JP5422904B2 - Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same - Google Patents

Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same Download PDF

Info

Publication number
JP5422904B2
JP5422904B2 JP2008100802A JP2008100802A JP5422904B2 JP 5422904 B2 JP5422904 B2 JP 5422904B2 JP 2008100802 A JP2008100802 A JP 2008100802A JP 2008100802 A JP2008100802 A JP 2008100802A JP 5422904 B2 JP5422904 B2 JP 5422904B2
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic iron
oxide particles
particle powder
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008100802A
Other languages
Japanese (ja)
Other versions
JP2008282002A (en
Inventor
裕史 赤井
浩光 三澤
優 河端
祐介 下畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008100802A priority Critical patent/JP5422904B2/en
Publication of JP2008282002A publication Critical patent/JP2008282002A/en
Application granted granted Critical
Publication of JP5422904B2 publication Critical patent/JP5422904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、非極性溶媒中での分散性が良好であり、水蒸気吸着量の少ない磁性トナー用疎水性磁性酸化鉄粒子粉末を提供する。   The present invention provides a hydrophobic magnetic iron oxide particle powder for a magnetic toner that has good dispersibility in a nonpolar solvent and has a small amount of water vapor adsorption.

従来、静電潜像現像法の一つとして、キャリアを使用せずに樹脂中にマグネタイト粒子粉末等の黒色磁性酸化鉄粒子粉末を混合分散させた複合体粒子を現像剤として用いる所謂、一成分系磁性トナーによる現像法が広く知られ、汎用されている。   Conventionally, as one of the electrostatic latent image developing methods, a so-called one-component using a composite particle in which black magnetic iron oxide particle powder such as magnetite particle powder is mixed and dispersed in a resin without using a carrier as a developer. Development methods using magnetic toners are widely known and widely used.

近時、レーザービームプリンターやデジタル複写機の高速化や高画質化に伴って、現像剤である磁性トナーの特性向上が強く要求されており、その為には、トナー中で酸化磁性鉄粒子が出来るだけ内包され、かつ、分散した状態が望ましい。   Recently, with the increase in speed and image quality of laser beam printers and digital copiers, there has been a strong demand for improvement in the characteristics of magnetic toner as a developer. It is desirable that it is contained and dispersed as much as possible.

磁性トナーは粉砕法で製造されているが、粒子径の微小化、均一化、さらなる低温定着性などの機能付与において、重合法トナーに移行しつつある。   Magnetic toner is manufactured by a pulverization method, but is shifting to a polymerization method toner in order to provide functions such as finer and uniform particle diameter and further low-temperature fixability.

重合法トナーは、重合性単量体中で磁性酸化鉄粒子を分散させて作ることから、親水性表面である磁性酸化鉄粒子を疎水化して重合性単量体中で分散をさせることが重要になってくる。   Since the polymerized toner is made by dispersing magnetic iron oxide particles in a polymerizable monomer, it is important to make the magnetic iron oxide particles, which are hydrophilic surfaces, hydrophobic and disperse in the polymerizable monomer. It becomes.

乾式で磁性酸化鉄粒子を疎水化処理する手段として、ミキサー型混合機又はホイール型混合機で処理する方法が開示されている(特許文献1参照)。しかし、乾式で磁性酸化鉄粒子と処理剤をただ混合するだけでは、均一な疎水化が困難であり、非極性溶媒中での分散性が悪い。   As a means for hydrophobizing magnetic iron oxide particles by a dry method, a method of treating with a mixer-type mixer or a wheel-type mixer is disclosed (see Patent Document 1). However, by simply mixing the magnetic iron oxide particles and the treatment agent in a dry manner, uniform hydrophobicity is difficult and dispersibility in a nonpolar solvent is poor.

湿式で磁性酸化鉄粒子を疎水化処理する手段として、水系媒体中で処理する方法が開示されている(特許文献2参照)。しかし、磁性酸化鉄粒子に吸湿性の高いリンを含むものであり、水蒸気吸着量が多く、非極性溶媒中での分散性が悪い。   As a means for hydrophobizing magnetic iron oxide particles in a wet process, a method of treating in an aqueous medium is disclosed (see Patent Document 2). However, magnetic iron oxide particles contain highly hygroscopic phosphorus, have a large water vapor adsorption amount, and have poor dispersibility in nonpolar solvents.

気相で磁性酸化鉄粒子を疎水化処理する手段として、処理剤を気化接触して反応させる方法が開示されている(特許文献3参照)。しかし、高温で熱処理することから凝集しやすく、非極性溶媒中での分散性が悪い。   As a means for hydrophobizing magnetic iron oxide particles in the gas phase, a method is disclosed in which a treatment agent is reacted by vaporization contact (see Patent Document 3). However, since it heat-processes at high temperature, it is easy to aggregate and its dispersibility in a nonpolar solvent is bad.

その他の手段として、混練にて処理する方法が開示されている(特許文献4参照)。しかし、処理時間が短く、不均一になりやすい。   As another means, a method of processing by kneading is disclosed (see Patent Document 4). However, the processing time is short and non-uniform.

特開平03−221965号公報Japanese Patent Laid-Open No. 03-221965 特開2005−263619号公報JP 2005-263619 A 特開2000−327948号公報JP 2000-327948 A 特開2006−232578号公報JP 2006-232578 A

よって本発明は、前述した種々の問題を解決した疎水化された磁性酸化鉄粒子粉末を提供するものである。   Therefore, the present invention provides a hydrophobized magnetic iron oxide particle powder that solves the various problems described above.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、磁性酸化鉄粒子表面にシランカップリング剤が5.0×10−3〜1.5×10−2(5.0E−3〜1.5E−2)mmol/m被覆された平均粒子径0.05〜0.5μmの疎水性磁性酸化鉄粒子粉末であって、スチレン/n−ブチルアクリレート中で前記疎水性磁性酸化鉄粒子粉末を分散させた塗膜の光沢度が60%以上であり、Pの含有量が0.05wt%以下である磁性トナー用疎水性磁性酸化鉄粒子粉末(本発明1)。 That is, in the present invention, the magnetic iron oxide particle surface is coated with a silane coupling agent of 5.0 × 10 −3 to 1.5 × 10 −2 (5.0E-3 to 1.5E-2) mmol / m 2. The hydrophobic magnetic iron oxide particle powder having an average particle diameter of 0.05 to 0.5 μm, wherein the gloss of the coating film in which the hydrophobic magnetic iron oxide particle powder is dispersed in styrene / n-butyl acrylate is Hydrophobic magnetic iron oxide particle powder for magnetic toner having 60% or more and P content of 0.05 wt% or less (Invention 1).

また、本発明は、シランカップリング剤の固着率が80%以上である前記疎水性磁性酸化鉄粒子粉末である(本発明2)。   Moreover, this invention is the said hydrophobic magnetic iron oxide particle powder whose sticking rate of a silane coupling agent is 80% or more (this invention 2).

また、本発明は、温度25℃、相対湿度90%の雰囲気における水蒸気吸着量(V90)が0.4mg/m以下である前記疎水性磁性酸化鉄粒子粉末である(本発明3)。 In addition, the present invention is the hydrophobic magnetic iron oxide particle powder having a water vapor adsorption amount (V90) of 0.4 mg / m 2 or less in an atmosphere having a temperature of 25 ° C. and a relative humidity of 90% (Invention 3).

