JP2016206648A - レーザー走査顕微鏡装置 - Google Patents

レーザー走査顕微鏡装置 Download PDF

Info

Publication number
JP2016206648A
JP2016206648A JP2016020932A JP2016020932A JP2016206648A JP 2016206648 A JP2016206648 A JP 2016206648A JP 2016020932 A JP2016020932 A JP 2016020932A JP 2016020932 A JP2016020932 A JP 2016020932A JP 2016206648 A JP2016206648 A JP 2016206648A
Authority
JP
Japan
Prior art keywords
light
scanning
irradiation position
laser
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020932A
Other languages
English (en)
Inventor
宏司 眞柄
Koji Magara
宏司 眞柄
大塚 洋一
Yoichi Otsuka
洋一 大塚
正文 教學
Masabumi Kyogaku
正文 教學
橋本 浩行
Hiroyuki Hashimoto
浩行 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP16165808.3A priority Critical patent/EP3086156A1/en
Priority to US15/132,053 priority patent/US10690897B2/en
Publication of JP2016206648A publication Critical patent/JP2016206648A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】 レーザー走査顕微鏡装置において、画像データを取得するために要する時間を、合焦動作を逐一行って広域の画像データを取得する場合と比較して短縮する。【解決手段】 レーザー走査顕微鏡装置100は、レーザー光を集光して試料6に照射する照射部1と、照射位置から発せられる光を検出する光検出部3と、レーザー光をX方向およびY方向に走査するXY走査手段と、Z方向に走査するZ走査手段と、を有し、照射位置から試料6に関する情報を取得する。レーザー顕微鏡装置100は、照射位置をXY走査手段によってX方向およびY方向に走査してXY二次元画像データを取得する際に、Z走査手段によって照射位置をZ方向にも走査して光を検出することで、Z座標の異なる照射位置から発せられた前記光の情報がそれぞれ格納された少なくとも2つの画素を含むXY二次元画像データを取得する。【選択図】 図1

