JP2016204921A - Design method for installation range of suspension type improvement material, and ground injection method using the same - Google Patents

Design method for installation range of suspension type improvement material, and ground injection method using the same Download PDF

Info

Publication number
JP2016204921A
JP2016204921A JP2015086039A JP2015086039A JP2016204921A JP 2016204921 A JP2016204921 A JP 2016204921A JP 2015086039 A JP2015086039 A JP 2015086039A JP 2015086039 A JP2015086039 A JP 2015086039A JP 2016204921 A JP2016204921 A JP 2016204921A
Authority
JP
Japan
Prior art keywords
suspension
ground
type
construction target
solid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015086039A
Other languages
Japanese (ja)
Other versions
JP6473036B2 (en
Inventor
山口 晶
Akira Yamaguchi
晶 山口
善雄 飛田
Yoshio Hida
善雄 飛田
和成 岡田
Kazunari Okada
和成 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU Gakuin
Japan Foundation Engineering Co Ltd
Original Assignee
TOHOKU Gakuin
Japan Foundation Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU Gakuin, Japan Foundation Engineering Co Ltd filed Critical TOHOKU Gakuin
Priority to JP2015086039A priority Critical patent/JP6473036B2/en
Publication of JP2016204921A publication Critical patent/JP2016204921A/en
Application granted granted Critical
Publication of JP6473036B2 publication Critical patent/JP6473036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress costs and enhance reliability of a ground injection method.SOLUTION: In the design method, a virtual form into which a suspension type improvement material penetrates is set (S10), and an advective-dispersive equation corresponding to the virtual form is established that includes an adsorption amount of the suspension type improvement material (S20). Then, a one-dimensional injection test (S50 or S110) and a uniaxial compression test (S60 or S120) are performed to obtain a distribution coefficient of a ground to be worked (S100 or S130) and a relation between a solid component mass and uniaxial compression strength (S80 or S140) based on the test result, and a delay coefficient is calculated using the distribution coefficient (S150). Then, predicted distribution of the solid component is derived by solving the advective-dispersive equation (S160), and furthermore predicted distribution of the uniaxial compression strength is derived (S170). Then, a size of an improvement body offering strength greater than a prescribed strength is derived from the predicted distribution of the uniaxial compression strength (S180). The method allows concentration and an injected amount of the suspension type improvement material used with a ground injection method to be set appropriately, thereby suppressing costs and enhancing reliability of the ground injection method.SELECTED DRAWING: Figure 1

Description

本発明は、地盤に注入して地盤を改良する懸濁型改良材の打設範囲の設計方法、及び、この設計方法を利用した地盤注入工法に関するものである。   The present invention relates to a design method for a placement range of a suspension-type improvement material that is injected into the ground to improve the ground, and a ground injection method using the design method.

液状化対策や耐震補強等を目的とする地盤改良工法の1つとして、地盤に改良材を注入する地盤注入工法が挙げられる(例えば、特許文献1参照)。この地盤注入工法は、既設構造物の近傍及び直下や狭隘部等といった、施工の制約条件がある地盤に対しても適用できることから、多くの現場で実施されている。又、地盤注入工法では、必要とされる範囲を所定強度で確実に改良するために、特に溶液型改良材で所定強度を満足できないような場合に、懸濁型改良材が選定される。改良材の注入量は、注入対象土量に土粒子の間隙率と間隙への充填率とを乗じて求められる。   As one of the ground improvement methods for the purpose of liquefaction countermeasures, seismic reinforcement, etc., there is a ground injection method in which an improvement material is injected into the ground (for example, see Patent Document 1). Since this ground injection method can be applied to the ground where there are construction constraint conditions such as the vicinity of an existing structure and directly below or in a narrow part, it has been implemented at many sites. Also, in the ground injection method, in order to reliably improve the required range with a predetermined strength, a suspension type improving material is selected particularly when the solution type improving material cannot satisfy the predetermined strength. The amount of the improved material to be injected is obtained by multiplying the amount of soil to be injected by the porosity of the soil particles and the filling rate of the space.

特開2015−25293号公報Japanese Patent Laying-Open No. 2015-25293

しかしながら、懸濁型改良材が注入された地盤は、注入口からの距離が遠くなると一軸圧縮強度が小さくなる傾向にある。このため、注入口から遠い位置でも所定強度を満足するために、改良材を富配合としたり充填率を割り増すことによって、品質を担保する方法が取られているが、必要以上の量及び濃度の改良材が注入される場合もあると考えられ、コストを上げる一因となっている。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、地盤注入工法のコストを抑制すると共に信頼性を向上することにある。
However, the ground into which the suspension-type improving material is injected tends to decrease the uniaxial compressive strength as the distance from the injection port increases. For this reason, in order to satisfy the predetermined strength even at a position far from the injection port, a method for ensuring quality by taking a rich material and increasing the filling rate is taken, but more than necessary amount and concentration It is considered that the improved material may be injected, which contributes to an increase in cost.
This invention is made | formed in view of the said subject, The place made into the objective is to improve the reliability while suppressing the cost of a ground injection construction method.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)地盤に注入して地盤を改良する懸濁型改良材の打設範囲の設計方法であって、前記懸濁型改良材が地盤に浸透する範囲の仮想形状を設定し、地盤の土粒子による前記懸濁型改良材の吸着量をパラメータとして含む、前記仮想形状に対応する移流分散方程式を立て、濃度が異なる複数の懸濁型改良材、及び、平均粒径が異なる試料により形成した複数の模擬地盤又は施工対象地盤から採取した土により形成した模擬地盤を用いた一次元注入実験と、該一次元注入実験において形成した改良体の一軸圧縮試験とを実施して、これらの結果から、施工対象地盤の分配係数、及び、前記懸濁型改良材の固形成分の質量と改良体の一軸圧縮強度との関係を求め、前記分配係数から遅延係数を算出し、該遅延係数と前記懸濁型改良材の濃度及び注入量とをパラメータとして利用して、前記移流分散方程式を解くことにより、前記施工対象地盤内における前記懸濁型改良材の固形成分の予測分布を求め、該固形成分の予測分布と、前記固形成分の質量と改良体の一軸圧縮強度との関係とから、前記施工対象地盤内の一軸圧縮強度の予測分布を求め、該一軸圧縮強度の予測分布に基づいて、所定の強度以上の一軸圧縮強度を有する、前記施工対象地盤の改良体の大きさを求める懸濁型改良材の打設範囲の設計方法(請求項1)。   (1) A method for designing a placement range of a suspension-type improvement material that is injected into the ground to improve the ground, wherein a virtual shape of a range in which the suspension-type improvement material penetrates the ground is set, and the soil of the ground An advection dispersion equation corresponding to the virtual shape including the amount of adsorption of the suspension-type improving material by particles as a parameter is established, and formed by a plurality of suspension-type improving materials having different concentrations and samples having different average particle sizes. From these results, we conducted a one-dimensional injection experiment using a simulated ground formed from soil sampled from a plurality of simulated grounds or construction target grounds, and a uniaxial compression test of an improved body formed in the one-dimensional injection experiment. The distribution coefficient of the construction target ground, and the relationship between the solid component mass of the suspension-type improvement material and the uniaxial compressive strength of the improved body are obtained, the delay coefficient is calculated from the distribution coefficient, and the delay coefficient and the suspension coefficient are calculated. Concentration and injection of turbidity improver Is used as a parameter to solve the advection dispersion equation to obtain a predicted distribution of the solid component of the suspension-type improvement material in the construction target ground, the predicted distribution of the solid component, and the solid component From the relationship between the mass and the uniaxial compressive strength of the improved body, a predicted distribution of the uniaxial compressive strength in the construction target ground is obtained, and based on the predicted distribution of the uniaxial compressive strength, the uniaxial compressive strength is equal to or higher than a predetermined strength. The design method of the placement range of the suspension type improvement material for obtaining the size of the improvement body of the construction target ground (Claim 1).

本項に記載の懸濁型改良材の打設範囲の設計方法は、土粒子による懸濁型改良材の吸着量を考慮した移流分散方程式を利用して、地盤の改良体の大きさや強度を求めるものである。すなわち、まず、懸濁型改良材を地盤に注入したときに、懸濁型改良材が地盤内に浸透する範囲の形状を、仮想的に設定する。そして、設定した仮想形状に対応する移流分散方程式を、地盤の土粒子によって懸濁型改良材が吸着される量をパラメータとして含めて立式する。この際、例えば、懸濁型改良材の濃度と吸着量との間に、分配係数を用いた線形吸着等温の関係が成り立つものとして立式する。   The design method for the placement area of the suspension type improvement material described in this section uses the advection dispersion equation considering the amount of adsorption of the suspension type improvement material by the soil particles to determine the size and strength of the ground improvement body. It is what you want. That is, first, when the suspension-type improvement material is injected into the ground, the shape of the range in which the suspension-type improvement material penetrates into the ground is virtually set. Then, an advection dispersion equation corresponding to the set virtual shape is formed by including as a parameter the amount by which the suspended improvement material is adsorbed by the soil particles of the ground. In this case, for example, a linear adsorption isothermal relationship using a distribution coefficient is established between the concentration of the suspension-type improving material and the adsorption amount.

次に、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤又は施工対象地盤から採取した土により形成した模擬地盤とを用いて、一次元注入実験を実施する。試料により形成した模擬地盤を用いるか、施工対象地盤からの採取土により形成した模擬地盤を用いるかは、状況に応じて適宜選択できるものとする。一次元注入実験は、例えば、アクリル管等の内部に模擬地盤を形成し、模擬地盤に懸濁型改良材を注入する試験を、懸濁型改良材の濃度を変更しながら複数回実施する。更に、一次元注入実験により得られた複数の模擬地盤の改良体を対象として、一軸圧縮試験を実施する。そして、双方の実験結果から、分配係数、及び、懸濁型改良材の固形成分の質量と改良体の一軸圧縮強度との関係を求める。すなわち、例えば、一次元注入実験のモデルに対応する移流分散方程式を立てて、この移流分散方程式を差分法等を利用して計算することで、施工対象地盤の分配係数を求める。又、移流分散方程式から得られる、改良体の位置毎の単位体積当たりの固形成分質量から、改良体内における固形成分の分布を求め、更に、一軸圧縮試験の結果と合わせて、固形成分の質量と改良体の一軸圧縮強度との関係を求める。続いて、施工対象地盤の分配係数と、施工対象地盤の土粒子の間隙率及び密度とから、施工対象地盤の遅延係数を算出する。   Next, a one-dimensional injection experiment using a plurality of suspension-type improving materials having different concentrations and a plurality of simulated grounds formed from samples having different average particle diameters or simulated grounds formed from soil sampled from construction target grounds To implement. Whether to use the simulated ground formed from the sample or the simulated ground formed from the soil collected from the construction target ground can be appropriately selected according to the situation. In the one-dimensional injection experiment, for example, a test in which a simulated ground is formed inside an acrylic tube and the suspension-type improving material is injected into the simulated ground is performed a plurality of times while changing the concentration of the suspension-type improving material. Furthermore, a uniaxial compression test is carried out on a plurality of simulated ground improvement bodies obtained by a one-dimensional injection experiment. Then, from both experimental results, the relationship between the distribution coefficient and the mass of the solid component of the suspension-type improving material and the uniaxial compressive strength of the improved body is obtained. That is, for example, an advection dispersion equation corresponding to a model of a one-dimensional injection experiment is established, and the advection dispersion equation is calculated using a difference method or the like, thereby obtaining a distribution coefficient of the construction target ground. Also, from the solid component mass per unit volume for each position of the improved body obtained from the advection dispersion equation, the distribution of the solid component in the improved body is obtained, and in addition to the result of the uniaxial compression test, the mass of the solid component and The relationship with the uniaxial compressive strength of the improved body is obtained. Subsequently, the delay coefficient of the construction target ground is calculated from the distribution coefficient of the construction target ground and the porosity and density of the soil particles of the construction target ground.

