JP2016210629A - Hydrophobic magnetic iron oxide particle powder, and method for producing the same - Google Patents

Hydrophobic magnetic iron oxide particle powder, and method for producing the same Download PDF

Info

Publication number
JP2016210629A
JP2016210629A JP2015092323A JP2015092323A JP2016210629A JP 2016210629 A JP2016210629 A JP 2016210629A JP 2015092323 A JP2015092323 A JP 2015092323A JP 2015092323 A JP2015092323 A JP 2015092323A JP 2016210629 A JP2016210629 A JP 2016210629A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic iron
particle powder
oxide particle
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015092323A
Other languages
Japanese (ja)
Other versions
JP6521239B2 (en
Inventor
下畑 祐介
Yusuke Shimohata
祐介 下畑
茂典 原田
Shigenori Harada
茂典 原田
亮 岩井
Akira Iwai
亮 岩井
伸哉 志茂
Shinya Shimo
伸哉 志茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2015092323A priority Critical patent/JP6521239B2/en
Publication of JP2016210629A publication Critical patent/JP2016210629A/en
Application granted granted Critical
Publication of JP6521239B2 publication Critical patent/JP6521239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide hydrophobic magnetic iron oxide particle powder for a magnetic toner high in hydrophobic properties and good in dispersibility in styrene/n-butylacrylate, and also having a reduced content of volatile organic compounds having unpleasant odor.SOLUTION: Provided is magnetic iron oxide particle powder in which the surfaces of particles are covered with a silane compound, in which the magnetic iron oxide particle powder is retained at 120°C for 30 min, the total of the volatile organic compounds selected from 2 to 16C aliphatic hydrocarbon, aliphatic aldehyde, aliphatic ketone and aliphatic alcohol as the decomposition products of the silane compound diffused from the magnetic iron oxide particle powder is 15 ppm or lower.SELECTED DRAWING: None

Description

本発明は、表面がシラン化合物で被覆されている疎水性磁性酸化鉄粒子粉末であって、加熱した際に該磁性酸化鉄粒子粉末から放散される揮発性有機化合物が少なく、かつ非極性溶媒中での分散性が良好である磁性トナー用疎水性磁性酸化鉄粒子粉末を提供する。   The present invention is a hydrophobic magnetic iron oxide particle powder whose surface is coated with a silane compound, and has little volatile organic compound released from the magnetic iron oxide particle powder when heated, and in a nonpolar solvent. The present invention provides a hydrophobic magnetic iron oxide particle powder for a magnetic toner having good dispersibility in

従来、静電潜像現像法の一つとして、キャリアを使用せずに樹脂中にマグネタイト粒子粉末等の黒色磁性酸化鉄粒子粉末を混合分散させた複合体粒子を現像剤として用いる所謂、一成分系磁性トナーによる現像法が広く知られ、汎用されている。   Conventionally, as one of the electrostatic latent image developing methods, a so-called one-component using a composite particle in which black magnetic iron oxide particle powder such as magnetite particle powder is mixed and dispersed in a resin without using a carrier as a developer. Development methods using magnetic toners are widely known and widely used.

近時、レーザービームプリンターやデジタル複写機の高画質化に伴って、現像剤である磁性トナーの特性向上が強く要求されており、その為には、トナー中で磁性酸化鉄粒子が出来るだけ内包され、かつ、分散した状態が望ましい。   Recently, with the improvement in image quality of laser beam printers and digital copying machines, there has been a strong demand for improvement in the characteristics of magnetic toner as a developer. For this purpose, magnetic iron oxide particles are included as much as possible in the toner. And a dispersed state is desirable.

また、レーザービームプリンターやデジタル複写機の高速化に伴い、現像剤である磁性トナーの単位時間当たりの使用量も増えるため、揮発性有機化合物の放散の抑制が要求されており、その為には、トナーに使用される原材料の揮発性有機化合物の放散の抑制が望ましい。   In addition, with the increase in the speed of laser beam printers and digital copying machines, the amount of magnetic toner used as a developer increases per unit time, and therefore, suppression of the emission of volatile organic compounds is required. It is desirable to suppress the emission of volatile organic compounds as raw materials used for toner.

磁性トナーは粉砕法で製造されているが、粒子径の微小化、均一化、さらなる低温定着性などの機能付与において、重合法トナーに移行しつつある。   Magnetic toner is manufactured by a pulverization method, but is shifting to a polymerization method toner in order to provide functions such as finer and uniform particle diameter and further low-temperature fixability.

重合法トナーは、重合性単量体中で磁性酸化鉄粒子を分散させて作ることから、親水性表面である磁性酸化鉄粒子を疎水化して重合性単量体中で分散をさせることが重要になってくる。   Since the polymerized toner is made by dispersing magnetic iron oxide particles in a polymerizable monomer, it is important to make the magnetic iron oxide particles, which are hydrophilic surfaces, hydrophobic and disperse in the polymerizable monomer. It becomes.

湿式で磁性酸化鉄粒子を疎水化処理する手段として、水系媒体中でアルキルアルコキシシランを疎水化処理する方法が開示されている(特許文献1、2、3参照)。   As means for hydrophobizing magnetic iron oxide particles in a wet process, a method of hydrophobizing alkylalkoxysilane in an aqueous medium has been disclosed (see Patent Documents 1, 2, and 3).

乾式で磁性酸化鉄粒子を疎水化処理する手段として、ヘンシェルミキサー等を使用して、コア粒子に、反応性シリコーンオイル及び/又はシランカップリング材を添加し、機械的な混合撹拌を行った後、引き続きアルミニウム系カップリング剤を添加し、機械的な混合撹拌を行った後、加熱溶媒を除去し、第1及び第2の被覆層を形成する方法が開示されている(特許文献4参照)。   After adding a reactive silicone oil and / or silane coupling material to the core particles using a Henschel mixer as a means of hydrophobizing the magnetic iron oxide particles in a dry manner, and after mechanical mixing and stirring Subsequently, after adding an aluminum-based coupling agent and performing mechanical mixing and stirring, a method of removing the heated solvent and forming the first and second coating layers is disclosed (see Patent Document 4). .

気相で磁性酸化鉄粒子を疎水化処理する手段として、処理剤を気化接触して反応させる方法が開示されている(特許文献5参照)。   As a means for hydrophobizing magnetic iron oxide particles in the gas phase, a method is disclosed in which a treatment agent is reacted by vaporization contact (see Patent Document 5).

特開2008−282002号公報JP 2008-282002 A 特開2005−263619号公報JP 2005-263619 A 特開2010−100464号公法JP 2010-1000046 Public Law 特開2003−183027号公報JP 2003-183027 A 特開2000−327948号公報JP 2000-327948 A

特許文献1、2は、非極性溶媒中での分散性は良好であるものの、疎水化処理剤に使用しているアルキルアルコキシシランの加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。また、特許文献3は、有機溶媒中での磁性酸化鉄粒子の挙動粒子径を小さくするために、シランカップリング剤の疎水基の炭素数を3又は4としており、アルキルアルコキシシランの加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。さらに、疎水化度が低いため、水中で樹脂モノマーを懸濁する場合に、疎水性磁性酸化鉄粒子粉末が水相に移行してしまい、トナー中での分散性が十分とは言い難い。   In Patent Documents 1 and 2, although dispersibility in a nonpolar solvent is good, a volatile organic compound, which is a thermal decomposition product of alkylalkoxysilane used in the hydrophobizing agent, remains, and heating is performed. Sometimes it can have an unpleasant odor. Patent Document 3 discloses that the number of carbon atoms of the hydrophobic group of the silane coupling agent is 3 or 4 in order to reduce the behavior particle diameter of the magnetic iron oxide particles in the organic solvent, and the thermal decomposition product of the alkylalkoxysilane. The volatile organic compound may remain and have an unpleasant odor when heated. Furthermore, since the degree of hydrophobicity is low, when the resin monomer is suspended in water, the hydrophobic magnetic iron oxide particle powder moves to the aqueous phase, and it is difficult to say that the dispersibility in the toner is sufficient.