Description

本発明は、レーザー走査顕微鏡装置に関する。
顕微鏡を用いて試料を観察する場合、1度に観察できる視野の広さは、対物レンズの視野の広さによって制限される。そのため、対物レンズの視野の広さよりも大きな試料を観察する場合には、試料の全体を1度に観察することはできない。
一方、病理診断においては観察対象の見落としを防ぐために、試料全体を観察したいという要望がある。そこで病理診断では、高倍率の対物レンズを用いて特定の注目領域について詳細に観察を行う前に、低倍率の対物レンズを用いて試料の比較的広い領域についての観察を行って、注目領域を決定することが行われている。
顕微鏡の1つの視野よりも広い領域の画像を取得する方法として、顕微鏡の光軸方向(Z方向)に直行する方向(X方向、Y方向)に視野を移動させて複数の画像を取得し、取得した複数の画像を貼り合わせて、一つの大きな画像を得る方法が知られている。しかし、試料にうねりがある場合など、試料の存在するZ方向における位置(Z座標)が視野ごとに異なる場合があり、視野をX方向、Y方向に移動すると顕微鏡の合焦面と試料とがずれてしまうことが考えられる。
そこで特許文献1には、視野をX方向、Y方向に移動する度に合焦動作を行い、全体にピントの合った広域画像を取得する顕微鏡システムが記載されている。
特開平9−281405号公報
特許文献1では、合焦動作により焦点位置を試料に合わせた上で視野内の画像を取得する一連の動作を、視野を移動する度に繰り返して広域の画像を取得する。そのため、広域の画像を取得するために時間を要するという課題があった。
そこで本発明は、上述の課題に鑑み、レーザー走査顕微鏡装置において、画像データを取得するために要する時間を、合焦動作を行ってから視野内の画像を取得する一連の動作を視野の移動の度に繰り返して広域の画像データを取得する場合と比較して短縮することを目的とする。
本発明の一側面としてのレーザー走査顕微鏡装置は、レーザー光を対物レンズによって集光して試料に照射する照射部と、集光して照射される前記レーザー光の前記照射位置から発せられる光を検出する光検出部と、前記照射部によって前記試料に照射する前記レーザー光を、前記対物レンズの光軸方向に垂直なX方向ならびに前記光軸方向および前記X方向に垂直なY方向に走査するXY走査手段と、を有するレーザー走査顕微鏡装置であって、前記照射部によって前記試料に照射する前記レーザー光を、前記対物レンズの光軸方向と平行なZ方向に走査するZ走査手段を有し、前記XY走査手段によって前記照射位置を前記X方向および前記Y方向に走査しつつ前記光を検出して、検出した前記光の情報が前記照射位置のX座標およびY座標に対応する画素ごとに格納されたXY二次元画像データを取得する際に、前記Z走査手段によって前記照射位置をZ方向にも走査しつつ前記光を検出することで、Z座標の異なる照射位置から発せられた前記光の情報がそれぞれ格納された少なくとも2つの画素を含むXY二次元画像データを取得することを特徴とする。
本発明によれば、レーザー走査顕微鏡装置において、画像を取得するために要する時間を、合焦動作を行ってから視野内の画像を取得する一連の動作を視野の移動の度に繰り返して広域の画像データを取得する場合と比較して短縮することができる。
第1の実施形態に係るレーザー走査顕微鏡装置の構成を模式的に示す図である。 第1の実施形態に係るレーザー走査顕微鏡装置の第2の計測モードにおける動作を示すフローチャートである。 第1の実施形態に係るスポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。 第2の実施形態に係るスポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。 (a)第1の実施形態に係る計測点の位置の変化を模式的に示した図と、(b)第2の実施形態に係る計測点の位置の変化を模式的に示した図である。 第3の実施形態に係るスポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。 第4の実施形態に係るレーザー走査顕微鏡装置の第2の計測モードにおける動作を示すフローチャートである。 第4の実施形態に係るスポットの照射位置の軌跡を、X方向から見た図である。 第5の実施形態に係るレーザー走査顕微鏡装置の構成を模式的に示す図である。 第6の実施形態に係るレーザー走査顕微鏡装置の構成を模式的に示す図である。
以下、本発明のレーザー走査顕微鏡装置に係るいくつかの実施形態について説明する。なお、これらの実施形態は本発明における最良の実施形態の一例ではあるものの、本発明はこれらの実施形態にて説明する各種構成、数値のみに限定されるものではない。これらの構成、数値は適宜選択することができるものである。
(第1の実施形態)
(装置構成)
まず、第1の実施形態に係るレーザー走査顕微鏡装置100(以下、「装置100」と称する)の構成について、図1を用いて説明する。図1は、装置100の構成を模式的に示す図である。
装置100は、レーザー光を試料6の内部または試料6の表面の少なくとも一部にスポットとして照射し、レーザー光の照射位置から発せられる蛍光や非線形光学現象によって発生する光(以下、「光L」と称する)などを検出する。そして、レーザー光が試料6の照射位置Sを二次元的に走査して光Lの検出を行う。装置100はこれにより光Lの二次元分布情報を取得し、試料6の二次元画像データを取得する。なお光Lの検出の際には、照射位置Sから発せられる光である光Lを直接検出してもよいし、試料6に照射したレーザー光の反射光や透過光、散乱光などを検出し、その強度変化から光Lを検出してもよい。
装置100は、レーザー光を試料6にスポットとして集光照射し、照射位置Sを試料6の内部または試料6の表面で走査するレーザー走査顕微鏡装置であれば、その種類は特に限定はされない。具体的には、非線形光学顕微鏡装置や共焦点レーザー顕微鏡装置などが挙げられる。非線形光学顕微鏡装置は非線形光学効果を利用した顕微鏡装置であり、非線形光学効果としては、多光子励起や多光子吸収、誘導ラマン散乱(SRS:Stimulated Raman Scattering)、コヒーレントアンチストークスラマン散乱(CARS:Coherent Anti Stokes Raman Scattering)、コヒーレントストークスラマン散乱(CSRS:Coherent Stokes Raman Scattering)、第二高調波発生(SHG:Second Harmonic Generation)などがある。
図1に示すように、装置100は、照射部1と、試料ステージ2と、光検出部3と、制御部4と、データ取込部5と、および、データ処理部8と、を有する。
照射部1は、光源11と、光スキャナ12と、および、第1の対物レンズ13と、を有する。照射部1は、光源11から出射されたレーザー光を第1の対物レンズ13により集光し、試料6の内部または試料6の表面にスポットとして照射する部分である。
光源11は、レーザー光を発する光源である。光源11の発するレーザー光の種類は、特に限定はされず、その波長帯域、出力、パルス光/CW光の区分等は任意に選択することができる。なお、本実施形態では1つの光源のみを用いた装置100を説明するが、複数の光源を有する構成としてもよい。装置100は例えば、第1のレーザーと第2のレーザーとを同時に用いるSRS顕微鏡装置の構成としてもよい。あるいは、装置100は光源11として、試料中の複数の蛍光色素の励起波長にそれぞれ対応する複数のレーザーを有するレーザー走査蛍光顕微鏡装置であってもよい。また、装置100は、光源11として波長可変光源を有し、操作者が必要に応じて波長を選択し、試料中の蛍光色素を選択的に励起する蛍光顕微鏡装置であってもよい。なお、光源11が複数の光源を有する場合は、照射部1の複数の光源11からのレーザー光を合波する合波部をさらに有していてもよい。
光スキャナ12は、光源11から出射され、第1の対物レンズ13で集光されて試料6にスポットとして照射されるレーザー光の照射位置を、第1の対物レンズ13の光軸Oに対して垂直な平面方向(以下、「XY方向」と称する)に走査する部分である。すなわち、光スキャナ12は、スポットの照射位置を光軸Oに垂直なX方向に走査するX走査手段である。また、光スキャナ12は、スポットの照射位置を光軸Oに垂直かつX方向に垂直なY方向に走査するY走査手段でもある。すなわち、光スキャナ12はスポットの照射位置をX方向およびY方向に走査するXY走査手段である。
第1の対物レンズ13は、光源11から出射されたレーザー光を集光し、試料6にスポットとして照射する。
試料ステージ2は、試料6を載置する部分である。試料6は、操作者によって試料ステージ2上に載置されることにより、第1の対物レンズ13と第2の対物レンズ31(後述)との間に配置される。また試料ステージ2は、制御部4によって光軸Oに平行な方向(以下、「Z方向」と称する)またはXY方向に移動することができる。これにより、試料ステージ2に載置された試料6の装置100に対する相対位置を移動させることができ、照射部1によって走査されるレーザー光の走査領域を移動させることができる。
光検出部3は、照射部1によってスポットとして照射されるレーザー光の試料6の内部または試料6の表面の照射位置Sから発せられる光を検出する。光検出部3はこれにより、スポットの照射位置から試料6に関する情報を取得することができる。光検出部は、第2の対物レンズ31と、光学フィルタ32と、検出器33と、を有する。
第2の対物レンズ31は、試料6から発せられる蛍光や試料6を透過したレーザー光など、試料6中または試料6上のスポットの照射位置から発せられた光を含む光を集める。第2の対物レンズとして、コンデンサレンズを用いてもよい。
光学フィルタ32は、第2の対物レンズ31によって集められた光のうち、所定の波長の光を遮ることで、必要な波長の光を取り出す部分である。例えば光Lとして蛍光を検出する場合、光学フィルタ32は試料6中の蛍光体を励起する光の波長に該当する光を遮断し、検出すべき蛍光の波長の光のみを透過させる。また、光Lとして誘導ラマン散乱光を検出する場合、光学フィルタ32は試料6に照射する2種類の光のうち、一方の波長の光を遮断し、もう一方の波長の光のみを通過させる。
なお、必要な波長の光の取り出しは、光学フィルタ32の代わりにその他の方法によって行ってもよい。例えば、光学フィルタ32の代わりにダイクロイックミラーや回折格子等の分光器を使用してもよい。
検出器33は、光学フィルタ32を透過した光を検出する部分である。検出器33は光学フィルタ32を通過した光を受光して光電変換し、電気信号を出力する。このとき検出器33は、受光した光の光強度を電圧の信号強度として出力する。検出器33としては、例えば光電子増倍管(フォトマルチプライヤーチューブ、PMT)を使用することができる。検出器33は、フォトダイオードとロックインアンプとを組み合わせた構成であってもよい。