また、本発明は、核となる磁性酸化鉄粒子を水性媒体中で疎水化処理した後、乾燥させ、得られた乾燥物を120℃以下かつ周速10m/sec以上で回転させながら熱処理することを特徴とする疎水性磁性酸化鉄粒子粉末の製造方法である(本発明4)。   In the present invention, the core magnetic iron oxide particles are hydrophobized in an aqueous medium and then dried, and the obtained dried product is heat-treated while rotating at 120 ° C. or less and a peripheral speed of 10 m / sec or more. This is a method for producing hydrophobic magnetic iron oxide particle powder (Invention 4).

本発明に係る磁性トナー用疎水性磁性酸化鉄粒子粉末は、磁性酸化鉄粒子表面に水性媒体中で疎水化処理した乾燥物を高速回転しながら熱処理することにより、シランカップリング剤の固着率が高く、Pの含有量が0.05wt%以下であることから水蒸気吸着量が低いので、スチレン/n−ブチルアクリレート中での分散性が良好な疎水性磁性酸化鉄粒子粉末であり、重合磁性トナー用として好適である。   The hydrophobic magnetic iron oxide particle powder for magnetic toner according to the present invention has a silane coupling agent sticking rate by heat-treating the surface of the magnetic iron oxide particle, which is hydrophobized in an aqueous medium, while rotating at high speed. It is a hydrophobic magnetic iron oxide particle powder having good dispersibility in styrene / n-butyl acrylate because it has a high P content of 0.05 wt% or less and therefore has a low water vapor adsorption amount. Suitable for use.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

先ず、本発明に係る疎水性磁性酸化鉄粒子粉末について述べる。   First, the hydrophobic magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末のシランカップリング剤の被覆量は、5.0×10−3〜1.5×10−2mmol/m(5.0E−3〜1.5E−2mmol/m)である。5.0×10−3mmol/m(5.0E−3mmol/m)未満の場合には、疎水化処理が不十分であり、水蒸気吸着量が高くなり、分散性が悪くなる。1.5×10−2mmol/m(1.5E−2mmol/m)を超える場合には、凝集して分散性が悪くなる。好ましくは7.0×10−3〜1.2×10−2mmol/m(7.0E−3〜1.2E−2mmol/m)である。 The coating amount of the silane coupling agent of the hydrophobic magnetic iron oxide particles according to the present invention is 5.0 × 10 −3 to 1.5 × 10 −2 mmol / m 2 (5.0E-3 to 1.5E). -2 mmol / m 2 ). In the case of less than 5.0 × 10 −3 mmol / m 2 (5.0E−3 mmol / m 2 ), the hydrophobization treatment is insufficient, the water vapor adsorption amount is increased, and the dispersibility is deteriorated. When it exceeds 1.5 × 10 -2 mmol / m 2 (1.5E-2mmol / m 2) , the dispersibility is deteriorated by aggregation. It is preferably 7.0 × 10 −3 to 1.2 × 10 −2 mmol / m 2 (7.0E-3 to 1.2E-2 mmol / m 2 ).

本発明に係る疎水性磁性酸化鉄粒子粉末は、後出する測定方法で評価したシランカップリング剤の固着率が80%以上であることが好ましい。固着率が80%未満の場合には、溶出した疎水化剤が多くなるため、分散性が悪くなる。より好ましくは82%以上であり、上限値は99%程度である。   It is preferable that the hydrophobic magnetic iron oxide particle powder according to the present invention has a silane coupling agent fixing rate of 80% or more evaluated by a measurement method described later. When the fixing rate is less than 80%, the amount of eluted hydrophobizing agent is increased, resulting in poor dispersibility. More preferably, it is 82% or more, and the upper limit is about 99%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後出する測定方法で評価したシランカップリング剤のカーボン量としての付着量が0.5〜2.0wt%が好ましく、より好ましくは0.5〜1.5wt%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention preferably has an adhesion amount as a carbon amount of a silane coupling agent evaluated by a measurement method to be described later, preferably 0.5 to 2.0 wt%, more preferably 0.5. -1.5 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末は、後出する測定方法で評価したシランカップリング剤のカーボン量としての固着量が0.4〜2.0wt%が好まし、より好ましくは0.45〜1.20wt%である。   The hydrophobic magnetic iron oxide particles according to the present invention preferably have a fixed amount of 0.4 to 2.0 wt% as a carbon amount of a silane coupling agent evaluated by a measurement method to be described later, more preferably 0. It is 45-1.20 wt%.

本発明に係る疎水性磁性酸化鉄粒子粉末の平均粒子径は0.05〜0.5μmである。
平均粒子径が0.05μm未満の場合、磁性酸化鉄粒子相互間の凝集力が大きく分散が困難となる。0.5μmを超える場合、着色力が劣り隠ぺい力も低い。好ましくは0.1〜0.3μm、より好ましくは0.15〜0.25μmである。
The average particle diameter of the hydrophobic magnetic iron oxide particles according to the present invention is 0.05 to 0.5 μm.
When the average particle diameter is less than 0.05 μm, the cohesive force between the magnetic iron oxide particles is large and dispersion becomes difficult. When it exceeds 0.5 μm, the coloring power is inferior and the hiding power is low. Preferably it is 0.1-0.3 micrometer, More preferably, it is 0.15-0.25 micrometer.

本発明に係る疎水性磁性酸化鉄粒子粉末は、スチレン/n−ブチルアクリレート中で分散させて塗膜を形成したときの光沢度が60%以上である。塗膜の光沢度が60%未満の場合、分散性が悪く、トナー中での分散状態が悪いことを意味する。好ましくは64%以上、より好ましくは64〜80%である。   The hydrophobic magnetic iron oxide particle powder according to the present invention has a glossiness of 60% or more when dispersed in styrene / n-butyl acrylate to form a coating film. When the glossiness of the coating film is less than 60%, it means that the dispersibility is bad and the dispersion state in the toner is bad. Preferably it is 64% or more, More preferably, it is 64 to 80%.

本発明に係る疎水性磁性酸化鉄粒子粉末のBET比表面積は、3.0〜13.0m/gが好ましい。BET比表面積が3.0m/g未満の場合、凝集していることからスチレン/n−ブチルアクリレート中の分散性が悪い。BET比表面積が13.0m/gを超える場合、疎水化処理が不十分であり、水蒸気吸着量(V90)が多くなる。より好ましくは4.0〜12.0m/gである。 The BET specific surface area of the hydrophobic magnetic iron oxide particle powder according to the present invention is preferably 3.0 to 13.0 m 2 / g. When the BET specific surface area is less than 3.0 m 2 / g, the dispersibility in styrene / n-butyl acrylate is poor due to aggregation. When the BET specific surface area exceeds 13.0 m 2 / g, the hydrophobization treatment is insufficient and the water vapor adsorption amount (V90) increases. More preferably, it is 4.0-12.0 m < 2 > / g.