また、特許文献4記載の技術では、非極性溶媒中での分散性は必ずしも良好であるとは言い難く、且つ、疎水化処理剤に使用しているアルミニウム系カップリング剤の加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。   Further, in the technique described in Patent Document 4, it is difficult to say that dispersibility in a nonpolar solvent is always good, and it is a thermal decomposition product of an aluminum-based coupling agent used in a hydrophobizing agent. Volatile organic compounds may remain and have an unpleasant odor upon heating.

また、特許文献5記載の技術では、高温で熱処理することから凝集しやすく、非極性溶媒中での分散性が十分とは言い難い。   Moreover, in the technique of patent document 5, since it heat-processes at high temperature, it is easy to aggregate and it is hard to say that the dispersibility in a nonpolar solvent is enough.

よって、本発明は、加熱時に揮発性有機化合物の放散が少なく、しかも、非極性溶媒中での分散性が良好である疎水化された磁性酸化鉄粒子粉末を提供するものである。   Therefore, the present invention provides a hydrophobized magnetic iron oxide particle powder that has little emission of volatile organic compounds during heating and has good dispersibility in a nonpolar solvent.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、表面がシラン化合物で被覆されている磁性酸化鉄であって、該磁性酸化鉄粒子粉末を120℃で30分保持した時、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下である疎水性磁性酸化鉄粒子粉末(本発明1)。   That is, the present invention provides a magnetic iron oxide having a surface coated with a silane compound, and the silane released from the magnetic iron oxide particle powder when the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes. Hydrophobic magnetic iron oxide particles in which the total of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms or aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols is 15 ppm or less as a decomposition product of the compound Powder (Invention 1).

また、本発明は、シラン化合物が下記の化学式1に示される直鎖状オルガノポリシロキサン若しくは化学式2に示されるシラザンから選ばれる少なくとも1種又は2種である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明2)。

Figure 2016210629
Figure 2016210629
Further, in the present invention, the hydrophobic magnetic iron oxide according to claim 1, wherein the silane compound is at least one or two selected from linear organopolysiloxane represented by the following chemical formula 1 or silazane represented by the chemical formula 2. Particle powder (Invention 2).
Figure 2016210629
Figure 2016210629

また、本発明は、疎水化度が60%以上である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明3)。   The hydrophobic magnetic iron oxide particle powder according to claim 1, wherein the present invention has a degree of hydrophobicity of 60% or more (Invention 3).

また、本発明は、スチレン/n−ブチルアクリレート中で分散させた塗膜の光沢度が60%以上である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明4)。   The hydrophobic magnetic iron oxide particle powder according to claim 1, wherein the gloss of the coating film dispersed in styrene / n-butyl acrylate is 60% or more.

また、本発明は、核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することを特徴とする請求項1記載の疎水性磁性酸化鉄粒子粉末の製造方法(本発明5)。   In the present invention, the magnetic iron oxide particles serving as nuclei are hydrophobized by a dry process and then heat-treated while rotating at a temperature range of 80 to 120 ° C. and a peripheral speed of 0.01 to 10.0 m / sec. The method for producing hydrophobic magnetic iron oxide particles according to claim 1 (Invention 5).

本発明によれば、疎水性が高く、スチレン/n−ブチルアクリレート中での分散性が良好な疎水性磁性酸化鉄粒子粉末であり、かつ、不快な臭いを有する揮発性有機化合物の含有量が少ない、磁性トナー用の疎水性磁性酸化鉄粒子粉末を製造することができる。   According to the present invention, the hydrophobic magnetic iron oxide particles having high hydrophobicity and good dispersibility in styrene / n-butyl acrylate, and the content of volatile organic compounds having an unpleasant odor is high. A small amount of hydrophobic magnetic iron oxide particle powder for magnetic toner can be produced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

先ず、本発明に係る疎水性磁性酸化鉄粒子粉末について述べる。   First, the hydrophobic magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であり、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散されるシラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計は15ppm以下である。揮発性有機化合物の総計が15ppmを超える場合には、不快な臭いと認識される。好ましくは12ppm以下、より好ましくは10ppm以下である。   The hydrophobic magnetic iron oxide particle powder according to the present invention is a magnetic iron oxide particle powder whose particle surface is coated with a silane compound. When the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes, The total amount of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms, aliphatic aldehydes, aliphatic ketones and aliphatic alcohols as decomposition products of silane compounds diffused from the iron particle powder is 15 ppm or less. It is. If the total amount of volatile organic compounds exceeds 15 ppm, it is recognized as an unpleasant odor. Preferably it is 12 ppm or less, More preferably, it is 10 ppm or less.

本発明に係る疎水性磁性酸化鉄粒子粉末に用いるシラン化合物としては、化3で表される直鎖状オルガノポリシロキサン又は化4で表されるシラザンが好ましい。   As the silane compound used in the hydrophobic magnetic iron oxide particles according to the present invention, linear organopolysiloxane represented by Chemical Formula 3 or silazane represented by Chemical Formula 4 is preferable.

Figure 2016210629
Figure 2016210629

Figure 2016210629
Figure 2016210629

直鎖状オルガノポリシロキサンとしては、具体的には、メチルトリエトキシシランオリゴマー、メチルトリメトキシシランオリゴマー、エチルトリエトキシシランオリゴマー、エチルトリメトキシシランオリゴマー、プロピルトリエトキシシランオリゴマー、プロピルトリメトキシシランオリゴマー、両末端ヒドロキシル変性シリコーンオイル、メチルハイドロジェンシリコーンオイル等が挙げられ、シラザンとしては、具体的には、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン等があげられる。   Specific examples of the linear organopolysiloxane include methyltriethoxysilane oligomer, methyltrimethoxysilane oligomer, ethyltriethoxysilane oligomer, ethyltrimethoxysilane oligomer, propyltriethoxysilane oligomer, propyltrimethoxysilane oligomer, Examples thereof include hydroxyl-modified silicone oils at both ends and methyl hydrogen silicone oil. Specific examples of silazane include hexamethyldisilazane, hexaethyldisilazane, hexapropyldisilazane, and the like.

疎水化処理剤であるシラン化合物の疎水性基のアルキル鎖の炭素数が大きくなると、その加熱分解物である揮発性有機化合物の臭いの強度も強くなるので、アルキル鎖の炭素数としては3以下であることが好ましい。好ましくは2以下、より好ましくは1である。   As the carbon number of the alkyl chain of the hydrophobic group of the silane compound that is a hydrophobizing agent increases, the odor intensity of the volatile organic compound that is the thermal decomposition product also increases, so the carbon number of the alkyl chain is 3 or less. It is preferable that Preferably it is 2 or less, more preferably 1.

