JP2016206056A - 推定装置、推定システム - Google Patents

推定装置、推定システム Download PDF

Info

Publication number
JP2016206056A
JP2016206056A JP2015089356A JP2015089356A JP2016206056A JP 2016206056 A JP2016206056 A JP 2016206056A JP 2015089356 A JP2015089356 A JP 2015089356A JP 2015089356 A JP2015089356 A JP 2015089356A JP 2016206056 A JP2016206056 A JP 2016206056A
Authority
JP
Japan
Prior art keywords
temperature
threshold
estimation
unit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015089356A
Other languages
English (en)
Inventor
啓太 林
Keita Hayashi
啓太 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2015089356A priority Critical patent/JP2016206056A/ja
Priority to US15/136,069 priority patent/US20160313187A1/en
Publication of JP2016206056A publication Critical patent/JP2016206056A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Human Computer Interaction (AREA)
  • Radiation Pyrometers (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

【課題】環境の変化を伝える際の信頼性を向上する技術を提供する。【解決手段】第1温度算出部20は、遠赤外線カメラ12によって撮像した撮像領域内の最高温度を第1温度として算出する。第2温度取得部22は、温度センサ14によって測定した周囲の温度となる第2温度として取得する。推定部24は、第2温度取得部22において取得した第2温度の情報と、第1温度算出部20において算出した第1温度の情報とをもとに、周囲の環境を推定する。送信部26は、推定部24において推定した環境に関する情報を送信する。【選択図】図1

