher, preferably 70 ° C. or higher, particularly preferably 90 ° C. or higher. After the PTC needle-like crystals are dissolved, the plate-like crystals can be preferentially precipitated by crystallization at a predetermined cooling rate and stirring conditions.

PTCの針状結晶を溶解させた後、徐冷しながら晶析を行う。従って、晶析は60℃以上の任意の温度(好ましくは60〜90℃、特に好ましくは60〜70℃)から開始することができる。また、PTCの板状結晶を種晶として、添加することにより板状結晶の生成が促進されるため好ましい方法として推奨される。種晶を入れる温度としては、PTCの結晶が析出を始める温度以上で且つ種晶が溶解しない温度(好ましくは、60〜70℃)であれば特に制限はなく、その添加量は、特に制限されないが、通常、水溶液に溶解しているPTCの全量に対して、0.1〜5重量%、好ましくは0.1〜1重量%、さらに好ましくは、0.1〜0.3重量%が推奨される。   After dissolving the needle-like crystals of PTC, crystallization is performed while gradually cooling. Therefore, crystallization can be started from any temperature of 60 ° C. or higher (preferably 60 to 90 ° C., particularly preferably 60 to 70 ° C.). Further, the addition of a PTC plate crystal as a seed crystal is recommended as a preferred method because the formation of the plate crystal is promoted by addition. The temperature at which the seed crystal is added is not particularly limited as long as it is not lower than the temperature at which the PTC crystal starts to precipitate and does not dissolve (preferably 60 to 70 ° C.), and the addition amount is not particularly limited. However, 0.1 to 5% by weight, preferably 0.1 to 1% by weight, more preferably 0.1 to 0.3% by weight based on the total amount of PTC dissolved in the aqueous solution is recommended. Is done.

冷却速度としては、15℃/時間以下、好ましくは4〜10℃/時間であり、特に好ましくは5〜8℃/時間である。冷却速度が遅いほど、板状結晶の生成及び成長が促進される一方、生産性が低下する傾向にある。   The cooling rate is 15 ° C./hour or less, preferably 4 to 10 ° C./hour, and particularly preferably 5 to 8 ° C./hour. The slower the cooling rate, the more the production and growth of plate crystals are promoted, while the productivity tends to decrease.

また、本発明における撹拌速度は、撹拌レイノルズ数が3,000〜20,000、徳に8,000〜18,000の範囲であることが好ましい。3,000未満の場合、結晶境膜での液体の流速が遅い層流となるため、結晶の成長が阻害される。一方、20,000を超える場合、生成した結晶が、結晶同士又は結晶と撹拌翼の衝突頻度が増大し、板状結晶が、粗砕されてしまうため好ましくない。尚、本発明における撹拌レイノルズ数とは、Re=ρdn/μによって定義される無次元数であり、ρは晶析に供するPTC水溶液の密度(kg・m−3)、μはその粘度(kg・m−1・s−1)、dは撹拌羽根の径(m)、nはその回転数(1/s−1)を表す。粘度の測定はE型粘度計を用いて行った。 Further, the stirring speed in the present invention is preferably in the range of 3,000 to 20,000, and 8,000 to 18,000 in stirring Reynolds number. If it is less than 3,000, the liquid flow rate in the crystal boundary film becomes a laminar flow, so that the crystal growth is inhibited. On the other hand, when it exceeds 20,000, the generated crystals are not preferable because the frequency of collision between the crystals or between the crystals and the stirring blade increases and the plate-like crystals are crushed. The stirring Reynolds number in the present invention is a dimensionless number defined by Re = ρd 2 n / μ, ρ is the density (kg · m −3 ) of the PTC aqueous solution used for crystallization, and μ is its viscosity. (Kg · m −1 · s −1 ), d represents the diameter (m) of the stirring blade, and n represents the rotational speed (1 / s −1 ). The viscosity was measured using an E-type viscometer.

また、攪拌方法は、とくに制限はないが、通常、攪拌翼などによる回転方法が挙げられる。撹拌翼形状としては、例えば、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タービン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流型翼が挙げられるが、これらに限定されるものではない。又パドル型の中でも特殊な形状を有するものも使用でき、例えば大型の二枚パドル羽根(神鋼パンテック製の商品名「フルゾーン」)、格子状のスリットを有するパドル羽根(住友重機械工業製の商品名「マックスブレンド」)等も好適に用いることができる。   Moreover, the stirring method is not particularly limited, but a rotating method using a stirring blade or the like is usually used. Examples of the shape of the stirring blade include radial flow blades such as a disc turbine type, paddle type, curved blade fan turbine type, and arrow blade turbine type, and axial flow blades such as a propeller type, an inclined paddle type, and a fiddler type. However, it is not limited to these. In addition, a paddle type having a special shape can also be used, for example, a large two-paddle blade (trade name “Full Zone” manufactured by Shinko Pantech), a paddle blade having a grid-like slit (manufactured by Sumitomo Heavy Industries, Ltd.) The trade name “Max Blend”) and the like can also be suitably used.