次に、設定した仮想形状に対応する移流分散方程式を、施工対象地盤の遅延係数、注入する懸濁型改良材の濃度及び注入量等を用いて、差分法等により解くことによって、施工対象地盤に懸濁型改良材を注入した場合の、施工対象地盤内の固形成分の予測分布を求める。更に、施工対象地盤内の固形成分の予測分布に対して、実験から求めた固形成分の質量と改良体の一軸圧縮強度との関係を適用することで、施工対象地盤内の一軸圧縮強度の予測分布を求める。そして、施工対象地盤内の一軸圧縮強度の予測分布から、例えば、施工対象地盤に対して要求される所定の強度以上の範囲を抽出して、その範囲の大きさを求める。
本項に記載の懸濁型改良材の打設範囲の設計方法は、上記のような手順により、施工対象地盤へ構築する改良体の大きさや強度を求めるものである。このため、地盤注入工法に用いる懸濁型改良材の濃度や注入量を、施工対象地盤の土粒子の平均粒径等に応じて、適切に設定するものとなり、地盤注入工法のコストを抑制すると共に、信頼性を向上するものとなる。
Next, the advection dispersion equation corresponding to the set virtual shape is solved by the differential method etc. using the delay coefficient of the construction target ground, the concentration of the suspension-type improvement material to be injected and the injection amount, etc. The predicted distribution of the solid component in the construction target ground when the suspension type improvement material is injected into the ground is obtained. Furthermore, the prediction of the uniaxial compressive strength in the construction target ground is applied to the predicted distribution of the solid component in the construction target ground by applying the relationship between the mass of the solid component obtained from the experiment and the uniaxial compressive strength of the improved body. Find the distribution. And the range beyond the predetermined intensity | strength requested | required with respect to construction target ground is extracted from the prediction distribution of the uniaxial compressive strength in construction target ground, and the magnitude | size of the range is calculated | required.
The design method for the placement range of the suspension-type improving material described in this section is to obtain the size and strength of the improved body to be constructed on the construction target ground by the above procedure. For this reason, the concentration and amount of suspension-type improvement material used in the ground injection method will be set appropriately according to the average particle size of the soil particles of the construction target ground, etc., and the cost of the ground injection method will be reduced. At the same time, reliability is improved.

(2)上記(1)項において、前記一次元注入実験を、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤とを用いて実施し、この実験結果から、前記模擬地盤を構成する試料の平均粒径と分配係数との関係を求め、該平均粒径と分配係数との関係に基づいて、施工対象地盤の分配係数を推定する懸濁型改良材の打設範囲の設計方法(請求項2)。
本項に記載の懸濁型改良材の打設範囲の設計方法は、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤とを用いて、一次元注入実験を実施する。一次元注入実験は、模擬地盤を形成する試料と懸濁型改良材の濃度との組み合わせを変更しながら、複数回実施する。そして、一次元注入実験の実験結果から、模擬地盤を構成する試料の平均粒径と分配係数との関係を求める。すなわち、例えば、一次元注入実験のモデルに対応する移流分散方程式を立てて、この移流分散方程式を差分法等を利用して計算することで、試料の平均粒径毎の遅延係数及び分配係数を算出して、土粒子の平均粒径と分配係数との関係を求める。
(2) In the above item (1), the one-dimensional injection experiment is performed using a plurality of suspension-type improving materials having different concentrations and a plurality of simulated grounds formed of samples having different average particle diameters. From the experimental results, the suspension type that obtains the relationship between the average particle size of the sample constituting the simulated ground and the distribution coefficient, and estimates the distribution coefficient of the construction target ground based on the relationship between the average particle size and the distribution coefficient A method for designing the placement range of the improved material (Claim 2).
The design method of the placement range of the suspension-type improvement material described in this section uses a plurality of suspension-type improvement materials having different concentrations and a plurality of simulated grounds formed from samples having different average particle sizes. Perform the original injection experiment. The one-dimensional injection experiment is performed a plurality of times while changing the combination of the sample forming the simulated ground and the concentration of the suspension-type improving material. And the relationship between the average particle diameter of the sample which comprises the simulated ground, and a distribution coefficient is calculated | required from the experimental result of a one-dimensional injection experiment. That is, for example, by establishing an advection dispersion equation corresponding to a model of a one-dimensional injection experiment and calculating the advection dispersion equation using a difference method or the like, the delay coefficient and the distribution coefficient for each average particle diameter of the sample can be obtained. Calculate to obtain the relationship between the average particle size of the soil particles and the distribution coefficient.

続いて、一次元注入実験から求めた土粒子の平均粒径と分配係数との関係に基づいて、実際に懸濁型改良材を注入して改良を行う施工対象地盤の分配係数を求める。すなわち、予め行う調査等から、施工対象地盤の土粒子の平均粒径を把握し、把握した平均粒径に対して、上記の平均粒径と分配係数との関係を適用することで、施工対象地盤の分配係数を推定する。この際、施工対象地盤内で、位置や深さによって土粒子の平均粒径が異なるような場合は、夫々の平均粒径毎に分配係数を推定すればよい。このように、本項に記載の懸濁型改良材の打設範囲の設計方法は、試料を用いた一次元注入実験により、平均粒径と分配係数との関係を求めるため、施工対象地盤からの採取土で実験を行えないような場合であっても、施工対象地盤の分配係数が推定されるものである。更に、試料を用いた一次元注入実験と、試料から形成した改良体の一軸圧縮試験とは、懸濁型改良材の打設範囲の設計毎に行う必要はなく、一度行った実験から得た、平均粒径と分配係数との関係及び固形成分質量と一軸圧縮強度との関係を、繰り返し利用するものである。従って、打設範囲の設計を効率よく行うものとなる。   Subsequently, based on the relationship between the average particle size of the soil particles obtained from the one-dimensional injection experiment and the distribution coefficient, the distribution coefficient of the construction target ground to be improved by actually injecting the suspension-type improvement material is obtained. That is, from the surveys conducted in advance, the average particle size of the soil particles of the construction target ground is grasped, and the relationship between the average particle size and the distribution coefficient is applied to the grasped average particle size. Estimate the distribution coefficient of the ground. At this time, when the average particle size of the soil particles varies depending on the position and depth in the construction target ground, the distribution coefficient may be estimated for each average particle size. As described above, the design method for the placement range of the suspension-type improvement material described in this section is based on the one-dimensional injection experiment using the sample to obtain the relationship between the average particle size and the distribution coefficient. Even in the case where the experiment cannot be performed with the collected soil, the distribution coefficient of the construction target ground is estimated. Furthermore, the one-dimensional injection experiment using the sample and the uniaxial compression test of the improved body formed from the sample do not need to be performed for each design of the placement range of the suspension-type improvement material, and were obtained from the experiment performed once. The relationship between the average particle diameter and the distribution coefficient and the relationship between the solid component mass and the uniaxial compressive strength are repeatedly used. Therefore, the placement range can be efficiently designed.

(3)上記(1)項において、前記一次元注入実験を、濃度が異なる複数の懸濁型改良材と、施工対象地盤から採取した土により形成した模擬地盤とを用いて実施し、この実験結果から、施工対象地盤の分配係数を推定する懸濁型改良材の打設範囲の設計方法(請求項3)。
本項に記載の懸濁型改良材の打設範囲の設計方法は、濃度が異なる複数の懸濁型改良材と、施工対象地盤から採取した土により形成した模擬地盤とを用いて、一次元注入実験を実施する。この際、模擬地盤は、施工対象地盤内で位置や深さを変えて複数個所から採取した土を用いて、複数形成してもよい。この場合は、形成した模擬地盤と懸濁型改良材の濃度との組み合わせを変更しながら、一次元注入実験を複数回実施する。そして、例えば、実験から得られる、模擬地盤通過後の固形成分質量と排水量との関係から、施工対象地盤の分配係数を推定する。更に、引き続き行う一軸圧縮試験は、施工対象地盤の採取土から形成した模擬地盤の、改良体を用いて行うこととなる。従って、本項に記載の懸濁型改良材の打設範囲の設計方法は、分配係数だけではなく、分配係数から算出する遅延係数、固形成分質量と一軸圧縮強度との関係といった、施工対象地盤の採取土を用いた実験から得られるパラメータを用いて計算を行うものである。このため、設計結果と施工結果との差分を低減し、より正確に設計を行うものとなる。
(3) In the above item (1), the one-dimensional injection experiment is performed using a plurality of suspension-type improving materials having different concentrations and a simulated ground formed from soil collected from the construction target ground. From the result, a method for designing the placement range of the suspension-type improving material for estimating the distribution coefficient of the construction target ground (Claim 3).
The method for designing the placement range of the suspension-type improvement material described in this section uses a plurality of suspension-type improvement materials with different concentrations and a simulated ground formed from soil collected from the construction target ground, and is one-dimensional. Perform injection experiments. At this time, a plurality of simulated grounds may be formed using soil collected from a plurality of locations by changing the position and depth in the construction target ground. In this case, the one-dimensional injection experiment is performed a plurality of times while changing the combination of the formed simulated ground and the concentration of the suspension-type improving material. Then, for example, the distribution coefficient of the construction target ground is estimated from the relationship between the solid component mass after passing through the simulated ground and the amount of drainage obtained from the experiment. Furthermore, the subsequent uniaxial compression test will be performed using an improved body of the simulated ground formed from the soil collected from the construction target ground. Therefore, the design method for the placement range of the suspension type improvement material described in this section is not only the distribution coefficient but also the delay coefficient calculated from the distribution coefficient, the relationship between the solid component mass and the uniaxial compressive strength. The calculation is performed using the parameters obtained from the experiment using the collected soil. For this reason, the difference between the design result and the construction result is reduced, and the design is performed more accurately.

(4)上記(1)から(3)項において、前記移流分散方程式を立てる際の仮想形状として、前記懸濁型改良材が、地盤内の一点から、該一点を中心とする球形に浸透する仮想形状を設定する懸濁型改良材の打設範囲の設計方法(請求項4)。
本項に記載の懸濁型改良材の打設範囲の設計方法は、移流分散方程式を立てる際に設定する、懸濁型改良材が地盤内に浸透する範囲の仮想形状として、地盤内の一点から、その一点を中心とする球形に浸透する仮想形状を設定するものである。これにより、設定した形状が実際に地盤内に構築される改良体の形状に近くなるだけではなく、懸濁型改良材が球形に浸透する場合の移流分散方程式は、球形の半径をパラメータとして含む、比較的単純な式で表される。このため、設計の正確性と合理性とを両立して、効率よく計算を行うものとなる。
(4) In the above items (1) to (3), as a virtual shape when establishing the advection dispersion equation, the suspension-type improving material penetrates from one point in the ground into a sphere centered on the one point. A method for designing a placement range of a suspension-type improving material for setting a virtual shape (Claim 4).
The design method of the placement range of the suspension type improvement material described in this section is a point in the ground as a virtual shape of the range in which the suspension type improvement material penetrates into the ground, which is set when the advection dispersion equation is established. Therefore, a virtual shape penetrating into a sphere centered on the one point is set. As a result, not only the set shape is close to the shape of the improvement body actually built in the ground, but also the advection dispersion equation when the suspension type improvement material penetrates into the sphere includes the sphere radius as a parameter. It is expressed by a relatively simple formula. For this reason, the calculation is performed efficiently while achieving both design accuracy and rationality.