本発明に係る疎水性磁性酸化鉄粒子粉末のBET比表面積は、3.0〜13.0m/gが好ましい。BET比表面積が3.0m/g未満の場合、凝集していることからスチレン/n−ブチルアクリレート中の分散性が悪くなる傾向にある。BET比表面積が13.0m/gを超える場合、疎水化処理が不十分であり、疎水化度が低くなり、スチレン/n−ブチルアクリレート中の分散性が悪くなる傾向にある。より好ましくは、4.0〜12.0m/gである。 The BET specific surface area of the hydrophobic magnetic iron oxide particle powder according to the present invention is preferably 3.0 to 13.0 m 2 / g. When the BET specific surface area is less than 3.0 m 2 / g, the dispersibility in styrene / n-butyl acrylate tends to deteriorate due to aggregation. When the BET specific surface area exceeds 13.0 m 2 / g, the hydrophobization treatment is insufficient, the degree of hydrophobization becomes low, and the dispersibility in styrene / n-butyl acrylate tends to deteriorate. More preferably, it is 4.0-12.0 m < 2 > / g.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したBET維持率が60%以上である。BET維持率が60%未満の場合、凝集していることからスチレン/n−ブチルアクリレート中の分散性が悪いことを意味する。好ましくは、63%以上、より好ましくは65〜80%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention has a BET retention rate of 60% or more evaluated by a measurement method described later. When the BET retention rate is less than 60%, it means that the dispersibility in styrene / n-butyl acrylate is poor due to aggregation. Preferably, it is 63% or more, more preferably 65 to 80%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物のカーボン量としての付着量が0.10〜1.00wt%が好ましく、より好ましくは0.15〜0.90wt%である。   In the hydrophobic magnetic iron oxide particle powder according to the present invention, the adhesion amount as the carbon amount of the silane compound evaluated by the measurement method described later is preferably 0.10 to 1.00 wt%, more preferably 0.15 to 0.00. 90 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物のカーボン量としての固着量が0.08〜1.00wt%が好ましく、より好ましくは0.12〜0.72wt%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention preferably has a fixed amount as a carbon amount of a silane compound evaluated by a measurement method described later of 0.08 to 1.00 wt%, more preferably 0.12 to 0.0. 72 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物の固着率が80%以上であることが好ましい。固着率が80%未満の場合には、溶出した疎水化剤が多くなるため、分散性が悪くなる傾向にある。より好ましくは82%以上であり、上限値は100%である。   The hydrophobic magnetic iron oxide particles according to the present invention preferably have a silane compound sticking rate of 80% or more evaluated by a measurement method described later. When the fixing rate is less than 80%, the amount of the eluted hydrophobizing agent increases, and thus the dispersibility tends to deteriorate. More preferably, it is 82% or more, and the upper limit is 100%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価した疎水化度が60%以上である。疎水化度が60%未満の場合、水中で樹脂モノマーを懸濁重合する場合に、疎水性磁性酸化鉄粒子粉末が水相へ移行してしまい、トナー中での分散性が悪くなる傾向にある。好ましくは62%以上、より好ましくは64%以上である。   The hydrophobic magnetic iron oxide particle powder according to the present invention has a degree of hydrophobicity of 60% or more evaluated by a measurement method described later. When the degree of hydrophobicity is less than 60%, when the resin monomer is subjected to suspension polymerization in water, the hydrophobic magnetic iron oxide particle powder moves to the aqueous phase, and the dispersibility in the toner tends to deteriorate. . Preferably it is 62% or more, More preferably, it is 64% or more.

本発明に係る疎水性磁性酸化鉄粒子粉末は、スチレン/n−ブチルアクリレート中で分散させて塗膜を形成したときの光沢度が60%以上である。塗膜の光沢度が60%未満の場合、樹脂モノマー中での分散性が悪く、トナー中での分散状態が悪いことを意味する。好ましくは64%以上、より好ましくは64〜80%である。
The hydrophobic magnetic iron oxide particle powder according to the present invention has a glossiness of 60% or more when dispersed in styrene / n-butyl acrylate to form a coating film. When the glossiness of the coating film is less than 60%, it means that the dispersibility in the resin monomer is poor and the dispersion state in the toner is poor. Preferably it is 64% or more, More preferably, it is 64 to 80%.

次に、本発明に核となる磁性酸化鉄粒子粉末について述べる。   Next, the magnetic iron oxide particle powder as the core of the present invention will be described.

本発明における核となる磁性酸化鉄粒子は、平均粒子径が0.05〜0.5μmである。平均粒子径が0.05μm未満の場合、磁性酸化鉄粒子相互間の凝集力が大きく分散が困難となり、疎水化処理にも不利である。0.5μmを超える場合、着色力が劣り隠ぺい力も低い。好ましくは0.1〜0.3μm、より好ましくは0.15〜0.25μmである。BET比表面積が5〜15m/gである。 The magnetic iron oxide particles serving as the nucleus in the present invention have an average particle diameter of 0.05 to 0.5 μm. When the average particle size is less than 0.05 μm, the cohesive force between the magnetic iron oxide particles is large, making it difficult to disperse, which is disadvantageous for the hydrophobic treatment. When it exceeds 0.5 μm, the coloring power is inferior and the hiding power is low. Preferably it is 0.1-0.3 micrometer, More preferably, it is 0.15-0.25 micrometer. The BET specific surface area is 5 to 15 m 2 / g.

本発明における核となる磁性酸化鉄粒子は、マグネタイト粒子((FeO)・Fe、0<x≦1)からなり、必要により、鉄以外の元素Si、Al、P、Mn、Ni、Zn、Cu、Mg、Co、Tiから選ばれる1種又は2種以上の金属元素を含有してもよい。 The magnetic iron oxide particles serving as the nucleus in the present invention are composed of magnetite particles ((FeO) x .Fe 2 O 3 , 0 <x ≦ 1). If necessary, elements other than iron, Si, Al, P, Mn, Ni , Zn, Cu, Mg, Co, or Ti may contain one or more metal elements.

本発明における核となる磁性酸化鉄粒子は、必要によりあらかじめ粒子表面が、Si、Al、Tiの化合物から選ばれる少なくとも1種からなる中間被覆物によって被覆されていてもよい。   In the magnetic iron oxide particles serving as the core in the present invention, the particle surface may be coated in advance with an intermediate coating comprising at least one selected from Si, Al, and Ti compounds, if necessary.

本発明における核となる磁性酸化鉄粒子を中間被覆物によって被覆することによって、疎水化剤の脱離をより抑制することができる。   By covering the magnetic iron oxide particles serving as the nucleus in the present invention with the intermediate coating, the desorption of the hydrophobizing agent can be further suppressed.

本発明における核となる磁性酸化鉄粒子粉末の一次粒子の粒子形状は、八面体状、六面体状、粒状、球状などの等方形状である。分散性を考慮すると球状が好ましい。   In the present invention, the primary particle shape of the magnetic iron oxide particle powder serving as the nucleus is an isotropic shape such as an octahedral shape, a hexahedral shape, a granular shape, and a spherical shape. In consideration of dispersibility, a spherical shape is preferable.

本発明における核となる磁性酸化鉄粒子粉末の保磁力は2.4〜15.9kA/m(30〜200Oe)が好ましい。より好ましくは3.2〜13.5kA/m(40〜170Oe)である。   The coercive force of the magnetic iron oxide particle powder as a nucleus in the present invention is preferably 2.4 to 15.9 kA / m (30 to 200 Oe). More preferably, it is 3.2 to 13.5 kA / m (40 to 170 Oe).

本発明おける核となる磁性酸化鉄粒子粉末の飽和磁化値は81.0〜90.0Am/kg(81.0〜90.0emu/g)が好ましい。より好ましくは、84.0〜90.0Am/kg(84.0〜90.0emu/g)である。 The saturation magnetization value of the magnetic iron oxide particles used as the core in the present invention is preferably 81.0-90.0 Am 2 / kg (81.0-90.0 emu / g). More preferably, it is 84.0-90.0 Am < 2 > / kg (84.0-90.0 emu / g).

本発明における磁性酸化鉄粒子は、第一鉄塩水溶液と水酸化アルカリ水溶液とを中和混合して得られた水酸化第一鉄コロイドを含む第一鉄塩反応水溶液を酸素含有ガス、好ましくは空気をスラリー中に吹き込みながら酸化させ、酸化反応終了後のスラリーをろ過、洗浄して磁性酸化鉄粒子を得ることができる。得られた磁性酸化鉄粒子スラリーを常法に従って乾燥させて疎水化処理を行っても良いが、水性媒体中で疎水化処理することを考えると、乾燥工程を経ずにそのまま磁性酸化鉄粒子を含有するスラリーを用いて疎水化処理することが好ましい。   In the present invention, the magnetic iron oxide particles are prepared by neutralizing and mixing a ferrous salt aqueous solution and an alkali hydroxide aqueous solution, and a ferrous salt reaction aqueous solution containing a ferrous hydroxide colloid obtained by oxygen-containing gas, preferably Oxidation is performed while blowing air into the slurry, and the slurry after the oxidation reaction is filtered and washed to obtain magnetic iron oxide particles. The obtained magnetic iron oxide particle slurry may be dried according to a conventional method and subjected to a hydrophobization treatment. However, considering that the hydrophobization treatment is performed in an aqueous medium, the magnetic iron oxide particles can be directly used without passing through a drying step. It is preferable to hydrophobize using the contained slurry.