制御部4は、光スキャナ12および試料ステージ2を制御する部分である。制御部4は、試料ステージ制御部41と、光スキャナ制御部42と、を有する。
試料ステージ制御部41は、試料ステージ2がX方向、Y方向、Z方向にそれぞれ移動するように、試料ステージ2を移動させるモータ(不図示)の駆動の制御を行う。
試料ステージ制御部41によって駆動を制御される試料ステージ2の移動は、大きく分けてXY移動とZ移動に区分される。
XY移動は、試料ステージ2のX方向、Y方向への移動である。これにより、照射部1によって走査されるスポットの走査領域(以下、「視野」と称する)が、XY方向に移動する。視野の広さは第1の対物レンズ13および光スキャナ12によって制限されるが、このようにXY移動によって視野をXY方向に移動することによって、1つの視野よりも広い範囲の観察ができる。
なお、本実施形態では光スキャナ12によってスポットのX方向およびY方向の走査を行い、試料ステージ制御部41によって視野のXY移動を行う構成としたが、これに限定はされない。すなわち、試料ステージ2によってスポットのX方向およびY方向の走査を行う構成としてもよい。試料ステージ2によってスポットのX方向およびY方向の走査を行う構成とした場合には、Z走査手段がXY走査手段を兼ねることになる。しかし、光スキャナ12による走査のほうがより高速に行うことが可能であるため、光スキャナ12によってスポットのX方向およびY方向の走査を行う構成が好ましい。
Z移動は、試料ステージ2のZ方向への移動である。これにより、照射部1によって照射されるスポットのZ方向における位置が移動する。スポットのZ方向における位置を移動させることで、視野の試料6における深度を変えて観察を行うことができる。本実施形態に係る装置100は、光スキャナ12によってスポットをX方向およびY方向に走査するのと同様に、試料ステージ制御部41によってスポットをZ方向に走査することができる。すなわち、本実施形態において試料ステージ制御部41および試料ステージ2はZ走査手段である。本実施形態では、試料ステージ制御部41によって試料ステージ2をZ方向に移動させることで、スポットのZ方向における位置を移動させる構成としたが、これに限定はされない。例えば、第1の対物レンズ13をZ方向に移動可能に構成し、第1の対物レンズ13をZ方向に移動させることによって、スポットのZ方向における位置を移動させる構成としてもよい。すなわち、照射部1をZ走査手段としてもよい。例えば、第1の対物レンズ13にピエゾ素子や音叉、モーターおよびギヤを接続するなどにより、第1の対物レンズ13と試料6との相対的な位置関係を変化させることができる。
データ取込部5は、光検出部3から受信した電気信号の信号強度を、光スキャナ12および試料ステージ2の制御量から算出されるスポットの位置のX座標、Y座標に関連付けてXY二次元画像データを取込む部分である。なお、データ取込部5は、上記情報にさらにスポットの位置のZ座標を関連付けたXYZ三次元画像データを取込んでもよい。
なお、装置100は透過型のレーザー走査顕微鏡装置としたが、反射型のレーザー走査顕微鏡装置であってもよい。その場合、一例として、第1の対物レンズ13が、第2の対物レンズ31の役割を兼ねる構成で実現される。
データ処理部8は、データ取込部5から送信されるデータを受信し、受信したデータを処理する部分である。データ処理部8は例えば、異なる視野に対応付けられる画像データを取込み、それらを貼り合わせることで広域画像データを生成する。またデータ処理部8は、多変量解析や機械学習等の手法によってXY二次元画像データ等の各種データのデータ処理を行い、試料6に含まれる成分の可視化を行うことができる。データ処理部8は、各種データを一時的に記憶したり、データ処理結果や計測の際の各種条件等を記憶したりするための記憶部(不図示)を有してもよい。
また、装置100は、画像表示部71と、指示入力部72と、を有していても良い。
画像表示部71は、データ処理部8に接続され、計測結果やデータ処理部8によって生成された画像、計測の際の各種条件等を表示する部分である。画像表示部71としては例えば、フラットパネルディスプレイなどを用いることができる。
指示入力部72は、データ取込部5にデータ処理部8を介して接続され、装置100を使用する操作者によって計測の際の各種条件等が入力される部分である。
(第1の計測モード)
次に、特定のZ座標における1視野のXY二次元画像データを取得する際の装置100の動作について説明する。なお本明細書では、この動作を「第1の計測モード」と称する。
レーザー光は光源11から出射し、光スキャナ12に導入され、第1の対物レンズ13によって集光された際のスポットの位置がXY方向に走査されるように、光スキャナ12によってXY方向に走査される。光スキャナ12を通過したレーザー光は、第1の対物レンズ13により集光され、試料6の内部または試料6の表面にスポットとして照射される。
装置100(光検出部3)は、光Lとして、レーザー光により励起されることで試料6から発せられ、試料6を透過する蛍光を検出する。よって、試料6の内部または試料6の表面のスポットから発せられた蛍光は、第2の対物レンズ31によって集光される。このとき装置100は、試料6から発せられる蛍光だけではなく、試料6を透過するレーザー光(励起光)も一緒に、第2の対物レンズ31によって集光する。なお、本実施形態では光Lとして蛍光を検出する装置100について説明するが、光Lはこれに限定されるものではない。光Lは、多光子励起や多光子吸収、誘導ラマン散乱、コヒーレントアンチストークスラマン散乱、コヒーレントストークスラマン散乱、第二高調波発生などの非線形光学効果によって発生する光であってもよい。
第2の対物レンズ31によって集光された光は、光学フィルタ32を通過する。ここで本実施形態に係る光学フィルタ32は、波長によって透過特性が異なり、光源11から出射されたレーザー光(励起光)の波長の光は遮るように構成されている。蛍光の波長はレーザー光の波長とは異なるため、光学フィルタ32を通過させることでレーザー光(励起光)を遮断し、蛍光のみを透過させることができる。
光学フィルタ32を透過した蛍光は、検出器33に導かれる。検出器33は蛍光を受光し、蛍光の強度に対応した電圧値を有する電気信号を出力する。
検出器33が出力した電気信号は、データ取込部5によってアナログ/デジタル変換(AD変換)される。そして、AD変換されて得られたデジタル信号は、記憶部(不図示)へと伝送される。データ取込部5はこれと同期して、スポットの照射位置の位置情報と、励起光および蛍光の波長情報と、を制御部4から取得する。データ取込部5は、このようにして取得した各種情報をもとに、蛍光強度がXY座標に対応する画素ごとに格納されたXY二次元画像データを生成する。
このように、装置100は、特定のZ座標におけるXY二次元画像データを取得することができる。また、スポットのZ座標をZ走査手段によって移動させてXY二次元画像データを取得することで、Z座標(深度)の異なるXY二次元画像データを複数取得することができる。
しかしながら、視野ごとにZ座標を変えて複数のXY二次元画像データを取得すると、XY二次元画像データの取得に時間がかかる。さらに、取得されるデータ量も膨大となるため、その後の解析に時間がかかる。そのため、視野をXY方向に移動して広域の観察を行う際には、視野ごとに取得するXY二次元画像データの数は少ないほうが好ましい。しかし、視野ごとのXY二次元画像データの数を減らすために、例えば特定のZ座標についてのみXY二次元画像データの取得を行うと、視野によっては試料6の情報が得られない画像データが得られる場合が生じてしまう。この課題は特に、試料6が「うねり」を有する試料であり、XY方向の位置によって試料6の存在するZ座標が異なる場合に顕著である。そこで装置100は、広域の観察を行う際には、後述する「第2の計測モード」で、XY二次元画像データの取得を行う。
(第2の計測モード)
以下、装置100の第2の計測モードにおける動作について、図2および図3を用いて説明する。図2は、装置100の第2の計測モードにおける動作を表すフローチャートである。また、図3(a)および(b)は、装置100の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。
まず操作者は、指示入力部72を操作して、試料ステージ2をZ方向に移動させ、スポットの照射位置をZ方向に走査するためのパラメータを入力する(S201)。このとき操作者はパラメータとして、スポットの照射位置のZ方向の走査範囲、スポットの照射位置の走査速度または走査周波数、を指示入力部72に入力する。
スポットのZ方向の走査範囲は、スポットの照射位置のZ座標の下端から上端までの範囲であり、これは試料ステージ2のZ方向の移動範囲に対応する。スポットのZ方向の走査範囲は、試料6が存在する全てのZ座標を少なくとも含むように設定することが好ましい。
試料6としては例えば生体組織切片などを用いることができ、試料6は試料の厚さが数μm程度の薄い試料を用いることが多い。また試料6は、スライドガラス(不図示)とカバーガラス(不図示)によって挟まれ、水などの液体中に保持された状態で、試料ステージ2に載置されることが多い。そのため試料6は、「うねり」を有することが多く、XY方向の位置によって試料6が存在するZ座標が異なることが多い。
なお試料6は、上述のようにスライドガラス(不図示)およびカバーガラス(不図示)によって挟まれていなくてもよく、単にスライドガラス(不図示)上に載置された状態で、試料ステージ2上に載置されてもよい。この場合も、XY方向の位置によって試料6が存在するZ座標が異なることが多い。
このように試料6が「うねり」を有する場合、XY方向の位置によって異なる試料6の存在するZ座標の幅は、一般に数μmから10μm程度であることが多い。そのため、S201において入力するスポットのZ方向の走査範囲は、この2倍〜3倍程度に設定することが好ましく、例えば試料6の有するうねりが10μm程度の場合は20μm〜30μm程度と設定することが好ましい。これにより、スポットのZ方向の走査範囲を、試料6が存在する全てのZ座標を含むように設定することができる。ただしスポットのZ方向の走査範囲の値はこれに限定はされず、試料6の形態に応じて任意に設定することができる。
本実施形態においては、試料ステージ2をZ方向に移動させることによってスポットのZ方向への走査を行うため、スポットのZ方向の走査速度は、試料ステージ2のZ方向への移動速度に対応する。
次に、装置100は操作者によって入力されたパラメータに基づいて試料ステージ2のZ方向への移動を開始し、スポットの照射位置のZ方向への走査を開始する(S202)。続いて、装置100は光スキャナ12によって、スポットの照射位置のXY走査を開始する(S203)。その後装置100は、データ取込部5によるデータの取込みを開始する(S204)。