(5)上記(1)から(4)項において、前記所定の強度が100kPaである懸濁型改良材の打設範囲の設計方法(請求項5)。
本項に記載の懸濁型改良材の打設範囲の設計方法は、施工対象地盤の改良体の大きさを求める際に、改良体が一軸圧縮強度として備えるべき所定の強度を、一般的に液状化対策に必要とされている100kPaとするものである。これにより、本設計方法を利用して地盤注入工法を行うこととすれば、少なくとも地盤の液状化を抑制するだけの強度が確保されるため、地盤改良の信頼性をより向上するものとなる。
(5) A method for designing a placement range of the suspension-type improving material according to (1) to (4) above, wherein the predetermined strength is 100 kPa (claim 5).
The design method of the placement range of the suspension-type improvement material described in this section generally determines a predetermined strength that the improvement body should have as a uniaxial compressive strength when determining the size of the improvement body of the construction target ground. 100 kPa required for liquefaction countermeasures. As a result, if the ground injection method is performed using the present design method, at least strength sufficient to suppress liquefaction of the ground is ensured, so that the reliability of ground improvement is further improved.

(6)上記(1)から(5)項において、前記懸濁型改良材は、主材としての球形の二酸化ケイ素と、硬化剤としての水酸化カルシウムとを含む、超微粒子球状シリカ系改良材である懸濁型改良材の打設範囲の設計方法(請求項6)。
本項に記載の懸濁型改良材の打設範囲の設計方法は、地盤に注入する懸濁型改良材として、超微粒子球状シリカ系改良材を用いるものである。この超微粒子球状シリカ系改良材は、主材としての精製された球形の二酸化ケイ素と、硬化剤としての水酸化カルシウムとを含むものであり、更に、球形の二酸化ケイ素が、例えば、粒径が1μm程度のものであるため、比較的円滑に地盤内に浸透する。従って、改良材が実際に地盤内に注入されたときの、地盤内での浸透のし難さ等に起因する、設計結果と施工結果との差分を、低減するものとなる。
(6) In the above items (1) to (5), the suspension-type improving material comprises an ultrafine particle spherical silica-based improving material comprising spherical silicon dioxide as a main material and calcium hydroxide as a curing agent. A method for designing the placement range of the suspension-type improving material (claim 6).
The design method for the placement range of the suspension-type improving material described in this section uses an ultrafine particle spherical silica-based improving material as the suspension-type improving material to be injected into the ground. This ultrafine spherical silica-based improving material contains refined spherical silicon dioxide as a main material and calcium hydroxide as a curing agent. Further, spherical silicon dioxide has a particle size of, for example, Since it is about 1 μm, it penetrates into the ground relatively smoothly. Therefore, when the improved material is actually injected into the ground, the difference between the design result and the construction result due to the difficulty of penetration in the ground is reduced.

(7)上記(1)から(6)項の懸濁型改良材の打設範囲の設計方法により求める、前記施工対象地盤の改良体の大きさに基づいて決定される、前記懸濁型改良材の濃度及び注入量に従って、前記施工対象地盤へ前記懸濁型改良材を注入する地盤注入工法(請求項7)。
本項に記載の地盤注入工法は、上述した(1)から(6)項の懸濁型改良材の打設範囲の設計方法を利用するものである。すなわち、施工対象地盤に対して求められている、改良体の強度や大きさを満足するように、懸濁型改良材の打設範囲の設計方法により、所定強度以上の改良体の大きさを求める。そして、その場合に設定した懸濁型改良材の濃度及び注入量に従って、実際に施工対象地盤に懸濁型改良材を注入する。これにより、上記(1)から(6)項の懸濁型改良材の打設範囲の設計方法と同様の作用を奏しながら、施工対象地盤に要求される強度を満たすように、効率よく作業を進めるものとなる。
(7) The suspension type improvement determined based on the size of the improvement body of the construction target ground, which is obtained by the method for designing the placement range of the suspension type improvement material according to (1) to (6) above. A ground injection method for injecting the suspension-type improving material into the construction target ground according to the concentration and the injection amount of the material (Claim 7).
The ground injection method described in this section uses the design method of the placement range of the suspension-type improving material described in the above items (1) to (6). That is, by satisfying the strength and size of the improved body required for the construction target ground, the size of the improved body with a predetermined strength or higher is determined by the design method of the placement range of the suspension type improved material. Ask. And according to the density | concentration and injection | pouring amount of a suspension type improvement material set in that case, a suspension type improvement material is actually inject | poured into a construction object ground. As a result, while performing the same operation as the method for designing the placement range of the suspension-type improving material described in the above items (1) to (6), the work is efficiently performed so as to satisfy the strength required for the construction target ground. It will be advancing.

本発明は上記のような構成であるため、地盤注入工法のコストを抑制すると共に信頼性を向上することが可能となる。   Since this invention is the above structures, it becomes possible to suppress the cost of a ground injection construction method and to improve reliability.

本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法の、手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure of the design method of the placement range of the suspension type improvement material which concerns on embodiment of this invention. 懸濁型改良材の浸透範囲の仮想形状を示すイメージ図である。It is an image figure which shows the virtual shape of the osmosis | permeation range of a suspension type improvement material. 一次元注入実験で用いた試料の物理特性を示した図表である。It is the chart which showed the physical characteristic of the sample used in the one-dimensional injection experiment. 一次元注入実験の実験条件を示した図表である。It is the table | surface which showed the experimental condition of the one-dimensional injection | pouring experiment. 一次元注入実験の実験手順の模式図である。It is a schematic diagram of the experimental procedure of a one-dimensional injection experiment. 図5に引き続いての一次元注入実験の実験手順と一軸圧縮試験との模式図である。FIG. 6 is a schematic diagram of an experimental procedure of a one-dimensional injection experiment subsequent to FIG. 5 and a uniaxial compression test. 一軸圧縮試験の試験結果を示した図表である。It is the graph which showed the test result of the uniaxial compression test. 一次元注入実験の諸元と遅延係数及び分配係数とを合わせて示した図表である。It is the table | surface which showed together the item of the one-dimensional injection experiment, the delay coefficient, and the distribution coefficient. 一次元注入実験のモデルを示したイメージ図である。It is the image figure which showed the model of the one-dimensional injection experiment. 試料の平均粒径と分配係数との関係を示したグラフである。It is the graph which showed the relationship between the average particle diameter of a sample, and a distribution coefficient. 図10のグラフの近似直線の切片及び傾きの絶対値を示したグラフである。It is the graph which showed the absolute value of the intercept and inclination of the approximate line of the graph of FIG. 供試体の位置と供試体内の単位体積当たりの固形成分質量との関係を示したグラフである。It is the graph which showed the relationship between the position of a specimen, and the solid component mass per unit volume in a specimen. 供試体内の単位体積当たりの固形成分質量と一軸圧縮強度との関係を示したグラフである。It is the graph which showed the relationship between the solid component mass per unit volume in a test body, and uniaxial compressive strength. 土粒子の平均粒径と図13に示した近似直線の傾きとの関係を示したグラフである。It is the graph which showed the relationship between the average particle diameter of soil particles, and the inclination of the approximate straight line shown in FIG. ドラム缶注入実験の模式図である。It is a schematic diagram of a drum can injection experiment. ドラム缶注入実験の実験条件と実験結果とを示した図表である。5 is a chart showing experimental conditions and experimental results of a drum can injection experiment. 移流分散方程式から計算した、ドラム缶内の改良体の、固形成分濃度の分布、固形成分質量の分布、一軸圧縮強度の分布を示すグラフである。It is a graph which shows the distribution of the solid component density | concentration of the improved body in a drum, the distribution of solid component mass, and the distribution of uniaxial compressive strength computed from the advection dispersion | distribution equation. 移流分散方程式から推定した一軸圧縮強度とドラム缶注入実験から求めた一軸圧縮強度とを比較したプロット図である。It is the plot figure which compared the uniaxial compressive strength estimated from the advection dispersion equation, and the uniaxial compressive strength calculated | required from the drum injection | pouring experiment. 移流分散方程式から推定した改良体の半径とドラム缶注入実験から求めた改良体の半径とを比較したプロット図である。It is the plot figure which compared the radius of the improved body estimated from the advection dispersion | distribution equation, and the radius of the improved body calculated | required from the drum injection experiment.

以下、本発明を実施するための形態を、添付図面に基づき説明する。なお、図面の全体にわたって、同一部分は同一符号で示している。
図1は、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法の、手順の一例を示したフロー図である。まずは図1のフロー図に沿って、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法について説明する。
S10(浸透範囲の仮想形状設定):図2(a)に示すように、懸濁型改良材を注入管20の先端20aから地盤G内に注入したときに、懸濁型改良材が地盤G内で浸透する範囲の形状を仮想的に設定する。図2の例では、懸濁型改良材が、注入管20の先端20aの位置から、先端20aの位置を中心cとする球形に浸透する仮想形状24を設定している。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Note that the same portions are denoted by the same reference numerals throughout the drawings.
FIG. 1 is a flowchart showing an example of a procedure of a method for designing a placement range of a suspension-type improving material according to an embodiment of the present invention. First, the design method of the placement range of the suspension-type improving material according to the embodiment of the present invention will be described with reference to the flowchart of FIG.
S10 (virtual shape setting of infiltration range): As shown in FIG. 2 (a), when the suspension-type improving material is injected into the ground G from the tip 20a of the injection tube 20, the suspension-type improving material becomes the ground G. Virtually set the shape of the range to penetrate. In the example of FIG. 2, a virtual shape 24 is set in which the suspension-type improving material penetrates from the position of the tip 20 a of the injection tube 20 into a sphere centered at the position of the tip 20 a.

S20(移流分散方程式立式):上記S10で設定した仮想形状に対応する移流分散方程式を立てる。例えば、図2(a)に示した球形の仮想形状24に対応する移流分散方程式を立てるに当たり、図2(b)に示すように半径をr、半径rの地点のダルシー流速をv、地盤Gの土粒子の間隙率をn、地盤Gの土粒子の密度(乾燥密度)をρ、半径rの地点での懸濁型改良材の濃度をC、土粒子に吸着される懸濁型改良材の量をqとする。そして、図2(b)に示すΔrの層における懸濁型改良材の入力及び出力を式で表すと、下記のようになる。

Figure 2016204921
Figure 2016204921
Figure 2016204921
Figure 2016204921
ここで、〔数1〕〜〔数4〕は、順に、懸濁型改良材の入ってくる量、溜まる量、吸着される量、出ていく量を示している。 S20 (form of advection dispersion equation): An advection dispersion equation corresponding to the virtual shape set in S10 is established. For example, in establishing the advection dispersion equation corresponding to the spherical virtual shape 24 shown in FIG. 2A, the radius is r, the Darcy flow velocity at the point of the radius r is v r , and the ground is shown in FIG. The porosity of the soil particles of G is n e , the density (dry density) of the soil particles of the ground G is ρ a , the concentration of the suspension-type improving material at the point of the radius r is C r , and the suspended by the soil particles. Let q be the amount of turbidity improving material. The input and output of the suspension-type improving material in the Δr layer shown in FIG.
Figure 2016204921
Figure 2016204921
Figure 2016204921
Figure 2016204921
Here, [Equation 1] to [Equation 4] indicate, in order, the amount of the suspension-type improving material that enters, the amount that accumulates, the amount that is adsorbed, and the amount that exits.