水酸化第一鉄コロイドを生成させる際のアルカリ溶液の量は、求める磁性酸化鉄粒子の形状に応じて調整すればよい。具体的には、水酸化第一鉄コロイドのpHが8.0未満となるように調整すれば球状粒子が得られ、8.0〜9.5となるように調整すれば六面体状粒子が得られ、9.5を超えるように調整すれば八面体状粒子が得られるので、適宜調整する。   What is necessary is just to adjust the quantity of the alkaline solution at the time of producing | generating a ferrous hydroxide colloid according to the shape of the magnetic iron oxide particle calculated | required. Specifically, spherical particles can be obtained by adjusting the pH of the ferrous hydroxide colloid to be less than 8.0, and hexahedral particles can be obtained by adjusting the pH to 8.0 to 9.5. If it is adjusted to exceed 9.5, octahedral particles can be obtained.

本発明における第一鉄塩水溶液としては、硫酸第一鉄水溶液、塩化第一鉄水溶液等を使用することができる。   As the ferrous salt aqueous solution in the present invention, ferrous sulfate aqueous solution, ferrous chloride aqueous solution and the like can be used.

本発明における水酸化アルカリ水溶液は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属の水酸化物等の各水溶液を使用することができる。   The alkali hydroxide aqueous solution in the present invention uses aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, and the like. Can do.

本発明における酸化反応温度は、85〜100℃である。85℃未満である場合には、針状含水酸化鉄粒子が副生しやすくなり、100℃を越える場合も磁性酸化鉄粒子は生成するが工業的ではない。   The oxidation reaction temperature in this invention is 85-100 degreeC. When the temperature is lower than 85 ° C., acicular hydrous iron oxide particles are easily produced as a by-product, and when the temperature is higher than 100 ° C., magnetic iron oxide particles are produced but are not industrial.

次に、本発明に係る疎水性磁性酸化鉄粒子粉末の製造方法について述べる。   Next, a method for producing hydrophobic magnetic iron oxide particles according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末は、核となる磁性酸化鉄粒子粉末にシラン化合物を添加し乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理して得ることができる。   The hydrophobic magnetic iron oxide particle powder according to the present invention is obtained by adding a silane compound to the core magnetic iron oxide particle powder and subjecting it to a hydrophobization treatment, followed by a temperature range of 80 to 120 ° C. and a peripheral speed of 0.01 to It can be obtained by heat treatment while rotating in the range of 10.0 m / sec.

疎水化処理は、具体的には、疎水化処理を乾式混合撹拌装置中で磁性酸化鉄粒子を十分に分散させながら疎水化剤であるシラン化合物を添加して行う。   Specifically, the hydrophobizing treatment is performed by adding a silane compound as a hydrophobizing agent while sufficiently dispersing the magnetic iron oxide particles in a dry mixing and stirring device.

疎水化処理における、磁性酸化鉄粒子の凝集を抑制するために少量のアルコールでシラン化合物を希釈して添加しても良い。   In order to suppress aggregation of the magnetic iron oxide particles in the hydrophobization treatment, the silane compound may be diluted with a small amount of alcohol and added.

コア粒子とシラン化合物との乾式法による混合には、公知の混合撹拌装置を用いることができる。例えば、ヘンシェルミキサー、ハイスピードミキサー、ホイール型混練機、ナウタミキサー等を用いることができる。これらの装置の運転条件としては、混合撹拌時の温度を、10〜60℃、特に10〜50℃に設定することが好ましい。これによって、シラン化合物がコア粒子と十分に混合される前に、自己縮合や、揮発してしまうことを防止し、シラン化合物の加水分解反応や脱水素反応を促進することができる。   A known mixing and stirring device can be used for mixing the core particles and the silane compound by a dry method. For example, a Henschel mixer, a high speed mixer, a wheel kneader, a nauta mixer, or the like can be used. As operating conditions of these apparatuses, it is preferable to set the temperature during mixing and stirring to 10 to 60 ° C, particularly 10 to 50 ° C. This prevents self-condensation and volatilization before the silane compound is sufficiently mixed with the core particles, and promotes hydrolysis and dehydrogenation of the silane compound.

乾式混合が完了したら、シラン化合物の脱水縮合を生じさせるため、混合撹拌時の温度を80〜120℃、好ましくは90〜110℃にまで加熱して熱処理することが好ましい。加熱をこの温度範囲で行うことで、コア粒子同士の凝集を防止してシラン化合物の脱水縮合を行うことができる。熱処理の温度が120℃を超える場合、脱水縮合反応が進みすぎて磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化するとともに、疎水性も十分とは言い難い。80℃未満であるとシラン化合物の固着率が低下し、分散性が悪化する。   When dry mixing is completed, in order to cause dehydration condensation of the silane compound, heat treatment is preferably performed by heating the temperature at the time of mixing and stirring to 80 to 120 ° C, preferably 90 to 110 ° C. By performing heating in this temperature range, the core particles can be prevented from aggregating and dehydration condensation of the silane compound can be performed. When the temperature of the heat treatment exceeds 120 ° C., the dehydration condensation reaction proceeds so much that the magnetic iron oxide particles are easily united with each other, dispersibility is deteriorated, and hydrophobicity is not sufficient. When the temperature is less than 80 ° C., the fixing rate of the silane compound is lowered and the dispersibility is deteriorated.

本発明においては、乾式で疎水化処理した後、周速0.01〜10.0m/secの範囲で回転させながら熱処理することが好ましい。より好ましくは、0.10〜10.0m/secである。熱処理の周速が10.0m/secを超える場合、解砕力が強すぎるため、シラン化合物がコア粒子表面で脱水縮合反応が行われる前に、シラン化合物が揮発し、自己縮合反応が促進してしまい、固着率が低くなり、分散性が悪化する。また、周速が0.00m/secの場合、磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化する。熱処理装置は、上述の混合撹拌装置に変えて回転炉等を用いることができる。例えば、レトルト回転炉、ロータリーキルン、パドルドライヤー等を用いても良い。   In the present invention, it is preferable to perform a heat treatment while rotating at a peripheral speed of 0.01 to 10.0 m / sec after hydrophobizing by a dry process. More preferably, it is 0.10-10.0 m / sec. When the peripheral speed of the heat treatment exceeds 10.0 m / sec, the crushing force is too strong, so that the silane compound volatilizes before the dehydration condensation reaction is performed on the surface of the core particles, and the self-condensation reaction is accelerated. , The fixing rate is lowered, and the dispersibility is deteriorated. Moreover, when peripheral speed is 0.00 m / sec, it becomes easy to unite magnetic iron oxide particles, and dispersibility deteriorates. As the heat treatment apparatus, a rotary furnace or the like can be used instead of the above-described mixing and stirring apparatus. For example, a retort rotary furnace, rotary kiln, paddle dryer or the like may be used.

シラン化合物の添加量は、核となる磁性酸化鉄粒子に対して0.1〜2.5重量%である。   The addition amount of the silane compound is 0.1 to 2.5% by weight with respect to the magnetic iron oxide particles serving as the nucleus.

次に、本発明に係る磁性酸化鉄粒子粉末を含有する磁性トナーについて述べる。   Next, the magnetic toner containing the magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る磁性トナーは、懸濁重合法によって得ることができる。懸濁重合法においては、重合性単量体と磁性酸化鉄粒子粉末とを、必要により更に、着色剤、重合開始剤、架橋剤、荷電制御剤、その他の添加剤を添加した混合物を溶解又は分散させた単量体組成物を、懸濁安定剤を含む水相中に攪拌しながら添加して造粒し、重合させて所望の粒子サイズとすることにより得られる。   The magnetic toner according to the present invention can be obtained by a suspension polymerization method. In the suspension polymerization method, a polymerizable monomer and magnetic iron oxide particle powder are dissolved or mixed with a colorant, a polymerization initiator, a crosslinking agent, a charge control agent, and other additives as necessary. The dispersed monomer composition is added to an aqueous phase containing a suspension stabilizer while stirring, granulated, and polymerized to obtain a desired particle size.

