JP6521239B2 - Hydrophobic magnetic iron oxide particle powder and method for producing the same - Google Patents

Hydrophobic magnetic iron oxide particle powder and method for producing the same Download PDF

Info

Publication number
JP6521239B2
JP6521239B2 JP2015092323A JP2015092323A JP6521239B2 JP 6521239 B2 JP6521239 B2 JP 6521239B2 JP 2015092323 A JP2015092323 A JP 2015092323A JP 2015092323 A JP2015092323 A JP 2015092323A JP 6521239 B2 JP6521239 B2 JP 6521239B2
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic iron
particle powder
oxide particle
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015092323A
Other languages
Japanese (ja)
Other versions
JP2016210629A (en
Inventor
下畑 祐介
祐介 下畑
茂典 原田
茂典 原田
亮 岩井
亮 岩井
伸哉 志茂
伸哉 志茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2015092323A priority Critical patent/JP6521239B2/en
Publication of JP2016210629A publication Critical patent/JP2016210629A/en
Application granted granted Critical
Publication of JP6521239B2 publication Critical patent/JP6521239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、表面がシラン化合物で被覆されている疎水性磁性酸化鉄粒子粉末であって、加熱した際に該磁性酸化鉄粒子粉末から放散される揮発性有機化合物が少なく、かつ非極性溶媒中での分散性が良好である磁性トナー用疎水性磁性酸化鉄粒子粉末を提供する。   The present invention is a hydrophobic magnetic iron oxide particle powder, the surface of which is coated with a silane compound, which contains less volatile organic compounds emitted from the magnetic iron oxide particle powder when heated, and is in a nonpolar solvent. The present invention provides a hydrophobic magnetic iron oxide particle powder for magnetic toner, which has good dispersibility in the above.

従来、静電潜像現像法の一つとして、キャリアを使用せずに樹脂中にマグネタイト粒子粉末等の黒色磁性酸化鉄粒子粉末を混合分散させた複合体粒子を現像剤として用いる所謂、一成分系磁性トナーによる現像法が広く知られ、汎用されている。   Conventionally, as one of electrostatic latent image development methods, so-called one-component using composite particles in which black magnetic iron oxide particles such as magnetite particles are mixed and dispersed in a resin without using a carrier as a developer A developing method using a magnetic toner is widely known and widely used.

近時、レーザービームプリンターやデジタル複写機の高画質化に伴って、現像剤である磁性トナーの特性向上が強く要求されており、その為には、トナー中で磁性酸化鉄粒子が出来るだけ内包され、かつ、分散した状態が望ましい。   Recently, as the image quality of laser beam printers and digital copiers has been improved, there has been a strong demand for improvement in the characteristics of magnetic toners as developers. For this purpose, magnetic iron oxide particles are contained as much as possible in the toner. It is desirable to have a distributed and distributed state.

また、レーザービームプリンターやデジタル複写機の高速化に伴い、現像剤である磁性トナーの単位時間当たりの使用量も増えるため、揮発性有機化合物の放散の抑制が要求されており、その為には、トナーに使用される原材料の揮発性有機化合物の放散の抑制が望ましい。   In addition, with the increase in speed of laser beam printers and digital copiers, the amount of use of magnetic toner as a developer per unit time also increases, so there is a demand for suppression of the emission of volatile organic compounds. It is desirable to suppress the emission of volatile organic compounds of raw materials used for toners.

磁性トナーは粉砕法で製造されているが、粒子径の微小化、均一化、さらなる低温定着性などの機能付与において、重合法トナーに移行しつつある。   The magnetic toner is manufactured by a pulverizing method, but is being transferred to a polymerization method toner in the function imparting such as the reduction of the particle diameter, the equalization, the low temperature fixing property and the like.

重合法トナーは、重合性単量体中で磁性酸化鉄粒子を分散させて作ることから、親水性表面である磁性酸化鉄粒子を疎水化して重合性単量体中で分散をさせることが重要になってくる。   Since the polymerization toner is prepared by dispersing magnetic iron oxide particles in a polymerizable monomer, it is important to hydrophobize the magnetic iron oxide particles as a hydrophilic surface to disperse in the polymerizable monomer. It will be

湿式で磁性酸化鉄粒子を疎水化処理する手段として、水系媒体中でアルキルアルコキシシランを疎水化処理する方法が開示されている(特許文献1、2、3参照)。   As a means for hydrophobizing magnetic iron oxide particles in a wet manner, methods for hydrophobizing alkylalkoxysilane in an aqueous medium are disclosed (see Patent Documents 1, 2 and 3).

乾式で磁性酸化鉄粒子を疎水化処理する手段として、ヘンシェルミキサー等を使用して、コア粒子に、反応性シリコーンオイル及び/又はシランカップリング材を添加し、機械的な混合撹拌を行った後、引き続きアルミニウム系カップリング剤を添加し、機械的な混合撹拌を行った後、加熱溶媒を除去し、第1及び第2の被覆層を形成する方法が開示されている(特許文献4参照)。   After adding reactive silicone oil and / or silane coupling agent to core particles using a Henschel mixer etc. as means for hydrophobizing magnetic iron oxide particles in a dry state, and after performing mechanical mixing and stirring Subsequently, after adding an aluminum-based coupling agent and mechanically mixing and stirring, a method of removing the heating solvent and forming the first and second coating layers is disclosed (see Patent Document 4). .

気相で磁性酸化鉄粒子を疎水化処理する手段として、処理剤を気化接触して反応させる方法が開示されている(特許文献5参照)。   As a means for hydrophobizing magnetic iron oxide particles in the gas phase, there is disclosed a method in which a treating agent is brought into contact for reaction to cause a reaction (see Patent Document 5).

特開2008−282002号公報JP, 2008-282002, A 特開2005−263619号公報JP, 2005-263619, A 特開2010−100464号公法Unexamined-Japanese-Patent No. 2010-100464 official law 特開2003−183027号公報JP 2003-183027 A 特開2000−327948号公報JP 2000-327948 A

特許文献1、2は、非極性溶媒中での分散性は良好であるものの、疎水化処理剤に使用しているアルキルアルコキシシランの加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。また、特許文献3は、有機溶媒中での磁性酸化鉄粒子の挙動粒子径を小さくするために、シランカップリング剤の疎水基の炭素数を3又は4としており、アルキルアルコキシシランの加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。さらに、疎水化度が低いため、水中で樹脂モノマーを懸濁する場合に、疎水性磁性酸化鉄粒子粉末が水相に移行してしまい、トナー中での分散性が十分とは言い難い。   Patent documents 1 and 2 have good dispersibility in nonpolar solvents, but volatile organic compounds which are thermally decomposed products of alkyl alkoxysilanes used for a hydrophobization treatment remain, and thus heating is carried out. Sometimes it may have an unpleasant odor. Further, Patent Document 3 sets the carbon number of the hydrophobic group of the silane coupling agent to 3 or 4 in order to reduce the particle size of magnetic iron oxide particles in an organic solvent, and a thermally decomposed product of alkyl alkoxysilane Volatile organic compounds remain, which may have an unpleasant odor on heating. Furthermore, since the degree of hydrophobicity is low, when suspending the resin monomer in water, the hydrophobic magnetic iron oxide particle powder is transferred to the aqueous phase, and the dispersibility in the toner can not be said to be sufficient.

また、特許文献4記載の技術では、非極性溶媒中での分散性は必ずしも良好であるとは言い難く、且つ、疎水化処理剤に使用しているアルミニウム系カップリング剤の加熱分解物である揮発性有機化合物が残留してしまい、加熱時に不快な臭いを有する可能性がある。   Further, in the technology described in Patent Document 4, the dispersibility in a nonpolar solvent is not necessarily good, and it is a thermally decomposed product of an aluminum-based coupling agent used for a hydrophobizing agent. Volatile organic compounds may remain and may have an unpleasant odor when heated.

また、特許文献5記載の技術では、高温で熱処理することから凝集しやすく、非極性溶媒中での分散性が十分とは言い難い。   Further, in the technique described in Patent Document 5, since the heat treatment is performed at a high temperature, the particles are easily aggregated, and the dispersibility in the nonpolar solvent is not sufficient.