更に、Kを分配係数としたときに、q=KCという線形吸着等温の関係が成り立つものとして、上記の〔数1〕〜〔数4〕から、改良材の収支式を考えると、〔数5〕のような関係が成り立ち、〔数5〕を整理すると〔数6〕のようになる。

Figure 2016204921
Figure 2016204921
ここで、土粒子の密度をρとして、遅延係数Rを〔数7〕のように定義する。
Figure 2016204921
すると、〔数7〕の関係から、移流分散方程式は、最終的に〔数6〕から〔数8〕のように書ける。
Figure 2016204921
Further, assuming that the linear adsorption isothermal relationship of q = K d C holds when K d is a distribution coefficient, considering the balance equation of the improved material from the above [Equation 1] to [Equation 4], A relation such as [Equation 5] is established, and [Equation 5] is rearranged to become [Equation 6].
Figure 2016204921
Figure 2016204921
Here, the density of the soil particles is defined as ρ S , and the delay coefficient R d is defined as [Equation 7].
Figure 2016204921
Then, from the relation of [Equation 7], the advection dispersion equation can be finally written as [Equation 6] to [Equation 8].
Figure 2016204921

S30(採取土の実験選択):後述する一次元注入実験及び一軸圧縮試験を、施工対象地盤から採取した土を用いて行うか否かを選択する。そして、採取土を用いて実験を行うことを選択した場合(YES)は、S110へ移行し、採取土を用いて実験を行わないことを選択した場合(NO)は、S40へ移行する。
S40(試料の実験選択):後述する一次元注入実験及び一軸圧縮試験を、試料の土粒子を用いて行うか否かを選択する。そして、試料を用いて実験を行うことを選択した場合(YES)は、S50へ移行し、試料を用いて実験を行わないことを選択した場合(NO)は、S90へ移行する。
S30 (Selection of collected soil experiment): It is selected whether or not to perform a later-described one-dimensional injection experiment and uniaxial compression test using soil collected from the construction target ground. If it is selected to perform the experiment using the collected soil (YES), the process proceeds to S110, and if it is selected not to perform the experiment using the collected soil (NO), the process proceeds to S40.
S40 (Selection of sample experiment): It is selected whether or not a one-dimensional injection experiment and a uniaxial compression test, which will be described later, are performed using soil particles of the sample. If it is selected to perform the experiment using the sample (YES), the process proceeds to S50, and if it is selected not to perform the experiment using the sample (NO), the process proceeds to S90.

S50(一次元注入実験実施):濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤とを用いて、一次元注入実験を実施する。ここでは、懸濁型改良材として、粒径が約1μmの球形の二酸化ケイ素を主材として含み、水酸化カルシウムを硬化剤として含む、超微粒子球状シリカ系改良材を採用するものとし、濃度が水シリカ質量比(W/Si)で400%、800%、1000%のものを用いる。又、模擬地盤を形成する試料として、ケイ砂6号、7号、8号を用いた、図3の図表に特性を示したような試料A〜Cを採用するものとする。図4の図表に、一次元注入実験の実験条件を示している。又、本実験では、長さ60cm、直径5cmのアクリル管を用いて、管内部の上下端に厚さ5cmのフィルタ層を粒径5mm程度の礫で形成し、フィルタ層で挟む形で試料土を作成する。アクリル管の下部は、脱気水槽及び改良材槽と接続する。   S50 (Implementation of one-dimensional injection experiment): A one-dimensional injection experiment is performed using a plurality of suspension-type improving materials having different concentrations and a plurality of simulated grounds formed of samples having different average particle diameters. Here, as the suspension-type improving material, an ultrafine particle spherical silica-based improving material containing spherical silicon dioxide having a particle diameter of about 1 μm as a main material and calcium hydroxide as a curing agent is used, and the concentration is 400%, 800% and 1000% water silica mass ratio (W / Si) is used. Further, samples A to C having characteristics shown in the chart of FIG. 3 using quartz sand No. 6, No. 7, and No. 8 are adopted as samples forming the simulated ground. The chart of FIG. 4 shows the experimental conditions of the one-dimensional injection experiment. In this experiment, an acrylic tube having a length of 60 cm and a diameter of 5 cm was used, and a filter layer having a thickness of 5 cm was formed on the upper and lower ends of the tube with gravel having a particle size of about 5 mm, and the sample soil was sandwiched between the filter layers. Create The lower part of the acrylic tube is connected to a deaeration water tank and an improvement material tank.

図5及び図6を参照しながら、一次元注入実験の具体的な手順を説明する。まず、図5(a)に示すように、下ペデスタル32とフィルタ層を設置した後、アクリル管30内に試料(試料A〜C)を乾燥落下法で堆積させ、側面を軽くたたくことで相対密度を調整する。更に、図5(b)に示すように、上ペデスタル34とフィルタ層を設置した後、脱気水槽36から、アクリル管30の下部から水頭差1.7mで脱気水を通水する。そして、アクリル管30の上部から脱気水が流出したことを確認して、通水を止める。次に、図5(c)に示すように、所定濃度(W/Siで400%、800%、1000%)の改良材を、改良材槽38から、アクリル管30の下部から注入圧(水頭差に換算して1.7m〜2.0m)をかけて浸透させる。すると、図5(d)に示すように、計算上で試料内の脱気水が改良材に置き換わった直後の時点で、若干濁った透明に近い改良材が、アクリル管30の上部から流出する。   A specific procedure of the one-dimensional injection experiment will be described with reference to FIGS. First, as shown in FIG. 5 (a), after placing the lower pedestal 32 and the filter layer, the samples (samples A to C) are deposited in the acrylic tube 30 by the dry-drop method, and the sides are lightly tapped. Adjust the density. Further, as shown in FIG. 5B, after the upper pedestal 34 and the filter layer are installed, the deaerated water is passed through the deaerated water tank 36 from the lower part of the acrylic tube 30 with a water head difference of 1.7 m. And after confirming that the deaeration water has flowed out from the upper part of the acrylic tube 30, the water flow is stopped. Next, as shown in FIG. 5 (c), an improvement material having a predetermined concentration (400%, 800%, 1000% in W / Si) is injected from the improvement material tank 38 into the injection pressure (water head) It is made to permeate over 1.7m-2.0m in terms of difference. Then, as shown in FIG. 5 (d), immediately after the degassed water in the sample is replaced with the improving material in the calculation, a slightly turbid and nearly transparent improving material flows out from the upper part of the acrylic tube 30. .

その後、図6(a)に示すように、継続して改良材を流すことにより、アクリル管30の上部から白く懸濁した改良材が排出される。白く懸濁した改良材がアクリル管30から排出されたら、まず100mlを採取し、次に75ml、更に65mlを、容器に個別に採取し、採取後に改良材の浸透を止める。そして、採取した排水を個別に蒸発皿40に入れて、含水比測定の方法に準じて送風式恒温乾燥炉に24時間静置し、蒸発後に残留した固形成分の質量を計測する。次に、図6(b)に示すように、アクリル管30内の試料から改良材が流出しないように注入孔の部分を閉じた後、改良材の注入管をアクリル管30から取り外す。そして、室温25℃で所定日数(図4参照)の養生を行う。
なお、本工程では、上記のような手順による一次元注入実験を、試料A〜Cと、改良材の濃度(W/Si)との組み合わせを変更ながら、複数回実施する(図4の図表内の組み合わせを参照)。
Thereafter, as shown in FIG. 6A, the improvement material suspended in white is discharged from the upper part of the acrylic tube 30 by continuously flowing the improvement material. When the white suspended improvement material is discharged from the acrylic tube 30, first 100 ml is collected, then 75 ml and then 65 ml are individually collected in a container, and the penetration of the improvement material is stopped after collection. And the collected waste_water | drain is put into the evaporating dish 40 separately, and is left still for 24 hours in a ventilation type | mold constant temperature drying furnace according to the method of water content ratio measurement, The mass of the solid component which remained after evaporation is measured. Next, as shown in FIG. 6B, the injection hole portion is closed so that the improvement material does not flow out of the sample in the acrylic tube 30, and then the improvement material injection tube is removed from the acrylic tube 30. Then, curing is performed at a room temperature of 25 ° C. for a predetermined number of days (see FIG. 4).
In this step, the one-dimensional injection experiment according to the above procedure is performed a plurality of times while changing the combination of the samples A to C and the concentration of the improving material (W / Si) (in the chart of FIG. 4). See combination).

S60(一軸圧縮試験実施):上記S50の一次元注入実験により作成した、複数の改良体を対象として、一軸圧縮試験を実施する。すなわち、図6(b)に示したアクリル管30内での養生が所定日数に達して、試料の改良体が構築されたら、図4の図表に示した注入孔からの採取位置に従って、図6(c)に示すように、改良体42をアクリル管30ごと高さ10cmに切断する。そして、アクリル管30から試料の改良体42を取り出し、一軸圧縮試験機44にセットして、一軸圧縮試験を行う。本発明者らが行った、試料の改良体毎の一軸圧縮試験の結果を、図7の図表に示している。図7に示す結果では、全ての供試体(試料の改良体)の一軸圧縮強度が、100kPa(kN/m)以上を示している。 S60 (Implementation of uniaxial compression test): A uniaxial compression test is carried out for a plurality of improved bodies created by the one-dimensional injection experiment of S50. That is, when the curing in the acrylic tube 30 shown in FIG. 6 (b) reaches a predetermined number of days and the improved body of the sample is constructed, according to the sampling position from the injection hole shown in the chart of FIG. As shown in (c), the improved body 42 is cut together with the acrylic tube 30 to a height of 10 cm. Then, the improved sample 42 of the sample is taken out from the acrylic tube 30 and set in the uniaxial compression tester 44 to perform the uniaxial compression test. The results of the uniaxial compression test conducted by the present inventors for each improved sample are shown in the chart of FIG. In the results shown in FIG. 7, the uniaxial compressive strength of all the specimens (sample improvements) is 100 kPa (kN / m 2 ) or more.