本願発明においては、規定の濃度のPTC水溶液を、60℃から30℃までの間、上記の冷却速度及び撹拌速度の条件を保つことにより、PTC板状結晶を優先的に生成することができる。尚、60℃より高い温度から晶析を開始する場合に、60℃に至るまでの冷却過程においては、本願規定の冷却速度、撹拌速度は必要ではないが、本願規定の条件で晶析を行うことが望ましい。   In the present invention, a PTC plate crystal can be preferentially produced by maintaining the above-described cooling rate and stirring rate conditions for a PTC aqueous solution having a prescribed concentration from 60 ° C. to 30 ° C. When crystallization is started from a temperature higher than 60 ° C., the cooling rate and the stirring rate specified in the present application are not necessary in the cooling process up to 60 ° C., but the crystallization is performed under the conditions specified in the present application. It is desirable.

30℃以下に到達後さらに冷却を続けてもよく、通常10〜25℃程度まで冷却することが望ましい。10℃未満に冷却すると、結晶の収量は増加するものの、逆にスラリー濃度が増大し、スラリー移送、固液分離が難しくなる等生産効率が低下したり、得られるPTC純度の低下を招く虞がある。PTCの水溶液が30℃以下に到達した場合にも、本願所定の冷却速度で冷却を続けることが好ましいが、特に冷却をしなくても晶析を継続し、いわゆる熟成期間を設けることにより大きな結晶に成長させることができる。その熟成時間として、3〜12時間、好ましくは4〜8時間が推奨される。この熟成時間が長いほど結晶が成長し、大きな板状結晶として取り出しやすくなるため好ましい。尚、30℃以下に到達しても晶析を続ける場合の撹拌速度としては、上記撹拌レイノルズの範囲がよいが、結晶の破壊を防ぐ目的でそれより低い撹拌レイノルズ数としてもよい。   Cooling may be continued after reaching 30 ° C. or lower, and it is usually desirable to cool to about 10 to 25 ° C. Cooling below 10 ° C increases the crystal yield, but conversely increases the slurry concentration, making it difficult to transfer and solid-liquid separation of the slurry, resulting in a decrease in production efficiency and a decrease in the PTC purity obtained. is there. Even when the aqueous solution of PTC reaches 30 ° C. or lower, it is preferable to continue cooling at a predetermined cooling rate of the present application. However, crystallization continues even without cooling, and a large crystal is obtained by providing a so-called aging period. Can grow into. As the aging time, 3 to 12 hours, preferably 4 to 8 hours are recommended. A longer ripening time is preferable because the crystal grows and is easily taken out as a large plate crystal. In addition, as a stirring speed when crystallization is continued even when the temperature reaches 30 ° C. or lower, the above-described stirring Reynolds range is preferable, but a stirring Reynolds number lower than that may be used for the purpose of preventing crystal breakage.

晶析終了後、PTCは、通常、固液分離装置、たとえば、遠心分離機、フィルター・プレス、ヌッチェなどにより、母液と分離できるが、工業的には、遠心分離機が好ましい。分離したPTC結晶は、水に対する溶解度(例えば、室温 40g/水100g)が非常に大きく、不純物が含有している付着母液を除くために、水ですすぐとPTC収量が低減するため、すすがずにそのまま乾燥することが好ましい。   After the crystallization is completed, the PTC can be separated from the mother liquor by a solid-liquid separator, for example, a centrifuge, a filter press, a Nutsche, etc., but a centrifuge is preferred industrially. The separated PTC crystals have a very high solubility in water (for example, 40 g at room temperature / 100 g of water), and since the PTC yield is reduced by rinsing with water to remove the adhered mother liquor containing impurities, tin It is preferable to dry as it is.

本発明の晶析方法によって得られるPTCの結晶が、適度な大きさの板状結晶であることは重要である。本発明の板状結晶の平均粒子径は、50〜500μmの範囲内で、結晶形状が板状となることにより濾過時間を著しく短縮でき、微粉末を生じにくく安定であるため分離工程の負荷が軽減され、高純度のPTCが得られやすい。   It is important that the PTC crystal obtained by the crystallization method of the present invention is a plate crystal having an appropriate size. The average particle size of the plate-like crystal of the present invention is within the range of 50 to 500 μm, and the filtration time can be remarkably shortened by making the crystal shape plate-like, and it is difficult to produce fine powder, so the load of the separation process is increased. It is reduced and it is easy to obtain high-purity PTC.

なお、本明細書及び特許請求の範囲における板状結晶の平均粒子径は、スライドガラス板上に晶析のスラリーを一滴採取し、カバーガラスで被った後、光学顕微鏡で写真撮影し、得られた画像を解析ソフト(mitani CORPORATION社製、商品名「Win ROOF」)の手動計測モードにより、無作為に選択した少なくとも10個の粒子の長径を測定して算出した値である。また、同時に測定した短径との比率から縦横比を算出した。   The average particle size of the plate-like crystals in the present specification and claims is obtained by taking a drop of crystallization slurry on a slide glass plate, covering it with a cover glass, and taking a photograph with an optical microscope. This is a value calculated by measuring the major axis of at least 10 particles selected at random using the manual measurement mode of the analysis software (manufactured by Mitani Corporation, trade name “Win ROOF”). Also, the aspect ratio was calculated from the ratio with the minor axis measured at the same time.