Description

本発明は、推定技術に関し、特に周囲の環境を推定する推定装置、推定システムに関する。
消火活動を行っている消防士は、数百度もの高温にさらされる可能性のある場所で活動しており、熱傷の危険性と隣り合わせの環境で消火活動を行っている。このような状況下において、消防隊員は、無線機を使用して現場状況等を指揮者に適宜報告することによって、指揮者とコンタクトを取りながら過酷な環境下で消火活動を行っている(例えば、特許文献1参照)。
特開2000−112558号公報
一方、火災現場においては時々刻々と環境が変わってしまう。このような環境の変化を確実に指揮者に伝えることが必要とされるが、無線機で都度消火活動現場の環境を指揮者に伝えることは困難である。
本発明はこうした状況に鑑みてなされたものであり、その目的は、環境の変化を伝える際の信頼性を向上する技術を提供することである。
上記課題を解決するために、本発明のある態様の推定装置は、遠赤外線カメラによって撮像した撮像領域内の最高温度を第1温度として算出する第1温度算出部と、温度センサによって測定した周囲の温度を第2温度として取得する第2温度取得部と、第2温度取得部において取得した第2温度の情報と、第1温度算出部において算出した第1温度の情報とをもとに、温度センサが測定している周囲の環境を推定する推定部と、推定部において推定した環境に関する情報を送信する送信部と、を備える。
本発明の別の態様は、推定システムである。この推定システムは、周囲の環境を推定する推定装置と、推定装置において推定した環境に関する情報を受信する受信装置とを備える。推定装置は、遠赤外線カメラによって撮像した撮像領域内の最高温度を第1温度として算出する第1温度算出部と、温度センサによって測定した周囲の温度を第2温度として取得する第2温度取得部と、第2温度取得部において取得した第2温度の情報と、第1温度算出部において算出した第1温度の情報とをもとに、温度センサが測定している周囲の環境を推定する推定部と、を備える。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、環境の変化を伝える際の信頼性を向上できる。
本発明の実施例1に係る推定システムの構成を示す図である。 図1の第1温度算出部で画像分割されるブロックを示す図である。 図1の推定部に記憶されるテーブルのデータ構造を示す図である。 図1の推定装置による推定手順を示すフローチャートである。 本発明の実施例2に係る推定システムの構成を示す図である。 図5の調節部に記憶されるテーブルのデータ構造を示す図である。 図5の推定部に記憶されるテーブルのデータ構造を示す図である。 図5の推定装置による推定手順を示すフローチャートである。 本発明の実施例3に係る推定システムの構成を示す図である。 図9の推定部に記憶されるテーブルのデータ構造を示す図である。 図9の推定装置による推定手順を示すフローチャートである。
(実施例1)
本発明を具体的に説明する前に、まず概要を述べる。本発明の実施例1は、高温の環境下で救助活動、消火活動を実行する消防士等に携帯される推定装置と、ネットワークを介して推定装置に有線または無線で接続される受信装置とによって構成される推定システムに関する。推定装置は、周囲の環境を推定すると、環境の情報を有線または無線で送信する。受信装置は、推定装置からの情報を受信し各隊員の活動環境情報を表示することによって、指揮者は、消防士の活動環境を把握する。これらに対応するために、本実施例に係る活動環境推定システムは、次の処理を実行する。
推定装置は、遠赤外線カメラによって撮像した撮像領域内の最高温度(以下、「第1温度」という)の情報と、温度センサから取得できる周囲の温度(以下、「第2温度」という)の情報を使用して、消防隊員が活動している周囲の環境を推定する。周囲の環境として、予め複数の状態が規定されており、推定装置は、第1温度と第2温度とをもとに、いずれの状態に該当するかを選択し、選択した状態に関する情報を有線または無線で送信する。また、受信装置は、推定装置からの情報を受信し、各消防士の活動環境を表示するため、指揮者は、危険な環境で消火活動している消防士を認識できる。そのため、指揮者は、より的確な指示を各消防士に与え、消火活動効率向上やリスク回避につながる。
図1は、本発明の実施例1に係る推定システム100の構成を示す。推定システム100は、推定装置10、遠赤外線カメラ12、温度センサ14、ネットワーク16、受信装置18を含む。推定装置10は、第1温度算出部20、第2温度取得部22、推定部24、送信部26を含み、受信装置18は、受信部30、記憶部32、表示部34を含む。
推定装置10、遠赤外線カメラ12、温度センサ14は、消防士に携帯される。例えば、遠赤外線カメラ12は、消防士のヘルメットに取り付けられ、推定装置10、温度センサ14は、消防士の作業着に取り付けられる。また、遠赤外線カメラ12、温度センサ14は、推定装置10に有線または無線で接続される。この推定装置10は、周囲の環境を推定する。なお、推定処理については後述する。