よって、本発明は、加熱時に揮発性有機化合物の放散が少なく、しかも、非極性溶媒中での分散性が良好である疎水化された磁性酸化鉄粒子粉末を提供するものである。   Therefore, the present invention is to provide a hydrophobized magnetic iron oxide particle powder which emits little volatile organic compounds at the time of heating and has good dispersibility in a nonpolar solvent.

前記技術的課題は、次の通りの本発明によって達成できる。   The above technical problems can be achieved by the present invention as follows.

即ち、本発明は、表面がシラン化合物で被覆されている磁性酸化鉄であって、該磁性酸化鉄粒子粉末を120℃で30分保持した時、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下である疎水性磁性酸化鉄粒子粉末(本発明1)。   That is, the present invention is a magnetic iron oxide the surface of which is coated with a silane compound, and the silane which is released from the magnetic iron oxide particle powder when the magnetic iron oxide particle powder is held at 120 ° C. for 30 minutes. Hydrophobic magnetic iron oxide particles having a total of 15 ppm or less of a volatile organic compound selected from aliphatic hydrocarbons having 2 or more and 16 or less carbon atoms, aliphatic aldehydes, aliphatic ketones and aliphatic alcohols as decomposition products of the compound Powder (Invention 1).

また、本発明は、シラン化合物が下記の化学式1に示される直鎖状オルガノポリシロキサン若しくは化学式2に示されるシラザンから選ばれる少なくとも1種又は2種である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明2)。

Figure 0006521239
Figure 0006521239
Also, in the present invention, the hydrophobic magnetic iron oxide according to claim 1, wherein the silane compound is at least one or two selected from a linear organopolysiloxane represented by the following chemical formula 1 and a silazane represented by the chemical formula 2. Particle powder (Invention 2).
Figure 0006521239
Figure 0006521239

また、本発明は、疎水化度が60%以上である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明3)。   Also, in the present invention, the hydrophobic magnetic iron oxide particle powder (Invention 3) according to claim 1, wherein the degree of hydrophobicity is 60% or more.

また、本発明は、スチレン/n−ブチルアクリレート中で分散させた塗膜の光沢度が60%以上である請求項1記載の疎水性磁性酸化鉄粒子粉末(本発明4)。   The hydrophobic magnetic iron oxide particle powder (Invention 4) according to Claim 1, wherein the glossiness of the coating film dispersed in styrene / n-butyl acrylate is 60% or more.

また、本発明は、核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することを特徴とする請求項1記載の疎水性磁性酸化鉄粒子粉末の製造方法(本発明5)。   Further, according to the present invention, the magnetic iron oxide particles serving as nuclei are subjected to a hydrophobization treatment in a dry state, and then heat treatment is performed while rotating in a temperature range of 80 to 120 ° C. and a circumferential speed of 0.01 to 10.0 m / sec. A method of producing a hydrophobic magnetic iron oxide particle powder according to claim 1, characterized in that the method (Invention 5).

本発明によれば、疎水性が高く、スチレン/n−ブチルアクリレート中での分散性が良好な疎水性磁性酸化鉄粒子粉末であり、かつ、不快な臭いを有する揮発性有機化合物の含有量が少ない、磁性トナー用の疎水性磁性酸化鉄粒子粉末を製造することができる。   According to the present invention, it is a hydrophobic magnetic iron oxide particle powder having high hydrophobicity and good dispersibility in styrene / n-butyl acrylate, and the content of volatile organic compound having an unpleasant odor A small amount of hydrophobic magnetic iron oxide particle powder for magnetic toner can be produced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

先ず、本発明に係る疎水性磁性酸化鉄粒子粉末について述べる。   First, the hydrophobic magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であり、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散されるシラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計は15ppm以下である。揮発性有機化合物の総計が15ppmを超える場合には、不快な臭いと認識される。好ましくは12ppm以下、より好ましくは10ppm以下である。   The hydrophobic magnetic iron oxide particle powder according to the present invention is a magnetic iron oxide particle powder in which the particle surface is coated with a silane compound, and when the magnetic iron oxide particle powder is kept at 120 ° C. for 30 minutes, the magnetic oxidation occurs. The total amount of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms or aliphatic aldehydes, aliphatic ketones and aliphatic alcohols as decomposition products of silane compounds dissipated from iron particle powder is 15 ppm or less It is. If the total amount of volatile organic compounds exceeds 15 ppm, it is perceived as an unpleasant odor. Preferably it is 12 ppm or less, more preferably 10 ppm or less.

本発明に係る疎水性磁性酸化鉄粒子粉末に用いるシラン化合物としては、化3で表される直鎖状オルガノポリシロキサン又は化4で表されるシラザンが好ましい。   As the silane compound used for the hydrophobic magnetic iron oxide particle powder according to the present invention, a linear organopolysiloxane represented by Chemical Formula 3 or a silazane represented by Chemical Formula 4 is preferable.

Figure 0006521239
Figure 0006521239

Figure 0006521239
Figure 0006521239

直鎖状オルガノポリシロキサンとしては、具体的には、メチルトリエトキシシランオリゴマー、メチルトリメトキシシランオリゴマー、エチルトリエトキシシランオリゴマー、エチルトリメトキシシランオリゴマー、プロピルトリエトキシシランオリゴマー、プロピルトリメトキシシランオリゴマー、両末端ヒドロキシル変性シリコーンオイル、メチルハイドロジェンシリコーンオイル等が挙げられ、シラザンとしては、具体的には、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン等があげられる。   Specific examples of linear organopolysiloxanes include methyltriethoxysilane oligomer, methyltrimethoxysilane oligomer, ethyltriethoxysilane oligomer, ethyltrimethoxysilane oligomer, propyltriethoxysilane oligomer, propyltrimethoxysilane oligomer, Examples of the silazane include hexamethyldisilazane, hexaethyldisilazane, and hexapropyldisilazane.

疎水化処理剤であるシラン化合物の疎水性基のアルキル鎖の炭素数が大きくなると、その加熱分解物である揮発性有機化合物の臭いの強度も強くなるので、アルキル鎖の炭素数としては3以下であることが好ましい。好ましくは2以下、より好ましくは1である。   As the carbon number of the alkyl chain of the hydrophobic group of the silane compound which is a hydrophobizing agent increases, the odor intensity of the volatile organic compound which is its thermally decomposed product also increases, so the carbon number of the alkyl chain is 3 or less Is preferred. Preferably it is 2 or less, More preferably, it is 1.