本発明に係る疎水性磁性酸化鉄粒子粉末の水蒸気吸着量(V90)は、0.40mg/m以下が好ましい。水蒸気吸着量(V90)が0.40mg/mを超える場合、スチレン/n−ブチルアクリレート中の分散性が悪くなる。より好ましくは0.30mg/m以下であり、下限値は0.10mg/m程度である。 The water vapor adsorption amount (V90) of the hydrophobic magnetic iron oxide particles according to the present invention is preferably 0.40 mg / m 2 or less. When the water vapor adsorption amount (V90) exceeds 0.40 mg / m 2 , dispersibility in styrene / n-butyl acrylate is deteriorated. More preferably, it is 0.30 mg / m 2 or less, and the lower limit is about 0.10 mg / m 2 .

本発明に係る疎水性磁性酸化鉄粒子粉末のPの含有量は0.05wt%以下であることが好ましい。0.05wt%を超える場合には、水蒸気吸着量が高くなり、分散性が悪くなる。好ましくは0.04wt%以下であり、より好ましくは0.03wt%である。   The content of P in the hydrophobic magnetic iron oxide particles according to the present invention is preferably 0.05 wt% or less. When it exceeds 0.05 wt%, the water vapor adsorption amount increases and the dispersibility deteriorates. Preferably it is 0.04 wt% or less, More preferably, it is 0.03 wt%.

次に、本発明に核となる磁性酸化鉄粒子粉末について述べる。   Next, the magnetic iron oxide particle powder as the core of the present invention will be described.

本発明における核となる磁性酸化鉄粒子は、平均粒子径が0.05〜0.5μmである。平均粒子径が0.05μm未満の場合、磁性酸化鉄粒子相互間の凝集力が大きく分散が困難となり、疎水化処理にも不利である。0.5μmを超える場合、着色力が劣り隠ぺい力も低い。好ましくは0.1〜0.3μm、より好ましくは0.15〜0.25μmである。BET比表面積が5〜15m/gである。 The magnetic iron oxide particles serving as the nucleus in the present invention have an average particle diameter of 0.05 to 0.5 μm. When the average particle size is less than 0.05 μm, the cohesive force between the magnetic iron oxide particles is large, making it difficult to disperse, which is disadvantageous for the hydrophobic treatment. When it exceeds 0.5 μm, the coloring power is inferior and the hiding power is low. Preferably it is 0.1-0.3 micrometer, More preferably, it is 0.15-0.25 micrometer. The BET specific surface area is 5 to 15 m 2 / g.

本発明における核となる磁性酸化鉄粒子は、マグネタイト粒子((FeO)・Fe、0<x≦1)からなり、必要により、鉄以外の元素Si、Al、P、Mn、Ni、Zn、Cu、Mg、Co、Tiから選ばれる1種又は2種以上の金属元素を含有してもよい。 The magnetic iron oxide particles serving as the nucleus in the present invention are composed of magnetite particles ((FeO) x .Fe 2 O 3 , 0 <x ≦ 1). If necessary, elements other than iron, Si, Al, P, Mn, Ni , Zn, Cu, Mg, Co, or Ti may contain one or more metal elements.

なお、Pを含有する場合は0.05wt%以下とする。本発明における核となる磁性酸化鉄粒子のPの含有量が0.05wt%を超える場合には、疎水化処理を行っても水蒸気吸着量が高くなり、分散性が悪くなる。好ましくは0.04wt%以下である。   In addition, when it contains P, it shall be 0.05 wt% or less. When the content of P in the magnetic iron oxide particles serving as the nucleus in the present invention exceeds 0.05 wt%, the water vapor adsorption amount is increased and the dispersibility is deteriorated even if the hydrophobic treatment is performed. Preferably it is 0.04 wt% or less.

本発明における核となる磁性酸化鉄粒子は、必要によりあらかじめ粒子表面が、Si、Al、Tiの化合物から選ばれる少なくとも1種からなる中間被覆物によって被覆されていてもよい。   In the magnetic iron oxide particles serving as the core in the present invention, the particle surface may be coated in advance with an intermediate coating comprising at least one selected from Si, Al, and Ti compounds, if necessary.

本発明における核となる磁性酸化鉄粒子を中間被覆物によって被覆することによって、疎水化剤の脱離をより抑制することができる。   By covering the magnetic iron oxide particles serving as the nucleus in the present invention with the intermediate coating, the desorption of the hydrophobizing agent can be further suppressed.

本発明における核となる磁性酸化鉄粒子粉末の一次粒子の粒子形状は、八面体状、六面体状、粒状、球状などの等方形状である。分散性を考慮すると球状が好ましい。   In the present invention, the primary particle shape of the magnetic iron oxide particle powder serving as the nucleus is an isotropic shape such as an octahedral shape, a hexahedral shape, a granular shape, and a spherical shape. In consideration of dispersibility, a spherical shape is preferable.

本発明における核となる磁性酸化鉄粒子粉末の保磁力は2.4〜15.9kA/m(30〜200Oe)が好ましい。より好ましくは3.2〜13.5kA/m(40〜170Oe)である。   The coercive force of the magnetic iron oxide particle powder as a nucleus in the present invention is preferably 2.4 to 15.9 kA / m (30 to 200 Oe). More preferably, it is 3.2 to 13.5 kA / m (40 to 170 Oe).

本発明おける核となる磁性酸化鉄粒子粉末の飽和磁化値は81.0〜90.0Am/kg(81.0〜90.0emu/g)が好ましい。より好ましくは、84.0〜90.0Am/kg(84.0〜90.0emu/g)である。 The saturation magnetization value of the magnetic iron oxide particles used as the core in the present invention is preferably 81.0-90.0 Am 2 / kg (81.0-90.0 emu / g). More preferably, it is 84.0-90.0 Am < 2 > / kg (84.0-90.0 emu / g).

本発明における磁性酸化鉄粒子は、第一鉄塩水溶液と水酸化アルカリ水溶液とを中和混合して得られた水酸化第一鉄コロイドを含む第一鉄塩反応水溶液を酸素含有ガス、好ましくは空気をスラリー中に吹き込みながら酸化させ、酸化反応終了後のスラリーをろ過、洗浄して磁性酸化鉄粒子を得ることができる。得られた磁性酸化鉄粒子スラリーを常法に従って乾燥させて疎水化処理を行っても良いが、水性媒体中で疎水化処理することを考えると、乾燥工程を経ずにそのまま磁性酸化鉄粒子を含有するスラリーを用いて疎水化処理することが好ましい。   In the present invention, the magnetic iron oxide particles are prepared by neutralizing and mixing a ferrous salt aqueous solution and an alkali hydroxide aqueous solution, and a ferrous salt reaction aqueous solution containing a ferrous hydroxide colloid obtained by oxygen-containing gas, preferably Oxidation is performed while blowing air into the slurry, and the slurry after the oxidation reaction is filtered and washed to obtain magnetic iron oxide particles. The obtained magnetic iron oxide particle slurry may be dried according to a conventional method and subjected to a hydrophobization treatment. However, considering that the hydrophobization treatment is performed in an aqueous medium, the magnetic iron oxide particles can be directly used without passing through a drying step. It is preferable to hydrophobize using the contained slurry.