このように、装置100は、スポットの照射位置をX方向およびY方向に走査しつつ光Lの検出とデータの取込みを行ってXY二次元画像データを取得する際に、スポットの照射位置をZ方向にも走査しつつ光Lの検出とデータの取込みを行う。なお、本実施形態においてX方向への走査およびY方向への走査は、1つの視野内でのXY走査が完了するまで周期的に繰り返される。また、Z方向への走査についても1つの視野内でのXY走査が完了するまで周期的に繰り返されることが好ましい。Z方向への走査は、試料ステージ2をZ方向に振動させることで行うことが好ましい。
装置100は図3(a)に示すように、スポットの照射位置がXY走査手段によってY方向に走査されている間に、スポットの照射位置をZ走査手段によってZ方向にも走査する。あるいは、図3(b)に示すように、スポットの照射位置がXY走査手段によってX方向に走査されている間に、スポットの照射位置をZ走査手段によってZ方向にも走査する。以下、図3(a)の場合について説明するが、図3(b)の場合についても同様である。
また、本実施形態ではスポットの照射位置をXY方向に走査する際に、X方向の走査を、走査線の一行毎に逆方向に走査する、いわゆる「牛耕式」あるいは「双方向」の走査方法によって走査を行うが、これに限定はされない。例えば、データの取込みを行う際にはX方向の走査は常に同じ方向に行う走査方式をとってもよい。
本実施形態においては、図3(a)に示すように、スポットの照射位置がX方向に走査されている間は、スポットの照射位置のZ方向への走査は行わない。そして、1つの走査線についてX方向への走査およびデータの取込みが完了すると、スポットの照射位置はY方向へと走査される。このとき、装置100はスポットの照射位置をY方向に走査しつつ、スポットの照射位置をZ方向へも走査する。すなわち、光検出部3によりスポットの照射位置における光Lの検出を行った後、スポットの照射位置をXY走査手段によってY方向に走査するとともに、Z走査手段によってスポットの照射位置をZ方向に走査する。なおこのとき、スポットの照射位置をY方向に移動させた後に、スポットの照射位置をZ方向に移動させても良いし、Y方向への移動とZ方向への移動を同時に行い、スポットの照射位置を斜めに移動させてもよい。
そして、スポットの照射位置の移動が完了したら、光検出部3による光Lの検出を行い、データの取込みを行う。これにより、スポットの照射位置のZ座標と、X座標またはY座標とが異なる照射位置において、光Lの情報を取得することができる。装置100は、上述の動作を所定のXY領域についてのデータの取込みが完了するまで繰り返す(S205)ことで、Z座標の異なる照射位置から発せられた光Lの情報がXY平面内の画素ごとに格納された、XY二次元画像データを取得することができる。すなわち、装置100が取得するXY二次元画像データは、Z座標の異なる照射位置から発せられた光Lの情報がそれぞれ格納された少なくとも2つの画素を含む二次元画像データである。換言すると、一画像を構成するXY二次元画像データには、複数のZ座標値がXY平面の画素毎に分散されて格納されている。データの構成例には、異なったZ座標がXY平面内の各画素にランダムに格納された構成や、隣接する画素間でZ座標が規則的に異なる構成が含まれる。
なお、装置100が第2の計測モードによってXY二次元画像データを取得する際の動作は上述の具体例に限定はされない。すなわち、スポットの照射位置をX方向およびY方向に走査することによってXY二次元画像データを取得する際に、X方向およびY方向への走査が完了する前にスポットの照射位置をZ方向にも走査すればよい。このとき、XY平面内における1つの計測点(画素)について複数のZ座標において光Lの検出をそれぞれ行ってもよいが、このときのZ座標の数はZ方向の走査範囲全体のZ座標の数よりも少なく設定される。
装置100はこのようにXY二次元画像データを取得することで、それぞれのZ座標についてXY二次元画像データを全て取得する場合に比べて計測点の数を減らすことができる。なおここで、「計測点」とは、スポットの照射位置のうち、データ取込部5によってデータの取込みを行う点を指す。
例えば、操作者が指示入力部72を介して、スポットの照射位置のZ方向の走査範囲を10個の計測点を含むように設定した場合に、同一のX座標およびY座標を有する計測点からのデータの取り込みについては、それぞれ1つのZ座標についてのみ行うように設定したとする。すると、従来はそれぞれのZ座標ごとについてそれぞれXY二次元画像データを取得していたが、本実施形態に係る装置100の場合は計測点の数を1/10倍に減らすことができる。すなわち、装置100は、XYZの三次元空間に対応する信号を、Z座標に関して間引いて、XY二次元平面に投影することができる。この結果、本実施形態によれば、画像データを取得するために要する時間もおよそ1/10倍程度に短縮することができる。
なおこの場合、スポットの照射位置によっては試料6の内部に位置しない場合もあり、試料6に由来する光Lが取得できない点も生じる。そのような場合、装置100は、隣接する計測点のうち試料6に由来する光Lが取得できた点の信号強度で補完するようにしてもよい。
装置100は以上のようにして1つの視野においてXY二次元画像データの取得を行うことで、試料6が「うねり」を有する場合であっても、試料6の形態を粗く示すXY二次元画像データを高速に取得することができる。
1つの視野からのXY二次元画像データの取得が完了したら(S205でyes)、装置100は、試料ステージ2をX方向またはY方向に移動させる(S207)。これにより、視野をXY方向に移動させる。
装置100は、視野のX方向またはY方向への移動を繰り返しつつ、各視野でのXY二次元画像データの取得を繰り返す。そして、データ取込部5は取得した複数のXY二次元画像データを貼り合わせ、広域のXY二次元画像データを生成する。装置100はこれにより、1つの視野のサイズよりも広い領域のXY二次元画像データを取得することができる。
視野のX方向またはY方向への移動の仕方は特に限定はされない。例えば、まずX方向に順に視野を移動した後、所定の数だけ視野を移動し終えたらY方向に視野を一つ移動し、再びX方向に順に視野を移動していってもよい。すなわち、視野をラスタースキャンによって走査していってもよい。なお、X方向およびY方向の視野の数は、試料6全体が収まるように設定されることが好ましい。例えば、X方向、Y方向それぞれについて10mmずつ、というように、取得される広域のXY二次元画像データの領域のサイズによって規定してもよい。
以上の動作を繰り返し、予め設定した全ての領域についてXY二次元画像データの取得が完了したら(S206でyes)、光スキャナ12によるスポットの照射位置のXY走査を停止する(S208)。その後、試料ステージ2によるスポットの照射位置のZ移動を停止する(S209)。
装置100は以上のようにして1つの視野においてXY二次元画像データの取得を行うことで、試料6が「うねり」を有する場合であっても、試料6の形態を粗く示すXY二次元画像データを高速に取得することができる。特に、視野の数が多い広域のXY二次元画像データを取得する際には、各々の視野での計測時間の短縮の効果が足し合わされるため、本実施形態の効果がより顕著にあらわれる。
装置100は以上のようにX方向またはY方向に視野を移動しながらXY二次元画像データを複数取得し、それらを貼り合わせて広域のXY二次元画像データを生成する。これにより、試料6が「うねり」を有する場合であっても、試料6の形態を粗く示す広域のXY二次元画像データを高速に取得することができる。すなわち、本実施形態に係る装置100は、画像データを取得するために要する時間を短縮することができる。
なお、各々の視野におけるXY二次元画像データが上述のように粗い画像データとなっていたとしても、最終的に得られる広域のXY二次元画像データをもとに全域について試料6の状態や形態を粗く把握する上ではそれほど問題にならない。スポットのサイズは、例えば開口数(NA)が1程度の対物レンズを用いた場合、一般に1μm以下であるため、測定点の間隔は通常1μm以下に設定される。また、スポットのサイズは波長とNAに依存し、NAが小さい場合にはスポットのサイズは大きくなるが、高々10μm程度である。そのため、スポットのサイズの1000倍以上大きな10mm四方程度の広域から取得した画像全体においては、試料6からのデータが格納されていない画素があっても、全体の形態にはそれほど大きな影響を及ぼさない。
以上のように、本実施形態に係る装置100は、広域のXY二次元画像データを取得するために要する時間を短縮することができる。さらに、取得する画像データのデータ量を削減することができるため、画像データを多変量解析などの手法によって解析する際の計算コストや計算時間を短縮することができる。
(第2の実施形態)
次に、第2の実施形態に係る装置200について説明する。装置200の装置構成、および第1の計測モードにおける動作については装置100と同様なので省略し、第2の計測モードにおける動作の相違点について、図4および図5を用いて説明する。図4(a)および図4(b)は、装置200の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。
装置100は、スポットの照射位置がXY走査手段によってX方向またはY方向のいずれか一方に走査されている間に、スポットの照射位置がZ走査手段によってZ方向に走査されるように動作する。しかし装置200では、スポットの照射位置がXY走査手段によってX方向に走査されている間、および、スポットの照射位置がXY走査手段によってY方向に走査されている間、の両方の間に、スポットの照射位置がZ走査手段によってZ方向に走査される。
換言すると、第1の実施形態では、X方向またはY方向へのスポットの照射位置の走査が完了するのを待ってから、Z方向およびY方向またはX方向へのスポットの照射位置の走査を行っていた。しかし本実施形態では、X方向またはY方向へのスポットの照射位置の走査が完了するのを待たずに、Z方向にもスポットの照射位置を走査する。
図4(a)は、装置200の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングの一例を模式的に示している。すなわち、装置200は、スポットの照射位置のX方向への走査を行っている間に、Z方向への走査も行う。そして装置200は、スポットの照射位置のY方向への走査を行っている間に、Z方向への走査も行う。
図5(a)は、装置100において、スポットの照射位置のX方向への走査を行っている間にはZ方向への走査は行わず、Y方向への走査を行っている間にZ方向への走査を行った場合の計測点の位置の変化を模式的に示した図である。なお、図5(a)および図5(b)は、X方向から見た図である。図5(a)では描かれていないが、各計測点(黒丸)においてはスポットの照射位置が紙面奥方向または紙面手前方向、すなわちX方向に走査されている。
一方、図5(b)は、装置200において、スポットの照射位置のX方向およびY方向の両方向への走査を行っている間にZ方向への走査を行った場合の計測点の位置の変化を模式的に示した図である。なお、図5(b)の実線の矢印はスポットの照射位置のX方向への走査の軌跡を表している。