本発明に係る疎水性磁性酸化鉄粒子粉末のBET比表面積は、3.0〜13.0m/gが好ましい。BET比表面積が3.0m/g未満の場合、凝集していることからスチレン/n−ブチルアクリレート中の分散性が悪くなる傾向にある。BET比表面積が13.0m/gを超える場合、疎水化処理が不十分であり、疎水化度が低くなり、スチレン/n−ブチルアクリレート中の分散性が悪くなる傾向にある。より好ましくは、4.0〜12.0m/gである。 The BET specific surface area of the hydrophobic magnetic iron oxide particle powder according to the present invention is preferably 3.0 to 13.0 m 2 / g. If the BET specific surface area is less than 3.0 m 2 / g, the dispersibility in styrene / n-butyl acrylate tends to be poor because of aggregation. When the BET specific surface area exceeds 13.0 m 2 / g, the hydrophobization treatment is insufficient, the degree of hydrophobization is low, and the dispersibility in styrene / n-butyl acrylate tends to be poor. More preferably, it is 4.0-12.0 m < 2 > / g.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したBET維持率が60%以上である。BET維持率が60%未満の場合、凝集していることからスチレン/n−ブチルアクリレート中の分散性が悪いことを意味する。好ましくは、63%以上、より好ましくは65〜80%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention has a BET retention rate of 60% or more, which is evaluated by the measurement method described later. If the BET retention rate is less than 60%, it means that the dispersibility in styrene / n-butyl acrylate is poor because of aggregation. Preferably, it is 63% or more, more preferably 65 to 80%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物のカーボン量としての付着量が0.10〜1.00wt%が好ましく、より好ましくは0.15〜0.90wt%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention preferably has an adhesion amount of 0.10 to 1.00 wt% as a carbon amount of a silane compound evaluated by a measurement method described later, and more preferably 0.15 to 0. It is 90 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物のカーボン量としての固着量が0.08〜1.00wt%が好ましく、より好ましくは0.12〜0.72wt%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention preferably has a sticking amount of 0.08 to 1.00 wt% as a carbon amount of a silane compound evaluated by a measuring method described later, and more preferably 0.12 to 0. It is 72 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価したシラン化合物の固着率が80%以上であることが好ましい。固着率が80%未満の場合には、溶出した疎水化剤が多くなるため、分散性が悪くなる傾向にある。より好ましくは82%以上であり、上限値は100%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention preferably has a sticking rate of 80% or more of a silane compound evaluated by the measurement method described later. If the fixation rate is less than 80%, the amount of the eluted hydrophobizing agent increases, and the dispersibility tends to be poor. More preferably, it is 82% or more, and the upper limit is 100%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後述する測定方法で評価した疎水化度が60%以上である。疎水化度が60%未満の場合、水中で樹脂モノマーを懸濁重合する場合に、疎水性磁性酸化鉄粒子粉末が水相へ移行してしまい、トナー中での分散性が悪くなる傾向にある。好ましくは62%以上、より好ましくは64%以上である。   The hydrophobic magnetic iron oxide particle powder according to the present invention has a degree of hydrophobicity of 60% or more, which is evaluated by the measurement method described later. When the degree of hydrophobization is less than 60%, the hydrophobic magnetic iron oxide particle powder tends to shift to the aqueous phase when suspension polymerization of the resin monomer in water is performed, and the dispersibility in the toner tends to be deteriorated. . Preferably it is 62% or more, more preferably 64% or more.

本発明に係る疎水性磁性酸化鉄粒子粉末は、スチレン/n−ブチルアクリレート中で分散させて塗膜を形成したときの光沢度が60%以上である。塗膜の光沢度が60%未満の場合、樹脂モノマー中での分散性が悪く、トナー中での分散状態が悪いことを意味する。好ましくは64%以上、より好ましくは64〜80%である。
The hydrophobic magnetic iron oxide particle powder according to the present invention has a glossiness of 60% or more when dispersed in styrene / n-butyl acrylate to form a coating film. When the glossiness of the coating film is less than 60%, the dispersibility in the resin monomer is poor, which means that the dispersion state in the toner is poor. Preferably it is 64% or more, More preferably, it is 64 to 80%.

次に、本発明に核となる磁性酸化鉄粒子粉末について述べる。   Next, the magnetic iron oxide particle powder which becomes the nucleus in the present invention will be described.

本発明における核となる磁性酸化鉄粒子は、平均粒子径が0.05〜0.5μmである。平均粒子径が0.05μm未満の場合、磁性酸化鉄粒子相互間の凝集力が大きく分散が困難となり、疎水化処理にも不利である。0.5μmを超える場合、着色力が劣り隠ぺい力も低い。好ましくは0.1〜0.3μm、より好ましくは0.15〜0.25μmである。BET比表面積が5〜15m/gである。 The magnetic iron oxide particles as the core in the present invention have an average particle diameter of 0.05 to 0.5 μm. When the average particle size is less than 0.05 μm, the cohesion between the magnetic iron oxide particles is large and the dispersion becomes difficult, which is also disadvantageous for the hydrophobic treatment. When it exceeds 0.5 μm, the coloring power is inferior and the hiding power is also low. It is preferably 0.1 to 0.3 μm, more preferably 0.15 to 0.25 μm. The BET specific surface area is 5 to 15 m 2 / g.

本発明における核となる磁性酸化鉄粒子は、マグネタイト粒子((FeO)・Fe、0<x≦1)からなり、必要により、鉄以外の元素Si、Al、P、Mn、Ni、Zn、Cu、Mg、Co、Tiから選ばれる1種又は2種以上の金属元素を含有してもよい。 Magnetic iron oxide particles serving as nuclei in the present invention are composed of magnetite particles ((FeO) x · Fe 2 O 3 , 0 <x 1 1), and if necessary, elements Si, Al, P, Mn, Ni other than iron You may contain 1 type, or 2 or more types of metallic elements chosen from Zn, Cu, Mg, Co, and Ti.

本発明における核となる磁性酸化鉄粒子は、必要によりあらかじめ粒子表面が、Si、Al、Tiの化合物から選ばれる少なくとも1種からなる中間被覆物によって被覆されていてもよい。   In the magnetic iron oxide particles as a core in the present invention, the particle surface may be coated in advance with an intermediate coating consisting of at least one selected from a compound of Si, Al and Ti, if necessary.

本発明における核となる磁性酸化鉄粒子を中間被覆物によって被覆することによって、疎水化剤の脱離をより抑制することができる。   By covering the core magnetic iron oxide particles in the present invention with the intermediate coating, the detachment of the hydrophobizing agent can be further suppressed.

本発明における核となる磁性酸化鉄粒子粉末の一次粒子の粒子形状は、八面体状、六面体状、粒状、球状などの等方形状である。分散性を考慮すると球状が好ましい。   The particle shape of the primary particles of the magnetic iron oxide particle powder to be the core in the present invention is an octahedral, hexahedral, granular, spherical or other isotropic shape. Spherical shape is preferable in consideration of dispersibility.

本発明における核となる磁性酸化鉄粒子粉末の保磁力は2.4〜15.9kA/m(30〜200Oe)が好ましい。より好ましくは3.2〜13.5kA/m(40〜170Oe)である。   The coercive force of the magnetic iron oxide particle powder to be a core in the present invention is preferably 2.4 to 15.9 kA / m (30 to 200 Oe). More preferably, it is 3.2 to 13.5 kA / m (40 to 170 Oe).

本発明おける核となる磁性酸化鉄粒子粉末の飽和磁化値は81.0〜90.0Am/kg(81.0〜90.0emu/g)が好ましい。より好ましくは、84.0〜90.0Am/kg(84.0〜90.0emu/g)である。 The saturation magnetization value of the magnetic iron oxide particle powder to be the core in the present invention is preferably 81.1 to 90.0 Am 2 / kg (81.0 to 90.0 emu / g). More preferably, it is 84.0 to 90.0 Am 2 / kg (84.0 to 90.0 emu / g).

本発明における磁性酸化鉄粒子は、第一鉄塩水溶液と水酸化アルカリ水溶液とを中和混合して得られた水酸化第一鉄コロイドを含む第一鉄塩反応水溶液を酸素含有ガス、好ましくは空気をスラリー中に吹き込みながら酸化させ、酸化反応終了後のスラリーをろ過、洗浄して磁性酸化鉄粒子を得ることができる。得られた磁性酸化鉄粒子スラリーを常法に従って乾燥させて疎水化処理を行っても良いが、水性媒体中で疎水化処理することを考えると、乾燥工程を経ずにそのまま磁性酸化鉄粒子を含有するスラリーを用いて疎水化処理することが好ましい。   The magnetic iron oxide particles in the present invention are a ferrous salt reaction aqueous solution containing ferrous hydroxide colloid obtained by neutralizing and mixing a ferrous salt aqueous solution and an aqueous alkali hydroxide solution, preferably an oxygen-containing gas, The air can be oxidized while being blown into the slurry, and the slurry after the completion of the oxidation reaction can be filtered and washed to obtain magnetic iron oxide particles. The obtained magnetic iron oxide particle slurry may be dried according to a conventional method and subjected to a hydrophobization treatment, but considering that the hydrophobization treatment is carried out in an aqueous medium, the magnetic iron oxide particles are subjected as they are without passing through the drying step. It is preferable to carry out a hydrophobization process using the contained slurry.