水酸化第一鉄コロイドを生成させる際のアルカリ溶液の量は、求める磁性酸化鉄粒子の形状に応じて調整すればよい。具体的には、水酸化第一鉄コロイドのpHが8.0未満となるように調整すれば球状粒子が得られ、8.0〜9.5となるように調整すれば六面体状粒子が得られ、9.5を超えるように調整すれば八面体状粒子が得られるので、適宜調整する。   What is necessary is just to adjust the quantity of the alkaline solution at the time of producing | generating a ferrous hydroxide colloid according to the shape of the magnetic iron oxide particle calculated | required. Specifically, spherical particles can be obtained by adjusting the pH of the ferrous hydroxide colloid to be less than 8.0, and hexahedral particles can be obtained by adjusting the pH to 8.0 to 9.5. If it is adjusted to exceed 9.5, octahedral particles can be obtained.

本発明における第一鉄塩水溶液としては、硫酸第一鉄水溶液、塩化第一鉄水溶液等を使用することができる。   As the ferrous salt aqueous solution in the present invention, ferrous sulfate aqueous solution, ferrous chloride aqueous solution and the like can be used.

本発明における水酸化アルカリ水溶液は、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属の水酸化物等の各水溶液を使用することができる。   The alkali hydroxide aqueous solution in the present invention uses aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, and the like. Can do.

本発明における酸化反応温度は、85〜100℃である。85℃未満である場合には、針状含水酸化鉄粒子が副生しやすくなり、100℃を越える場合も磁性酸化鉄粒子は生成するが工業的ではない。   The oxidation reaction temperature in this invention is 85-100 degreeC. When the temperature is lower than 85 ° C., acicular hydrous iron oxide particles are easily produced as a by-product, and when the temperature is higher than 100 ° C., magnetic iron oxide particles are produced but are not industrial.

次に、本発明に係る疎水性磁性酸化鉄粒子粉末の製造法について述べる。   Next, a method for producing hydrophobic magnetic iron oxide particles according to the present invention will be described.

本発明に係る疎水性磁性酸化鉄粒子粉末は、核となる磁性酸化鉄粒子を水性媒体中で疎水化処理した後、乾燥し、乾燥物を120℃以下かつ周速10m/sec以上で回転させながら熱処理して得ることができる。   The hydrophobic magnetic iron oxide particles according to the present invention are prepared by subjecting magnetic iron oxide particles serving as nuclei to hydrophobic treatment in an aqueous medium and then drying, and rotating the dried product at a temperature of 120 ° C. or less and a peripheral speed of 10 m / sec or more. It can be obtained by heat treatment.

疎水化処理は、具体的には、疎水化処理を水性媒体中で磁性酸化鉄粒子を十分に分散させながら疎水化剤であるシランカップリング剤を添加して行う。   Specifically, the hydrophobizing treatment is performed by adding a silane coupling agent as a hydrophobizing agent while sufficiently dispersing the magnetic iron oxide particles in an aqueous medium.

疎水化処理における水性媒体は、水のみでも良いし、疎水化された磁性酸化鉄粒子の凝集を抑制するために少量のアルコールを添加しても良い。   The aqueous medium in the hydrophobization treatment may be water alone, or a small amount of alcohol may be added to suppress aggregation of the hydrophobized magnetic iron oxide particles.

疎水化処理を行う際の水性媒体のpHは、シランカップリング剤を加水分解しながら処理するため、pHは3〜7が好ましい。また、予備的に加水分解液を作製してから添加しても良い。
疎水化処理を行う際の水性媒体の温度は、30〜80℃が好ましい。
The pH of the aqueous medium when performing the hydrophobization treatment is preferably 3 to 7 because the treatment is performed while hydrolyzing the silane coupling agent. Moreover, you may add, after preparing a hydrolyzed solution preliminarily.
As for the temperature of the aqueous medium at the time of performing a hydrophobization process, 30-80 degreeC is preferable.

本発明におけるシランカップリング剤としては一般式(1)で表される化合物が好ましい。   As a silane coupling agent in this invention, the compound represented by General formula (1) is preferable.

<化1>
Si(OR4−a
:炭素数が15以下であるアルキル基
:−CH、−C
a:1〜3の整数
<Chemical formula 1>
R 1 a Si (OR 2 ) 4-a
R 1 : an alkyl group having 15 or less carbon atoms R 2 : —CH 3 , —C 2 H 5
a: an integer from 1 to 3

シランカップリング剤としては、メチルトリエキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n−ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n−ヘキシルトリメトシキシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン等が挙げられる。また、必要に応じてRがアルキル基以外のγ−グリシドキシプロピルトリメトキシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン等を加えてもよい。 Examples of the silane coupling agent include methyltrioxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltri. And methoxysilane. If necessary, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, phenyltrimethoxysilane, or the like in which R 1 is other than an alkyl group may be added.

シランカップリング剤の添加量は、核となる磁性酸化鉄粒子に対して1.0〜3.5重量%である。   The addition amount of the silane coupling agent is 1.0 to 3.5% by weight with respect to the magnetic iron oxide particles serving as a nucleus.

疎水化処理に用いる処理装置は、磁性酸化鉄粒子を十分に分散させるため、また、疎水化処理時は疎水化凝集を防ぐためディスパー、ホモミキサーのような高せん断力分散機が好ましい。   The processing apparatus used for the hydrophobization treatment is preferably a high shear force disperser such as a disper or a homomixer in order to sufficiently disperse the magnetic iron oxide particles and to prevent hydrophobization and aggregation during the hydrophobization treatment.

疎水化処理後は、常法に従って乾燥する。   After the hydrophobizing treatment, it is dried according to a conventional method.

本発明においては、乾燥物を120℃以下かつ周速10m/sec以上で回転させながら熱処理する。熱処理時の温度が120℃を超える場合、縮合反応が進みすぎて磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化する。好ましくは80〜110℃である。熱処理時の周速が10m/sec未満の場合、解さい力が弱いため磁性酸化鉄粒子同士が合一しやすくなり、分散性が悪化する。また、固着率も低くなる。より好ましい周速は11〜30m/secである。   In the present invention, the dried product is heat-treated while being rotated at 120 ° C. or less and at a peripheral speed of 10 m / sec or more. When the temperature at the time of heat treatment exceeds 120 ° C., the condensation reaction proceeds so much that the magnetic iron oxide particles are easily united with each other and the dispersibility is deteriorated. Preferably it is 80-110 degreeC. When the peripheral speed at the time of heat treatment is less than 10 m / sec, the unraveling force is weak, so that the magnetic iron oxide particles are easily united and the dispersibility is deteriorated. Further, the fixing rate is also lowered. A more preferable peripheral speed is 11 to 30 m / sec.

熱処理処理装置はヘンシェルミキサー、ハイスピードミキサーのような高速回転混合機が好ましい。   The heat treatment apparatus is preferably a high-speed rotary mixer such as a Henschel mixer or a high-speed mixer.

次に、本発明に係る磁性酸化鉄粒子粉末を含有する磁性トナーについて述べる。   Next, the magnetic toner containing the magnetic iron oxide particle powder according to the present invention will be described.