もちろん、所定量の結着剤樹脂と所定量の磁性酸化鉄粒子粉末とを混合、混練、粉砕による公知の方法によっても行うことができる。具体的には、磁性酸化鉄粒子粉末と結着剤樹脂とを、必要により更に離型剤、着色剤、荷電制御剤、その他の添加剤等を添加した混合物を混合機により十分に混合した後、加熱混練機によって結着剤樹脂中に磁性酸化鉄粒子粉末等を分散させ、次いで、冷却固化して樹脂混練物を得、該樹脂混練物を粉砕及び分級を行って所望の粒子サイズとすることにより得られる。   Of course, it can also be performed by a known method of mixing, kneading, and pulverizing a predetermined amount of binder resin and a predetermined amount of magnetic iron oxide particle powder. Specifically, after the magnetic iron oxide particle powder and the binder resin are mixed sufficiently with a mixer, a mixture further containing a release agent, a colorant, a charge control agent, and other additives as necessary. The magnetic iron oxide particles and the like are dispersed in the binder resin by a heat kneader, and then cooled and solidified to obtain a resin kneaded product. The resin kneaded product is pulverized and classified to obtain a desired particle size. Can be obtained.

<作用>
本発明において、最も重要な点は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であって、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下であることから、磁性酸化鉄粒子粉末が不快な臭いを含有しないという事実である。
<Action>
In the present invention, the most important point is a magnetic iron oxide particle powder whose particle surface is coated with a silane compound, and when the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes, the magnetic iron oxide particle The total of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms, aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols as a decomposition product of the silane compound emitted from the powder is 15 ppm or less. This is the fact that the magnetic iron oxide particle powder does not contain an unpleasant odor.

これらの事実について本発明者は次のように考えている。   The present inventor considers these facts as follows.

本発明の表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末は、疎水化剤であるシラン化合物に用いている直鎖状オルガノポリシロキサン又はシラザンの疎水性基の炭素数を3以下に制限し、核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することにより、シラン化合物が磁性酸化鉄粒子に強固に付着し高い固着率を有するため、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下に抑えられるため不快な臭い成分を含有しないことを可能にし、かつスチレン/n−ブチルアクリレート中での分散性も良好であると考えている。   The magnetic iron oxide particle powder having the surface of the present invention coated with a silane compound limits the number of carbon atoms of the hydrophobic group of the linear organopolysiloxane or silazane used in the silane compound as a hydrophobizing agent to 3 or less. The core magnetic iron oxide particles are hydrophobized by a dry process and then heat treated while rotating at a temperature range of 80 to 120 ° C. and a peripheral speed of 0.01 to 10.0 m / sec. Since the compound adheres firmly to the magnetic iron oxide particles and has a high fixation rate, an aliphatic hydrocarbon having 2 to 16 carbon atoms or a fatty acid as a decomposition product of the silane compound released from the magnetic iron oxide particle powder, The total amount of volatile organic compounds selected from the group aldehydes, aliphatic ketones, and aliphatic alcohols can be suppressed to 15 ppm or less, making it possible to contain no unpleasant odor components, and Dispersibility in styrene / n-butyl acrylate are also considered to be good.

次に、実施例並びに比較例により、本発明を説明する。   Next, the present invention will be described with reference to examples and comparative examples.

<平均粒子径>
磁性酸化鉄粒子粉末の平均粒子径は、透過型電子顕微鏡により撮影した写真(倍率1万倍)を4倍に拡大して、300個についてマーチン径により求めた値である。
<Average particle size>
The average particle diameter of the magnetic iron oxide particle powder is a value obtained by magnifying a photograph taken with a transmission electron microscope (magnification 10,000 times) four times by the Martin diameter for 300 particles.

<BET比表面積>
磁性酸化鉄粒子粉末および疎水性磁性酸化鉄粒子粉末のBET比表面積は、Mono Sorb MS−II(湯浅アイオニックス(株)製)を用いBET法により求めた。
<BET specific surface area>
The BET specific surface areas of the magnetic iron oxide particle powder and the hydrophobic magnetic iron oxide particle powder were determined by the BET method using Mono Sorb MS-II (manufactured by Yuasa Ionics Co., Ltd.).

<BET維持率>
BET維持率は次式で求めた。
BET維持率(%)=疎水化処理磁性酸化鉄粒子粉末のBET/磁性酸化鉄粒子粉末のBET×100
<BET maintenance rate>
The BET maintenance rate was calculated by the following formula.
BET retention rate (%) = BET of hydrophobized magnetic iron oxide particles / BET × 100 of magnetic iron oxide particles

<付着量・固着量・固着率>
疎水性磁性酸化鉄粒子粉末付着量、固着量、固着率評価は、炭素分析装置 EMIA−80((株)堀場製作所製)を用いてカーボン量を測定することにより行った。
まず、疎水性磁性酸化鉄粒子粉末のカーボン量を測定し付着量とした。次に、100mlのビーカーに疎水性磁性酸化鉄粒子粉末10gとトルエン100gを入れ、超音波洗浄器 BRANSONIC 5510(ヤマト科学(株)製)を用いて超音波を30分間照射した。その後、ろ過、乾燥した粉末のカーボン量を測定し固着量とした。固着率は次式で求めた。
固着率(%)=固着量/付着量×100
<Adhesion amount / Adhesion amount / Adhesion rate>
The amount of adhering hydrophobic magnetic iron oxide particles, the amount of sticking, and the sticking rate were evaluated by measuring the amount of carbon using a carbon analyzer EMIA-80 (manufactured by Horiba, Ltd.).
First, the amount of carbon in the hydrophobic magnetic iron oxide particles was measured and used as the amount of adhesion. Next, 10 g of hydrophobic magnetic iron oxide particles and 100 g of toluene were placed in a 100 ml beaker and irradiated with ultrasonic waves for 30 minutes using an ultrasonic cleaner BRANSONIC 5510 (manufactured by Yamato Scientific Co., Ltd.). Thereafter, the carbon content of the filtered and dried powder was measured and used as the fixed amount. The fixing rate was obtained by the following formula.
Adhesion rate (%) = Adhesion amount / Adhesion amount × 100

<磁気特性>
磁性酸化鉄粒子粉末の磁気特性は、振動試料型磁力計 VSM−3S−15(東英工業(株)製)を用いて外部磁場796kA/mで測定した値で示した。
<Magnetic properties>
The magnetic properties of the magnetic iron oxide particles were shown by values measured with an external magnetic field of 796 kA / m using a vibrating sample magnetometer VSM-3S-15 (manufactured by Toei Industry Co., Ltd.).

<疎水化度>
疎水性磁性酸化鉄硫粉末の疎水化度は、粉体濡れ性試験機(株式会社レスカ製WET101P)を用い、体積濃度50%のメタノール水溶液70mlに疎水性磁性酸化鉄粒子粉末100mgを添加し、撹拌羽根により撹拌する。この状態下にメタノールを滴下し、メタノール水溶液に波長780nmのレーザー光を照射し、その透過率を測定する。疎水性磁性酸化鉄粒子粉末が濡れて沈降、懸濁していき、透過率が50%となるところのメタノール水溶液の体積濃度を疎水化度とする。
<Hydrophobicity>
The hydrophobicity of the hydrophobic magnetic iron oxide sulfide powder was determined by adding 100 mg of the hydrophobic magnetic iron oxide particle powder to 70 ml of aqueous methanol solution having a volume concentration of 50% using a powder wettability tester (WET101P manufactured by Reska Co., Ltd.) Stir with a stirring blade. Under this condition, methanol is dropped, and the aqueous methanol solution is irradiated with laser light having a wavelength of 780 nm, and the transmittance is measured. The volume concentration of the aqueous methanol solution at which the hydrophobic magnetic iron oxide particle powder wets, settles and suspends and the transmittance becomes 50% is defined as the degree of hydrophobicity.

<スチレン/n−ブチルアクリレート分散塗膜の光沢度>
磁性酸化鉄粒子粉末45g、スチレン37g、n−ブチルアクリレート13gを100mlのビーカーに入れ、ディスパーの回転数を1500rpmで15分間分散させたペーストをPETフィルム上に置き、WET膜厚24μmのバーコーターで塗布し、乾燥した塗布膜面の光沢度(60°)をデジタル変角光沢計 UGV−5D(スガ試験機(株)製)で測定した。
<Glossiness of styrene / n-butyl acrylate dispersed coating film>
45 g of magnetic iron oxide particle powder, 37 g of styrene, and 13 g of n-butyl acrylate were placed in a 100 ml beaker, and a paste in which the number of revolutions of the disperser was dispersed at 1500 rpm for 15 minutes was placed on a PET film. The gloss (60 °) of the coated and dried coating film surface was measured with a digital variable gloss meter UGV-5D (manufactured by Suga Test Instruments Co., Ltd.).