本明細書において「板状」とは、縦横比の小さい結晶であり、具体的には、個々の結晶の長径(最大径)を短径(最小径)で除した値の平均値が1〜5のものをいう。なお、この値が5越えるものは「針状」となる。したがって、本発明のPTCは板状 、即ちその個々の結晶の長径を短径で除した値の平均値が1〜5であるが、より好ましくはこの値が1〜3である。   In the present specification, “plate-like” is a crystal having a small aspect ratio, and specifically, an average value of values obtained by dividing the major axis (maximum diameter) of each crystal by the minor axis (minimum diameter) is 1 to 1. 5 things. If this value exceeds 5, it becomes “needle”. Therefore, the PTC of the present invention is plate-shaped, that is, the average value of the value obtained by dividing the major axis of the individual crystal by the minor axis is 1 to 5, and more preferably 1 to 3.

晶析した後、固液分離により得られた母液には、未析出のPTCを含有していることから、この母液に所定量の粗PTC又はその水溶液を加えて、所定の濃度に調整後、晶析を行い、母液をリサイクルすることができる。また、前記(d)製造方法における酸化反応反応溶媒として再使用することもできる。   After crystallization, since the mother liquor obtained by solid-liquid separation contains unprecipitated PTC, a predetermined amount of crude PTC or an aqueous solution thereof is added to the mother liquor, and adjusted to a predetermined concentration. Crystallization can be performed and the mother liquor can be recycled. Moreover, it can also be reused as an oxidation reaction reaction solvent in the production method (d).

特に、上記(a)製造方法においてテトラメチルエステルの加水分解後、晶析で得られた母液は、PTCの他に酸触媒も含有していることから、それを再びテトラメチルエステルの加水分解反応に用いることができ、環境面及び経済面で好ましい。   In particular, since the mother liquor obtained by crystallization after hydrolysis of the tetramethyl ester in the above production method (a) contains an acid catalyst in addition to PTC, it is again subjected to the hydrolysis reaction of the tetramethyl ester. It is preferable in terms of environment and economy.

このようにして得られたPTCは、結晶の形状が良く、流動性があり、作業環境を悪くする微粉末が少なく安定であるため工業的に大量に取り扱いやすい。また、PTCの純度は、95〜99%又はそれ以上であり、そのまま更に精製することなく工業用原料、例えば、1,2,3−プロパントリカルボン酸アミド誘導体の酸成分として充分使用できる。   The PTC thus obtained is easy to handle industrially in large quantities because it has a good crystal shape, fluidity, and is stable with few fine powders that make the working environment worse. Moreover, the purity of PTC is 95 to 99% or more, and it can be sufficiently used as an acid component of industrial raw materials, for example, 1,2,3-propanetricarboxylic acid amide derivatives, without further purification.

以下に実施例を掲げて本発明をより詳しく説明するが、本発明はこれらの実施例により何ら制限されるものではない。尚、下記製造例における、ガスクロマトグラフィー分析(GC分析)及び高速液体クロマトグラフィー分析(HPLC分析)、並びにPTC結晶の平均粒子径及び縦横比は、下記に示す条件に従い行った。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. In addition, the gas chromatography analysis (GC analysis) and the high performance liquid chromatography analysis (HPLC analysis), and the average particle diameter and aspect ratio of the PTC crystal in the following production examples were performed according to the conditions shown below.

マレイン酸ジメチルとマロン酸ジメチルとをナトリウムメチラート触媒の存在下に付加反応させ、使用したアルコラート触媒を除去後、次いで、得られたマイケル付加物をp−トルエンスルホン酸触媒存在下で加水分解、脱炭酸して得られる反応液水溶液の調製は下記製造例1に記載の方法により行った。   Dimethyl maleate and dimethyl malonate are subjected to an addition reaction in the presence of a sodium methylate catalyst, the used alcoholate catalyst is removed, and then the resulting Michael adduct is hydrolyzed in the presence of a p-toluenesulfonic acid catalyst. The aqueous reaction solution obtained by decarboxylation was prepared by the method described in Production Example 1 below.

2−(2’−アルケニル)コハク酸をリン・タングステン酸触媒の存在下、過酸化水素により酸化開裂後、次いで、副生成物のカプロン酸を減圧又は常圧下で除いて得られる反応水溶液の調製は製造例2に記載の方法により調製した。   Preparation of aqueous reaction solution obtained by oxidative cleavage of 2- (2′-alkenyl) succinic acid with hydrogen peroxide in the presence of a phosphorus / tungstic acid catalyst, and then removing by-product caproic acid under reduced pressure or normal pressure Was prepared by the method described in Production Example 2.