本発明に係る磁性トナーは、懸濁重合法によって得ることができる。懸濁重合法においては、重合性単量体と磁性酸化鉄粒子粉末とを、必要により更に、着色剤、重合開始剤、架橋剤、荷電制御剤、その他の添加剤を添加した混合物を溶解又は分散させた単量体組成物を、懸濁安定剤を含む水相中に攪拌しながら添加して造粒し、重合させて所望の粒子サイズとすることにより得られる。   The magnetic toner according to the present invention can be obtained by a suspension polymerization method. In the suspension polymerization method, a polymerizable monomer and magnetic iron oxide particle powder are dissolved or mixed with a colorant, a polymerization initiator, a crosslinking agent, a charge control agent, and other additives as necessary. The dispersed monomer composition is added to an aqueous phase containing a suspension stabilizer while stirring, granulated, and polymerized to obtain a desired particle size.

もちろん、所定量の結着剤樹脂と所定量の磁性酸化鉄粒子粉末とを混合、混練、粉砕による公知の方法によっても行うことができる。具体的には、磁性酸化鉄粒子粉末と結着剤樹脂とを、必要により更に離型剤、着色剤、荷電制御剤、その他の添加剤等を添加した混合物を混合機により十分に混合した後、加熱混練機によって結着剤樹脂中に磁性酸化鉄粒子粉末等を分散させ、次いで、冷却固化して樹脂混練物を得、該樹脂混練物を粉砕及び分級を行って所望の粒子サイズとすることにより得られる。   Of course, it can also be performed by a known method of mixing, kneading, and pulverizing a predetermined amount of binder resin and a predetermined amount of magnetic iron oxide particle powder. Specifically, after the magnetic iron oxide particle powder and the binder resin are mixed sufficiently with a mixer, a mixture further containing a release agent, a colorant, a charge control agent, and other additives as necessary. The magnetic iron oxide particles and the like are dispersed in the binder resin by a heat kneader, and then cooled and solidified to obtain a resin kneaded product. The resin kneaded product is pulverized and classified to obtain a desired particle size. Can be obtained.

<作用>
本発明において、最も重要な点は、本発明に係る疎水性磁性酸化鉄粒子粉末は、磁性酸化鉄粒子表面にシランカップリング剤が5.0×10−3〜1.5×10−2mmol/m(5.0E−3〜1.5E−2mmol/m)被覆された平均粒子径0.05〜0.5μmの疎水性磁性酸化鉄粒子粉末であって、スチレン/n−ブチルアクリレート中で疎水性磁性酸化鉄粒子粉末を分散させた塗膜の光沢度が60%以上であり、Pの含有量が0.05wt%以下であることから、樹脂中での分散性が良好であるという事実である。
<Action>
In the present invention, the most important point is that the hydrophobic magnetic iron oxide particle powder according to the present invention has a silane coupling agent of 5.0 × 10 −3 to 1.5 × 10 −2 mmol on the surface of the magnetic iron oxide particle. / M 2 (5.0E-3 to 1.5E-2 mmol / m 2 ) coated hydrophobic magnetic iron oxide particle powder having an average particle diameter of 0.05 to 0.5 μm, and comprising styrene / n-butyl acrylate Among them, the gloss of the coating film in which the hydrophobic magnetic iron oxide particles are dispersed is 60% or more, and the P content is 0.05 wt% or less, so that the dispersibility in the resin is good. That is the fact.

これらの事実について本発明者は次のように考えている。   The present inventor considers these facts as follows.

本発明のシランカップリング剤で被覆された疎水性磁性酸化鉄粒子粉末は、磁性酸化鉄粒子の粒子表面に水性媒体中で疎水化処理した乾燥物を120℃以下かつ周速10m/sec以上で回転させながら熱処理することにより、疎水化剤であるシランカップリング剤の固着率が高く、Pの含有量が0.05wt%以下であることから水蒸気吸着量が低いので、スチレン/n−ブチルアクリレート中での分散性が良好になると考えている。   The hydrophobic magnetic iron oxide particle powder coated with the silane coupling agent of the present invention is obtained by subjecting the surface of the magnetic iron oxide particles to a hydrophobized treatment in an aqueous medium at 120 ° C. or less and a peripheral speed of 10 m / sec or more. By heat-treating while rotating, the adhesion rate of the silane coupling agent, which is a hydrophobizing agent, is high, and since the P content is 0.05 wt% or less, the water vapor adsorption amount is low, so styrene / n-butyl acrylate It is considered that the dispersibility in the inside is improved.

次に、実施例並びに比較例により、本発明を説明する。   Next, the present invention will be described with reference to examples and comparative examples.

<平均粒子径>
磁性酸化鉄粒子粉末の平均粒子径は、透過型電子顕微鏡により撮影した写真(倍率1万倍)を4倍に拡大して、300個についてマーチン径により求めた値である。
<Average particle size>
The average particle diameter of the magnetic iron oxide particle powder is a value obtained by magnifying a photograph taken with a transmission electron microscope (magnification 10,000 times) four times by the Martin diameter for 300 particles.

<BET比表面積>
磁性酸化鉄粒子粉末のBET比表面積は、Mono Sorb MS−II(湯浅アイオニックス(株)製)を用いBET法により求めた。
<BET specific surface area>
The BET specific surface area of the magnetic iron oxide particle powder was determined by the BET method using Mono Sorb MS-II (manufactured by Yuasa Ionics Co., Ltd.).

<Pの含有量>
磁性酸化鉄粒子粉末のPの含有量は、蛍光X線分析装置 3063M(理学電機工業(株)製)を使用して測定した。
<P content>
The content of P in the magnetic iron oxide particle powder was measured using a fluorescent X-ray analyzer 3063M (manufactured by Rigaku Corporation).

<付着量・固着量・固着率>
疎水性磁性酸化鉄粒子粉末付着量、固着量、固着率評価は、炭素分析装置 EMIA−80((株)堀場製作所製)を用いてカーボン量を測定することにより行った。
まず、疎水性磁性酸化鉄粒子粉末のカーボン量を測定し付着量とした。次に、100mlのビーカーに疎水性磁性酸化鉄粒子粉末10gとトルエン100gを入れ、超音波洗浄器 BRANSONIC 5510(ヤマト科学(株)製)を用いて超音波を30分間照射した。その後、ろ過、乾燥した粉末のカーボン量を測定し固着量とした。固着率は次式で求めた。
固着率(%)=固着量/付着量×100
<Adhesion amount / Adhesion amount / Adhesion rate>
The amount of adhering hydrophobic magnetic iron oxide particles, the amount of sticking, and the sticking rate were evaluated by measuring the amount of carbon using a carbon analyzer EMIA-80 (manufactured by Horiba, Ltd.).
First, the amount of carbon in the hydrophobic magnetic iron oxide particles was measured and used as the amount of adhesion. Next, 10 g of hydrophobic magnetic iron oxide particles and 100 g of toluene were placed in a 100 ml beaker and irradiated with ultrasonic waves for 30 minutes using an ultrasonic cleaner BRANSONIC 5510 (manufactured by Yamato Scientific Co., Ltd.). Thereafter, the carbon content of the filtered and dried powder was measured and used as the fixed amount. The fixing rate was obtained by the following formula.
Adhesion rate (%) = Adhesion amount / Adhesion amount × 100

<被覆量>
シランカップリング剤の被覆量は次式で求めた。
被覆量(mmol/m)=(カーボン量/100/M×1000(mmol/g))/核粒子の比表面積(m/g)
M:シランカップリング剤のR基に含まれる炭素の総分子量
<Coating amount>
The coating amount of the silane coupling agent was determined by the following formula.
Covering amount (mmol / m 2 ) = (carbon amount / 100 / M × 1000 (mmol / g)) / specific surface area of core particles (m 2 / g)
M: total molecular weight of carbon contained in R 1 group of the silane coupling agent

<磁気特性>
磁性酸化鉄粒子粉末の磁気特性は、振動試料型磁力計 VSM−3S−15(東英工業(株)製)を用いて外部磁場796kA/mで測定した値で示した。
<Magnetic properties>
The magnetic properties of the magnetic iron oxide particles were shown by values measured with an external magnetic field of 796 kA / m using a vibrating sample magnetometer VSM-3S-15 (manufactured by Toei Industry Co., Ltd.).