<磁性酸化鉄粒子粉末から放散される揮発性有機化合物の主成分と総量>
磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物である炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の定性および定量はヘッドスペース法による以下のGC−MS分析によりを行う。
<Main components and total amount of volatile organic compounds released from magnetic iron oxide particles>
A volatile organic compound selected from aliphatic hydrocarbons having 2 to 16 carbon atoms, aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols, which are decomposition products of the silane compound diffused from the magnetic iron oxide particle powder Qualitative and quantitative determination is performed by the following GC-MS analysis by the headspace method.

装置名: PERKIN ELMER 社製 Claus500
PERKIN ELMER 社製 HS−TurboMatrix40
測定方法:
ヘッドスペースバイアルに磁性酸化鉄粒子粉末を100mg封入し、ヘッドスペースサンプラーにて加熱(120℃×30min)し、発生ガスのGC−MS分析を行った。
ヘッドスペースサンプラー条件:
サンプル加熱温度 120℃
サンプル加熱時間 30分
GC−MS条件:
キャピラリーカラム GLサイエンス製 TC−1
キャリアーガス He
カラムオーブン 40℃/2分ホールド、10℃/分で230℃まで昇温する。
解析方法:
検量用標準物質には、トルエンを使用し、ヘッドスペースバイアルに0.000μL、0.025μL、0.050μL、0.075μLを封入して測定を行う。トルエンは7.05分付近にピークが観察され、そのエリア面積値より検量線を作成する。
シラン化合物中の疎水性基であるアルキル鎖の加熱分解物としては、アルケンやアルデヒドなどが観察される。例えば、アルキル基が、C10の場合は1−デセンおよびデカナールが生成し、C8の場合は1−オクテン及びオクタナールが生成し、C6の場合は、1−ヘキセン及びヘキサナールが生成する。測定によって、得られたマススペクトルを確認することによって、臭いの主成分を特定することができる。例えば、C10に由来する1−デセンは、11.8分付近にピークが観察され、C8に由来する1−オクテンは、7.7分付近にピークが観察され、C6に由来する1−ヘキセンは、3.6分付近にピークが観察される。得られたピークのエリア面積値を、トルエン検量線から換算することにより、磁性酸化鉄単位重量あたりの揮発性有機化合物量を算出する。
Device name: Claus 500 manufactured by PERKIN ELMER
HS-TurboMatrix40 manufactured by PERKIN ELMER
Measuring method:
100 mg of magnetic iron oxide particle powder was sealed in a headspace vial, heated with a headspace sampler (120 ° C. × 30 min), and GC-MS analysis of the generated gas was performed.
Headspace sampler requirements:
Sample heating temperature 120 ° C
Sample heating time 30 minutes GC-MS conditions:
Capillary column TC-1 made by GL Sciences
Carrier gas He
Column oven Hold at 40 ° C / 2 minutes and heat up to 230 ° C at 10 ° C / minute.
analysis method:
Toluene is used as a calibration standard, and 0.000 μL, 0.025 μL, 0.050 μL, and 0.075 μL are sealed in a headspace vial for measurement. A peak of toluene is observed around 7.05 minutes, and a calibration curve is created from the area area value.
Alkenes, aldehydes, and the like are observed as thermal decomposition products of alkyl chains that are hydrophobic groups in the silane compound. For example, when the alkyl group is C10, 1-decene and decanal are produced, when C8 is produced, 1-octene and octanal are produced, and when C6 is used, 1-hexene and hexanal are produced. The main component of odor can be specified by confirming the obtained mass spectrum by measurement. For example, 1-decene derived from C10 has a peak observed around 11.8 minutes, 1-octene derived from C8 has a peak observed around 7.7 minutes, and 1-hexene derived from C6 is A peak is observed around 3.6 minutes. The amount of volatile organic compounds per unit weight of magnetic iron oxide is calculated by converting the area area value of the obtained peak from the toluene calibration curve.

<磁性トナー中での分散性>
磁性トナー中の疎水性磁性酸化鉄粒子粉末の分散性は、磁性トナーをウルトラミクロトーム MT2C(RESEACH MANFACTURING製)を用いてスライスし、その断面を透過型電子顕微鏡(倍率10000倍)で観察し、視野内の磁性酸化鉄粒子粉末の凝集状態を観察し、4段階で評価した。凝集物が少ないほど分散性が良いことを示す。
凝集物;0〜1個 分散度◎
2〜5個 ○
5〜10個 △
11個以上 ×
<Dispersibility in magnetic toner>
The dispersibility of the hydrophobic magnetic iron oxide particles in the magnetic toner was determined by slicing the magnetic toner with an ultramicrotome MT2C (manufactured by RESEACH MANFACTURERING) and observing the cross section with a transmission electron microscope (magnification 10,000 times). The aggregation state of the magnetic iron oxide particle powder was observed and evaluated in four stages. It shows that dispersibility is so good that there are few aggregates.
Aggregate: 0 to 1 Dispersion degree ◎
2-5 pieces ○
5-10 pieces △
11 or more ×

<磁性酸化鉄粒子の製造>
(核粒子A)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)4.806l(当量比=0.95)および水17.396lに、90℃にて空気を吹き込んで磁性酸化鉄粒子の芯粒子を生成した。ついで、当量比が1.0以上になるようにNaOHを添加し、残った硫酸第一鉄を反応させた後、常法により水洗、乾燥を行って磁性酸化鉄粒子(核粒子A)を得た。得られた磁性酸化鉄粒子は、粒子形状が球状であって、平均粒子径が0.24μm、BET比表面積が7.5m/gであった。
<Manufacture of magnetic iron oxide particles>
(Nuclear particle A)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity; 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 4.806 l (equivalent ratio = 0.95) and water 17. Air was blown into 396 l at 90 ° C. to produce core particles of magnetic iron oxide particles. Next, NaOH is added so that the equivalent ratio becomes 1.0 or more, and the remaining ferrous sulfate is reacted, and then washed with water and dried by a conventional method to obtain magnetic iron oxide particles (nuclear particles A). It was. The obtained magnetic iron oxide particles had a spherical particle shape, an average particle diameter of 0.24 μm, and a BET specific surface area of 7.5 m 2 / g.

核粒子B、D及びE
核粒子Aの製造条件に基づいて、条件を種々変化させて核粒子B、D及びEを生成した。
Nuclear particles B, D and E
Based on the manufacturing conditions of the core particle A, the core particles B, D, and E were generated by changing the conditions.

(核粒子C)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)5.068l(当量比=1.06)および水17.396lに、90℃にて空気を吹き込んで磁性酸化鉄粒子を生成した。得られた磁性酸化鉄粒子は、粒子形状が八面体であって、平均粒子径が0.24μm、BET比表面積が9.5m/gであった。
(Nuclear particle C)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity; 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 5.068 l (equivalent ratio = 1.06) and water 17. Air was blown into 396 l at 90 ° C. to produce magnetic iron oxide particles. The obtained magnetic iron oxide particles had an octahedral particle shape, an average particle diameter of 0.24 μm, and a BET specific surface area of 9.5 m 2 / g.

得られた核粒子となる磁性酸化鉄粒子の諸特性を表1に示す。   Table 1 shows various characteristics of the magnetic iron oxide particles to be the obtained core particles.