図5(a)の場合も図5(b)の場合も、計測点が試料6の内部に存在する状態と存在しない状態とを繰り返す。しかし、図5(b)の場合(第2の実施形態、装置200)のほうが図5(a)の場合(第1の実施形態、装置100)に比べて、計測点が試料6の内部に存在する状態と存在しない状態とを繰り返す頻度が高い。すなわち、装置200のほうが、装置100よりもスポットの照射位置のZ方向への走査の頻度が高い。これにより、試料6の種類や形態にも依存するが、装置200よりもZ方向の情報がより均一に平均化され、試料6の形態をより密に表すXY二次元画像データを取得することができる。
図4(b)は、装置200の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングの別の例を模式的に示している。すなわち、装置200は、スポットの照射位置のX方向への走査を行っている間に、Y方向への走査を行い、さらに同時にZ方向への走査も行う。この場合は図4(a)の場合よりもさらに、広域のXY二次元画像データを取得するために要する時間を短縮することができる。
(第3の実施形態)
次に、第3の実施形態に係る装置300について説明する。装置300の装置構成、および第1の計測モードにおける動作については装置100(第1の実施形態)と同様なので省略し、第2の計測モードにおける動作の相違点について、図6を用いて説明する。図6は、装置300の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングを模式的に示す図である。
第1の実施形態および第2の実施形態ではスポットの照射位置のZ方向への走査の周波数は、X方向またはY方向への走査の周波数以下となるようにしていた。しかし第3の実施形態では、スポットの照射位置のZ方向への走査の周波数を、X方向またはY方向への走査の周波数よりも大きくなるように設定する。
図6は、装置300の第2の計測モードにおける、スポットの照射位置の経時変化とデータ取込みのタイミングの一例を模式的に示している。ここでは、第1の実施形態と同様に、スポットの照射位置をX方向に走査するとともにZ方向にも走査し、Y方向に走査するときにはZ方向には走査しない場合を示している。第1の実施形態および第2の実施形態と同様に、第3の実施形態によっても、広域のXY二次元画像データを取得するために要する時間を短縮することができる。
またここでは、スポットの照射位置のZ方向への走査の周波数をX方向への走査の周波数の4倍に設定した場合を示している。このようにスポットの照射位置のZ方向への走査の周波数を、X方向またはY方向への走査の周波数よりも大きくなるようにすることで、Z方向への走査の頻度を高めることができる。これにより、計測点が試料6の内部に存在する状態と存在しない状態とを繰り返す頻度を高めることができる。その結果、Z方向の情報がより均一に平均化され、試料6の形態をより密に表すXY二次元画像データを取得することができる。
なおここでは第1の実施形態においてスポットの照射位置のZ方向への走査の周波数をX方向またはY方向への走査の周波数よりも大きくなるように設定した場合について説明したが、第2の実施形態に適用しても同様の効果を得ることができる。
(第4の実施形態)
次に、第4の実施形態に係る装置400について説明する。装置400の装置構成、および第1の計測モードにおける動作については第1の実施形態と同様なので省略し、第2の計測モードにおける動作の相違点について、図7および図8を用いて説明する。図7は、装置400の第2の計測モードにおける動作を表すフローチャートである。また、図8は、本実施形態におけるスポットの照射位置の軌跡を、X方向から見た図である。
装置400は、スポットの照射位置のZ方向への1回分の走査(始点81から終点82)を行った後、Z方向における試料6の存在位置を判定する。装置400はこれに基づいて、スポットの照射位置のZ方向への次の走査を行う際のスポットの始点81または終点82を変更する。これにより、試料6の「うねり」が大きい場合であっても、試料6の「うねり」に追従して計測を行うことができる。以下、このフィードバック制御の一例について、図7のフローチャートを用いて説明する。
図7は、図2のフローチャートの一部(S204)を詳細に示したものである。装置400の動作は、S204以外は図2のフローチャートと同様である。
スポットの照射位置のZ方向への走査(S202)、XY方向への走査(S203)がそれぞれ開始された後、装置400はスポットの照射位置をZ方向に走査しつつデータの取込みを行う(S2041)。スポットの照射位置はZ方向に往復して走査されるが、上述の走査およびデータの取込み動作は、Z方向への走査が1つの走査線80について完了するまで継続される。スポットの照射位置が終点82に到達し、Z方向の1走査が完了したら(S2042でyes)、装置400は走査線80によって取得されたデータに基づいて、Z方向における試料6の位置を判定する(S2043)。そして、装置400はS2043において得られた試料6の位置に基づいて、次の走査線80においてZ方向について試料6の全体をスポットで走査できるように、Z方向の走査の始点81をZ方向に移動する。
例えば、Z方向における試料6の位置を判定する際(S2043)には、所定の閾値を超える値を有する信号が得られた複数の計測点のZ座標をもとに、それらの中心Z座標Zcを算出して、試料6の位置とすることができる。そして図8のように、試料6のZ方向における位置(Zc)と、次のZ方向への走査線の中心のZ座標(始点81と終点82の中心のZ座標)とが一致するように、Z方向の走査の始点81をZ方向に移動する(S2044)。
これにより、試料6の「うねり」が大きい場合であっても、試料6の「うねり」に追従して計測を行うことができる。また本実施形態によれば、第1乃至第3の実施形態に比べて、Z走査の幅を小さく設定することができる。これにより、スポットの照射位置が試料6内または試料6上に位置しない場合を減らすことができ、試料6に由来するデータが得られない計測点を減らすことができる。その結果、試料6の形態をより密に表すXY二次元画像データを取得することができる。
なお、本実施形態ではZcを試料6のZ方向における位置として、次のZ方向への走査線の中心のZ座標がZcと一致するようにZ方向の走査の始点81をZ方向に移動するようにしたが、これに限定はされない。例えば、所定の閾値を超える値を有する信号が得られた複数の計測点のZ座標をもとに試料6のZ方向における存在範囲を取得し、次のZ方向への走査線の中心のZ座標が取得した範囲内に入るように、Z方向の走査の始点81をZ方向に移動してもよい。
(第5の実施形態)
次に、第5の実施形態に係るレーザー走査顕微鏡装置101(以下、「装置101」と称する)について説明する。
まず、装置101の装置構成について、図9を用いて説明する。図9は、装置101の構成を模式的に示す図である。装置101は、光源部1により試料6に照射する光の波長を変更することができる。
第5の実施形態では、試料6に照射する光の波長を変化させながら計測を行う。第5の実施形態によれば、万一、試料6に含まれる構成成分が未知であり、これによって、試料6の構成成分に由来する光Lを得るために試料6に照射する光の波長として適切な波長が不明であったとしても、試料6に含まれる構成成分の分布情報を取得できる。ちなみに、試料6に含まれる構成成分が操作者にとって全く未知であることは稀である。また、後述するように、装置101は試料6に照射する光の波長を変化させながら計測を行うことで、各照射位置においてスペクトルデータを取得することができる。装置101はこのスペクトルデータを解析することで、試料6に含まれる構成成分に関する詳細な情報を取得することもできる。
装置101の装置構成は、装置100の装置構成のうち、光源部1と制御部4の構成以外は同様であるため、光源部1および制御部4の構成についてのみ説明する。
装置101の有する光源部1は、第1の光源111と、第2の光源112と、波長変更手段113と、合波手段114と、を有する。
第1の光源111と第2の光源112はそれぞれ、第1のレーザー光と第2のレーザー光を発する光源である。第1の光源111および第2の光源112の発するレーザー光の種類は、特に限定はされない。
波長変更手段113は、第2の光源112から出射された第2のレーザー光の波長を変更する手段である。なお、本実施形態においては第2の光源112は、複数の波長の光が混合された光を発生するための広帯域光源である。波長変更手段113は分光手段であり、第2の光源から出射された第2のレーザー光を分光し、任意の波長の光のみを出射する。本実施形態に係る波長変更手段113は、出射する光の波長を、一定の周期で掃引することができる。波長変更手段113としては、例えば、ガルバノスキャナやレゾナントスキャナ、音響光学可変フィルタ、および、多面体ミラー型フィルタなどを用いることができる。
合波手段114は、第1の光源から出射した第1のレーザー光と、波長変更手段から出射した波長が変更された第2のレーザー光とを合波する手段である。
なお、本実施形態では光源部1が第1の光源111および第2の光源112の2つの光源を有する構成としたが、これに限定はされず、光源は1つであってもよいし、3つ以上であってもよい。また、本実施形態では波長変更手段113が第2のレーザー光の波長を変更する構成としたが、これに限定はされず、第1のレーザー光の波長を変更してもよいし、第1のレーザー光の波長および第2のレーザー光の波長を変更してもよい。
装置101の有する制御部4は、試料ステージ制御部41と、光スキャナ制御部42と、波長変更手段制御部43と、を有する。
装置101は、波長変更手段113により第2のレーザー光の波長を変更することで、第1のレーザー光の波長と第2のレーザー光の波長との間の差分(波長差)を変更することができる。以下、装置101が波長差を変更する場合について説明するが、これに限定はされず、装置101が単一の波長のレーザー光を出射する光源を有し、その光源から出射したレーザー光の波長を変更する場合についても同様である。
なお、第1のレーザー光および第2のレーザー光として近赤外域の光を使用することで、光Lとして誘導ラマン散乱光やコヒーレントアンチストークスラマン散乱光等の非線形ラマン散乱光を好適に検出することができる。
(第1の計測モード)
第1の計測モードにおける装置101は、スポットの照射位置のそれぞれにおいて波長変更手段113によって前述の波長差を変更して光Lの検出およびデータの取り込みをn回行う。装置101は、上記の光Lの検出およびデータの取込みを各照射位置において行いつつ、XY走査手段によってスポットの照射位置をX方向およびY方向に走査する。これにより装置101は、各々の照射位置においてスペクトルデータを取得する。あるいは装置101は、単一の波長差においてスポットの照射位置のX走査およびY走査を行い、1視野分の画像データが形成されたタイミングで波長差を変更してもよい。この場合、装置101はXY走査が完了する度に波長差の変更を行い、XY走査をn回繰り返す。