受信装置18は、消防署やコマンドカーに設置されており、指揮者によって操作される。受信装置18は、推定装置10において推定した環境に関する情報を受信する。その結果、指揮者は、消火活動を実行している消防士の周囲の環境を把握する。推定装置10と受信装置18とは、ネットワーク16を介して接続される。ネットワーク16には公衆の通信回線が使用されてもよいし、専用の通信回線が使用されてもよい。また、推定装置10とネットワーク16との間は、有線回線または無線回線にて接続される。
遠赤外線カメラ12は、物体から放射された赤外線を映像信号に変換するものである。遠赤外線カメラ12については公知の技術が使用されればよいので、ここでは説明を省略する。遠赤外線カメラ12は、撮像した映像信号を第1温度算出部20に出力する。第1温度算出部20は、受信した映像信号をもとに、遠赤外線カメラ12によって撮像した撮像領域のうち最高温度(前述のごとく、「第1温度」という)を特定する。
具体的に説明する。第1温度算出部20は、遠赤外線カメラ12によって撮像した映像信号を、横M画素(M>1)、縦N画素(N>1)のブロックに分割し、ブロックごとに画素値の平均値を導出する。画像分割の一例を図2に示す。図2は、横1920画素、縦1080画素のフルハイビジョン画像を、横120画素(M=120)、縦120画素(N=120)のブロックに分割した例である。ここでは、各画素の縦横比は等しい場合を想定しており、MとNが等しい場合、分割ブロックは正方形となる。分割ブロックの形状は正方形に限定されないが、高温部を特定するためには正方形であることが望ましい。図1に戻る。第1温度算出部20は、各ブロック内の画素値の平均値を温度に変換する。さらに、第1温度算出部20は、変換した複数の温度の中から、最高の温度を第1温度として選択する。第1温度によって、消防士が活動している環境下に高温な熱源があるか否かが分かる。第1温度算出部20は、第1温度の情報を取得すると、第1温度の情報を推定部24に出力する。
温度センサ14は、消防士が活動している周囲の温度を測定する。温度センサ14についても公知の技術が使用されればよいので、ここで説明を省略する。温度センサ14は、測定した周囲の温度の情報を第2温度取得部22に出力する。第2温度取得部22は、温度センサ14によって測定した周囲の温度(前述のごとく、「第2温度」という)の情報を取得する。第2温度取得部22は、第2温度の情報を推定部24に出力する。
推定部24には、第1温度算出部20から第1温度の情報と、第2温度取得部22から第2温度の情報が入力される。推定部24は、第2温度取得部22において取得した第2温度の情報と、第1温度算出部20において取得した第1温度の情報とをもとに、周囲の環境を推定する。周囲の環境とは、消防士が活動している環境(以下、「活動環境」という)を示す。推定部24は、活動環境を推定するために、テーブルを記憶する。
図3は、推定部24に記憶されるテーブルのデータ構造を示す。図示のごとく、条件欄200、推定欄202が含まれる。推定部24では、活動環境として、推定欄202に示すように、第1状態から第4状態の4つの状態を予め規定する。条件欄200には、第1状態から第4状態のいずれかに分類するための条件が示される。ここで、「T1」は、第1温度を示し、「T2」は、第2温度を示す。また、第1閾値は第1温度に対する閾値であり、第2閾値は第2温度に対する閾値である。各閾値は適宜設定すればよく、例えば、第1閾値=400℃、第2閾値=80℃などの値を設定する。図1に戻る。
推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定する。これは、活動環境範囲内に高熱源が存在しており、かつ周囲温度が高く、消防士は危険な環境下で活動をしている状態であると推定される。推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下である場合に、第2状態と推定する。これは、高熱源が存在しているが、周囲温度が低く、高熱源はあるものの周囲温度が高温ではないため、消防士はすぐには危険な状態に陥らない環境下で活動している状態であると推定される。
推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第3状態と推定する。これは、高熱源は検知されていないが、周囲温度が高く、消防士は近くに高熱源がある可能性がある環境下で活動している状態であると推定される。推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第4状態と推定する。これは、高熱原は存在しておらず、かつ周囲温度が低く、消防士は安全な環境下で活動している状態であると推定される。
送信部26は、推定部24で推定した活動環境に関する情報をネットワーク16経由で受信装置18に送信する。また、送信部26は、活動環境に関する情報に加えて、消防士を識別するための識別情報を付加して送信してもよい。そうすることで受信情報がどの隊員から送られてきた情報なのかが判別できる。
受信部30は、ネットワーク16を介して、推定装置10から、活動環境に関する情報を受信する。受信部30は、活動環境に関する情報を記憶部32に送り、記憶部32は、活動環境に関する情報を保存する。表示部34は、記憶部32を参照することによって、活動環境に関する情報を取得し、モニタに推定部24により推定した各消防士の活動環境を表示する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