Figure 2016210629
Figure 2016210629

実施例1
<疎水性磁性酸化鉄粒子粉末の製造>
表1に示す核粒子A 3kg、ヘンシェルミキサーに投入し、品温が50℃になるように調整しながら撹拌を開始する。メチルハイドロジェンポリシロキサン36gを徐々に添加し30分撹拌した。続いて、加熱を行い品温が120℃になるように調整しながら周速5.39m/secで1時間撹拌した。その後、冷却を行い、疎水性磁性酸化鉄粒子粉末を得た。
Example 1
<Production of hydrophobic magnetic iron oxide particle powder>
3 kg of core particles A shown in Table 1 are put into a Henschel mixer, and stirring is started while adjusting the product temperature to 50 ° C. 36 g of methyl hydrogen polysiloxane was gradually added and stirred for 30 minutes. Subsequently, the mixture was stirred for 1 hour at a peripheral speed of 5.39 m / sec while adjusting the product temperature to 120 ° C. by heating. Thereafter, cooling was performed to obtain hydrophobic magnetic iron oxide particles.

実施例2〜8
核粒子の種類、シラン化合物の種類及び量、熱処理条件を種々変化させた以外は実施例1と同様にして疎水性磁性酸化鉄粒子粉末を得た。なお、実施例3は乾式混合後、混合物を回転炉に投入し、周速0.31m/secで2時間熱処理を行ったものである。また、実施例7、実施例8はシラン化合物を等倍量のエタノールで予め希釈して添加した。
Examples 2-8
Hydrophobic magnetic iron oxide particles were obtained in the same manner as in Example 1 except that the types of the core particles, the types and amounts of the silane compounds, and the heat treatment conditions were variously changed. In Example 3, after dry mixing, the mixture was put into a rotary furnace and heat-treated at a peripheral speed of 0.31 m / sec for 2 hours. In Examples 7 and 8, the silane compound was added after diluting with an equal amount of ethanol in advance.

比較例1(特願20008−282002号公報の実施例7の追試実験)
得られた核粒子Dスラリーの固形分濃度を10wt%にし、ホモミキサーの回転数を500rpmにした。pH6.4に調整し十分に分散させて、n−デシルトリメトキシシランを加え、加水分解を行いながら疎水化処理を行った。生成した疎水化性磁性酸化鉄粒子をろ過・水洗し、80℃で乾燥した。その後、乾燥物をヘンシェルミキサーに投入し、100℃に加温し、周速15m/secで1時間撹拌しながら熱処理を行い、疎水性磁性酸化鉄粒子粉末を得た。
Comparative Example 1 (Follow-up experiment of Example 7 of Japanese Patent Application No. 20008-282002)
The solid content concentration of the obtained core particle D slurry was 10 wt%, and the rotation speed of the homomixer was 500 rpm. The mixture was adjusted to pH 6.4 and sufficiently dispersed, n-decyltrimethoxysilane was added, and hydrophobization was performed while performing hydrolysis. The produced hydrophobizing magnetic iron oxide particles were filtered, washed with water, and dried at 80 ° C. Thereafter, the dried product was put into a Henschel mixer, heated to 100 ° C., and heat-treated with stirring at a peripheral speed of 15 m / sec for 1 hour to obtain hydrophobic magnetic iron oxide particles.

比較例2(特開2010−100464号公報の実施例2の追試実験)
得られた核粒子Dを含むスラリーの固形分濃度を10wt%にし、ホモミキサーの回転数を5000rpmにした。pHを6、スラリーの温度を40℃に調整し十分に分散させて、イソブチルトリメトキシシランを加え、加水分解を行いながら疎水化処理を行った、生成した表面処理した磁性酸化鉄粒子粉末含有スラリー(固形分濃度:10wt%)をスプレードライヤーを用いて150℃で流動層乾燥を行い、その後、定温乾燥機 FS−420((株)東洋製作所)を用いて100℃で2時間熱処理を行い、表面処理された磁性酸化鉄粒子粉末を得た。
Comparative Example 2 (Follow-up experiment of Example 2 of JP 2010-100144 A)
The solid content concentration of the obtained slurry containing the core particles D was 10 wt%, and the rotation speed of the homomixer was 5000 rpm. The resulting surface-treated magnetic iron oxide particle powder-containing slurry that was adjusted to pH 6 and the slurry temperature was adjusted to 40 ° C. and sufficiently dispersed, and hydrophobized while adding isobutyltrimethoxysilane and hydrolyzing. (Solid content concentration: 10 wt%) is fluidized bed dried at 150 ° C. using a spray dryer, and then heat treated at 100 ° C. for 2 hours using a constant temperature dryer FS-420 (Toyo Seisakusho). A surface-treated magnetic iron oxide particle powder was obtained.

比較例3(特開2003−183027号公報の実施例1の追試実験)
得られた核粒子E5kgを、ヘンシェルミキサーに投入し、加熱ジャケットにて粉末の温度が70℃となるように調整しながら撹拌を開始する。反応性シリコーンオイルである、メチルハイドロジェンポリシロキサン100gをエタノール100gに希釈したものを徐々に添加し、2時間撹拌を行った。続いて、アルミニウム系カップリング剤であるアセチルアセテートアルミニウムジイソピレート25gをヘキサン25gに希釈したものを徐々に添加し、1時間撹拌を行い、表面処理された磁性酸化鉄粒子粉末を得た。
Comparative example 3 (follow-up experiment of Example 1 of JP2003-183027A)
The obtained core particle E5 kg is put into a Henschel mixer, and stirring is started while adjusting the temperature of the powder to 70 ° C. with a heating jacket. A reactive silicone oil, 100 g of methyl hydrogen polysiloxane diluted with 100 g of ethanol, was gradually added and stirred for 2 hours. Subsequently, a solution obtained by diluting 25 g of acetyl acetate aluminum diisopyrate, which is an aluminum coupling agent, into 25 g of hexane was gradually added and stirred for 1 hour to obtain a surface-treated magnetic iron oxide particle powder.

比較例4
核粒子の種類、シラン化合物の種類及び量、熱処理条件を種々変化させた以外は実施例1と同様にして疎水性磁性酸化鉄粒子粉末を得た。
Comparative Example 4
Hydrophobic magnetic iron oxide particles were obtained in the same manner as in Example 1 except that the types of the core particles, the types and amounts of the silane compounds, and the heat treatment conditions were variously changed.

得られた疎水性磁性酸化鉄粒子粉末の諸特性を表2、表3に示す。 Tables 2 and 3 show properties of the obtained hydrophobic magnetic iron oxide particles.

Figure 2016210629
Figure 2016210629

Figure 2016210629
Figure 2016210629

使用例1
<磁性トナーの製造>
イオン交換水500重量部に懸濁安定剤としてコロイダルシリカ S−150(伯東化学(株)製)5重量部を加え70℃に加温して水系媒体を得た。
スチレン: 80重量部
n−ブチルアクリレート: 20重量部
ジビニルベンゼン: 0.3重量部
疎水性磁性酸化鉄粒子粉末 82重量部
Example 1
<Manufacture of magnetic toner>
5 parts by weight of colloidal silica S-150 (manufactured by Hakuto Chemical Co., Ltd.) as a suspension stabilizer was added to 500 parts by weight of ion-exchanged water and heated to 70 ° C. to obtain an aqueous medium.
Styrene: 80 parts by weight n-butyl acrylate: 20 parts by weight Divinylbenzene: 0.3 part by weight Hydrophobic magnetic iron oxide particle powder 82 parts by weight

上記混合物をペイントコンデキショナーを用いて分散させた。これに重合開始剤2,2‘−アゾビス(2,4ジメチルバレロニトリル)1.5重量部を溶解させた。
前記水系媒体中に上記重合性単量体を投入し、70℃、N雰囲気下においてホモミキサーにて8000rpmで10分間攪拌し、液滴形成を行った。その後パドルで攪拌しながら70℃で8時間反応させた。反応終了後、NaOHでpH12にして懸濁安定剤を除去し、ろ過、水洗、乾燥して磁性トナー1を得た。重量平均粒径は7.5μmであった。
The mixture was dispersed using a paint conditioner. Into this, 1.5 parts by weight of a polymerization initiator 2,2′-azobis (2,4 dimethylvaleronitrile) was dissolved.
The polymerizable monomer was put into the aqueous medium, and stirred at 8000 rpm for 10 minutes with a homomixer in an N 2 atmosphere at 70 ° C. to form droplets. Thereafter, the mixture was reacted at 70 ° C. for 8 hours while stirring with a paddle. After completion of the reaction, the suspension stabilizer was removed by adjusting the pH to 12 with NaOH, followed by filtration, washing with water, and drying to obtain magnetic toner 1. The weight average particle diameter was 7.5 μm.