第1の計測モードにおける装置101はこれらの動作により、各照射位置において、n種の波長差のそれぞれに対して光Lの強度をそれぞれ格納したスペクトルデータを取得する。その結果装置101は、各照射位置のXY座標に対応する各画素に、各照射位置におけるスペクトルデータがそれぞれ格納された「スペクトル画像データ」を取得することができる。
装置101はさらに、得られたスペクトル画像データをデータ処理部8によって解析することで、試料6に含まれる構成成分の分布情報を取得することができる。データ処理部8における解析は、例えば多変量解析や機械学習などの手法を用いて行うことができる。
(第2の計測モード)
一方、第2の計測モードにおける装置101は、各計測点において、第1の計測モードにおける装置101が用いるn種の波長差のうち、p種(ただし、n>p≧1)の波長差を用いて計測を行う。この結果、各照射位置において得られるスペクトルデータのデータ量をp/n倍に削減させることができる。
第2の計測モードにおける装置101は、他の実施形態と同様、スポットの照射位置をX方向およびY方向に走査しつつ光Lを検出してXY二次元画像データを取得する際に、スポットの照射位置をZ方向にも走査して光Lの検出を行う。これにより、他の実施形態と同様に、画像データを取得するのに要する時間を短縮することができる。第2の計測モードにおける装置101はさらに、スポットの照射位置を上述のようにX方向、Y方向、Z方向に走査するとともに、波長変更手段113によって試料6に照射する光の波長差を変更する。すなわち装置101は、1視野内でXY二次元画像データを取得する間に、スポットの照射位置をX方向およびZ方向に走査しつつ、照射する光の波長差の変更を行う。または装置101は、1視野内でXY二次元画像データを取得する間に、スポットの照射位置をY方向およびZ方向に走査しつつ、照射する光の波長差の変更を行う。あるいは装置101は、1視野内でXY二次元画像データを取得する間に、スポットの照射位置をX方向およびY方向およびZ方向に走査しつつ、照射する光の波長差の変更を行う。
第2の計測モードにおける装置101は、各計測点における計測に用いるp種の波長差を少なくとも1回変更して光Lの検出およびデータの取り込みを行い、XY二次元画像データを取得する。なお、p種の波長差を変更する際には、p種の波長差を全て変更してもよいし、p種の波長差の一部を変更してもよい。すなわち、装置101は第1の計測モードにおける装置101が用いるn種の波長差のうち、第2の計測モードにおける装置101が各計測点の計測に用いるp種の波長差の組み合わせを変更する。これにより、装置101は、Z座標の異なる照射位置に異なる波長差の光を照射した際に発生する光Lの情報が、XY平面内の画素ごとに格納されたXY二次元画像データを取得することができる。換言すると、一画像を構成するXY二次元画像データには、複数のZ座標値及び複数の波長差の値がXY平面の画素毎に分散されて格納されている。データの構成例には、異なったZ座標及び異なった波長差の値がXY平面内の各画素にランダムに格納された構成や、隣接する画素間でZ座標及び波長差の値が規則的に異なる構成が含まれる。
波長差の変更の回数およびタイミングは、特に限定はされない。例えばスポットの照射位置をX方向およびZ方向に走査しつつ、照射する光の波長差の変更を行う場合であれば、1視野内で少なくとも1回、スポットの照射位置をX方向およびZ方向に走査しつつ、各計測点における計測に用いるp種の波長差を変更すればよい。例えば、p=1の場合であれば、スポットの各照射位置において1種の波長差を用いて計測を行い、スポットの照射位置をX方向およびZ方向に1回走査する間に、波長差を(n−1)回変更してもよい。波長変更手段113は、波長差を周期的に変更することが好ましい。
以上のように計測に用いる光の波長差を変更しつつ計測を行うことで、1視野内の全ての計測点について同じp種の波長差を用いて計測を行う場合よりも、1視野内でXY二次元画像データを取得する際に使用する波長差の種類を多くすることができる。第5の実施形態によれば、1視野内全体でみると、計測に使用する波長差の種類をp種より多くすることができる。そのため、1視野内の全ての計測点について同じp種の波長差を用いて計測を行う場合よりも、試料6に含まれる構成成分からの信号が得られる可能性が高まる。そのため、万一、試料6に含まれる構成成分が未知であり、これによって、試料6の構成成分に由来する光Lを得るために試料6に照射する光の波長として適切な波長が不明であったとしても、試料6に含まれる分布情報を取得できる。
本実施形態によれば、各照射位置において得られるスペクトルデータのデータ量をp/n倍に削減させることができる。同様に、得られるスペクトル画像データのデータ量も、第1〜第4の実施形態の第2の計測モードにおいて各計測点でn種の波長差で計測を行った場合と比較して、p/n倍に削減させることができる。一例として、装置101が、第1の計測モードでは第1のレーザー光および第2のレーザー光の波長差を90回変更して試料6に照射して、光Lとして誘導ラマン散乱光の検出とデータの取込みを91回行う誘導ラマン散乱顕微鏡の場合を考える。この場合、例えばp=1とすれば、各照射位置において得られるスペクトルデータのデータ量を1/91倍に削減することができ、スペクトル画像データのデータ量も1/91倍に削減することができる。
さらに本実施形態によれば、各計測点におけるスペクトルデータの取得に要する時間もp/n倍に短縮することができる。その結果、スペクトル画像データを取得するために要する時間も短縮することができる。すなわち、前述した条件の場合には、各計測点におけるスペクトルデータの取得に要する時間は、各計測点でn種の波長差で計測を行った場合と比較して、1/91倍に短縮することができる。また、本実施形態によればスペクトル画像データのデータ量を削減することができるため、スペクトル画像データを解析して構成成分の分布を示す画像データを生成するために要する時間も短縮することができる。
以上のように本実施形態によれば第1〜第4の実施形態の第2の計測モードにおいて各計測点でn種の波長差で計測を行った場合と比べて、取得されるXY二次元画像データの質を保ったまま、データ量を削減することができる。
第5の実施形態は特に、試料6について広域の観察を行う場合に特に有効である。第5の実施形態では、1つの視野内で試料6に含まれる構成成分に由来する光Lが得られる画素と得られない画素とが共存することになる。しかし、広域の画像で見れば試料6の状態や形態を粗く把握する上ではそれほど問題にならない。そのため、広域の観察を行う上で必要な画質を保ったままデータ量を削減できるため、本実施形態は有効である。
(第6の実施形態)
次に、第6の実施形態に係るレーザー走査顕微鏡装置102(以下、「装置102」と称する)について説明する。
装置102は、試料6から発生する光Lとして反射光を検出するレーザー走査顕微鏡装置である。まず、装置102の装置構成について、図10を用いて説明する。図10は、装置102の構成を模式的に示す図である。
装置102の装置構成は、第1の実施形態〜第5の実施形態の各レーザー顕微鏡装置の装置構成および機能のうち、光検出部3の構成以外の構成および機能はほぼ同じであるため、主に光検出部3の構成について説明する。
装置102は、上記実施形態と同様に、レーザー光を試料6の内部または試料6の表面の少なくとも一部にスポットとして照射し、レーザー光の照射位置から発せられる蛍光や非線形光学現象によって発生する光Lを検出する。このとき、光Lは、発生源を起点に四方に放出され、光Lの一部は試料6を透過するが、一部は散乱光として試料6の上部にも放出される。光Lのうち、試料面に垂直に放出された散乱光は、試料6に入射した光の反射光と混成する。そこで、本実施形態における光検出部3の反射型配置では、試料6の上部に放出された散乱光或いは反射光を検出し、その強度変化を測定することで光Lを検出する。反射型配置には、散乱光が透過できないような厚い試料でも、測定を行うことができるという長所がある。
図10に示すように、本実施形態における光検出部3は、ビームスプリッタ14と、対物レンズ13と、光学フィルタ32と、検出器33と、で構成される。このうち、対物レンズ13とビームスプリッタ14は、照射部1の一部を構成する。
光源11から出射されたレーザー光は、光スキャナ12、ビームスプリッタ14を通過し、対物レンズ13で集光されて試料6に照射される。試料から反射した光は対物レンズ13で捕集され、ビームスプリッタ14でその一部が反射されて、光学フィルタ32に入射する。光学フィルタ32は、第一の光の波長と同波長の光のみを透過し、透過した光が光検出器33に入射する。なお、ビームスプリッタ14と光スキャナ12の位置は入れ替えることも可能である。さらに、光源11は、装置101の光源11と同様に、複数の光源を有する構成であってよい。
ここで、ビームスプリッタ14は、偏光ビームスプリッタでも良い。この場合、光源11のレーザー光の偏光とビームスプリッタの偏光透過方向を一致させて、光源11のレーザー光は透過するようにする。そして、試料6から放射された散乱光のうち、光源11のレーザー光の偏光方向に一致しない成分がビームスプリッタ14で反射され、光学フィルタ32に入射し、更に、光検出器33に入射する。ここで、光源11が複数の光源から構成される場合は、光学フィルタ32は、第一の光の波長と同波長の光のみを透過する。
光Lを検出するためには、試料6からの散乱光を直接検出してもよい。その場合、入射光用の対物レンズ13とは別個に、散乱光を捕集するための捕集光学系を設ける。捕集光学系で集められた光は、光学フィルタ32に入射し、更に、光学フィルタ32を透過した光が光検出器33に入射する。
光検出部3をよりコンパクトに配置して、効率良く散乱光を検出するために、捕集光学系を設けない構成をとることもできる。この場合、光学フィルタ、及び、光検出器を構成する光検出素子を試料に近接して設置して、散乱光が光学フィルタに直接入射するようにしてもよい。例えば、光学フィルタと光検出素子とを積層して形成し、これらを対物レンズ13の開口部の近傍の対物レンズ13の外部に設置する。或いは、光学フィルタ或いは光検出素子を対物レンズの内部に配置してもよい。
また、光源11と対物レンズ13の間、或いは、対物レンズ13(或いは、捕集光学系)と光検出器33の間の光路の一部が光ファイバで構成されていてもよい。このとき、試料ステージではなく、対物レンズ13側に移動機構を設けて、レーザーの走査領域を移動させる構成とすることもできる。
1 照射部
12 光スキャナ(XY走査手段)
3 光検出部
41 試料ステージ制御部(Z走査手段)
42 光スキャナ制御部(XY走査手段)
5 データ取込部
6 試料