(1)HPLC分析(マイケル付加)
カラム:SHIMADZU SCR ODS−2 内径6.0mmx長さ150mm
移動相:アセトニトリル:水=35:65(vol/vol)
流量:1ml/分
温度:40℃
検出:UV210nm 及びUV265nm
(1) HPLC analysis (Michael addition)
Column: SHIMADZU SCR ODS-2 ID 6.0 mm x length 150 mm
Mobile phase: acetonitrile: water = 35: 65 (vol / vol)
Flow rate: 1 ml / min Temperature: 40 ° C
Detection: UV210nm and UV265nm

(2)HPLC分析(加水分解)
カラム:SHIMADZU SCR 101−H 内径7.9mmx長さ300mm
移動相:5mmol/l 過塩素酸水溶液
流量:0.8ml/分
温度:40℃
検出:UV210nm
(2) HPLC analysis (hydrolysis)
Column: SHIMADZU SCR 101-H inner diameter 7.9 mm x length 300 mm
Mobile phase: 5 mmol / l Perchloric acid aqueous solution Flow rate: 0.8 ml / min Temperature: 40 ° C.
Detection: UV210nm

(3)GC分析(酸化反応)
装置:SHIMADZU GC−14B
カラム:DB−1701 2.5mmx30m 0.25μm
カラム温度:100−300℃ (10℃/分)
流量:1ml/分
スプリット:1/30
セプタム:10ml/分
インジェクション温度:300℃
ディテクション温度:300℃
(3) GC analysis (oxidation reaction)
Device: SHIMADZU GC-14B
Column: DB-1701 2.5mmx30m 0.25μm
Column temperature: 100-300 ° C (10 ° C / min)
Flow rate: 1 ml / min Split: 1/30
Septum: 10 ml / min Injection temperature: 300 ° C
Detection temperature: 300 ° C

(4)PTCの粒径測定
PTCの平均粒子径の測定は以下の方法で測定した。
晶析終了後、スライドガラス板上に晶析スラリーを一滴採取し、カバーガラスで被った後、光学顕微鏡で写真撮影した。得られた画像を、解析ソフト(mitani CORPORATION社製、商品名「Win ROOF」)の手動計測モードにより、無作為に選択した少なくとも10個以上の粒子の長径及び短径を測定した。平均粒子径は、長径の平均値とした。また、長径を短径で除した数値を縦横比とした。
(4) Measurement of PTC particle size The average particle size of PTC was measured by the following method.
After completion of crystallization, a drop of crystallization slurry was collected on a slide glass plate, covered with a cover glass, and photographed with an optical microscope. The major axis and minor axis of at least 10 or more randomly selected particles were measured from the obtained image in a manual measurement mode of analysis software (manufactured by Mitani Corporation, trade name “Win ROOF”). The average particle diameter was the average value of the major axis. A numerical value obtained by dividing the major axis by the minor axis was taken as the aspect ratio.

[製造例1]
(1)マイケル付加工程
温度計、滴下漏斗、温度計、コンデンサー付き水分離器、撹拌装置を備えたガラス製の3000mlの4ツ口フラスコに、マロン酸ジメチル782g(5.9mol)、28%ナトリウムメチラート(メタノール溶液)56.9g(5mol%/マロン酸ジメチル)を仕込み、50℃まで昇温後、マレイン酸ジメチル814g(5.6mol)を1.0時間で滴下し、同温度で3時間加熱撹拌を行った。次いで、冷却後、有機層を400gのイオン交換水で水洗を行い、使用したアルカリ触媒を除去した後、マイケル付加物のテトラメチルエステル1560gを得た。GC分析の結果、反応率100%、選択率98.5%であった。
[Production Example 1]
(1) Michael addition process
A glass 3000 ml four-necked flask equipped with a thermometer, dropping funnel, thermometer, condenser with condenser, and stirring device was charged with 782 g (5.9 mol) of dimethyl malonate and 28% sodium methylate (methanol solution). 56.9 g (5 mol% / dimethyl malonate) was charged, and after raising the temperature to 50 ° C., 814 g (5.6 mol) of dimethyl maleate was added dropwise over 1.0 hour, followed by stirring with heating at the same temperature for 3 hours. Next, after cooling, the organic layer was washed with 400 g of ion exchange water to remove the alkali catalyst used, and then 1560 g of a tetramethyl ester of Michael adduct was obtained. As a result of GC analysis, the reaction rate was 100% and the selectivity was 98.5%.

(2)加水分解工程
滴下漏斗、留出管、温度計及び攪拌装置を備えたガラス製1000ml4つ口フラスコに上記方法により得られたテトラメチルエステル500g、蒸留水125g及びp−トルエンスルホン酸一水和物20.0gを加え、100℃で加水分解を行った。留出する水と同量の量の蒸留水を適宜追加(約120ml/時間)しながら、反応系中のPTC転化率を高速液体クロマトグラフィーで分析して加水分解経過を追跡した。反応系中のPTCに対する転化率は加水分解 開始後16時間で増加しなくなり、加水分解反応液604gを得た。このときの反応率はほぼ100%であり、選択率は97.4%であった。
(2) Hydrolysis step 500 g of tetramethyl ester obtained by the above method in a glass 1000 ml four-necked flask equipped with a dropping funnel, a distillation tube, a thermometer and a stirrer, 125 g of distilled water and p-toluenesulfonic acid monohydrate 20.0 g of Japanese product was added, and hydrolysis was performed at 100 ° C. While adding the same amount of distilled water as the distilled water (approx. 120 ml / hour) as appropriate, the PTC conversion rate in the reaction system was analyzed by high performance liquid chromatography to follow the hydrolysis process. The conversion to PTC in the reaction system did not increase 16 hours after the start of hydrolysis, and 604 g of hydrolysis reaction solution was obtained. The reaction rate at this time was almost 100%, and the selectivity was 97.4%.