S70(平均粒径と分配係数との関係導出):上記S50の一次元注入実験の結果に基づいて、土粒子の平均粒径と分配係数との関係を求める。図8には、本発明者らが行った一次元注入実験の諸元を示している。ここで、図8の図表中の「排出液の単位体積当たりの固形成分質量」は、図6(a)に示したように、アクリル管30の上部から排出される排出液を採取し、排出液を炉乾燥した後に、残留した固形成分の質量を計測し、計測した質量を単位体積当たりの質量に換算したものである。この結果から、排出液量が増えると、徐々に排出液中の固形成分質量が増加していることが分かる。これは、改良材の浸透の継続によって、改良材の固形成分が砂粒子に吸着される量が、少なくなっていくことを意味するものである。   S70 (derivation of relationship between average particle size and distribution coefficient): The relationship between the average particle size of soil particles and the distribution coefficient is obtained based on the result of the one-dimensional injection experiment of S50. FIG. 8 shows the specifications of a one-dimensional injection experiment conducted by the present inventors. Here, the “solid component mass per unit volume of the discharged liquid” in the chart of FIG. 8 is obtained by collecting the discharged liquid discharged from the upper part of the acrylic tube 30 as shown in FIG. After the liquid is oven dried, the mass of the remaining solid component is measured, and the measured mass is converted to the mass per unit volume. From this result, it can be seen that as the amount of discharged liquid increases, the mass of solid components in the discharged liquid gradually increases. This means that the amount by which the solid component of the improving material is adsorbed by the sand particles decreases as the penetration of the improving material continues.

ここで、上記S50で行った一次元注入実験のモデルとして、浸透方向の軸をx軸、注入孔を原点とする、図9に示すようなモデルを考える。土粒子による、改良材の固形成分の吸着は、常に線形吸着等温線で表現されると仮定して、q=KC で表現する(q:単位体積当たりの土粒子に吸着される物質濃度、K:分配係数、C:改良材の濃度)。そして、遅延係数をR、分散係数をD、試料の間隙率をn、x軸方向の平均間隙流速をv、固形成分の濃度をCとすると、図9に示すような一次元の移流分散方程式は、〔数9〕のようになる。

Figure 2016204921
そして、上記S50で行った一次元注入実験では、改良材の注入時間が短く、アクリル管の管路が小さいことから、分散の影響は小さいと考えて、〔数9〕から分散項を外して〔数10〕のようにする。
Figure 2016204921
Here, as a model of the one-dimensional injection experiment performed in S50, a model as shown in FIG. 9 is used in which the axis in the permeation direction is the x axis and the injection hole is the origin. Assuming that the solid component adsorption of the improved material by the soil particles is always expressed by a linear adsorption isotherm, it is expressed by q = K d C (q: the concentration of the substance adsorbed by the soil particles per unit volume) , K d : partition coefficient, C: concentration of improved material). When the delay coefficient is R d , the dispersion coefficient is D x , the sample porosity is ne , the average gap flow velocity in the x-axis direction is v x , and the solid component concentration is C, the one-dimensional as shown in FIG. The advection dispersion equation is expressed as [Equation 9].
Figure 2016204921
Then, in the one-dimensional injection experiment performed in S50, since the injection time of the improved material is short and the acrylic pipe line is small, it is considered that the influence of dispersion is small, and the dispersion term is removed from [Equation 9]. [Equation 10]
Figure 2016204921

本実施例では、差分法を利用して〔数10〕を解くこととする。アクリル管をΔxの厚さでn層に分割したと考えた場合、k+1層における時間iの濃度Ck+1 の計算は、〔数11〕のように表すことができる。

Figure 2016204921
又、Δx=1.0cm、Δt=0.1秒とし、アクリル管の端部x=0cmから注入する改良材の濃度は常に100%で、x=60cmで排出されると考える。ここでは、流速は常に一定であると仮定し、図8の図表に示した注入継続時間と排出液量の総和とから平均的な流速を計算し、使用することとする。 In the present embodiment, it is assumed that [Equation 10] is solved using a difference method. Assuming that the acrylic tube is divided into n layers with a thickness of Δx, the calculation of the concentration C k + 1 i at time i in the k + 1 layer can be expressed as [Equation 11].
Figure 2016204921
Further, it is assumed that Δx = 1.0 cm, Δt = 0.1 seconds, and the concentration of the improved material injected from the end x = 0 cm of the acrylic tube is always 100%, and is discharged at x = 60 cm. Here, it is assumed that the flow rate is always constant, and the average flow rate is calculated from the injection duration time and the total amount of the discharged liquid shown in the chart of FIG. 8 and used.

供試体内に存在する改良材の固形成分の量は、土粒子の間隙に存在する改良材溶液内の固形成分と、土粒子により吸着された固形成分の和となる。このため、単位体積当たりの試料中に存在する固形成分の物質濃度をQとすると、Qは〔数12〕のようになる。

Figure 2016204921
〔数11〕を計算するためには、遅延係数Rが定められている必要があることから、計測終了時の排出液(65ml)の固形成分の濃度に対して、〔数11〕を用いて計算した同時刻(計測終了時に相当)の濃度が最も近くなる、遅延係数Rを同定する。更に、同定した遅延係数Rと〔数7〕とから、分配係数Kを計算する。図8の図表には、同定した遅延係数R及び分配係数Kを合わせて示している。そして、図8に示した試料の平均粒径と分配係数とから、図10に示すような、平均粒径と分配係数との関係を導出する。なお、本実施例における平均粒径とは、50%粒径を示している。図10から、平均粒径と分配係数との関係は、略直線で近似でき、改良材の濃度によって傾きが異なることが分かる。 The amount of the solid component of the improving material present in the specimen is the sum of the solid component in the improving material solution existing in the gap between the soil particles and the solid component adsorbed by the soil particles. For this reason, when the substance concentration of the solid component present in the sample per unit volume is Q, Q is expressed as [Equation 12].
Figure 2016204921
In order to calculate [Equation 11], since the delay coefficient Rd needs to be determined, [Equation 11] is used for the concentration of the solid component of the discharged liquid (65 ml) at the end of the measurement. Thus, the delay coefficient Rd at which the concentration at the same time (corresponding to the end of measurement) calculated is the closest is identified. Further, the distribution coefficient K d is calculated from the identified delay coefficient R d and [Equation 7]. The chart of FIG. 8 shows the identified delay coefficient R d and distribution coefficient K d together. Then, the relationship between the average particle diameter and the distribution coefficient as shown in FIG. 10 is derived from the average particle diameter and the distribution coefficient of the sample shown in FIG. In addition, the average particle diameter in a present Example has shown 50% particle diameter. FIG. 10 shows that the relationship between the average particle diameter and the distribution coefficient can be approximated by a substantially straight line, and the slope varies depending on the concentration of the improved material.

S80(固形成分質量と一軸圧縮強度との関係導出):上記S50の一次元注入実験及び上記S60の一軸圧縮試験の結果に基づいて、試料内の固形成分質量と試料改良体の一軸圧縮強度との関係を求める。具体的に、まず、上述した〔数11〕、〔数12〕、遅延係数R、及び、分配係数Kを利用して、試料内の単位体積当たりの固形成分質量を算出し、図12に示すように、試料毎に、単位体積当たりの固形成分質量と供試体位置との関係を求める。図12(a)〜(c)は、夫々、試料A〜Cに対応している。何れの試料の結果も、改良材の濃度が低い条件では、供試体内に存在する固形成分質量が少なく、又、注入孔から45cm程度までは、固形成分質量が略一定になっていることが分かる。
次に、図12から供試体の中間位置の単位体積当たりの固形成分質量を求めると共に、図7に示した一軸圧縮試験の結果を利用して、固形成分質量と一軸圧縮強度との関係を、図13に示すように求める。なお、図13に示す近似直線は、原点を通るように調整したものである。図13から、固形成分質量と一軸圧縮強度とは、概ね比例関係にあり、又、同じ固形成分質量では、試料の粒径が小さくなると一軸圧縮強度が大きくなる傾向にあることが分かる。
S80 (Derivation of relationship between solid component mass and uniaxial compressive strength): Based on the result of the one-dimensional injection experiment of S50 and the uniaxial compressive test of S60, the solid component mass in the sample and the uniaxial compressive strength of the sample improvement Seeking the relationship. Specifically, first, the solid component mass per unit volume in the sample is calculated using the above-described [Equation 11], [Equation 12], the delay coefficient R d , and the distribution coefficient K d , and FIG. As shown in Fig. 5, the relationship between the mass of the solid component per unit volume and the position of the specimen is obtained for each sample. 12A to 12C correspond to samples A to C, respectively. In all samples, the mass of the solid component present in the specimen is small when the concentration of the improving material is low, and the mass of the solid component is substantially constant up to about 45 cm from the injection hole. I understand.
Next, while obtaining the solid component mass per unit volume at the intermediate position of the specimen from FIG. 12, using the result of the uniaxial compression test shown in FIG. 7, the relationship between the solid component mass and the uniaxial compressive strength, It calculates | requires as shown in FIG. The approximate straight line shown in FIG. 13 is adjusted to pass through the origin. From FIG. 13, it can be seen that the solid component mass and the uniaxial compressive strength are generally in a proportional relationship, and that the same solid component mass tends to increase the uniaxial compressive strength as the particle size of the sample decreases.

S90(以前の実験結果流用):上記S50及びS60で説明した実験と同様の実験を以前に行っている場合は、以前の実験結果を流用することとして、S50〜S80を省略してもよい。
S100(分配係数推定):上記S70で求めた平均粒径と分配係数との関係、或いは、以前に行った実験結果から得た平均粒径と分配係数との関係を利用して、施工対象地盤の分配係数を求める。ここでは、平均粒径と分配係数との関係として、図10のグラフに示す関係を用いることとする。xを50%粒径、yを分配係数として、図10に示した近似直線を式で表すと、水シリカ比が400%の近似直線がy=0.665−2.29x、水シリカ比が800%の近似直線がy=1.15−4.58x、水シリカ比が1000%の近似直線がy=1.95−8.28xとなる。このため、これらの近似直線の切片と傾きの絶対値とをグラフに示すと、図11のようになる。図11中の曲線は、指数関数による近似曲線である。これらの近似曲線から、改良材の水シリカ比W/Sと土粒子の平均粒径D50とから、分配係数Kdを求める近似式は、〔数13〕のようになる。

Figure 2016204921
そのため、上記の〔数13〕に、分配係数を特定したい位置の土粒子の平均粒径と、任意の懸濁型改良材の濃度(水シリカ比)とを適用すれば、分配係数が求まることとなる。このようにして、施工対象地盤の分配係数を推定する。なお、ここでは、図10の3本の近似直線から、分配係数を特定したい位置の土粒子の平均粒径が0.15mmである場合の、分配係数を推定する。すると、上述した近似直線の式から、平均粒径が0.15mmの場合の分配係数は、水シリカ比が400%で0.322、水シリカ比が800%で0.463、水シリカ比が1000%で0.708となる。 S90 (Diversion of previous experimental results): When the same experiment as the experiment described in S50 and S60 has been performed before, S50 to S80 may be omitted by diverting the previous experimental results.
S100 (Estimation of distribution coefficient): Using the relationship between the average particle diameter obtained in S70 and the distribution coefficient, or the relationship between the average particle diameter obtained from the results of previous experiments and the distribution coefficient, the construction target ground Find the distribution coefficient of. Here, the relationship shown in the graph of FIG. 10 is used as the relationship between the average particle diameter and the distribution coefficient. When the approximate straight line shown in FIG. 10 is expressed by a formula where x is 50% particle size and y is a distribution coefficient, the approximate straight line having a water-silica ratio of 400% is y = 0.665-2.29x, and the water-silica ratio is An approximate line of 800% is y = 1.15-4.58x, and an approximate line of 1000% water-silica ratio is y = 1.95-8.28x. For this reason, when the intercept of these approximate straight lines and the absolute value of the inclination are shown in a graph, it is as shown in FIG. The curve in FIG. 11 is an approximate curve by an exponential function. From these approximate curve, the average particle size D 50 Metropolitan Water silica ratio W / S i and soil particles of the modifying material, approximation formula for obtaining the distribution coefficient Kd is as [Equation 13].
Figure 2016204921
Therefore, the distribution coefficient can be obtained by applying the average particle diameter of the soil particles at the position where the distribution coefficient is desired to be specified and the concentration of any suspension-type improving material (water silica ratio) to the above [Equation 13]. It becomes. In this way, the distribution coefficient of the construction target ground is estimated. Here, the distribution coefficient when the average particle diameter of the soil particles at the position where the distribution coefficient is desired to be specified is 0.15 mm is estimated from the three approximate lines in FIG. Then, from the above approximate straight line equation, the distribution coefficient when the average particle size is 0.15 mm is 0.322 when the water silica ratio is 400%, 0.463 when the water silica ratio is 800%, and the water silica ratio is It becomes 0.708 at 1000%.