Claims (13)

  1. レーザー光を対物レンズによって集光して試料に照射する照射部と、
    集光して照射される前記レーザー光の前記照射位置から発せられる光を検出する光検出部と、
    前記照射部によって前記試料に照射する前記レーザー光を、前記対物レンズの光軸方向に垂直なX方向ならびに前記光軸方向および前記X方向に垂直なY方向に走査するXY走査手段と、を有するレーザー走査顕微鏡装置であって、
    前記照射部によって前記試料に照射する前記レーザー光を、前記対物レンズの光軸方向と平行なZ方向に走査するZ走査手段を有し、
    前記XY走査手段によって前記照射位置を前記X方向および前記Y方向に走査しつつ前記光を検出して、検出した前記光の情報が前記照射位置のX座標およびY座標に対応する画素ごとに格納されたXY二次元画像データを取得する際に、前記Z走査手段によって前記照射位置をZ方向にも走査しつつ前記光を検出することで、Z座標の異なる照射位置から発せられた前記光の情報がそれぞれ格納された少なくとも2つの画素を含むXY二次元画像データを取得することを特徴とするレーザー走査顕微鏡装置。
  2. 前記XY走査手段によって前記照射位置を前記X方向および前記Y方向に走査するとともに、前記Z走査手段によって前記照射位置を前記Z方向にも走査しつつ前記光の検出を行うことを特徴とする請求項1に記載のレーザー走査顕微鏡装置。
  3. 前記レーザー光の波長を変更する波長変更手段をさらに有し、
    前記照射位置が前記X方向、前記Y方向、および前記Z方向の少なくとも1つの方向に走査されている間に、前記波長変更手段が前記レーザー光の波長を変更しつつ前記光を検出することで、前記レーザー光の波長の異なる前記光の情報がそれぞれ格納された少なくとも2つの画素を含むXY二次元画像データを取得することを特徴とする請求項1または請求項2に記載のレーザー走査顕微鏡装置。
  4. 前記波長変更手段が、前記レーザー光の波長を周期的に変更することを特徴とする請求項3に記載のレーザー走査顕微鏡装置。
  5. 前記XY走査手段が、前記照射位置を前記X方向および前記Y方向に周期的に走査する手段であり、
    前記Z走査手段が、前記照射位置を前記Z方向に周期的に走査する手段であることを特徴とする請求項1乃至請求項4のいずれか一項に記載のレーザー走査顕微鏡装置。
  6. 前記XY走査手段が前記照射位置を前記X方向および前記Y方向に走査する周期が、前記Z走査手段が前記照射位置を前記Z方向に走査する周期よりも大きいことを特徴とする請求項5に記載のレーザー走査顕微鏡装置。
  7. 前記照射部が、
    第1のレーザー光を出射する第1の光源と、
    第2のレーザー光を出射する第2の光源と、
    前記第1のレーザー光と前記第2のレーザー光とを合波して前記レーザー光とする合波手段と、を備え、
    前記波長変更手段が前記第1のレーザー光の波長と前記第2のレーザー光の波長の差分を変更することを特徴とする請求項3乃至請求項6のいずれか一項に記載のレーザー走査顕微鏡装置。
  8. 前記光が、誘導ラマン散乱光またはコヒーレントアンチストークスラマン散乱光を含む光であることを特徴とする請求項1乃至請求項7のいずれか一項に記載のレーザー走査顕微鏡装置。
  9. 前記Z走査手段は、前記Z走査手段による前記Z方向への前記照射位置の走査によって検出された前記光の強度に基づいて、
    前記Z方向への前記照射位置の走査の始点のZ座標を変更することを特徴とする請求項1乃至請求項8のいずれか一項に記載のレーザー走査顕微鏡装置。
  10. 前記Z走査手段が、前記試料を前記Z方向に振動させることで、前記照射位置を前記Z方向に周期的に走査する手段であることを特徴とする請求項5乃至請求項9のいずれか一項に記載のレーザー走査顕微鏡装置。
  11. 前記XY二次元画像データが、前記レーザー光の前記波長に対して前記光の強度が格納されたスペクトルデータが、前記画素ごとにそれぞれ格納されたスペクトル画像データであることを特徴とする請求項3乃至請求項10のいずれか一項に記載のレーザー走査顕微鏡装置。
  12. 前記スペクトル画像データを多変量解析によって処理するデータ処理部をさらに有することを特徴とする請求項11に記載のレーザー走査顕微鏡装置。
  13. 前記光検出部が検出する光が、前記照射位置から発せられる透過光、反射光、および散乱光から選択される少なくとも1つであることを特徴とする請求項1乃至請求項12のいずれか一項に記載のレーザー走査顕微鏡装置。
JP2016020932A 2015-04-20 2016-02-05 レーザー走査顕微鏡装置 Pending JP2016206648A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16165808.3A EP3086156A1 (en) 2015-04-20 2016-04-18 Laser scanning microscope apparatus
US15/132,053 US10690897B2 (en) 2015-04-20 2016-04-18 Laser scanning microscope apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086266 2015-04-20
JP2015086266 2015-04-20