<水蒸気吸着量(V90)>
水蒸気吸着装置 BELSORP aqua3(日本ベル(株)製)を用いて、25℃、相対湿度90%における疎水性磁性酸化鉄粒子粉末の単位面積当たりの水蒸気吸着量(V90)mg/mで示した。
<Water vapor adsorption amount (V90)>
Using a water vapor adsorption device BELSORP aqua3 (manufactured by Nippon Bell Co., Ltd.), the water vapor adsorption amount (V90) mg / m 2 per unit area of the hydrophobic magnetic iron oxide particle powder at 25 ° C. and relative humidity 90% is shown. .

<スチレン/n−ブチルアクリレート分散塗膜の光沢度>
磁性酸化鉄粒子粉末20g、スチレン16g、n−ブチルアクリレート4gを100mlのビーカーに入れ、ディスパーの回転数を1000rpmで15分間分散させたペーストをPETフィルム上に置き、1milのフィルムアプリケーターで塗布し、乾燥した塗布膜面の光沢度(60°)をデジタル変角光沢計 UGV−5D(スガ試験機(株)製)で測定した。
<Glossiness of styrene / n-butyl acrylate dispersed coating film>
Put a magnetic iron oxide particle powder 20 g, styrene 16 g, n-butyl acrylate 4 g in a 100 ml beaker, place a disperse rotating speed of 1000 rpm for 15 minutes on a PET film, apply with a 1 mil film applicator, The gloss (60 °) of the dried coating film surface was measured with a digital variable gloss meter UGV-5D (manufactured by Suga Test Instruments Co., Ltd.).

<磁性トナー中での分散性>
磁性トナー中の疎水性磁性酸化鉄粒子粉末の分散性は、磁性トナーをウルトラミクロトーム MT2C(RESEACH MANFACTURING製)を用いてスライスし、その断面を透過型電子顕微鏡(倍率10000倍)で観察し、視野内の磁性酸化鉄粒子粉末の凝集状態を観察し、4段階で評価した。凝集物が少ないほど分散性が良いことを示す。
凝集物;0〜1個 分散度◎
2〜5個 ○
5〜10個 △
11個以上 ×
<Dispersibility in magnetic toner>
The dispersibility of the hydrophobic magnetic iron oxide particles in the magnetic toner was determined by slicing the magnetic toner with an ultramicrotome MT2C (manufactured by RESEACH MANFACTURERING) and observing the cross section with a transmission electron microscope (magnification 10,000 times). The aggregation state of the magnetic iron oxide particle powder was observed and evaluated in four stages. It shows that dispersibility is so good that there are few aggregates.
Aggregate: 0 to 1 Dispersion degree ◎
2-5 pieces ○
5-10 pieces △
11 or more ×

<磁性酸化鉄粒子の製造>
(核粒子A)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)4.806l(当量比=0.95)および水17.396lに、90℃にて空気を吹き込んで磁性酸化鉄粒子の芯粒子を生成した。尚、この時のFe3+/Fe2+を0.70(mol%)に調整した。芯粒子生成中の反応溶液のpH値は6.7であった。
<Manufacture of magnetic iron oxide particles>
(Nuclear particle A)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity; 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 4.806 l (equivalent ratio = 0.95) and water 17. Air was blown into 396 l at 90 ° C. to produce core particles of magnetic iron oxide particles. At this time, Fe 3+ / Fe 2+ was adjusted to 0.70 (mol%). The pH value of the reaction solution during the production of the core particles was 6.7.

次いで、反応溶液のpH値が10.0になるように前記NaOHを添加し、残った硫酸第一鉄の微細な磁性酸化鉄粒子からなる表面層の生成反応を行った。   Next, the NaOH was added so that the pH value of the reaction solution was 10.0, and a reaction for forming a surface layer composed of the fine magnetic iron oxide particles of the remaining ferrous sulfate was performed.

芯粒子の表面に微細な磁性酸化鉄粒子からなる表面層の生成反応が終了後、水洗を行って、磁性酸化鉄粒子スラリーを得た。少量抜き取って乾燥した磁性酸化鉄粒子は平均粒子径が0.19μm、BET比表面積が9.0m/gであった。残った磁性酸化鉄粒子スラリー中の固形分は2.5kgであった。 After completion of the formation reaction of the surface layer composed of fine magnetic iron oxide particles on the surface of the core particles, the core particles were washed with water to obtain a magnetic iron oxide particle slurry. A small amount of the magnetic iron oxide particles extracted and dried had an average particle size of 0.19 μm and a BET specific surface area of 9.0 m 2 / g. The solid content in the remaining magnetic iron oxide particle slurry was 2.5 kg.

(核粒子B)
Fe3+/Fe2+を0.90(mol%)、ヘキサメタリン酸ソーダをP/Fe2+で0.05(mol%)仕込み時の水に入れた以外は核粒子Aと同様にして核粒子Bを得た。
(Nuclear particle B)
Core particle B was prepared in the same manner as core particle A, except that Fe 3+ / Fe 2+ was 0.90 (mol%) and sodium hexametaphosphate was added as P / Fe 2+ in 0.05 (mol%) water. Obtained.

(核粒子C)
Fe3+/Fe2+を0.50(mol%)に変えた以外は核粒子Aと同様にして核粒子Cを得た。
(Nuclear particle C)
Core particle C was obtained in the same manner as core particle A, except that Fe 3+ / Fe 2+ was changed to 0.50 (mol%).

(核粒子D)
硫酸第一鉄溶液(Fe2+の濃度;1.723mol/l、比重;1.248g/cc)31.942kg、NaOH(18.5N)4.806l(当量比=0.95)および水17.396lに、90℃にて空気を吹き込んで30分間熟成した。その後、NaOHを加えて反応溶液のpH値は8.9にして磁性酸化鉄粒子の芯粒子を生成した。その後は核粒子Aと同様にして核粒子Dを得た。
(Nuclear particle D)
Ferrous sulfate solution (Fe 2+ concentration; 1.723 mol / l, specific gravity; 1.248 g / cc) 31.942 kg, NaOH (18.5 N) 4.806 l (equivalent ratio = 0.95) and water 17. Air was blown into 396 l at 90 ° C. and aged for 30 minutes. Thereafter, NaOH was added to adjust the pH value of the reaction solution to 8.9 to produce core particles of magnetic iron oxide particles. Thereafter, the core particle D was obtained in the same manner as the core particle A.