水酸化第一鉄コロイドを生成させる際のアルカリ溶液の量は、求める磁性酸化鉄粒子の形状に応じて調整すればよい。具体的には、水酸化第一鉄コロイドのpHが8.0未満となるように調整すれば球状粒子が得られ、8.0〜9.5となるように調整すれば六面体状粒子が得られ、9.5を超えるように調整すれば八面体状粒子が得られるので、適宜調整する。   The amount of the alkali solution in forming the ferrous hydroxide colloid may be adjusted according to the shape of the magnetic iron oxide particles to be obtained. Specifically, spherical particles are obtained by adjusting the pH of ferrous hydroxide colloid to be less than 8.0, and hexahedral particles are obtained by adjusting the pH to be 8.0 to 9.5. If adjustment is made so as to exceed 9.5, octahedral particles are obtained, and accordingly adjustment is made.

本発明における第一鉄塩水溶液としては、硫酸第一鉄水溶液、塩化第一鉄水溶液等を使用することができる。   As the ferrous salt aqueous solution in the present invention, a ferrous sulfate aqueous solution, a ferrous chloride aqueous solution and the like can be used.

本発明における水酸化アルカリ水溶液は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属の水酸化物等の各水溶液を使用することができる。   In the present invention, the aqueous alkali hydroxide solution may be an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an alkaline earth metal hydroxide such as magnesium hydroxide or calcium hydroxide. Can.

本発明における酸化反応温度は、85〜100℃である。85℃未満である場合には、針状含水酸化鉄粒子が副生しやすくなり、100℃を越える場合も磁性酸化鉄粒子は生成するが工業的ではない。   The oxidation reaction temperature in the present invention is 85 to 100 ° C. When the temperature is less than 85 ° C., needle-like hydrous iron oxide particles tend to be by-produced. When the temperature exceeds 100 ° C., magnetic iron oxide particles are formed, but they are not industrially suitable.

次に、本発明に係る疎水性磁性酸化鉄粒子粉末の製造方法について述べる。   Next, the method for producing the hydrophobic magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末は、核となる磁性酸化鉄粒子粉末にシラン化合物を添加し乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理して得ることができる。   The hydrophobic magnetic iron oxide particle powder according to the present invention is dry-hydrophobicized by adding a silane compound to magnetic iron oxide particle powder serving as a core, and then the temperature range of 80 to 120 ° C. and the peripheral speed 0.01 to 0.01 It can be obtained by heat treatment while rotating in the range of 10.0 m / sec.

疎水化処理は、具体的には、疎水化処理を乾式混合撹拌装置中で磁性酸化鉄粒子を十分に分散させながら疎水化剤であるシラン化合物を添加して行う。   Specifically, the hydrophobization treatment is carried out by adding a silane compound which is a hydrophobizing agent while sufficiently dispersing the magnetic iron oxide particles in a dry mixing and stirring apparatus.

疎水化処理における、磁性酸化鉄粒子の凝集を抑制するために少量のアルコールでシラン化合物を希釈して添加しても良い。   The silane compound may be diluted and added with a small amount of alcohol to suppress aggregation of the magnetic iron oxide particles in the hydrophobization treatment.

コア粒子とシラン化合物との乾式法による混合には、公知の混合撹拌装置を用いることができる。例えば、ヘンシェルミキサー、ハイスピードミキサー、ホイール型混練機、ナウタミキサー等を用いることができる。これらの装置の運転条件としては、混合撹拌時の温度を、10〜60℃、特に10〜50℃に設定することが好ましい。これによって、シラン化合物がコア粒子と十分に混合される前に、自己縮合や、揮発してしまうことを防止し、シラン化合物の加水分解反応や脱水素反応を促進することができる。   For mixing of the core particles and the silane compound by a dry method, a known mixing and stirring apparatus can be used. For example, a Henschel mixer, a high speed mixer, a wheel type kneader, a Nauta mixer, etc. can be used. As operating conditions of these apparatuses, it is preferable to set the temperature at the time of mixing and stirring to 10 to 60 ° C., particularly 10 to 50 ° C. By this, it is possible to prevent self-condensation and volatilization before the silane compound is sufficiently mixed with the core particles, and to promote a hydrolysis reaction or a dehydrogenation reaction of the silane compound.

乾式混合が完了したら、シラン化合物の脱水縮合を生じさせるため、混合撹拌時の温度を80〜120℃、好ましくは90〜110℃にまで加熱して熱処理することが好ましい。加熱をこの温度範囲で行うことで、コア粒子同士の凝集を防止してシラン化合物の脱水縮合を行うことができる。熱処理の温度が120℃を超える場合、脱水縮合反応が進みすぎて磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化するとともに、疎水性も十分とは言い難い。80℃未満であるとシラン化合物の固着率が低下し、分散性が悪化する。   When dry mixing is completed, in order to cause dehydration condensation of the silane compound, it is preferable to perform heat treatment by heating to a temperature of 80 to 120 ° C., preferably 90 to 110 ° C. during mixing and stirring. By carrying out heating in this temperature range, aggregation of core particles can be prevented and dehydration condensation of a silane compound can be performed. When the temperature of the heat treatment exceeds 120 ° C., the dehydration condensation reaction proceeds too much, the magnetic iron oxide particles become easy to unite with each other, the dispersibility is deteriorated, and the hydrophobicity can not be said to be sufficient. If the temperature is less than 80 ° C., the sticking rate of the silane compound is lowered and the dispersibility is deteriorated.

本発明においては、乾式で疎水化処理した後、周速0.01〜10.0m/secの範囲で回転させながら熱処理することが好ましい。より好ましくは、0.10〜10.0m/secである。熱処理の周速が10.0m/secを超える場合、解砕力が強すぎるため、シラン化合物がコア粒子表面で脱水縮合反応が行われる前に、シラン化合物が揮発し、自己縮合反応が促進してしまい、固着率が低くなり、分散性が悪化する。また、周速が0.00m/secの場合、磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化する。熱処理装置は、上述の混合撹拌装置に変えて回転炉等を用いることができる。例えば、レトルト回転炉、ロータリーキルン、パドルドライヤー等を用いても良い。   In the present invention, it is preferable to perform heat treatment while rotating at a circumferential speed of 0.01 to 10.0 m / sec after hydrophobizing treatment in a dry state. More preferably, it is 0.10-10.0 m / sec. When the peripheral speed of the heat treatment exceeds 10.0 m / sec, the crushing power is too strong, so the silane compound is volatilized and the self condensation reaction is promoted before the dehydration condensation reaction is performed on the surface of the core particle. The fixation rate is lowered, and the dispersibility is deteriorated. In addition, when the circumferential speed is 0.00 m / sec, the magnetic iron oxide particles are easily integrated with each other, and the dispersibility is deteriorated. As the heat treatment apparatus, a rotary furnace or the like can be used instead of the above-mentioned mixing and stirring apparatus. For example, a retort rotary furnace, a rotary kiln, a paddle dryer or the like may be used.

シラン化合物の添加量は、核となる磁性酸化鉄粒子に対して0.1〜2.5重量%である。   The addition amount of the silane compound is 0.1 to 2.5% by weight with respect to the magnetic iron oxide particles serving as the core.

次に、本発明に係る磁性酸化鉄粒子粉末を含有する磁性トナーについて述べる。   Next, the magnetic toner containing the magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る磁性トナーは、懸濁重合法によって得ることができる。懸濁重合法においては、重合性単量体と磁性酸化鉄粒子粉末とを、必要により更に、着色剤、重合開始剤、架橋剤、荷電制御剤、その他の添加剤を添加した混合物を溶解又は分散させた単量体組成物を、懸濁安定剤を含む水相中に攪拌しながら添加して造粒し、重合させて所望の粒子サイズとすることにより得られる。   The magnetic toner according to the present invention can be obtained by suspension polymerization. In the suspension polymerization method, a mixture obtained by adding a polymerizable monomer and magnetic iron oxide particle powder and, if necessary, a colorant, a polymerization initiator, a crosslinking agent, a charge control agent and other additives is dissolved or The dispersed monomer composition is obtained by granulating with stirring into an aqueous phase containing a suspension stabilizer and polymerizing to a desired particle size.