S110(一次元注入実験実施):濃度が異なる複数の懸濁型改良材と、施工対象地盤から採取した土により形成した模擬地盤とを用いて、一次元注入実験を実施する。上記S50と同様に、懸濁型改良材として、粒径が約1μmの球形の二酸化ケイ素を主材として含み、水酸化カルシウムを硬化剤として含む、超微粒子球状シリカ系改良材を採用するものとし、濃度が水シリカ質量比(W/Si)で400%、800%、1000%のものを用いる。又、模擬地盤は、施工対象地盤内の異なる位置から採取した土を使用して、複数形成する。施工対象地盤の土粒子の平均粒径等が、施工対象地盤内であまり変わらない場合等は、模擬地盤を1つのみ形成してもよい。本実験では、上記S50で用いた実験器具と同様の器具を用いて、上記S50で説明した手順と同様の手順で実験を行うものとし、詳しい説明は省略する。
S120(一軸圧縮試験実施):上記S110の一次元注入実験により作成した、施工対象地盤の採取土の改良体を対象として、一軸圧縮試験を実施する。本試験は、上記S60で説明した手順と同様の手順で行うため、詳しい説明を省略する。
S110 (Implementation of one-dimensional injection experiment): A one-dimensional injection experiment is performed using a plurality of suspension-type improving materials having different concentrations and a simulated ground formed from soil collected from the construction target ground. Similar to S50, an ultrafine spherical silica-based improving material containing spherical silicon dioxide having a particle diameter of about 1 μm as a main material and calcium hydroxide as a curing agent is used as a suspension-type improving material. , Having a water silica mass ratio (W / Si) of 400%, 800%, and 1000%. In addition, a plurality of simulated grounds are formed using soil collected from different positions in the construction target ground. When the average particle diameter of the soil particles of the construction target ground does not change much in the construction target ground, only one simulated ground may be formed. In this experiment, an experiment similar to the procedure described in S50 is performed using the same instrument as the experiment instrument used in S50, and detailed description thereof is omitted.
S120 (Implementation of uniaxial compression test): A uniaxial compression test is carried out on the improved soil of the ground sample to be constructed, created by the one-dimensional injection experiment of S110. Since this test is performed in the same procedure as described in S60 above, detailed description is omitted.

S130(分配係数推定):上記S110の一次元注入実験の結果に基づいて、施工対象地盤の分配係数を求める。まず、一次元注入実験の結果から、図8の図表に示した「排出液の単位体積当たりの固形成分質量」に該当する値を算出する。更に、上記S110で行った一次元注入実験のモデルとして、浸透方向の軸をx軸、注入孔を原点とする、図9に示すようなモデルを考える。すると、上記S70と同様に、〔数11〕の式が導き出される。そこで、計測終了時の排出液(65ml)の固形成分の濃度に対して、〔数11〕を用いて計算した同時刻(計測終了時に相当)の濃度が最も近くなる、遅延係数Rを同定する。更に、同定した遅延係数Rと〔数7〕とから、分配係数Kを計算する。この分配係数Kが、推定される施工対象地盤の分配係数である。
S140(固形成分質量と一軸圧縮強度との関係導出):上記S110の一次元注入実験及び上記S120の一軸圧縮試験の結果に基づいて、施工対象地盤の採取土から形成した模擬地盤の、改良体内の固形成分質量と改良体の一軸圧縮強度との関係を求める。本工程は、上記S80で説明した手順と同様であるため、詳しい説明を省略する。
S130 (distribution coefficient estimation): The distribution coefficient of the construction target ground is obtained based on the result of the one-dimensional injection experiment of S110. First, from the result of the one-dimensional injection experiment, a value corresponding to “solid component mass per unit volume of discharged liquid” shown in the chart of FIG. 8 is calculated. Furthermore, as a model of the one-dimensional injection experiment performed in S110, a model as shown in FIG. 9 is considered in which the axis in the infiltration direction is the x axis and the injection hole is the origin. Then, the equation of [Equation 11] is derived as in S70. Therefore, identification against the concentration of solid components of the effluent at the end of the measurement (65 ml), the concentration of the same time was calculated (corresponding to the time of end of measurement) is closest using [Equation 11], the delay factor R d To do. Further, the distribution coefficient K d is calculated from the identified delay coefficient R d and [Equation 7]. This distribution coefficient Kd is the estimated distribution coefficient of the construction target ground.
S140 (Derivation of relationship between solid component mass and uniaxial compressive strength): Based on the result of the one-dimensional injection experiment of S110 and the uniaxial compression test of S120, the improved body of the simulated ground formed from the soil collected from the construction target ground The relationship between the solid component mass and the uniaxial compressive strength of the improved body is obtained. Since this step is the same as the procedure described in S80 above, detailed description is omitted.

S150(遅延係数算出):推定した施工対象地盤の分配係数を利用して、遅延係数を算出する。分配係数Kと遅延係数Rとの関係は、〔数7〕に示した通りであるため、分配係数Kと、施工対象地盤の土粒子の密度ρ及び間隙率nとから、遅延係数Rを算出する。例えば、土粒子の密度ρ及び間隙率nが2.707及び0.5であり、上記S100に示した例のように、平均粒径が0.15mmのときの分配係数が、水シリカ比が400%で0.322、水シリカ比が800%で0.463、水シリカ比が1000%で0.708となる場合の遅延係数は、夫々、1.87(水シリカ比400%)、2.25(水シリカ比800%)、2.92(水シリカ比1000%)となる。なお、上記S130で分配係数を推定した場合は、分配係数を推定する前に遅延係数を同定しているため、その際に同定した遅延係数が施工対象地盤の遅延係数となる。 S150 (delay coefficient calculation): The delay coefficient is calculated using the estimated distribution coefficient of the construction target ground. Because the relationship between the distribution coefficient K d and the delay factor R d is as shown in [Equation 7], from the distribution coefficient K d, and the density [rho s and porosity n e of soil particles construction target ground, The delay coefficient Rd is calculated. For example, the density of the soil particles [rho s and porosity n e is 2.707 and 0.5, as in the example shown in S100, the distribution coefficient when the average particle size of 0.15mm are water silica When the ratio is 0.322 at 400%, the water silica ratio is 0.463 at 800%, and the water silica ratio is 0.708 at 1000%, the delay coefficients are 1.87 (400% water silica), respectively. 2.25 (water silica ratio 800%), 2.92 (water silica ratio 1000%). When the distribution coefficient is estimated in S130, the delay coefficient is identified before the distribution coefficient is estimated. Therefore, the delay coefficient identified at that time becomes the delay coefficient of the construction target ground.

S160(固形成分の予測分布導出):算出した遅延係数を利用して〔数8〕を解き、施工対象地盤内での固形成分の予測分布を求める。まず、遅延係数Rを用いると共に、懸濁型改良材の注入量や濃度等を設定して、差分法等によって〔数8〕の移流分散方程式を解き、球形の改良体の半径と固形成分の濃度との関係を求める(例えば、後に説明する図17(a)参照)。更に、求めた結果と〔数12〕とを利用して、球形の改良体の半径と固形成分質量との関係を求める(例えば、後に説明する図17(b)参照)ことで、施工対象地盤内に球形に形成される改良体の、固形成分の予測分布を求める。 S160 (Derivation of predicted distribution of solid component): [Equation 8] is solved using the calculated delay coefficient, and the predicted distribution of the solid component in the construction target ground is obtained. First, the delay coefficient Rd is used, the injection amount and concentration of the suspension-type improving material are set, and the advection dispersion equation of [Equation 8] is solved by the difference method or the like, and the radius and solid component of the spherical improvement body are solved. The relationship with the density of the toner is obtained (for example, see FIG. 17A described later). Further, by using the obtained result and [Equation 12], the relationship between the radius of the spherical improved body and the mass of the solid component is obtained (for example, see FIG. 17B described later), so that the construction target ground The predicted distribution of the solid component of the improved body formed into a spherical shape is obtained.

S170(一軸圧縮強度の予測分布導出):上記S80又はS140で求めた、固形成分質量と一軸圧縮強度との関係に基づいて、施工対象地盤内での一軸圧縮強度の予測分布を求める。すなわち、固形成分質量と一軸圧縮強度とが、例えば、図13に示すような関係にある場合、xを固形成分質量、yを一軸圧縮強度とすると、試料Aの実験の近似直線はy=57.568、試料Bの実験の近似直線はy=59.398、試料Cの実験の近似直線はy=119.93と表せる。これらの近似直線の傾きと、図8で確認できる各試料の50%粒径との関係をグラフに示すと、図14のようになる。更に、図14に示す近似直線は、xを50%粒径、yを図13の近似直線の傾きとすると、y=226.37−902.48xとなる。このため、施工対象地盤の50%粒径が0.15mmであるとすると、この場合の固形成分質量と一軸圧縮強度との関係の近似曲線の傾きは、90.998(≒91)と計算できる。従って、施工対象地盤の50%粒径が0.15mmの場合の、固形成分質量(x)と一軸圧縮強度(y)との関係は、y=91xという近似式で表せる。この関係と、上記S160で求めた固形成分の予測分布とから、施工対象地盤における一軸圧縮強度の予測分布を求める(例えば、後に説明する図17(c)参照)。   S170 (Derivation of predicted distribution of uniaxial compressive strength): Based on the relationship between the solid component mass and the uniaxial compressive strength obtained in S80 or S140, a predicted distribution of uniaxial compressive strength in the construction target ground is obtained. That is, when the solid component mass and the uniaxial compressive strength are in a relationship as shown in FIG. 13, for example, if x is the solid component mass and y is the uniaxial compressive strength, the approximate straight line of the experiment of sample A is y = 57. .568, the approximate straight line of the sample B experiment is y = 59.398, and the approximate straight line of the sample C experiment is y = 119.93. FIG. 14 shows the relationship between the slopes of these approximate lines and the 50% particle size of each sample that can be confirmed in FIG. Further, the approximate straight line shown in FIG. 14 is y = 226.37-902.48x, where x is 50% particle size and y is the slope of the approximate straight line in FIG. For this reason, when the 50% particle size of the construction target ground is 0.15 mm, the slope of the approximate curve of the relationship between the solid component mass and the uniaxial compressive strength in this case can be calculated as 90.998 (≈91). . Therefore, the relationship between the solid component mass (x) and the uniaxial compressive strength (y) when the 50% particle size of the construction target ground is 0.15 mm can be expressed by the approximate expression y = 91x. From this relationship and the predicted distribution of the solid component obtained in S160, a predicted distribution of uniaxial compressive strength in the construction target ground is obtained (for example, see FIG. 17C described later).