(核粒子E)
ヘキサメタリン酸ソーダをP/Fe2+で0.25(mol%)仕込み時の水に添加した以外は核粒子Aと同様にして核粒子Eを得た。
(Nuclear particle E)
Core particle E was obtained in the same manner as core particle A, except that sodium hexametaphosphate was added to water at the time of charging 0.25 (mol%) with P / Fe 2+ .

得られた核となる磁性酸化鉄粒子の諸特性を表1に示す。   Table 1 shows various characteristics of the obtained magnetic iron oxide particles serving as nuclei.

Figure 0005422904
Figure 0005422904

実施例1
<疎水性磁性酸化鉄粒子粉末の製造>
得られた核粒子スラリーの固形分濃度を10wt%にし、ホモミキサーの回転数を5000rpmにした。pH6、40℃に調整し十分に分散させて、n−ヘキシルトリメトキシシランを加え、加水分解を行いながら疎水化処理を行った。生成した疎水性磁性酸化鉄粒子をろ過・水洗し、80℃で乾燥した。その後、乾燥物をヘンシェルミキサーに投入し、100℃に加温し、周速15m/secで1時間攪拌しながら熱処理を行い、疎水性磁性酸化鉄粒子粉末を得た。
Example 1
<Production of hydrophobic magnetic iron oxide particle powder>
The solid content concentration of the obtained core particle slurry was 10 wt%, and the rotation speed of the homomixer was 5000 rpm. The mixture was adjusted to pH 6 and 40 ° C. and sufficiently dispersed, and n-hexyltrimethoxysilane was added to carry out a hydrophobization treatment while performing hydrolysis. The produced hydrophobic magnetic iron oxide particles were filtered, washed with water, and dried at 80 ° C. Thereafter, the dried product was put into a Henschel mixer, heated to 100 ° C., and heat-treated while stirring at a peripheral speed of 15 m / sec for 1 hour to obtain hydrophobic magnetic iron oxide particles.

実施例2〜8、比較例1〜7
核粒子の種類、シランカップリング剤の種類及び量、熱処理条件を種々変化させた以外は実施例1と同様にして疎水性磁性酸化鉄粒子粉末を得た。
Examples 2-8, Comparative Examples 1-7
Hydrophobic magnetic iron oxide particles were obtained in the same manner as in Example 1 except that the types of core particles, the types and amounts of silane coupling agents, and the heat treatment conditions were variously changed.

得られた疎水性磁性酸化鉄粒子粉末の諸特性を表2、表3に示す。   Tables 2 and 3 show properties of the obtained hydrophobic magnetic iron oxide particles.

なお、比較例3は乾燥後、熱処理をせずにピンミルで粉砕したものである。比較例5は、120℃に加温した回転炉にn−ヘキシルトリメトキシシランを徐添加し、気化した疎水化剤と磁性酸化鉄粒子とを接触・反応させた後、大型るつぼに入れて160℃で60分間熱処理を行った後、ピンミルで粉砕したものである。   In addition, the comparative example 3 grind | pulverizes by the pin mill, without heat-processing after drying. In Comparative Example 5, n-hexyltrimethoxysilane was gradually added to a rotary furnace heated to 120 ° C., and the vaporized hydrophobizing agent and magnetic iron oxide particles were contacted and reacted, then placed in a large crucible. After heat treatment at 60 ° C. for 60 minutes, the product is pulverized with a pin mill.

Figure 0005422904
Figure 0005422904

Figure 0005422904
Figure 0005422904

使用例1
<磁性トナーの製造>
イオン交換水500重量部に懸濁安定剤としてコロイダルシリカ S−150(伯東化学(株)製)5重量部を加え70℃に加温して水系媒体を得た。
スチレン: 80重量部
n−ブチルアクリレート: 20重量部
ジビニルベンゼン: 0.3重量部
疎水性磁性酸化鉄粒子粉末 82重量部
Example 1
<Manufacture of magnetic toner>
5 parts by weight of colloidal silica S-150 (manufactured by Hakuto Chemical Co., Ltd.) as a suspension stabilizer was added to 500 parts by weight of ion-exchanged water and heated to 70 ° C. to obtain an aqueous medium.
Styrene: 80 parts by weight n-butyl acrylate: 20 parts by weight Divinylbenzene: 0.3 part by weight Hydrophobic magnetic iron oxide particle powder 82 parts by weight

上記混合物をペイントコンデキショナーを用いて分散させた。これに重合開始剤2,2‘−アゾビス(2,4ジメチルバレロニトリル)1.5重量部を溶解させた。
前記水系媒体中に上記重合性単量体を投入し、70℃、N雰囲気下においてホモミキサーにて8000rpmで10分間攪拌し、液滴形成を行った。その後パドルで攪拌しながら70℃で8時間反応させた。反応終了後、NaOHでpH12にして懸濁安定剤を除去し、ろ過、水洗、乾燥して磁性トナー1を得た。重量平均粒径は7.5μmであった。
The mixture was dispersed using a paint conditioner. Into this, 1.5 parts by weight of a polymerization initiator 2,2′-azobis (2,4 dimethylvaleronitrile) was dissolved.
The polymerizable monomer was put into the aqueous medium, and stirred at 8000 rpm for 10 minutes with a homomixer in an N 2 atmosphere at 70 ° C. to form droplets. Thereafter, the mixture was reacted at 70 ° C. for 8 hours while stirring with a paddle. After completion of the reaction, the suspension stabilizer was removed by adjusting the pH to 12 with NaOH, followed by filtration, washing with water, and drying to obtain magnetic toner 1. The weight average particle diameter was 7.5 μm.

使用例2〜12
疎水性磁性酸化鉄粒子粉末の種類を種々変化させた以外は使用例1と同様にして磁性トナーを得た。
Examples of use 2-12
A magnetic toner was obtained in the same manner as in Use Example 1 except that the kind of the hydrophobic magnetic iron oxide particle powder was variously changed.

得られた磁性トナーの諸特性を表4に示す。   Table 4 shows various properties of the obtained magnetic toner.

Figure 0005422904
Figure 0005422904

本発明に本発明に係る疎水性磁性酸化鉄粒子粉末は、磁性酸化鉄粒子表面にシランカップリング剤が5.0×10−3〜1.5×10−2(5.0E−3〜1.5E−2)mmol/m被覆された平均粒子径0.05〜0.5μmの疎水性磁性酸化鉄粒子粉末であって、スチレン/n−ブチルアクリレート中で疎水性磁性酸化鉄粒子粉末を分散させた塗膜の光沢度が60%以上であり、Pの含有量が0.05wt%以下であることから、樹脂中での分散性が良好であるので、磁性トナー用酸化鉄粉末として好適である。
The hydrophobic magnetic iron oxide particle powder according to the present invention has a silane coupling agent of 5.0 × 10 −3 to 1.5 × 10 −2 (5.0E- 3 to 1) on the surface of the magnetic iron oxide particle. .5E-2) Hydrophobic magnetic iron oxide particle powder having an average particle diameter of 0.05 to 0.5 μm coated with mmol / m 2, wherein the hydrophobic magnetic iron oxide particle powder is styrene / n-butyl acrylate. Glossiness of dispersed film is 60% or more, and P content is 0.05 wt% or less. Therefore, dispersibility in resin is good, so it is suitable as iron oxide powder for magnetic toner. It is.