もちろん、所定量の結着剤樹脂と所定量の磁性酸化鉄粒子粉末とを混合、混練、粉砕による公知の方法によっても行うことができる。具体的には、磁性酸化鉄粒子粉末と結着剤樹脂とを、必要により更に離型剤、着色剤、荷電制御剤、その他の添加剤等を添加した混合物を混合機により十分に混合した後、加熱混練機によって結着剤樹脂中に磁性酸化鉄粒子粉末等を分散させ、次いで、冷却固化して樹脂混練物を得、該樹脂混練物を粉砕及び分級を行って所望の粒子サイズとすることにより得られる。   Of course, it can also be carried out by a known method of mixing, kneading and pulverizing a predetermined amount of binder resin and a predetermined amount of magnetic iron oxide particle powder. Specifically, after mixing a magnetic iron oxide particle powder and a binder resin with a mixture, to which a mold release agent, a colorant, a charge control agent, other additives and the like are further added if necessary, with a mixer The magnetic iron oxide particles and the like are dispersed in a binder resin by a heating kneader, and then solidified by cooling to obtain a resin kneaded product, and the resin kneaded product is pulverized and classified to obtain a desired particle size Obtained by

<作用>
本発明において、最も重要な点は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であって、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下であることから、磁性酸化鉄粒子粉末が不快な臭いを含有しないという事実である。
<Function>
In the present invention, the most important point is a magnetic iron oxide particle powder in which the particle surface is coated with a silane compound, and the magnetic iron oxide particle powder is maintained at 120 ° C. for 30 minutes. The total amount of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms or aliphatic aldehydes, aliphatic ketones and aliphatic alcohols as a decomposition product of the silane compound dissipated from powder is 15 ppm or less One of the reasons is the fact that the magnetic iron oxide particle powder does not contain any unpleasant odor.

これらの事実について本発明者は次のように考えている。   The inventors consider these facts as follows.

本発明の表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末は、疎水化剤であるシラン化合物に用いている直鎖状オルガノポリシロキサン又はシラザンの疎水性基の炭素数を3以下に制限し、核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することにより、シラン化合物が磁性酸化鉄粒子に強固に付着し高い固着率を有するため、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下に抑えられるため不快な臭い成分を含有しないことを可能にし、かつスチレン/n−ブチルアクリレート中での分散性も良好であると考えている。   The magnetic iron oxide particle powder in which the surface of the present invention is coated with a silane compound is limited to 3 or less carbon atoms of the hydrophobic group of the linear organopolysiloxane or silazane used for the silane compound which is a hydrophobizing agent. And hydrophobize the magnetic iron oxide particles to be used as nuclei, and then heat treat while rotating at a temperature range of 80 to 120 ° C. and a peripheral speed of 0.01 to 10.0 m / sec. Since the compound adheres firmly to the magnetic iron oxide particles and has a high fixation rate, an aliphatic hydrocarbon having 2 to 16 carbon atoms or fat as a decomposition product of the silane compound dissipated from the magnetic iron oxide particle powder And the total content of volatile organic compounds selected from aliphatic aldehydes, aliphatic ketones and aliphatic alcohols is reduced to 15 ppm or less, making it possible to contain no unpleasant odorous components, and Dispersibility in styrene / n-butyl acrylate are also considered to be good.

次に、実施例並びに比較例により、本発明を説明する。   Next, the present invention will be described by way of examples and comparative examples.

<平均粒子径>
磁性酸化鉄粒子粉末の平均粒子径は、透過型電子顕微鏡により撮影した写真(倍率1万倍)を4倍に拡大して、300個についてマーチン径により求めた値である。
<Average particle size>
The average particle diameter of the magnetic iron oxide particle powder is a value obtained by multiplying a photograph (magnification of 10,000 times) taken by a transmission electron microscope by a factor of 4 and obtaining about 300 particles by the Martin diameter.

<BET比表面積>
磁性酸化鉄粒子粉末および疎水性磁性酸化鉄粒子粉末のBET比表面積は、Mono Sorb MS−II(湯浅アイオニックス(株)製)を用いBET法により求めた。
<BET specific surface area>
The BET specific surface areas of the magnetic iron oxide particle powder and the hydrophobic magnetic iron oxide particle powder were determined by BET method using Mono Sorb MS-II (manufactured by Yuasa Ionix Co., Ltd.).

<BET維持率>
BET維持率は次式で求めた。
BET維持率(%)=疎水化処理磁性酸化鉄粒子粉末のBET/磁性酸化鉄粒子粉末のBET×100
<BET maintenance rate>
The BET retention rate was determined by the following equation.
BET retention ratio (%) = BET of hydrophobized magnetic iron oxide particle powder / BET of magnetic iron oxide particle powder × 100

<付着量・固着量・固着率>
疎水性磁性酸化鉄粒子粉末付着量、固着量、固着率評価は、炭素分析装置 EMIA−80((株)堀場製作所製)を用いてカーボン量を測定することにより行った。
まず、疎水性磁性酸化鉄粒子粉末のカーボン量を測定し付着量とした。次に、100mlのビーカーに疎水性磁性酸化鉄粒子粉末10gとトルエン100gを入れ、超音波洗浄器 BRANSONIC 5510(ヤマト科学(株)製)を用いて超音波を30分間照射した。その後、ろ過、乾燥した粉末のカーボン量を測定し固着量とした。固着率は次式で求めた。
固着率(%)=固着量/付着量×100
<Attachment amount, adhesion amount, adhesion ratio>
The amount of adhesion of hydrophobic magnetic iron oxide particles powder, the amount of adhesion and the adhesion rate were evaluated by measuring the amount of carbon using a carbon analyzer EMIA-80 (manufactured by Horiba, Ltd.).
First, the amount of carbon in the hydrophobic magnetic iron oxide particle powder was measured to determine the amount of adhesion. Next, 10 g of hydrophobic magnetic iron oxide particle powder and 100 g of toluene were placed in a 100 ml beaker, and ultrasonic waves were irradiated for 30 minutes using an ultrasonic cleaner BRANSONIC 5510 (manufactured by Yamato Scientific Co., Ltd.). Thereafter, the amount of carbon in the filtered and dried powder was measured to obtain a fixed amount. The sticking rate was determined by the following equation.
Fixation rate (%) = fixed amount / adhesion amount × 100

<磁気特性>
磁性酸化鉄粒子粉末の磁気特性は、振動試料型磁力計 VSM−3S−15(東英工業(株)製)を用いて外部磁場796kA/mで測定した値で示した。
<Magnetic characteristics>
The magnetic properties of the magnetic iron oxide particle powder are shown by values measured at an external magnetic field of 796 kA / m using a vibrating sample magnetometer VSM-3S-15 (manufactured by Toei Kogyo Co., Ltd.).

<疎水化度>
疎水性磁性酸化鉄硫粉末の疎水化度は、粉体濡れ性試験機(株式会社レスカ製WET101P)を用い、体積濃度50%のメタノール水溶液70mlに疎水性磁性酸化鉄粒子粉末100mgを添加し、撹拌羽根により撹拌する。この状態下にメタノールを滴下し、メタノール水溶液に波長780nmのレーザー光を照射し、その透過率を測定する。疎水性磁性酸化鉄粒子粉末が濡れて沈降、懸濁していき、透過率が50%となるところのメタノール水溶液の体積濃度を疎水化度とする。
<Hydrophobicity>
The hydrophobicity of the magnetic iron oxide sulfur powder is determined by adding 100 mg of hydrophobic magnetic iron oxide particles to 70 ml of 50% aqueous methanol solution using a powder wettability tester (WET101P manufactured by Lesca Co., Ltd.) Stir with stirring blades. Under this condition, methanol is dropped, and a methanol aqueous solution is irradiated with a laser beam having a wavelength of 780 nm, and its transmittance is measured. The hydrophobic magnetic iron oxide particle powder wets, settles and suspends, and the volume concentration of the aqueous methanol solution at which the permeability becomes 50% is taken as the degree of hydrophobicity.