S180(改良体の大きさ導出):上記S170で求めた一軸圧縮強度の予測分布に基づいて、所定の強度以上の一軸圧縮強度を有する改良体の大きさを求める。すなわち、一軸圧縮強度の予測分布から、例えば、100kPa以上の一軸圧縮強度を有する部分を特定して、その部分の大きさ(上記S10で球形の仮想形状を設定している場合は球形の半径)を求めればよい。
ここまでの工程により、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法の、一例の手順が終了となる。
S180 (Derivation of size of improved body): Based on the predicted distribution of uniaxial compressive strength obtained in S170, the size of the improved body having uniaxial compressive strength equal to or higher than a predetermined strength is obtained. That is, for example, a portion having a uniaxial compressive strength of 100 kPa or more is identified from the predicted distribution of uniaxial compressive strength, and the size of the portion (spherical radius if a spherical virtual shape is set in S10 above) You can ask for.
By the steps so far, an example procedure of the design method for the placement range of the suspension-type improving material according to the embodiment of the present invention is completed.

次に、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法を検証するために、本発明者らが行ったドラム缶注入実験について説明する。図15に、ドラム缶注入実験の模式図を示している。実験に使用したドラム缶50の大きさは、図15に示す通りである。ドラム缶50の最下層に砕石の排水層52を設け、ドラム缶50の内周面に沿って4本のドレーンパイプ54を設置した。ドレーンパイプ54は、飽和過程では注水用として利用し、改良材の注入時は排水用として利用するものである。そして、ドラム缶50内に、粒度を調整したケイ砂(試料A〜C)を5層に分けて投入し、各層毎に手動ランマーにより締め固めて、相対密度60%を目標に調整すると共に、砂層の中央部に、吐出口56aを備えた注入管56を設置した。砂詰め終了後に、ドラム缶50の上部5cmにモルタル58を打設してキャッピングした。その後、下方から脱気水を流し、脱気水がドラム缶50内の砂試料を満たした後に、注入管56から懸濁型改良材を注入した。注入速度は1分当たり1リットルで、計42リットルの改良材を注入した。そして、一定期間養生後に、改良体を掘り出して寸法を計測し、その後、供試体を切り出して一軸圧縮試験を行った。図16の図表に、実験条件と実験結果とを、まとめて示している。なお、実験は、1回目と2回目とで、大きく2回に分けて行なっている。図16中、配合は、改良材の水シリカ比(W/Si)であり、改良率は、実験で形成された改良体の体積を、改良材が間隙を充填したときの理想的な改良体体積で除した値を示している。   Next, a drum can injection experiment conducted by the present inventors in order to verify the design method of the placement range of the suspension-type improving material according to the embodiment of the present invention will be described. FIG. 15 shows a schematic diagram of a drum can injection experiment. The size of the drum can 50 used in the experiment is as shown in FIG. A crushed stone drainage layer 52 was provided in the lowermost layer of the drum can 50, and four drain pipes 54 were installed along the inner peripheral surface of the drum can 50. The drain pipe 54 is used for water injection in the saturation process, and is used for drainage when the improved material is injected. Then, the silica sand (samples A to C) with adjusted particle size is put into the drum can 50 in five layers, and each layer is compacted with a manual rammer to adjust the relative density to 60%, and the sand layer. An injection tube 56 provided with a discharge port 56a was installed in the central part. After completion of the sand packing, a mortar 58 was placed on the top 5 cm of the drum can 50 and capped. Thereafter, deaerated water was poured from below, and after the deaerated water filled the sand sample in the drum 50, the suspension-type improving material was injected from the injection tube 56. The injection rate was 1 liter per minute and a total of 42 liters of improved material was injected. And after curing for a fixed period, the improved body was dug and the dimension was measured, and then the specimen was cut out and subjected to a uniaxial compression test. The table of FIG. 16 collectively shows the experimental conditions and the experimental results. In addition, the experiment is divided into two times, the first time and the second time. In FIG. 16, the formulation is the water silica ratio (W / Si) of the improved material, and the improvement rate is the volume of the improved material formed in the experiment, and the ideal improved material when the improved material fills the gap. The value divided by the volume is shown.

本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法に従い、ドラム缶内に、図2に示したような球形の範囲で改良材が浸透すると仮定し、〔数8〕の式を解いた。1回目の実験のNo.1、3〜5に対応する計算結果として、改良体半径と改良材の濃度(注入した改良材の濃度を100%とした場合)との関係を図17(a)に、改良体半径と固形成分質量との関係を図17(b)に、改良体半径と一軸圧縮強度との関係を図17(c)に、夫々示している。なお、計算に使用した遅延係数は、図10に示した平均粒径と分配係数との関係、図10の近似直線から得られる図11のグラフ及び〔数13〕から、分配係数を求め(図1のS100参照)、更に、〔数7〕から同定した遅延係数である(図1のS150参照)。   According to the design method of the placement range of the suspension-type improving material according to the embodiment of the present invention, it is assumed that the improving material penetrates into the drum can in the spherical range as shown in FIG. Solved the equation. No. of the first experiment. As a calculation result corresponding to 1 and 3 to 5, FIG. 17A shows the relationship between the radius of the improved body and the concentration of the improved material (when the concentration of the injected improved material is 100%). FIG. 17B shows the relationship with the component mass, and FIG. 17C shows the relationship between the improved body radius and the uniaxial compressive strength. The delay coefficient used in the calculation is obtained from the relationship between the average particle diameter and the distribution coefficient shown in FIG. 10, the graph of FIG. 11 obtained from the approximate straight line of FIG. 1 (see S100 in FIG. 1), and the delay coefficient identified from [Equation 7] (see S150 in FIG. 1).

更に、図18及び図19に、ドラム缶注入実験から得た結果と、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法から推定した結果との比較を示している。図18が一軸圧縮強度、図19が改良体の半径の比較結果である。図から分かるように、実験結果と推定結果とが離れているものもあるが、概ね良好な結果が得られた。なお、図示は省略するが、ドラム缶注入実験から得た改良体の体積と、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法から推定した改良体の体積とを比較した結果、図19に示した改良体の半径の比較結果と同様の傾向が見られた。   Further, FIGS. 18 and 19 show a comparison between the result obtained from the drum can injection experiment and the result estimated from the method for designing the placement range of the suspension-type improving material according to the embodiment of the present invention. FIG. 18 is a comparison result of uniaxial compressive strength, and FIG. 19 is a comparison result of the radius of the improved body. As can be seen from the figure, there are some cases where the experimental results and the estimation results are far apart, but generally good results were obtained. Although illustration is omitted, the volume of the improved body obtained from the drum can injection experiment is compared with the volume of the improved body estimated from the design method of the placement range of the suspension type improved material according to the embodiment of the present invention. As a result, the same tendency as the comparison result of the radius of the improved body shown in FIG. 19 was observed.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、土粒子による懸濁型改良材の吸着量を考慮した移流分散方程式を利用して、地盤の改良体の大きさや強度を求めるものである。すなわち、まず、図2に示すように、懸濁型改良材を地盤Gに注入したときに、懸濁型改良材が地盤G内に浸透する範囲の形状24を、仮想的に設定する(図1のS10)。そして、設定した仮想形状24に対応する移流分散方程式を、地盤の土粒子によって懸濁型改良材が吸着される量をパラメータとして含めて立式する(図1のS20)。この際、例えば、〔数1〕〜〔数5〕に示すように、懸濁型改良材の濃度Cと吸着量qとの間に、分配係数Kを用いた線形吸着等温の関係が成り立つものとして立式する。 Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, the design method of the placement range of the suspension-type improvement material according to the embodiment of the present invention uses the advection dispersion equation considering the amount of suspension-type improvement material adsorbed by the soil particles, and improves the ground The size and strength of the are determined. That is, first, as shown in FIG. 2, when the suspension-type improving material is injected into the ground G, a shape 24 in a range in which the suspension-type improving material penetrates into the ground G is virtually set (see FIG. 2). 1 S10). Then, an advection dispersion equation corresponding to the set virtual shape 24 is formulated including the amount of the suspension-type improving material adsorbed by the soil particles of the ground as a parameter (S20 in FIG. 1). At this time, for example, as shown in [Equation 1] to [Equation 5], a linear adsorption isothermal relationship using the distribution coefficient Kd is established between the concentration C of the suspension-type improving material and the adsorption amount q. It stands as a thing.

次に、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤又は施工対象地盤から採取した土により形成した模擬地盤とを用いて、一次元注入実験を実施する(図1のS50又はS110)。試料により形成した模擬地盤を用いるか、施工対象地盤からの採取土により形成した模擬地盤を用いるかは、状況に応じて適宜選択できるものとする(図1のS30、S40)。一次元注入実験は、例えば、図5及び図6(a)、(b)に示すように、アクリル管30の内部に模擬地盤を形成し、模擬地盤に懸濁型改良材を注入する試験を、懸濁型改良材の濃度を変更しながら複数回実施する。更に、一次元注入実験により得られた複数の模擬地盤の改良体を対象として、図6(c)に示すように、一軸圧縮試験を実施する(図1のS60又はS120)。そして、双方の実験結果から、分配係数K、及び、懸濁型改良材の固形成分の質量と改良体の一軸圧縮強度との関係を求める(図1のS80又はS140)。すなわち、例えば、一次元注入実験のモデル(図9参照)に対応する、〔数10〕のような移流分散方程式を立てて、この移流分散方程式を差分法等を利用して計算することで、施工対象地盤の分配係数Kを求める。又、移流分散方程式から得られる、改良体の位置毎の単位体積当たりの固形成分質量から、図12に示すような改良体内における固形成分の分布を求め、更に、一軸圧縮試験の結果と合わせて、図13に示すような固形成分の質量と改良体の一軸圧縮強度との関係を求める。続いて、〔数7〕を利用して、施工対象地盤の分配係数Kと、施工対象地盤の土粒子の間隙率n及び密度ρとから、施工対象地盤の遅延係数Rを算出する(図1のS150)。 Next, a one-dimensional injection experiment using a plurality of suspension-type improving materials having different concentrations and a plurality of simulated grounds formed from samples having different average particle diameters or simulated grounds formed from soil sampled from construction target grounds (S50 or S110 in FIG. 1). Whether to use the simulated ground formed from the sample or the simulated ground formed from the soil collected from the construction target ground can be appropriately selected according to the situation (S30 and S40 in FIG. 1). For example, as shown in FIGS. 5 and 6 (a) and 6 (b), the one-dimensional injection experiment is a test in which a simulated ground is formed inside the acrylic tube 30 and a suspension type improvement material is injected into the simulated ground. This is performed several times while changing the concentration of the suspension-type improving material. Further, as shown in FIG. 6C, a uniaxial compression test is performed on a plurality of simulated ground improvement bodies obtained by the one-dimensional injection experiment (S60 or S120 in FIG. 1). Then, from both experimental results, the relationship between the distribution coefficient K d , the mass of the solid component of the suspension-type improving material, and the uniaxial compressive strength of the improved body is obtained (S80 or S140 in FIG. 1). That is, for example, by establishing an advection dispersion equation such as [Equation 10] corresponding to a model of a one-dimensional injection experiment (see FIG. 9), and calculating the advection dispersion equation using a difference method or the like, The distribution coefficient Kd of the construction target ground is obtained. Further, from the solid component mass per unit volume at each position of the improved body obtained from the advection dispersion equation, the distribution of the solid component in the improved body as shown in FIG. 12 is obtained, and further combined with the result of the uniaxial compression test. The relationship between the mass of the solid component as shown in FIG. 13 and the uniaxial compressive strength of the improved body is obtained. Subsequently, using [Equation 7], the delay coefficient R d of the construction target ground is calculated from the distribution coefficient K d of the construction target ground, the porosity ne and the density ρ s of the soil particles of the construction target ground. (S150 in FIG. 1).