[製造例2]
攪拌装置、温度計、滴下ロート及びコンデンサー付き水分離器を装着したガラス製の5000mlの4ツ口フラスコに、2−(2’−オクテニル)コハク酸無水物650.1g(3.0mol)と水1953gを入れ、窒素雰囲気下30分間100℃に加熱して有水酸とした後、70℃に冷却し触媒としてリン・タングステン酸29.9gを加え、60%過酸化水素水200gを滴下した。2時間、70℃で反応させた後、還流温度まで昇温し、副生するカプロン酸を水とともに蒸発留去しながら、60%過酸化水素1900gを10時間かけて滴下し、更に同温度で5時間反応させた。その際、水分離器で、分離したカプロン酸は系外に留去し、水だけ系内に戻しながら反応を行った。反応後、水を留去し反応粗液738gを得た。このときの反応率は、ほぼ100%であり、選択率は70.9%であった。
[Production Example 2]
To a glass 5000 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and condenser water separator, 650.1 g (3.0 mol) of 2- (2′-octenyl) succinic anhydride and water 1953 g was added and heated to 100 ° C. for 30 minutes in a nitrogen atmosphere to obtain a hydrous acid, then cooled to 70 ° C., 29.9 g of phosphorus / tungstic acid was added as a catalyst, and 200 g of 60% hydrogen peroxide was added dropwise. After reacting at 70 ° C. for 2 hours, the temperature was raised to reflux temperature, and 1900 g of 60% hydrogen peroxide was added dropwise over 10 hours while evaporating and distilling off by-product caproic acid together with water. The reaction was allowed for 5 hours. At that time, the separated caproic acid was distilled out of the system with a water separator, and the reaction was carried out while returning only water to the system. After the reaction, water was distilled off to obtain 738 g of a crude reaction solution. The reaction rate at this time was almost 100%, and the selectivity was 70.9%.

[実施例1]
温度計、コンデンサー、デカンター、翼径7cmのフルゾーン型撹拌翼を備えた攪拌機を装着したガラス製の1000mlのセパラブルフラスコに、PTC含有量50重量%の上記製造例1で調製した反応水溶液550mlを加え、撹拌レイノルズ数16,000で撹拌しつつ、冷却速度6℃/時間で60℃から25℃まで冷却した。PTC種晶(板状結晶)を60℃で0.5g(PTC含有量に対して0.2重量%)を添加した。25℃に到達後、さらにそのまま12時間継続した。吸引濾過後、白色固体178.1g得た。HPLC分析による純度は99.2%であった(収率64%)。得られたPTC結晶は、平均粒子径が120μm、縦横比が1.8の板状結晶であった。
[Example 1]
Into a glass 1000 ml separable flask equipped with a thermometer, a condenser, a decanter, and a stirrer equipped with a full-zone stirring blade having a blade diameter of 7 cm, 550 ml of the reaction aqueous solution prepared in Production Example 1 having a PTC content of 50% by weight was added. In addition, the mixture was cooled from 60 ° C. to 25 ° C. at a cooling rate of 6 ° C./hour while stirring at a Reynolds number of 16,000. 0.5 g of PTC seed crystals (plate crystals) at 60 ° C. (0.2% by weight based on PTC content) was added. After reaching 25 ° C., it was further continued for 12 hours. After suction filtration, 178.1 g of white solid was obtained. The purity by HPLC analysis was 99.2% (yield 64%). The obtained PTC crystal was a plate crystal having an average particle diameter of 120 μm and an aspect ratio of 1.8.

[実施例2]
製造例1と同様に製造した反応溶液を常圧下にて100℃まで加熱し、溶媒である水を留去しPTC含有量を60重量%とした他は、実施例1と同様に行い、白色固体253.7gを得た。HPLC分析による純度は99.4%であった(収率76%)。得られたPTC結晶は、平均粒子径が250μm、縦横比が2.2の板状結晶であった。
[Example 2]
The reaction solution produced in the same manner as in Production Example 1 was heated to 100 ° C. under normal pressure, water was removed as the solvent, and the PTC content was changed to 60% by weight. 253.7 g of solid was obtained. The purity by HPLC analysis was 99.4% (yield 76%). The obtained PTC crystal was a plate crystal having an average particle diameter of 250 μm and an aspect ratio of 2.2.