<スチレン/n−ブチルアクリレート分散塗膜の光沢度>
磁性酸化鉄粒子粉末45g、スチレン37g、n−ブチルアクリレート13gを100mlのビーカーに入れ、ディスパーの回転数を1500rpmで15分間分散させたペーストをPETフィルム上に置き、WET膜厚24μmのバーコーターで塗布し、乾燥した塗布膜面の光沢度(60°)をデジタル変角光沢計 UGV−5D(スガ試験機(株)製)で測定した。
<Glossiness of styrene / n-butyl acrylate dispersion coating>
A paste containing 45 g of magnetic iron oxide particle powder, 37 g of styrene and 13 g of n-butyl acrylate in a 100 ml beaker, and a disperser dispersion speed of 1500 rpm for 15 minutes is placed on a PET film, and a WET film thickness 24 μm bar coater The glossiness (60 °) of the coated and dried coated film surface was measured with a digital variable gloss meter UGV-5D (manufactured by Suga Test Instruments Co., Ltd.).

<磁性酸化鉄粒子粉末から放散される揮発性有機化合物の主成分と総量>
磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物である炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の定性および定量はヘッドスペース法による以下のGC−MS分析によりを行う。
<Main component and total amount of volatile organic compounds emitted from magnetic iron oxide particle powder>
Aliphatic hydrocarbon having a carbon number of 2 or more and 16 or less, which is a decomposition product of the silane compound dissipated from the magnetic iron oxide particle powder, or a volatile organic compound selected from aliphatic aldehydes, aliphatic ketones, and aliphatic alcohols Qualitative and quantitative determination is performed by the following GC-MS analysis by headspace method.

装置名: PERKIN ELMER 社製 Claus500
PERKIN ELMER 社製 HS−TurboMatrix40
測定方法:
ヘッドスペースバイアルに磁性酸化鉄粒子粉末を100mg封入し、ヘッドスペースサンプラーにて加熱(120℃×30min)し、発生ガスのGC−MS分析を行った。
ヘッドスペースサンプラー条件:
サンプル加熱温度 120℃
サンプル加熱時間 30分
GC−MS条件:
キャピラリーカラム GLサイエンス製 TC−1
キャリアーガス He
カラムオーブン 40℃/2分ホールド、10℃/分で230℃まで昇温する。
解析方法:
検量用標準物質には、トルエンを使用し、ヘッドスペースバイアルに0.000μL、0.025μL、0.050μL、0.075μLを封入して測定を行う。トルエンは7.05分付近にピークが観察され、そのエリア面積値より検量線を作成する。
シラン化合物中の疎水性基であるアルキル鎖の加熱分解物としては、アルケンやアルデヒドなどが観察される。例えば、アルキル基が、C10の場合は1−デセンおよびデカナールが生成し、C8の場合は1−オクテン及びオクタナールが生成し、C6の場合は、1−ヘキセン及びヘキサナールが生成する。測定によって、得られたマススペクトルを確認することによって、臭いの主成分を特定することができる。例えば、C10に由来する1−デセンは、11.8分付近にピークが観察され、C8に由来する1−オクテンは、7.7分付近にピークが観察され、C6に由来する1−ヘキセンは、3.6分付近にピークが観察される。得られたピークのエリア面積値を、トルエン検量線から換算することにより、磁性酸化鉄単位重量あたりの揮発性有機化合物量を算出する。
Device Name: PERKIN ELMER Claus 500
PERKIN ELMER HS-TurboMatrix 40
Measuring method:
100 mg of magnetic iron oxide particle powder was enclosed in a head space vial, heated (120 ° C. × 30 min) with a head space sampler, and GC-MS analysis of generated gas was performed.
Headspace sampler requirements:
Sample heating temperature 120 ° C
Sample heating time 30 minutes GC-MS conditions:
Capillary column GL science TC-1
Carrier gas He
Column oven Hold at 40 ° C / 2 minutes and heat to 230 ° C at 10 ° C / min.
analysis method:
As a standard substance for calibration, toluene is used, and measurement is performed by sealing 0.000 μL, 0.025 μL, 0.050 μL, and 0.075 μL in a head space vial. A peak is observed at around 7.05 minutes for toluene, and a calibration curve is prepared from the area area value.
Alkenes, aldehydes and the like are observed as the thermally decomposed material of the alkyl chain which is a hydrophobic group in the silane compound. For example, when the alkyl group is C10, 1-decene and decanal are formed, C8 generates 1-octene and octanal, and C6 generates 1-hexene and hexanal. By measuring the mass spectrum obtained by measurement, the main component of the odor can be identified. For example, a peak is observed around 11.8 minutes for 1-decene derived from C10, a peak is observed around 7.7 minutes for 1-octene derived from C8, and 1-hexene derived from C6 is A peak is observed around 3.6 minutes. The amount of volatile organic compound per unit weight of magnetic iron oxide is calculated by converting the area area value of the obtained peak from a toluene calibration curve.

<磁性トナー中での分散性>
磁性トナー中の疎水性磁性酸化鉄粒子粉末の分散性は、磁性トナーをウルトラミクロトーム MT2C(RESEACH MANFACTURING製)を用いてスライスし、その断面を透過型電子顕微鏡(倍率10000倍)で観察し、視野内の磁性酸化鉄粒子粉末の凝集状態を観察し、4段階で評価した。凝集物が少ないほど分散性が良いことを示す。
凝集物;0〜1個 分散度◎
2〜5個 ○
5〜10個 △
11個以上 ×
<Dispersibility in magnetic toner>
The dispersibility of the hydrophobic magnetic iron oxide particle powder in the magnetic toner is obtained by slicing the magnetic toner with an ultramicrotome MT2C (manufactured by RESEACH MANFACTURING), and observing the cross section with a transmission electron microscope (magnification of 10000). The aggregation state of the magnetic iron oxide particle powder was observed and evaluated in four steps. The less the aggregates, the better the dispersibility.
Aggregate: 0 to 1 Dispersion degree ◎
2 to 5 ○
5 to 10 pieces
11 or more ×

<磁性酸化鉄粒子の製造>
(核粒子A)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)4.806l(当量比=0.95)および水17.396lに、90℃にて空気を吹き込んで磁性酸化鉄粒子の芯粒子を生成した。ついで、当量比が1.0以上になるようにNaOHを添加し、残った硫酸第一鉄を反応させた後、常法により水洗、乾燥を行って磁性酸化鉄粒子(核粒子A)を得た。得られた磁性酸化鉄粒子は、粒子形状が球状であって、平均粒子径が0.24μm、BET比表面積が7.5m/gであった。
<Production of magnetic iron oxide particles>
(Nuclear particle A)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity: 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 4.806 (equivalent ratio = 0.95) and water 17. Air was blown into 396 l at 90 ° C. to form core particles of magnetic iron oxide particles. Next, NaOH is added so that the equivalent ratio is 1.0 or more, and the remaining ferrous sulfate is reacted, and then it is washed with water and dried by a conventional method to obtain magnetic iron oxide particles (core particles A). The The magnetic iron oxide particles obtained were spherical in particle shape, and had an average particle diameter of 0.24 μm and a BET specific surface area of 7.5 m 2 / g.

核粒子B、D及びE
核粒子Aの製造条件に基づいて、条件を種々変化させて核粒子B、D及びEを生成した。
Nuclear particles B, D and E
The conditions were changed variously based on the production conditions of the core particle A, and core particles B, D and E were produced.

(核粒子C)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)5.068l(当量比=1.06)および水17.396lに、90℃にて空気を吹き込んで磁性酸化鉄粒子を生成した。得られた磁性酸化鉄粒子は、粒子形状が八面体であって、平均粒子径が0.24μm、BET比表面積が9.5m/gであった。
(Nuclear particle C)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity: 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 5.068 l (equivalent ratio = 1.06) and water 17. Air was blown into 396 l at 90 ° C. to produce magnetic iron oxide particles. The magnetic iron oxide particles obtained were octahedral in particle shape, and had an average particle diameter of 0.24 μm and a BET specific surface area of 9.5 m 2 / g.

得られた核粒子となる磁性酸化鉄粒子の諸特性を表1に示す。   Various properties of the magnetic iron oxide particles to be core particles obtained are shown in Table 1.