以上の構成による推定システム100の動作を図4を参照し説明する。図4は、推定装置10による推定手順を示すフローチャートである。第1温度算出部20は、T1を取得し、第2温度取得部22は、T2を取得する(S10)。T1>第1閾値であり(S12のY)、T2>第2閾値であれば(S14のY)、推定部24は、第1状態と判定する(S16)。T2>第2状態でなければ(S14のN)、推定部24は、第2状態と判定する(S18)。T1>第1閾値でなく(S12のN)、T2>第2閾値であれば(S20のY)、推定部24は、第3状態と判定する(S22)。T2>第2閾値でなければ(S20のN)、推定部24は、第4状態と判定する(S24)。
本実施例によれば、第1温度の情報と第2温度の情報とをもとに、活動環境を推定するので、活動環境を自動的に推定できる。また、活動環境として予め定めた複数の状態のいずれかに該当するかを判定するだけなので、処理を簡易にできる。また、消防士が活動している環境を自動で推定し、推定した環境を送信するため、消防士に大きな負荷をかけることなく指揮者は各消防士が活動している環境を認識できる。
(実施例2)
次に、実施例2を説明する。実施例2は、実施例1と同様に、消防士の活動環境を推定する推定装置と、活動環境の情報を推定装置から受信する受信装置とによって構成される推定システムに関する。実施例1においては、遠赤外線カメラから取得した第1温度の情報と、温度センサから取得した第2温度の情報とをもとに、消防士の活動環境を推定している。一方、実施例2においては、遠赤外線カメラと温度センサに加えて、距離センサも使用して各消防士の活動環境を推定し、指揮者に伝送する。つまり、これまでと同様に、遠赤外線カメラからの第1温度の情報、温度センサからの第2温度の情報を取得するとともに、さらに、距離センサからは熱源からの距離を取得する。推定装置は、2つの温度の情報と距離の情報を使用して、各消防士の活動環境を推定する。
図5は、本発明の実施例2に係る推定システム100の構成を示す。推定システム100は、推定装置10、遠赤外線カメラ12、温度センサ14、ネットワーク16、受信装置18、距離センサ40を含む。推定装置10は、第1温度算出部20、第2温度取得部22、推定部24、送信部26、距離取得部42、調節部44を含み、受信装置18は、受信部30、記憶部32、表示部34を含む。
距離センサ40は、熱源との距離Dを測定する。これは、遠赤外線カメラ12によって撮像した対象物からの距離を測定することに相当する。距離センサ40については公知の技術が使用されればよいので、ここでは説明を省略する。距離センサ40は、測定した距離の情報を距離取得部42に出力する。距離取得部42は、距離センサ40によって測定した距離の情報を取得する。距離取得部42は、距離の情報を推定部24に出力する。
調節部44は、第1温度算出部20から第1温度の情報を受けつける。調節部44は、第1温度の情報をもとに、推定部24における第3閾値を調節する。第3閾値とは、距離取得部42において取得した距離の情報と比較すべき閾値である。調節部44は、第3閾値を調節するために、テーブルを使用する。図6は、調節部44に記憶されるテーブルのデータ構造を示す。図示のごとく、T1欄210、第3閾値欄212が含まれる。T1欄210には、第1温度が示され、第3閾値欄212には、第1温度に対応した第3閾値が示される。
例えば、第1温度が「400℃」であれば、第3閾値は「10m」とされる。また、調節部44は、図6に示された第1温度以外の第1温度の情報を取得した場合、内挿補間を実行して第3閾値を導出する。例えば、第1温度が「600℃」であれば、調節部44は、第3閾値として「20m」を導出する。一方、調節部44は、取得した第1温度が800℃より高い場合、あるいは100℃より低い場合、外挿補間を実行して第3閾値を導出する。また、調節部44は、図6に示された第1温度以外の第1温度の情報を取得した場合、図6に示された第1温度のいずれかを選択してもよい。図5に戻る。調節部44は、調節した第3閾値を推定部24に出力する。
推定部24は、第1温度算出部20からの第1温度の情報と第2温度取得部22からの第2温度の情報とともに、距離取得部42において取得した距離の情報も受けつける。さらに、推定部24は、調節部44から第3閾値を受けつける。推定部24は、第1温度の情報と第2温度の情報とに加えて、距離取得部42において取得した距離の情報も反映させて、温度センサ14が測定している周囲の環境、つまり前述の活動環境を推定する。ここでも、推定部24は、周囲の環境を推定するために、テーブルを記憶する。
図7は、推定部24に記憶されるテーブルのデータ構造を示す。図示のごとく、条件欄220、推定欄222が含まれる。推定部24では、周囲の環境として、推定欄222に示すように、第1状態から第5状態の5つの状態を予め規定する。条件欄220には、第1状態から第5状態のいずれかに分類するための条件が示される。ここで、「D」は、距離を示す。前述のごとく、第3閾値は距離に対する閾値であり、調節部44によって調節されている。図5に戻る。