使用例2〜12
疎水性磁性酸化鉄粒子粉末の種類を種々変化させた以外は使用例1と同様にして磁性トナーを得た。
Examples of use 2-12
A magnetic toner was obtained in the same manner as in Use Example 1 except that the kind of the hydrophobic magnetic iron oxide particle powder was variously changed.

得られた磁性トナーの諸特性を表4に示す。   Table 4 shows various properties of the obtained magnetic toner.

Figure 2016210629
Figure 2016210629

本発明に係る疎水性磁性酸化鉄粒子粉末は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であって、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下に抑えられるため、不快な臭い成分を含有しないことを可能にし、かつ、スチレン/n−ブチルアクリレート中での分散性が良好なので、磁性トナー用の疎水性磁性酸化鉄粒子粉末として好適である。   The hydrophobic magnetic iron oxide particle powder according to the present invention is a magnetic iron oxide particle powder whose particle surface is coated with a silane compound, and when the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes, A total of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms, aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols as decomposition products of the silane compound emitted from the iron oxide particle powder. Since it is suppressed to 15 ppm or less, it is possible to contain no unpleasant odor components and good dispersibility in styrene / n-butyl acrylate, so it is suitable as a hydrophobic magnetic iron oxide particle powder for magnetic toner. is there.

Claims (5)

粒子表面がシラン化合物で被覆されている疎水性磁性酸化鉄粒子粉末であって、該磁性酸化鉄粒子粉末を120℃で30分間保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下であることを特徴とする疎水性磁性酸化鉄粒子粉末。   Hydrophobic magnetic iron oxide particle powder whose particle surface is coated with a silane compound, and the silane compound released from the magnetic iron oxide particle powder when the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes Hydrophobic, characterized in that the total of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms or aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols is 15 ppm or less Magnetic iron oxide particle powder. シラン化合物が化1に示される直鎖状オルガノポリシロキサン若しくは化2に示されるシラザンから選ばれる少なくとも1種又は2種である請求項1記載の疎水性磁性酸化鉄粒子粉末。
Figure 2016210629
Figure 2016210629
The hydrophobic magnetic iron oxide particle powder according to claim 1, wherein the silane compound is at least one selected from linear organopolysiloxane represented by Chemical Formula 1 or silazane represented by Chemical Formula 2.
Figure 2016210629
Figure 2016210629
疎水化度が60%以上である請求項1又は2記載の疎水性磁性酸化鉄粒子粉末。   The hydrophobic magnetic iron oxide particle powder according to claim 1 or 2, having a degree of hydrophobicity of 60% or more. スチレン/n−ブチルアクリレート中で分散させた塗膜の光沢度が60%以上である請求項1〜3のいずれかに記載の疎水性磁性酸化鉄粒子粉末。   The hydrophobic magnetic iron oxide particle powder according to any one of claims 1 to 3, wherein the gloss of the coating film dispersed in styrene / n-butyl acrylate is 60% or more. 核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することを特徴とする請求項1記載の疎水性磁性酸化鉄粒子粉末の製造方法。   The magnetic iron oxide particles serving as nuclei are hydrophobized by a dry process and then heat-treated while being rotated in a temperature range of 80 to 120 ° C. and a peripheral speed of 0.01 to 10.0 m / sec. Item 2. A method for producing hydrophobic magnetic iron oxide particles according to Item 1.
JP2015092323A 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same Active JP6521239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092323A JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092323A JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016210629A true JP2016210629A (en) 2016-12-15
JP6521239B2 JP6521239B2 (en) 2019-05-29

Family

ID=57551211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092323A Active JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6521239B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815891A (en) * 1994-04-27 1996-01-19 Canon Inc Developer for developing electrostatic charge image, its production and image forming method
JP2000003091A (en) * 1998-04-17 2000-01-07 Canon Inc Developer carrying body for developing, developing device using that, image forming method and device unit
JP2000075527A (en) * 1998-09-01 2000-03-14 Canon Inc Image forming device
JP2004004383A (en) * 2002-06-03 2004-01-08 Canon Inc Method for manufacturing toner particle, and toner
JP2004021126A (en) * 2002-06-19 2004-01-22 Canon Inc Dry type toner and image forming method using the dry toner
JP2005263619A (en) * 2004-02-18 2005-09-29 Titan Kogyo Kk Hydrophobic magnetic iron oxide particle
JP2006208624A (en) * 2005-01-27 2006-08-10 Canon Inc Method for manufacturing toner particle
JP2008282002A (en) * 2007-04-09 2008-11-20 Toda Kogyo Corp Hydrophobic magnetic iron oxide particulate powder for magnetic toner and method for manufacturing the same
JP2014162655A (en) * 2013-02-21 2014-09-08 Mitsui Mining & Smelting Co Ltd Coated magnetite particle and method for producing the same
JP5719932B2 (en) * 2011-07-15 2015-05-20 日本たばこ産業株式会社 Perfume-carrying low adsorptive particles, cigarette filter, cigarette with filter, and method for producing perfume-carrying low adsorbent particles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815891A (en) * 1994-04-27 1996-01-19 Canon Inc Developer for developing electrostatic charge image, its production and image forming method
JP2000003091A (en) * 1998-04-17 2000-01-07 Canon Inc Developer carrying body for developing, developing device using that, image forming method and device unit
JP2000075527A (en) * 1998-09-01 2000-03-14 Canon Inc Image forming device
JP2004004383A (en) * 2002-06-03 2004-01-08 Canon Inc Method for manufacturing toner particle, and toner
JP2004021126A (en) * 2002-06-19 2004-01-22 Canon Inc Dry type toner and image forming method using the dry toner
JP2005263619A (en) * 2004-02-18 2005-09-29 Titan Kogyo Kk Hydrophobic magnetic iron oxide particle
JP2006208624A (en) * 2005-01-27 2006-08-10 Canon Inc Method for manufacturing toner particle
JP2008282002A (en) * 2007-04-09 2008-11-20 Toda Kogyo Corp Hydrophobic magnetic iron oxide particulate powder for magnetic toner and method for manufacturing the same
JP5719932B2 (en) * 2011-07-15 2015-05-20 日本たばこ産業株式会社 Perfume-carrying low adsorptive particles, cigarette filter, cigarette with filter, and method for producing perfume-carrying low adsorbent particles
JP2014162655A (en) * 2013-02-21 2014-09-08 Mitsui Mining & Smelting Co Ltd Coated magnetite particle and method for producing the same

Also Published As

Publication number Publication date
JP6521239B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5422904B2 (en) Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP2016006547A (en) Toner composition and method of preparing the same
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2011206762A (en) Hydrophobization treatment method of particle
JP5330794B2 (en) Coated magnetite particles and method for producing the same
JP7091050B2 (en) Hydrophobic silica powder and its manufacturing method, and toner resin particles
JP5136749B2 (en) Black magnetic iron oxide particle powder
TW201736262A (en) Hydrophobic silica for electrophotographic toner composition
JP6521239B2 (en) Hydrophobic magnetic iron oxide particle powder and method for producing the same
JP2010100467A (en) Surface-treated iron titanium compound oxide particle powder, black coating material using the same and rubber-resin composition
JP5403213B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP6385088B2 (en) Magnetic toner
JP6061704B2 (en) Coated magnetite particles
JP5826453B2 (en) Black magnetic iron oxide particle powder
JP2010120833A (en) Hydrophobic magnetite particle powder
JP5400321B2 (en) Method for producing composite coated magnetite particles
JP5403214B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP5400440B2 (en) Magnetite particles
JP6086753B2 (en) Coated magnetite particles and method for producing the same
JP6496566B2 (en) Hydrophobized spherical metatitanic acid particles, toner external additive, toner spacer and toner
JP2002080224A (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the same
JP5715329B2 (en) Coated magnetite particles
JP6817916B2 (en) Manufacturing method of toner external preparation for static charge image development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6521239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250