[実施例3]
製造例1と同様に製造した反応溶液に溶媒である水を130g加えてPTC含有量を45重量%とした反応溶液680gを用いた他は、実施例1と同様に行い、白色固体126.9gを得た。HPLC分析による純度は99.2%であった(収率46%)。得られたPTC結晶は、平均粒子径が210μm、縦横比が1.3の板状結晶であった。
[Example 3]
The reaction solution was prepared in the same manner as in Production Example 1 except that 680 g of a reaction solution having a PTC content of 45% by weight was added by adding 130 g of water as a solvent, and the same procedure as in Example 1 was carried out. Got. The purity by HPLC analysis was 99.2% (yield 46%). The obtained PTC crystal was a plate crystal having an average particle diameter of 210 μm and an aspect ratio of 1.3.

[実施例4]
製造例1と同様に製造した反応溶液を用いて撹拌レイノルズ数8200とした他は、実施例1と同様に行い、白色固体136.1gを得た。HPLC分析による純度は99.2%であった(収率49%)。得られたPTC結晶は、平均粒子径が180μm、縦横比が2.1の板状結晶であった。
[Example 4]
The same procedure as in Example 1 was carried out except that the reaction solution prepared in the same manner as in Production Example 1 was used and the stirring Reynolds number was 8200, to obtain 136.1 g of a white solid. The purity by HPLC analysis was 99.2% (yield 49%). The obtained PTC crystal was a plate crystal having an average particle diameter of 180 μm and an aspect ratio of 2.1.

[実施例5]
実施例1で得られた濾過母液を用いて、製造例1と同様に加水分解反応を行い、1,2,3−プロパントリカルボン酸含有の加水分解反応液を得た。これを用いて実施例1と同様に晶析を行い、白色固体224.2gを得た。HPLC分析による純度は96.2%であった(収率78%)。得られた結PTC結晶は、平均粒径85μm、縦横比1.3の極めて濾過性の良好な板状結晶であった。
[Example 5]
Using the filtered mother liquor obtained in Example 1, a hydrolysis reaction was carried out in the same manner as in Production Example 1 to obtain a 1,2,3-propanetricarboxylic acid-containing hydrolysis reaction solution. Crystallization was performed in the same manner as in Example 1 to obtain 224.2 g of a white solid. The purity by HPLC analysis was 96.2% (yield 78%). The obtained sintered PTC crystal was a plate-like crystal having an average particle size of 85 μm and an aspect ratio of 1.3 and having very good filterability.

[実施例6]
実施例1と同様の装置を用い、上記製造例2で調製した反応溶液を常圧下にて100℃まで加熱し、溶媒である水を留去した。PTC含有量50重量%に濃縮した反応水溶液を550mlを加え、撹拌レイノルズ数10,000で撹拌しつつ、冷却速度6℃/時間で60℃から25℃まで冷却した。PTC種晶を60℃で0.2g(PTC含有量に対して0.2重量%)を添加した。25℃に到達後、さらにそのまま12時間撹拌を行った。吸引濾過後、白色固体186g得た。HPLC分析による純度は90.2%であった(収率61%)。得られたPTC結晶は、平均粒子径が110μm、縦横比1.4の板状結晶であった。
[Example 6]
Using the same apparatus as in Example 1, the reaction solution prepared in Production Example 2 was heated to 100 ° C. under normal pressure, and water as a solvent was distilled off. 550 ml of a reaction aqueous solution concentrated to a PTC content of 50% by weight was added, and the mixture was cooled from 60 ° C. to 25 ° C. at a cooling rate of 6 ° C./hour while stirring at a stirring Reynolds number of 10,000. 0.2 g of PTC seed crystals (0.2 wt% based on PTC content) was added at 60 ° C. After reaching 25 ° C., the mixture was further stirred for 12 hours. After suction filtration, 186 g of a white solid was obtained. The purity by HPLC analysis was 90.2% (yield 61%). The obtained PTC crystal was a plate-like crystal having an average particle diameter of 110 μm and an aspect ratio of 1.4.

[比較例1]
製造例1と同様に製造した反応溶液に溶媒である水を170g加えてPTC濃度38%の反応溶液720gを用いた他は実施例1と同様に晶析を行い、白色固体179.3gを得た。HPLC分析による純度は84.7%であった(収率55%)。この結晶体の光学顕微鏡写真を図4に示す。この写真から明らかなように、得られたPTC結晶は、濾過性が悪い針状結晶である。
[Comparative Example 1]
Crystallization was carried out in the same manner as in Example 1 except that 170 g of water as a solvent was added to the reaction solution produced in the same manner as in Production Example 1 and 720 g of a reaction solution having a PTC concentration of 38% was used to obtain 179.3 g of a white solid. It was. The purity by HPLC analysis was 84.7% (yield 55%). An optical micrograph of this crystal is shown in FIG. As is apparent from this photograph, the obtained PTC crystal is a needle-like crystal with poor filterability.

[比較例2]
60℃〜40℃までの冷却速度を20℃/時間で冷却し、40℃〜25℃までは10℃/時間で冷却した他は実施例1と同様に晶析を行い、白色固体146.5gを得た。HPLC分析による純度は86.3%であった(収率46%)。また、この結晶を顕微鏡で観察したところ、比較例1と同様の針状結晶であった。
[Comparative Example 2]
Crystallization was performed in the same manner as in Example 1 except that the cooling rate from 60 ° C. to 40 ° C. was cooled at 20 ° C./hour, and from 40 ° C. to 25 ° C. was cooled at 10 ° C./hour. Got. The purity by HPLC analysis was 86.3% (yield 46%). Moreover, when this crystal was observed with a microscope, it was a needle crystal similar to Comparative Example 1.