推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定する。これは、活動環境範囲内に高熱源が存在しており、かつ周囲温度が高く、消防士は危険な環境下で活動をしている状態であると推定される。推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ距離が第3閾値よりも近い場合に、第2状態と推定する。これは、消防士は高熱源が近くに存在しているが、周囲温度が低い環境下で活動している状態であると推定される。
推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ距離が第3閾値以上である場合に、第3状態と推定する。これは、高熱源が存在しているが、周囲温度が低く、消防士は高熱源から十分な距離離れているため、高熱源はあるもののすぐには危険な状態に陥らない環境下で活動している状態であると推定される。
推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第4状態と推定する。これは、高熱源は検知されていないが、周囲温度が高く、消防士は近くに高熱源がある可能性がある環境下で活動している状態であると推定される。推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第5状態と推定する。これは、高熱原は存在しておらず、かつ周囲温度が低く、消防士は安全な環境下で活動している状態であると推定される。
以上の構成による推定システム100の動作を説明する。図8は、推定装置10による推定手順を示すフローチャートである。第1温度算出部20は、T1を取得し、第2温度取得部22は、T2を取得し、距離取得部42は、Dを取得する(S50)。T1>第1閾値であり(S52のY)、T2>第2閾値であれば(S54のY)、推定部24は、第1状態と判定する(S56)。T2>第2状態でなく(S54のN)、D<第3閾値であれば(S58のY)、推定部24は、第2状態と判定する(S60)。D<第3閾値でなければ(S58のN)、推定部24は、第3状態と判定する(S62)。T1>第1閾値でなく(S52のN)、T2>第2閾値であれば(S64のY)、推定部24は、第4状態と判定する(S66)。T2>第2閾値でなければ(S64のN)、推定部24は、第5状態と判定する(S68)。
本実施例によれば、高熱源からの距離に対して、第3閾値を設定し、高熱源からの距離が第3閾値より近ければ、第2状態であると判定するので、危険を知らせることができる。また、高熱源からの距離が第3閾値より近ければ、第2状態であると判定するので、高熱源から安全な距離が保たれているか判断できる。また、温度だけではなく距離も考慮するので、活動環境を詳細に推定できる。また、第1温度にしたがって第3閾値を調節するので、熱源の温度に応じた危険性を距離に反映できる。
第2状態と推定された場合、高熱源からの距離と第3閾値とを比較して、現時点の場所からどの程度高熱源に対し離れるべきかを知らせても良い。たとえば、第3閾値が30mで、高熱源からの距離が20mであった場合、高熱源から離れる方向に10m移動することにより、第3状態に移行する。第3状態と推定された場合、高熱源からの距離と第3閾値とを比較して、現時点の場所からどの程度高熱源に対し近付くことができるかを知らせても良い。たとえば、第3閾値が30mで、高熱源からの距離が40mであった場合、高熱源に近付く方向に10m以内であれば移動しても第3状態を維持することができる。
(実施例3)
次に、実施例3を説明する。実施例3は、実施例1や実施例2と同様に、消防士の活動環境を推定する推定装置と、活動環境の情報を推定装置から受信する受信装置とによって構成される推定システムに関する。実施例3においては、実施例2と同様に遠赤外線カメラと温度センサに加えて、距離センサも使用して各消防士の活動環境を推定し、指揮者に伝送する。つまり、遠赤外線カメラからの第1温度の情報、温度センサからの第2温度の情報を取得するとともに、距離センサからは熱源からの距離を取得する。推定装置は、2つの温度の情報と距離の情報を使用して、各消防士の活動環境を推定する。
図9は、本発明の実施例3に係る推定システム100の構成を示す。推定システム100は、推定装置10、遠赤外線カメラ12、温度センサ14、ネットワーク16、受信装置18、距離センサ40を含む。推定装置10は、第1温度算出部20、第2温度取得部22、推定部24、送信部26、距離取得部42、熱量推定部46を含み、受信装置18は、受信部30、記憶部32、表示部34を含む。
距離センサ40は、熱源との距離Dを測定する。これは、遠赤外線カメラ12によって撮像した対象物からの距離を測定することに相当する。距離センサ40については公知の技術が使用されればよいので、ここでは説明を省略する。距離センサ40は、測定した距離の情報を距離取得部42に出力する。距離取得部42は、距離センサ40によって測定した距離の情報を取得する。距離取得部42は、距離の情報を推定部24に出力する。第1温度算出部20は、第1温度の情報を推定部24に出力するとともに、各ブロックの平均温度情報を熱量推定部46に出力する。