Claims (4)

磁性酸化鉄粒子表面にシランカップリング剤が5.0×10−3〜1.5×10−2mmol/m被覆された平均粒子径0.05〜0.5μmの疎水性磁性酸化鉄粒子粉末であって、スチレン/n−ブチルアクリレート中で前記疎水性磁性酸化鉄粒子粉末を分散させた塗膜の光沢度が60%以上であり、Pの含有量が0.05wt%以下である磁性トナー用疎水性磁性酸化鉄粒子粉末。 Hydrophobic magnetic iron oxide particles having an average particle diameter of 0.05 to 0.5 μm, wherein the surface of the magnetic iron oxide particles is coated with a silane coupling agent of 5.0 × 10 −3 to 1.5 × 10 −2 mmol / m 2 Magnetic properties of the coating film in which the hydrophobic magnetic iron oxide particle powder is dispersed in styrene / n-butyl acrylate having a glossiness of 60% or more and a P content of 0.05 wt% or less. Hydrophobic magnetic iron oxide particle powder for toner. シランカップリング剤の固着率が80%以上である請求項1記載の疎水性磁性酸化鉄粒子粉末。 The hydrophobic magnetic iron oxide particle powder according to claim 1, wherein the adhesion rate of the silane coupling agent is 80% or more. 温度25℃、相対湿度90%の雰囲気における水蒸気吸着量(V90)が0.4mg/m以下である請求項1記載の疎水性磁性酸化鉄粒子粉末。 The hydrophobic magnetic iron oxide particle powder according to claim 1, wherein a water vapor adsorption amount (V90) in an atmosphere having a temperature of 25 ° C and a relative humidity of 90% is 0.4 mg / m 2 or less. 核となる磁性酸化鉄粒子を水性媒体中で疎水化処理した後、乾燥させ、得られた乾燥物を80〜120℃の温度範囲、かつ周速10m/sec以上で回転させながら熱処理することを特徴とする請求項1記載の疎水性磁性酸化鉄粒子粉末の製造方法。 The core magnetic iron oxide particles are hydrophobized in an aqueous medium and then dried, and the obtained dried product is heat-treated while rotating at a temperature range of 80 to 120 ° C. and a peripheral speed of 10 m / sec or more. The method for producing hydrophobic magnetic iron oxide particles according to claim 1.
JP2008100802A 2007-04-09 2008-04-08 Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same Active JP5422904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100802A JP5422904B2 (en) 2007-04-09 2008-04-08 Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007102040 2007-04-09
JP2007102040 2007-04-09
JP2008100802A JP5422904B2 (en) 2007-04-09 2008-04-08 Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008282002A JP2008282002A (en) 2008-11-20
JP5422904B2 true JP5422904B2 (en) 2014-02-19

Family

ID=40142820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100802A Active JP5422904B2 (en) 2007-04-09 2008-04-08 Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same

Country Status (1)

Country Link
JP (1) JP5422904B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330813B2 (en) * 2008-11-21 2013-10-30 三井金属鉱業株式会社 Hydrophobic magnetite particle powder
DE102008044384A1 (en) * 2008-12-05 2010-06-10 Evonik Degussa Gmbh Iron-silicon oxide particles having a core-shell structure
JP5451161B2 (en) * 2009-04-15 2014-03-26 キヤノン株式会社 Method for producing magnetic toner
JP5473725B2 (en) * 2009-04-15 2014-04-16 キヤノン株式会社 Magnetic toner
JP5715329B2 (en) * 2009-07-21 2015-05-07 三井金属鉱業株式会社 Coated magnetite particles
JP5773581B2 (en) * 2010-05-28 2015-09-02 三井金属鉱業株式会社 Method for producing coated magnetite particles
JP5587065B2 (en) * 2010-07-06 2014-09-10 キヤノン株式会社 Magnetic toner
JP6061704B2 (en) * 2013-01-31 2017-01-18 三井金属鉱業株式会社 Coated magnetite particles
JP6086753B2 (en) * 2013-02-21 2017-03-01 三井金属鉱業株式会社 Coated magnetite particles and method for producing the same
JP6108978B2 (en) * 2013-06-26 2017-04-05 キヤノン株式会社 Method for producing magnetic toner
JP6521239B2 (en) * 2015-04-28 2019-05-29 戸田工業株式会社 Hydrophobic magnetic iron oxide particle powder and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229843B2 (en) * 1999-05-18 2013-07-03 戸田工業株式会社 Hydrophobized metal compound particle powder and method for producing the same
JP4398209B2 (en) * 2003-09-12 2010-01-13 戸田工業株式会社 Composite magnetic iron oxide particle powder for magnetic toner
JP4749733B2 (en) * 2004-02-18 2011-08-17 チタン工業株式会社 Hydrophobic magnetic iron oxide particles

Also Published As

Publication number Publication date
JP2008282002A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP5422904B2 (en) Hydrophobic magnetic iron oxide particle powder for magnetic toner and method for producing the same
JP4749733B2 (en) Hydrophobic magnetic iron oxide particles
KR20010020749A (en) Black magnetic iron oxide particles for magnetic toner and process for producing the same
JP3551204B2 (en) Black magnetic iron oxide particle powder
JP4735810B2 (en) Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder
JP5403213B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP3664216B2 (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the black magnetic particle powder
JP3460779B2 (en) Magnetic iron oxide particle powder for magnetic toner having a spherical shape and magnetic toner using the magnetic iron oxide particle powder
JP2010100467A (en) Surface-treated iron titanium compound oxide particle powder, black coating material using the same and rubber-resin composition
JP3544317B2 (en) Magnetite particles and method for producing the same
JP5826453B2 (en) Black magnetic iron oxide particle powder
EP1076267A1 (en) Black magnetic toner and black magnetic composite particles therefor
JP5400321B2 (en) Method for producing composite coated magnetite particles
JP5403214B2 (en) Surface-treated magnetic iron oxide particle powder, and black paint and rubber / resin composition using the surface-treated magnetic iron oxide particle powder
JP2010120833A (en) Hydrophobic magnetite particle powder
JP3578191B2 (en) Magnetic iron oxide particles, magnetic iron oxide particle powder for magnetic toner mainly comprising the particles, and magnetic toner using the magnetic iron oxide particle powder
JP4473683B2 (en) Magnetite particles, manufacturing method thereof, electrophotographic toner using the same, and image forming method
JP4183497B2 (en) Black complex oxide particles and method for producing the same
JP6521239B2 (en) Hydrophobic magnetic iron oxide particle powder and method for producing the same
JP5400440B2 (en) Magnetite particles
JP2001117283A (en) Black nonmagnetic particle powder for high resistance black toner and high resistance black toner using that black nonmagnetic particle powder
JP6061704B2 (en) Coated magnetite particles
JP4328928B2 (en) Black composite magnetic particle powder for black magnetic toner and black magnetic toner using the black composite magnetic particle powder
JP5310994B2 (en) Magnetic iron oxide particle powder for magnetic toner and method for producing the same
JPH11338191A (en) Black complex non-magnetic particulate powders and black toner using the particulate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5422904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250