[比較例3]
攪拌レイノルズ数2,300とした他は実施例1と同様に行い、白色固体172.7gを得た。HPLC分析による純度は83.2%であった(収率52%)。また、この結晶を顕微鏡で観察したところ、比較例1と同様の針状結晶であった。
[比較例4]
攪拌レイノルズ数25,000とした他は実施例1と同様に行い、白色固体169.6gを得た。HPLC分析による純度は89.0%であった(収率55%)。また、この結晶を顕微鏡で観察したところ、細かな針状結晶であった。
[比較例5]
製造例1と同様に製造した反応溶液を常圧下にて100℃まで加熱し、溶媒である水を留去しPTC含有量を65%とした。この他は、実施例1と同様に行なったところ、液移送が困難な高濃度スラリー溶液が得られた。また、この結晶を顕微鏡で観察したところ、比較例1と同様の針状結晶が殆どであった。
[Comparative Example 3]
The procedure was the same as in Example 1 except that the stirring Reynolds number was 2,300, to obtain 172.7 g of a white solid. The purity by HPLC analysis was 83.2% (yield 52%). Moreover, when this crystal was observed with a microscope, it was a needle crystal similar to Comparative Example 1.
[Comparative Example 4]
The procedure was the same as in Example 1 except that the stirring Reynolds number was 25,000, and 169.6 g of a white solid was obtained. The purity by HPLC analysis was 89.0% (yield 55%). Moreover, when this crystal was observed with a microscope, it was a fine needle crystal.
[Comparative Example 5]
The reaction solution produced in the same manner as in Production Example 1 was heated to 100 ° C. under normal pressure, and the solvent water was distilled off to make the PTC content 65%. When the rest was carried out in the same manner as in Example 1, a highly concentrated slurry solution in which liquid transfer was difficult was obtained. Further, when this crystal was observed with a microscope, most of the needle crystals were the same as in Comparative Example 1.

本発明の製造方法により1,2,3−プロパントリカルボン酸の結晶形状が板状となることにより濾過時間を著しく短縮でき、分離工程の負荷が軽減される。また分離性の改善に伴い、不純物が溶存する母液の結晶への付着率が低減できるため、高純度1,2,3−プロパントリカルボン酸を工業的に効率よく製造することが可能となった。このものの誘導体である1,2,3−プロパントリカルボン酸トリス(アルキル置換シクロヘキシルアミド)は、ポリオレフィン樹脂の透明性、結晶性及び剛性を改善する樹脂添加剤として有用である。   With the production method of the present invention, the crystal shape of 1,2,3-propanetricarboxylic acid becomes plate-like, whereby the filtration time can be remarkably shortened and the load on the separation process is reduced. Moreover, since the adhesion rate to the crystal | crystallization of the mother liquor in which an impurity dissolves can be reduced with improvement of separability, it became possible to manufacture highly purified 1,2,3-propanetricarboxylic acid industrially efficiently. A derivative of this, 1,2,3-propanetricarboxylic acid tris (alkyl-substituted cyclohexylamide), is useful as a resin additive to improve the transparency, crystallinity and rigidity of polyolefin resins.

実施例1で得られた1,2,3−プロパントリカルボン酸の光学顕微鏡写真を示す図である。1 is a view showing an optical micrograph of 1,2,3-propanetricarboxylic acid obtained in Example 1. FIG. 実施例2で得られた1,2,3−プロパントリカルボン酸の光学顕微鏡写真を示す図である。2 is a view showing an optical micrograph of 1,2,3-propanetricarboxylic acid obtained in Example 2. FIG. 実施例3で得られた1,2,3−プロパントリカルボン酸の光学顕微鏡写真を示す図である。4 is a diagram showing an optical micrograph of 1,2,3-propanetricarboxylic acid obtained in Example 3. FIG. 比較例1で得られた1,2,3−プロパントリカルボン酸の光学顕微鏡写真を示す図である。4 is a view showing an optical micrograph of 1,2,3-propanetricarboxylic acid obtained in Comparative Example 1. FIG.

Claims (6)