熱量推定部46は、距離取得部42から受け取った熱源からの距離情報と、第1温度算出部20から受け取った各ブロックの平均温度情報を元に熱源の熱量Qを推定する。熱量の推定方法を説明する。まず、熱量推定部46は、第1温度算出部20から受け取った各ブロックの平均温度情報と、距離取得部42から受け取った熱源との距離情報を元に、熱源の大きさを推定する。熱源は分割ブロックに内接する球であると想定し、遠赤外線カメラ12の遠赤外線検出器のセルピッチをp、熱源からの距離をD、遠赤外線カメラ12のレンズの焦点距離をfとし、分割ブロックを縦横M画素の正方ブロックとすると、熱源の直径Rは式(1)で求められる。
R=p×M×D/f ・・・式(1)
次に熱量Qを算出する。熱量Qは式(2)で求められる。
Q=4π(R/2)×σT ・・・式(2)
ここで、σはシュテファン=ボルツマン定数、Tは第1温度の絶対温度である。
熱量推定部46で推定した高熱源の熱量Qは推定部24に入力される。
推定部24は、第1温度算出部20からの第1温度の情報と第2温度取得部22からの第2温度の情報とに加えて、熱量推定部46により推定された熱量Qの情報も反映させて、前述の活動環境を推定する。ここでも、推定部24は、周囲の環境を推定するために、テーブルを記憶する。
図10は、推定部24に記憶されるテーブルのデータ構造を示す。図示のごとく、条件欄220、推定欄222が含まれる。推定部24では、活動環境として、推定欄222に示すように、第1状態から第5状態の5つの状態を予め規定する。条件欄220には、第1状態から第5状態のいずれかに分類するための条件が示される。第4閾値は熱量に対する閾値である。
図9に戻る。推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定する。これは、活動環境範囲内に高熱源が存在しており、かつ周囲温度が高く、消防士は危険な環境下で活動をしている状態であると推定される。推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ熱量が第4閾値よりも高い場合に、第2状態と推定する。これは、周囲温度は低いものの、高熱源が存在しており、消防士は高い放射熱を受けている環境下で活動している状態であると推定される。
推定部24は、第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ熱量が第3閾値以下である場合に、第3状態と推定する。これは、高熱源が存在しているが、周囲温度が低く、消防士は高熱源から十分な距離離れているため、高熱源はあるもののすぐには危険な状態に陥らない環境下で活動している状態であると推定される。推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第4状態と推定する。これは、高熱源は検知されていないが、周囲温度が高く、消防士は近くに高熱源がある可能性がある環境下で活動している状態であると推定される。推定部24は、第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第5状態と推定する。これは、高熱原は存在しておらず、かつ周囲温度が低く、消防士は安全な環境下で活動していると推定される。
以上の構成による推定システム100の動作を説明する。図11は、推定装置10による推定手順を示すフローチャートである。第1温度算出部20から、T1を取得し、第2温度取得部22から、T2を取得し、熱量推定部46から、Qを取得する(S50)。T1>第1閾値であり(S52のY)、T2>第2閾値であれば(S54のY)、推定部24は、第1状態と判定する(S56)。T2>第2状態でなく(S54のN)、Q>第4閾値であれば(S58のY)、推定部24は、第2状態と判定する(S60)。Q>第4閾値でなければ(S58のN)、推定部24は、第3状態と判定する(S62)。T1>第1閾値でなく(S52のN)、T2>第2閾値であれば(S64のY)、推定部24は、第4状態と判定する(S66)。T2>第2閾値でなければ(S64のN)、推定部24は、第5状態と判定する(S68)。
本実施例によれば、高熱源が発する熱量に対して、第3閾値を設定し、高熱源が発する熱量が第3閾値より高ければ、第2状態であると判定するので、危険を知らせることができる。また、高熱源が発する熱量が第4閾値以下であれば、第3状態であると判定するので、高熱源から安全な距離が保たれているか判断できる。また、温度だけではなく高熱源が発する熱量も考慮するので、活動環境を詳細に推定できる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例1において、4つの状態が定められており、本発明の実施例2と3において、5つの状態が定められている。しかしながらこれに限らず例えば、4つの状態あるいは5つの状態とは異なった数の状態が定められてもよい。本変形例によれば、構成の自由度を向上できる。
10 推定装置、 12 遠赤外線カメラ、 14 温度センサ、 16 ネットワーク、 18 受信装置、 20 第1温度算出部、 22 第2温度取得部、 24 推定部、 26 送信部、 30 受信部、 32 記憶部、 34 表示部、 44 調節部、 46 熱量推定部、 100 推定システム。