Figure 0006521239
Figure 0006521239

実施例1
<疎水性磁性酸化鉄粒子粉末の製造>
表1に示す核粒子A 3kg、ヘンシェルミキサーに投入し、品温が50℃になるように調整しながら撹拌を開始する。メチルハイドロジェンポリシロキサン36gを徐々に添加し30分撹拌した。続いて、加熱を行い品温が120℃になるように調整しながら周速5.39m/secで1時間撹拌した。その後、冷却を行い、疎水性磁性酸化鉄粒子粉末を得た。
Example 1
<Production of hydrophobic magnetic iron oxide particle powder>
3 kg of nuclear particles A shown in Table 1 were charged into a Henschel mixer, and stirring was started while adjusting the product temperature to be 50 ° C. 36 g of methyl hydrogen polysiloxane was gradually added and stirred for 30 minutes. Subsequently, the mixture was heated and stirred at a peripheral speed of 5.39 m / sec for 1 hour while adjusting the product temperature to 120 ° C. Thereafter, cooling was performed to obtain hydrophobic magnetic iron oxide particle powder.

実施例2〜8
核粒子の種類、シラン化合物の種類及び量、熱処理条件を種々変化させた以外は実施例1と同様にして疎水性磁性酸化鉄粒子粉末を得た。なお、実施例3は乾式混合後、混合物を回転炉に投入し、周速0.31m/secで2時間熱処理を行ったものである。また、実施例7、実施例8はシラン化合物を等倍量のエタノールで予め希釈して添加した。
Examples 2 to 8
A hydrophobic magnetic iron oxide particle powder was obtained in the same manner as in Example 1 except that the type of core particles, the type and amount of silane compound, and the heat treatment conditions were variously changed. In Example 3, after the dry mixing, the mixture was charged into a rotary furnace, and heat treatment was performed for 2 hours at a peripheral speed of 0.31 m / sec. In Examples 7 and 8, the silane compound was added after being diluted beforehand with an equal volume of ethanol.

比較例1(特願20008−282002号公報の実施例7の追試実験)
得られた核粒子Dスラリーの固形分濃度を10wt%にし、ホモミキサーの回転数を500rpmにした。pH6.4に調整し十分に分散させて、n−デシルトリメトキシシランを加え、加水分解を行いながら疎水化処理を行った。生成した疎水化性磁性酸化鉄粒子をろ過・水洗し、80℃で乾燥した。その後、乾燥物をヘンシェルミキサーに投入し、100℃に加温し、周速15m/secで1時間撹拌しながら熱処理を行い、疎水性磁性酸化鉄粒子粉末を得た。
Comparative Example 1 (Supplementary Experiment of Example 7 of Japanese Patent Application No. 20008-282002)
The solid content concentration of the obtained core particle D slurry was 10 wt%, and the rotation number of the homomixer was 500 rpm. The pH was adjusted to 6.4 and sufficiently dispersed, n-decyltrimethoxysilane was added, and hydrophobization treatment was performed while performing hydrolysis. The generated hydrophobic magnetic iron oxide particles were filtered, washed with water and dried at 80 ° C. Thereafter, the dried product was charged into a Henschel mixer, heated to 100 ° C., and heat-treated while stirring at a circumferential speed of 15 m / sec for 1 hour to obtain hydrophobic magnetic iron oxide particle powder.

比較例2(特開2010−100464号公報の実施例2の追試実験)
得られた核粒子Dを含むスラリーの固形分濃度を10wt%にし、ホモミキサーの回転数を5000rpmにした。pHを6、スラリーの温度を40℃に調整し十分に分散させて、イソブチルトリメトキシシランを加え、加水分解を行いながら疎水化処理を行った、生成した表面処理した磁性酸化鉄粒子粉末含有スラリー(固形分濃度:10wt%)をスプレードライヤーを用いて150℃で流動層乾燥を行い、その後、定温乾燥機 FS−420((株)東洋製作所)を用いて100℃で2時間熱処理を行い、表面処理された磁性酸化鉄粒子粉末を得た。
Comparative example 2 (follow-up experiment of Example 2 of Unexamined-Japanese-Patent No. 2010-100464)
The solid content concentration of the slurry containing the core particle D obtained was 10 wt%, and the rotation number of the homomixer was 5000 rpm. The slurry is adjusted to a pH of 6 and the temperature of the slurry is adjusted to 40 ° C. and dispersed sufficiently, isobutyltrimethoxysilane is added, and the hydrophobization treatment is carried out while performing hydrolysis, the generated surface-treated magnetic iron oxide particle powder-containing slurry Fluidized bed drying is carried out at 150 ° C. using a spray dryer (solid content: 10 wt%), and then heat treatment is carried out at 100 ° C. for 2 hours using a constant temperature dryer FS-420 (Toyo Seisakusho Co., Ltd.) A surface-treated magnetic iron oxide particle powder was obtained.

比較例3(特開2003−183027号公報の実施例1の追試実験)
得られた核粒子E5kgを、ヘンシェルミキサーに投入し、加熱ジャケットにて粉末の温度が70℃となるように調整しながら撹拌を開始する。反応性シリコーンオイルである、メチルハイドロジェンポリシロキサン100gをエタノール100gに希釈したものを徐々に添加し、2時間撹拌を行った。続いて、アルミニウム系カップリング剤であるアセチルアセテートアルミニウムジイソピレート25gをヘキサン25gに希釈したものを徐々に添加し、1時間撹拌を行い、表面処理された磁性酸化鉄粒子粉末を得た。
Comparative Example 3 (Supplementary Experiment of Example 1 of Japanese Patent Application Laid-Open No. 2003-183027)
The obtained core particles E of 5 kg are charged into a Henschel mixer, and stirring is started while adjusting the temperature of the powder to 70 ° C. with a heating jacket. A reactive silicone oil, 100 g of methyl hydrogen polysiloxane diluted in 100 g of ethanol was gradually added, and stirring was performed for 2 hours. Subsequently, 25 g of hexane diluted with 25 g of acetyl acetate aluminum diisopyrate, which is an aluminum coupling agent, was gradually added, and stirring was performed for 1 hour to obtain surface-treated magnetic iron oxide particle powder.

比較例4
核粒子の種類、シラン化合物の種類及び量、熱処理条件を種々変化させた以外は実施例1と同様にして疎水性磁性酸化鉄粒子粉末を得た。
Comparative example 4
A hydrophobic magnetic iron oxide particle powder was obtained in the same manner as in Example 1 except that the type of core particles, the type and amount of silane compound, and the heat treatment conditions were variously changed.

得られた疎水性磁性酸化鉄粒子粉末の諸特性を表2、表3に示す。 Tables 2 and 3 show various properties of the obtained hydrophobic magnetic iron oxide particle powder.

Figure 0006521239
Figure 0006521239

Figure 0006521239
Figure 0006521239

使用例1
<磁性トナーの製造>
イオン交換水500重量部に懸濁安定剤としてコロイダルシリカ S−150(伯東化学(株)製)5重量部を加え70℃に加温して水系媒体を得た。
スチレン: 80重量部
n−ブチルアクリレート: 20重量部
ジビニルベンゼン: 0.3重量部
疎水性磁性酸化鉄粒子粉末 82重量部
Use example 1
<Manufacture of magnetic toner>
An aqueous medium was obtained by adding 5 parts by weight of colloidal silica S-150 (manufactured by Shoto Kagaku Co., Ltd.) as a suspension stabilizer to 500 parts by weight of ion exchange water and heating to 70 ° C.
Styrene: 80 parts by weight n-butyl acrylate: 20 parts by weight Divinylbenzene: 0.3 parts by weight Hydrophobic magnetic iron oxide powder powder 82 parts by weight

上記混合物をペイントコンデキショナーを用いて分散させた。これに重合開始剤2,2‘−アゾビス(2,4ジメチルバレロニトリル)1.5重量部を溶解させた。
前記水系媒体中に上記重合性単量体を投入し、70℃、N雰囲気下においてホモミキサーにて8000rpmで10分間攪拌し、液滴形成を行った。その後パドルで攪拌しながら70℃で8時間反応させた。反応終了後、NaOHでpH12にして懸濁安定剤を除去し、ろ過、水洗、乾燥して磁性トナー1を得た。重量平均粒径は7.5μmであった。
The above mixture was dispersed using a paint conditioner. Thereto, 1.5 parts by weight of a polymerization initiator 2,2'-azobis (2,4 dimethyl valeronitrile) was dissolved.
The polymerizable monomer was charged into the aqueous medium and stirred at 8000 rpm for 10 minutes with a homomixer at 70 ° C. under an N 2 atmosphere to form droplets. Then, it was reacted at 70 ° C. for 8 hours while stirring with a paddle. After completion of the reaction, the suspension stabilizer was removed by adjusting the pH to 12 with NaOH, followed by filtration, washing with water and drying to obtain a magnetic toner 1. The weight average particle size was 7.5 μm.