1,2,3−プロパントリカルボン酸水溶液から、1,2,3−プロパントリカルボン酸を晶析するにあたり、1,2,3−プロパントリカルボン酸濃度が45〜60重量%の水溶液を、60℃〜30℃の温度範囲内において、撹拌レイノルズ数が3,000〜20,000、冷却速度が15℃/時間以下の条件で晶析をおこなうことを特徴とする1,2,3−プロパントリカルボン酸板状結晶の製造方法。   In crystallization of 1,2,3-propanetricarboxylic acid from a 1,2,3-propanetricarboxylic acid aqueous solution, an aqueous solution having a 1,2,3-propanetricarboxylic acid concentration of 45 to 60% by weight 1,2,3-propanetricarboxylic acid plate characterized by performing crystallization under the conditions of a stirring Reynolds number of 3,000 to 20,000 and a cooling rate of 15 ° C./hour or less in a temperature range of 30 ° C. A method for producing a crystal. さらに、上記水溶液に種晶を入れて晶析することを特徴とする請求項1に記載の製造方法。   Furthermore, a seed crystal is put into the said aqueous solution and it crystallizes, The manufacturing method of Claim 1 characterized by the above-mentioned. 上記板状結晶の平均粒径が50〜500μmの範囲内にある請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the plate-like crystal has an average particle diameter in the range of 50 to 500 µm. 1,2,3−プロパントリカルボン酸板状結晶を晶析させた後、固液分離して得られる母液を、1,2,3−プロパントリカルボン酸水溶液として再使用する請求項1〜3のいずれかに記載の製造方法。   The mother liquor obtained by solid-liquid separation after crystallization of 1,2,3-propanetricarboxylic acid plate crystals is reused as an aqueous 1,2,3-propanetricarboxylic acid solution. The manufacturing method of crab. 上記水溶液が、(i)マレイン酸ジエステルとマロン酸ジエステルとを、アルカリ触媒存在下に反応させてマイケル反応付加物を得、次いで、使用したアルカリ触媒を除去後、(ii)得られたマイケル反応付加物を酸触媒下、加水分解して得られる反応水溶液である請求項1〜4のいずれかに記載の製造方法。   The aqueous solution is obtained by reacting (i) maleic acid diester and malonic acid diester in the presence of an alkali catalyst to obtain a Michael reaction adduct, and then removing the used alkali catalyst, and (ii) the obtained Michael reaction The production method according to any one of claims 1 to 4, which is a reaction aqueous solution obtained by hydrolysis of an adduct under an acid catalyst. 1,2,3−プロパントリカルボン酸板状結晶を晶析させた後、固液分離して得られる母液を、請求項5における(ii)段階の加水分解反応に用いる請求項5に記載の製造方法。
6. The production according to claim 5, wherein the mother liquor obtained by solid-liquid separation after crystallization of 1,2,3-propanetricarboxylic acid plate-like crystals is used in the hydrolysis reaction of step (ii) in claim 5. Method.
JP2006122208A 2006-04-26 2006-04-26 Method for producing 1,2,3-propanetricarboxylic acid plate crystal Active JP4961821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122208A JP4961821B2 (en) 2006-04-26 2006-04-26 Method for producing 1,2,3-propanetricarboxylic acid plate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122208A JP4961821B2 (en) 2006-04-26 2006-04-26 Method for producing 1,2,3-propanetricarboxylic acid plate crystal

Publications (2)

Publication Number Publication Date
JP2007291029A JP2007291029A (en) 2007-11-08
JP4961821B2 true JP4961821B2 (en) 2012-06-27

Family

ID=38762019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122208A Active JP4961821B2 (en) 2006-04-26 2006-04-26 Method for producing 1,2,3-propanetricarboxylic acid plate crystal

Country Status (1)

Country Link
JP (1) JP4961821B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214156B2 (en) * 2012-12-26 2017-10-18 三菱ケミカル株式会社 Method for purifying methacrylic acid

Also Published As

Publication number Publication date
JP2007291029A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4961821B2 (en) Method for producing 1,2,3-propanetricarboxylic acid plate crystal
JP5960839B2 (en) Process for producing 6,6 '-(ethylenedioxy) di-2-naphthoic acid diester
JPS59175484A (en) Preparation of n-formylasparic anhydride
JP6747780B2 (en) Method for producing 4-hydroxybenzoic acid long chain ester
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
JP5463051B2 (en) Method for producing 1,4-dihydropyridine derivative
JP6572399B1 (en) Method for purifying 2,15-hexadecanedione and method for producing 3-methylcyclopentadecenones
JP2016222551A (en) Purification method of 4-hydroxy benzoic acid long chain ester
US20030105349A1 (en) Preparation of beta-ketonitriles
JPS6193834A (en) Production of cinnamic acid substituted any time
KR102560812B1 (en) Production process and purification process of 4-hydroxy-benzoic acid long chain ester
US4797497A (en) Trimellitic anhydride purification process
JP2002114774A (en) Method of producing 3,4-methylene-dioxymandelic acid
JPS6013015B2 (en) Method for producing tetrakis[3-(3,5-dibutyl-4-hydroxyphenyl)propionyloxymethyl]methane
JP6503220B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JP6605311B2 (en) Process for producing 4-hydroxybenzoic acid long chain ester
US6180801B1 (en) Method for manufacturing 3-isochromanone
JP2004331585A (en) High-purity trimellitic anhydride and method for producing the same
JP2000191592A (en) Manufacture of hydroquinone, diester derivative
JP6503228B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
JPS6055052B2 (en) Method for producing benzenecarboxylic acid ester
JP5525216B2 (en) Method for producing trimellitic anhydride diester
JP6214156B2 (en) Method for purifying methacrylic acid
JP4261641B2 (en) Continuous production of acyloxybenzoic acid
EP0947512A1 (en) Method for manufacturing 3-isochromanone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4961821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250