Claims (8)

  1. 遠赤外線カメラによって撮像した撮像領域内の最高温度を第1温度として算出する第1温度算出部と、
    温度センサによって測定した周囲の温度を第2温度として取得する第2温度取得部と、
    前記第2温度取得部において取得した第2温度の情報と、前記第1温度算出部において算出した第1温度の情報とをもとに、温度センサが測定している周囲の環境を推定する推定部と、
    前記推定部において推定した環境に関する情報を送信する送信部と、
    を備えることを特徴とする推定装置。
  2. 前記推定部は、(1)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定し、(2)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下である場合に、第2状態と推定し、(3)第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第3状態と推定し、(4)第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第4状態と推定することを特徴とする請求項1に記載の推定装置。
  3. 遠赤外線カメラによって撮像した対象物からの距離の情報を取得する距離取得部をさらに備え、
    前記推定部は、前記距離取得部において取得した距離の情報も反映させて、温度センサが測定している周囲の環境を推定することを特徴とする請求項1に記載の推定装置。
  4. 前記推定部は、(1)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定し、(2)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ距離が第3閾値よりも近い場合に、第2状態と推定し、(3)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ距離が第3閾値以上である場合に、第3状態と推定し、(4)第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第4状態と推定し、(5)第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第5状態と推定することを特徴とする請求項3に記載の推定装置。
  5. 前記第1温度算出部において取得した第1温度の情報をもとに、前記推定部における第3閾値を調節する調節部をさらに備えることを特徴とする請求項4に記載の推定装置。
  6. 遠赤外線カメラによって撮像した対象物からの距離の情報を取得する距離取得部と、
    前記第1温度算出部が算出した第1温度の情報と前記距離取得部が取得した距離情報とに基づいて熱源の熱量を推定する熱量推定部と
    をさらに備え、
    前記推定部は、前記熱量推定部において推定した熱量の情報も反映させて、周囲の環境を推定することを特徴とする請求項1に記載の推定装置。
  7. 前記推定部は、(1)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値よりも高い場合に、第1状態と推定し、(2)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ熱量が第4閾値よりも高い場合に、第2状態と推定し、(3)第1温度が第1閾値よりも高く、かつ第2温度が第2閾値以下であり、かつ熱量が第4閾値以下である場合に、第3状態と推定し、(4)第1温度が第1閾値以下であり、かつ第2温度が第2閾値よりも高い場合に、第4状態と推定し、(5)第1温度が第1閾値以下であり、かつ第2温度が第2閾値以下である場合に、第5状態と推定することを特徴とする請求項6に記載の推定装置。
  8. 周囲の環境を推定する推定装置と、
    前記推定装置において推定した環境に関する情報を受信する受信装置とを備え、
    前記推定装置は、
    遠赤外線カメラによって撮像した撮像領域内の最高温度を第1温度として算出する第1温度算出部と、
    温度センサによって測定した周囲の温度を第2温度として取得する第2温度取得部と、
    前記第2温度取得部において取得した第2温度の情報と、前記第1温度算出部において算出した第1温度の情報とをもとに、温度センサが測定している周囲の環境を推定する推定部と、
    を備えることを特徴とする推定システム。
JP2015089356A 2015-04-24 2015-04-24 推定装置、推定システム Abandoned JP2016206056A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015089356A JP2016206056A (ja) 2015-04-24 2015-04-24 推定装置、推定システム
US15/136,069 US20160313187A1 (en) 2015-04-24 2016-04-22 Estimation device that estimates surrounding environment and estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089356A JP2016206056A (ja) 2015-04-24 2015-04-24 推定装置、推定システム