使用例2〜12
疎水性磁性酸化鉄粒子粉末の種類を種々変化させた以外は使用例1と同様にして磁性トナーを得た。
Use example 2-12
A magnetic toner was obtained in the same manner as in Use Example 1 except that the type of the hydrophobic magnetic iron oxide particles was variously changed.

得られた磁性トナーの諸特性を表4に示す。   Various properties of the obtained magnetic toner are shown in Table 4.

Figure 0006521239
Figure 0006521239

本発明に係る疎水性磁性酸化鉄粒子粉末は、粒子表面がシラン化合物で被覆されている磁性酸化鉄粒子粉末であって、該磁性酸化鉄粒子粉末を120℃で30分保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下に抑えられるため、不快な臭い成分を含有しないことを可能にし、かつ、スチレン/n−ブチルアクリレート中での分散性が良好なので、磁性トナー用の疎水性磁性酸化鉄粒子粉末として好適である。   The hydrophobic magnetic iron oxide particle powder according to the present invention is a magnetic iron oxide particle powder in which the particle surface is coated with a silane compound, and the magnetic iron oxide particle powder is maintained at 120 ° C. for 30 minutes. The total number of volatile organic compounds selected from aliphatic hydrocarbons having 2 to 16 carbon atoms or aliphatic aldehydes, aliphatic ketones, aliphatic alcohols as decomposition products of the silane compounds dissipated from iron oxide particle powder The content is suppressed to 15 ppm or less, which makes it possible to contain no unpleasant odor component, and because the dispersibility in styrene / n-butyl acrylate is good, it is suitable as a hydrophobic magnetic iron oxide particle powder for magnetic toner is there.

Claims (4)

粒子表面がシラン化合物で被覆されている疎水性磁性酸化鉄粒子粉末であって、前記シラン化合物が化1に示される直鎖状オルガノポリシロキサン若しくは化2に示されるシラザンから選ばれる少なくとも1種又は2種であり、該磁性酸化鉄粒子粉末を120℃で30分間保持したとき、該磁性酸化鉄粒子粉末から放散される前記シラン化合物の分解物として炭素数が2以上16以下の脂肪族炭化水素又は、脂肪族アルデヒド、脂肪族ケトン、脂肪族アルコールから選ばれる揮発性有機化合物の総計が15ppm以下であることを特徴とする疎水性磁性酸化鉄粒子粉末。
Figure 0006521239
Figure 0006521239
Hydrophobic magnetic iron oxide particle powder wherein the particle surface is coated with a silane compound , wherein the silane compound is at least one selected from the linear organopolysiloxanes shown in Chemical formula 1 or the silazane shown in Chemical formula 2 is two, when the magnetic iron oxide particles were held for 30 minutes at 120 ° C., the number of carbon atoms as a decomposition product of the silane compound is dissipated from the magnetic iron oxide particles is 2 to 16 aliphatic hydrocarbon Alternatively, the hydrophobic magnetic iron oxide particle powder is characterized in that the total amount of volatile organic compounds selected from aliphatic aldehydes, aliphatic ketones and aliphatic alcohols is 15 ppm or less.
Figure 0006521239
Figure 0006521239
疎水化度が60%以上である請求項記載の疎水性磁性酸化鉄粒子粉末。 Hydrophobic magnetic iron oxide particles according to claim 1, wherein the degree of hydrophobicity of 60% or more. スチレン/n−ブチルアクリレート中で分散させた塗膜の光沢度が60%以上である請求項1又は2に記載の疎水性磁性酸化鉄粒子粉末。 The hydrophobic magnetic iron oxide particle powder according to claim 1 or 2, wherein the glossiness of the coating film dispersed in styrene / n-butyl acrylate is 60% or more. 核となる磁性酸化鉄粒子を乾式で疎水化処理した後、80〜120℃の温度範囲、かつ周速0.01〜10.0m/secの範囲で回転させながら熱処理することを特徴とする請求項1記載の疎水性磁性酸化鉄粒子粉末の製造方法。 The magnetic iron oxide particles to be the nucleus are subjected to a hydrophobization treatment in a dry state, and then heat treatment is performed while rotating in a temperature range of 80 to 120 ° C. and a circumferential speed of 0.01 to 10.0 m / sec. The manufacturing method of the hydrophobic magnetic iron oxide particle powder of a claim | item 1 aspect.
JP2015092323A 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same Active JP6521239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092323A JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092323A JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016210629A JP2016210629A (en) 2016-12-15
JP6521239B2 true JP6521239B2 (en) 2019-05-29

Family

ID=57551211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092323A Active JP6521239B2 (en) 2015-04-28 2015-04-28 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6521239B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184705B2 (en) * 1994-04-27 2001-07-09 キヤノン株式会社 Developer for developing electrostatic image, method for producing the same, and image forming method
JP3997034B2 (en) * 1998-04-17 2007-10-24 キヤノン株式会社 Developing apparatus, image forming method, and apparatus unit
JP2000075527A (en) * 1998-09-01 2000-03-14 Canon Inc Image forming device
JP3950743B2 (en) * 2002-06-03 2007-08-01 キヤノン株式会社 Method for producing toner particles
JP3970104B2 (en) * 2002-06-19 2007-09-05 キヤノン株式会社 Dry toner and image forming method using the dry toner
JP4749733B2 (en) * 2004-02-18 2011-08-17 チタン工業株式会社 Hydrophobic magnetic iron oxide particles
JP4579703B2 (en) * 2005-01-27 2010-11-10 キヤノン株式会社 Method for producing toner particles
JP5422904B2 (en) * 2007-04-09 2014-02-19 戸田工業株式会社 Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same
RU2570785C2 (en) * 2011-07-15 2015-12-10 Джапан Тобакко Инк. Aromatiser-carrying weakly-adsorbing particle, cigarette filter, filter-tipped cigarette and method of producing aromatiser-carrying weakly-adsorbing particle
JP6086753B2 (en) * 2013-02-21 2017-03-01 三井金属鉱業株式会社 Coated magnetite particles and method for producing the same

Also Published As

Publication number Publication date
JP2016210629A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP5422904B2 (en) Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP2016006547A (en) Toner composition and method of preparing the same
JP5330794B2 (en) Coated magnetite particles and method for producing the same
JP5136749B2 (en) Black magnetic iron oxide particle powder
TWI744263B (en) Hydrophobic silica powder, process for preparing the same and toner composition for electrophotographic containing the same
JP6521239B2 (en) Hydrophobic magnetic iron oxide particle powder and method for producing the same
JP2000327948A (en) Hydrophobilized powdery particles of metal compound and production thereof
JP5330813B2 (en) Hydrophobic magnetite particle powder
JP5403213B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP5826453B2 (en) Black magnetic iron oxide particle powder
JP6061704B2 (en) Coated magnetite particles
JP5403214B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP5846979B2 (en) Coated magnetite particles and method for producing the same
JP6496566B2 (en) Hydrophobized spherical metatitanic acid particles, toner external additive, toner spacer and toner
JP5400440B2 (en) Magnetite particles
JP6086753B2 (en) Coated magnetite particles and method for producing the same
JP3907154B2 (en) Iron oxide particles
JP2002080224A (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the same
JP4398209B2 (en) Composite magnetic iron oxide particle powder for magnetic toner
JP2009286644A (en) Method for producing composite coated magnetite particle
JP2011020910A (en) Coated magnetite particle
JP5657282B2 (en) Coated magnetite particles
JP2023163893A (en) toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6521239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250