Publications (1)

Publication Number Publication Date
JP2016206648A true JP2016206648A (ja) 2016-12-08

Family

ID=57490018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020932A Pending JP2016206648A (ja) 2015-04-20 2016-02-05 レーザー走査顕微鏡装置

Country Status (1)

Country Link
JP (1) JP2016206648A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109403A (ja) * 2017-12-20 2019-07-04 オリンパス株式会社 走査型レーザ顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109403A (ja) * 2017-12-20 2019-07-04 オリンパス株式会社 走査型レーザ顕微鏡
JP6993206B2 (ja) 2017-12-20 2022-01-13 オリンパス株式会社 走査型レーザ顕微鏡

Similar Documents

Publication Publication Date Title
JP4887989B2 (ja) 光学顕微鏡及びスペクトル測定方法
JP5712342B2 (ja) 光学顕微鏡、及びスペクトル測定方法
EP1835323B1 (en) Fluorescence microscope and observation method
US8310669B2 (en) Spectroscopic imaging method and system for exploring the surface of a sample
US8921809B2 (en) Device for microscopy having selective illumination of a plane
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP6446432B2 (ja) 顕微分光装置
JP2012132741A (ja) 時間分解蛍光測定装置、及び方法
CN1912587A (zh) 时间分辨荧光光谱测量和成像方法及其装置
JP2015522850A (ja) 光学顕微鏡およびその制御方法
JP2010054391A (ja) 光学顕微鏡、及びカラー画像の表示方法
CN105424189B (zh) 一种扫描式多功能显微光谱成像系统
JP2012237647A (ja) 多焦点共焦点ラマン分光顕微鏡
Liu et al. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy
EP2930496B1 (en) Raman micro-spectrometry system and method for analyzing microscopic objects in a fluidic sample
US9383564B2 (en) Fluorescence observation method and fluorescence observation apparatus
TW201213849A (en) Image generation device
US10156522B2 (en) Parallel acquisition of spectral signals from a 2-D laser beam array
US10620124B2 (en) Optical analysis device and biomolecular analysis device
JP2011257691A (ja) レーザ顕微鏡装置
WO2013142272A1 (en) Multi-color confocal microscope and imaging methods
US10690897B2 (en) Laser scanning microscope apparatus
US11953440B2 (en) Method and apparatus for simultaneous nonlinear excitation and detection of different chromophores across a wide spectral range using ultra-broadband light pulses and time-resolved detection
KR20150146074A (ko) 멀티모달 현미경
JP2004361087A (ja) 生体分子解析装置