Publications (1)

Publication Number Publication Date
JP2016206056A true JP2016206056A (ja) 2016-12-08

Family

ID=57148608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089356A Abandoned JP2016206056A (ja) 2015-04-24 2015-04-24 推定装置、推定システム

Country Status (2)

Country Link
US (1) US20160313187A1 (ja)
JP (1) JP2016206056A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107366A (ja) * 2018-03-23 2020-07-09 Necプラットフォームズ株式会社 監視装置、監視システム、監視方法及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190015688A1 (en) * 2016-10-05 2019-01-17 WilliamsRDM Inc. Self Contained Stovetop Fire Suppressor with Sensor Triggered Shuttle Activation and Method
US11023743B2 (en) * 2019-07-03 2021-06-01 Hitachi Automotive Systems, Ltd. Object recognition by far infrared camera

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952661A (en) * 1996-08-16 1999-09-14 Raytheon Company Chopper for thermal imaging system and method
JP2011059739A (ja) * 2009-09-04 2011-03-24 Fujitsu Ltd 温度予測装置、温度予測方法および温度予測プログラム
KR101073076B1 (ko) * 2011-06-10 2011-10-12 주식회사 창성에이스산업 복합카메라를 이용한 화재감시 시스템 및 방법
CN105074789B (zh) * 2013-04-09 2019-03-12 热成像雷达有限责任公司 火灾检测系统
US20160110980A1 (en) * 2014-10-21 2016-04-21 Osram Sylvania Inc. Multi-condition sensing device including an ir sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107366A (ja) * 2018-03-23 2020-07-09 Necプラットフォームズ株式会社 監視装置、監視システム、監視方法及びプログラム

Also Published As

Publication number Publication date
US20160313187A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
Kianoush et al. Device-free RF human body fall detection and localization in industrial workplaces
JP2023011037A (ja) プログラム
Saeed et al. Ichnaea: A low-overhead robust WLAN device-free passive localization system
US10635380B2 (en) System, head-mounted display, and control method thereof
JP2016206056A (ja) 推定装置、推定システム
WO2021225652A2 (en) Apparatus for battlefield management, target location and target tagging
JP2017522552A (ja) ジオフェンス横断ベースの制御のためのシステム及び手法
JPWO2014016986A1 (ja) 3次元環境共有システム及び3次元環境共有方法
JP2015226209A (ja) 情報提示装置、ステレオカメラシステム、及び情報提示方法
US10341616B2 (en) Surveillance system and method of controlling the same
JP6654091B2 (ja) 監視装置、監視方法、およびプログラム
JP2017504017A5 (ja) 計測機器、及びシステム
WO2017187694A1 (ja) 注目領域画像生成装置
US20210318173A1 (en) Measurement system, measurement device, measurement method, and program
KR20180038175A (ko) 가상 현실 서비스를 제공하는 서버, 디바이스 및 방법
CN115134741B (zh) 一种uwb基站异常检测方法及电子设备
KR101454548B1 (ko) 3차원 카메라를 이용한 감시 장치 및 이의 구동 방법
JP6619543B2 (ja) 火災検知システム及び火災検知方法
US20210157394A1 (en) Motion tracking system and method
US20170034859A1 (en) Operating environment setting system of electronic device, operating environment setting method and operating environment setting program
KR101988206B1 (ko) 적외선카메라를 이용한 온도측정 시스템
JP6789905B2 (ja) 情報処理装置、情報処理方法、プログラムおよび通信システム
WO2018030024A1 (ja) 見守りシステム、見守り装置、見守り方法、および見守りプログラム
US20140321235A1 (en) Acoustic sonar imaging and detection system for firefighting applications
JP6807247B2 (ja) 監視システム、及び監視方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20190111