次に、設定した仮想形状に対応する移流分散方程式〔数8〕を、施工対象地盤の遅延係数R、注入する懸濁型改良材の濃度及び注入量等を用いて、差分法等により解くことによって、施工対象地盤に懸濁型改良材を注入した場合の、施工対象地盤内の固形成分の予測分布を求める(図1のS160)。更に、施工対象地盤内の固形成分の予測分布に対して、実験から求めた固形成分の質量と改良体の一軸圧縮強度との関係を適用することで、施工対象地盤内の一軸圧縮強度の予測分布を求める(図1のS170)。そして、施工対象地盤内の一軸圧縮強度の予測分布から、例えば、施工対象地盤に対して要求される所定の強度以上の範囲を抽出して、その範囲の大きさを求める(図1のS180)。
本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、上記のような手順により、施工対象地盤へ構築する改良体の大きさや強度を求めるものである。このため、地盤注入工法に用いる懸濁型改良材の濃度や注入量を、施工対象地盤の土粒子の平均粒径等に応じて、適切に設定することができ、地盤注入工法のコストを抑制すると共に、信頼性を向上することが可能となる。
Next, the advection dispersion equation [Equation 8] corresponding to the set virtual shape is solved by the difference method or the like using the delay coefficient R d of the construction target ground, the concentration of the suspension type improvement material to be injected, the injection amount, and the like. Thus, the predicted distribution of the solid component in the construction target ground when the suspension type improvement material is injected into the construction target ground is obtained (S160 in FIG. 1). Furthermore, the prediction of the uniaxial compressive strength in the construction target ground is applied to the predicted distribution of the solid component in the construction target ground by applying the relationship between the mass of the solid component obtained from the experiment and the uniaxial compressive strength of the improved body. A distribution is obtained (S170 in FIG. 1). Then, from the predicted distribution of the uniaxial compressive strength in the construction target ground, for example, a range of a predetermined strength or more required for the construction target ground is extracted, and the size of the range is obtained (S180 in FIG. 1). .
The design method of the placement range of the suspension-type improving material according to the embodiment of the present invention obtains the size and strength of the improved body to be constructed on the construction target ground by the above procedure. For this reason, the concentration and amount of suspension-type improvement material used in the ground injection method can be set appropriately according to the average particle size of the soil particles in the construction target ground, etc., and the cost of the ground injection method can be reduced. In addition, the reliability can be improved.

又、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤とを用いて、一次元注入実験を実施する場合に、模擬地盤を形成する試料と懸濁型改良材の濃度との組み合わせ(図4参照)を変更しながら、複数回実施する。そして、一次元注入実験の実験結果から、模擬地盤を構成する試料の平均粒径と分配係数Kとの関係を求める(図1のS70)。すなわち、例えば、一次元注入実験のモデルに対応する移流分散方程式を立てて、この移流分散方程式を差分法等を利用して計算することで、試料の平均粒径毎の遅延係数R及び分配係数Kを算出して(図8参照)、図10に示すような土粒子の平均粒径と分配係数Kとの関係を求める。 Moreover, the design method of the placement range of the suspension-type improvement material according to the embodiment of the present invention includes a plurality of suspension-type improvement materials having different concentrations and a plurality of simulated grounds formed of samples having different average particle diameters. When a one-dimensional injection experiment is carried out using, the combination of the sample forming the simulated ground and the concentration of the suspension-type improving material (see FIG. 4) is changed several times. Then, the relationship between the average particle size of the sample constituting the simulated ground and the distribution coefficient Kd is obtained from the experimental result of the one-dimensional injection experiment (S70 in FIG. 1). That is, for example, an advection dispersion equation corresponding to a model of a one-dimensional injection experiment is established, and the advection dispersion equation is calculated using a difference method or the like, whereby the delay coefficient R d and the distribution for each average particle diameter of the sample are calculated. The coefficient K d is calculated (see FIG. 8), and the relationship between the average particle size of the soil particles and the distribution coefficient K d as shown in FIG. 10 is obtained.

続いて、一次元注入実験から求めた土粒子の平均粒径と分配係数Kとの関係に基づいて、実際に懸濁型改良材を注入して改良を行う施工対象地盤の分配係数Kを求める(図1のS100)。すなわち、例えば、図10から図11のようなグラフを求め、更に〔数13〕に示すような近似式を求める。そして、予め行う調査等から、施工対象地盤の土粒子の平均粒径を把握し、把握した平均粒径と改良材の任意の濃度とを〔数13〕に対して適用することで、施工対象地盤の分配係数Kを推定する。この際、施工対象地盤内で、位置や深さによって土粒子の平均粒径が異なるような場合は、夫々の平均粒径毎に分配係数Kを推定すればよい。このように、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、試料を用いた一次元注入実験により、平均粒径と分配係数Kとの関係を求めるため、施工対象地盤からの採取土で実験を行えないような場合であっても、施工対象地盤の分配係数Kを推定することができる。更に、試料を用いた一次元注入実験と、試料から形成した改良体の一軸圧縮試験とは、懸濁型改良材の打設範囲の設計毎に行う必要はなく、一度行った実験から得た、平均粒径と分配係数Kとの関係及び固形成分質量と一軸圧縮強度との関係を、繰り返し利用することができる(図1のS90)。従って、打設範囲の設計を効率よく行うことが可能となる。 Then, based on the relationship between the average particle size and distribution coefficient K d for soil particles obtained from one-dimensional injection experiments, the distribution coefficient of the construction target ground make improvements by injecting actually suspended type improver K d Is obtained (S100 in FIG. 1). That is, for example, graphs as shown in FIGS. 10 to 11 are obtained, and an approximate expression as shown in [Equation 13] is obtained. Then, from the surveys conducted in advance, the average particle size of the soil particles of the construction target ground is grasped, and the grasped average particle size and the arbitrary concentration of the improvement material are applied to [Equation 13], so that the construction target is obtained. Estimate the distribution coefficient Kd of the ground. At this time, when the average particle size of the soil particles varies depending on the position and depth in the construction target ground, the distribution coefficient K d may be estimated for each average particle size. As described above, the design method for the placement range of the suspension-type improving material according to the embodiment of the present invention is to obtain the relationship between the average particle diameter and the distribution coefficient Kd by a one-dimensional injection experiment using a sample. Even in the case where the experiment cannot be performed with the soil sampled from the construction target ground, the distribution coefficient K d of the construction target ground can be estimated. Furthermore, the one-dimensional injection experiment using the sample and the uniaxial compression test of the improved body formed from the sample do not need to be performed for each design of the placement range of the suspension-type improvement material, and were obtained from the experiment performed once. The relationship between the average particle size and the distribution coefficient Kd and the relationship between the solid component mass and the uniaxial compressive strength can be repeatedly used (S90 in FIG. 1). Therefore, it is possible to efficiently design the placement range.

又、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、濃度が異なる複数の懸濁型改良材と、施工対象地盤から採取した土により形成した模擬地盤とを用いて、一次元注入実験を実施する場合に、模擬地盤は、施工対象地盤内で位置や深さを変えて複数個所から採取した土を用いて、複数形成してもよい。この場合は、形成した模擬地盤と懸濁型改良材の濃度との組み合わせを変更しながら、一次元注入実験を複数回実施する。そして、例えば、実験から得られる、模擬地盤通過後の固形成分質量と排水量との関係から、施工対象地盤の分配係数Kを推定する(図1のS130)。更に、引き続き行う一軸圧縮試験は、施工対象地盤の採取土から形成した模擬地盤の、改良体を用いて行うこととなる。従って、分配係数Kだけではなく、分配係数Kから算出する遅延係数R、固形成分質量と一軸圧縮強度との関係といった、施工対象地盤の採取土を用いた実験から得られるパラメータを用いて計算を行うものである。このため、設計結果と施工結果との差分を低減し、より正確に設計を行うことができる。 Moreover, the design method of the placement range of the suspension type improvement material according to the embodiment of the present invention includes a plurality of suspension type improvement materials having different concentrations and a simulated ground formed from soil collected from the construction target ground. When a one-dimensional injection experiment is carried out, a plurality of simulated grounds may be formed using soil collected from a plurality of locations by changing the position and depth in the construction target ground. In this case, the one-dimensional injection experiment is performed a plurality of times while changing the combination of the formed simulated ground and the concentration of the suspension-type improving material. Then, for example, the distribution coefficient Kd of the construction target ground is estimated from the relationship between the solid component mass after passing the simulated ground and the amount of drainage obtained from the experiment (S130 in FIG. 1). Furthermore, the subsequent uniaxial compression test will be performed using an improved body of the simulated ground formed from the soil collected from the construction target ground. Therefore, not only the distribution coefficient K d, the delay coefficient R d of calculating the distribution coefficient K d, such relationship between the solid component mass and uniaxial compression strength, the parameters obtained from experiments with collected soil construction target ground using To calculate. For this reason, the difference between the design result and the construction result can be reduced, and the design can be performed more accurately.

更に、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、移流分散方程式を立てる際に設定する、懸濁型改良材が地盤内に浸透する範囲の仮想形状として、図2に示すような、地盤G内の一点から、その一点を中心cとする球形に浸透する仮想形状24を設定してもよい。これにより、設定した形状24が実際に地盤G内に構築される改良体の形状に近くなるだけではなく、懸濁型改良材が球形に浸透する場合の移流分散方程式は、〔数8〕のように、球形の半径rをパラメータとして含む、比較的単純な式で表すことができる。このため、設計の正確性と合理性とを両立して、効率よく計算を行うことが可能となる。
又、施工対象地盤の改良体の大きさを求める際に、改良体が一軸圧縮強度として備えるべき所定の強度を、一般的に液状化対策に必要とされている100kPaとしてもよい。これにより、本設計方法を利用して地盤注入工法を行うこととすれば、少なくとも地盤の液状化を抑制するだけの強度を確保することができるため、地盤改良の信頼性をより向上することが可能となる。
Furthermore, the design method of the placement range of the suspension-type improvement material according to the embodiment of the present invention is set as a virtual shape in a range where the suspension-type improvement material penetrates into the ground, which is set when the advection dispersion equation is established. As shown in FIG. 2, a virtual shape 24 penetrating from one point in the ground G into a spherical shape having the one point as the center c may be set. Thereby, not only the set shape 24 is close to the shape of the improved body actually built in the ground G, but also the advection dispersion equation when the suspension-type improving material penetrates into the spherical shape is Thus, it can be expressed by a relatively simple expression including the radius r of the sphere as a parameter. For this reason, it is possible to perform calculation efficiently while achieving both design accuracy and rationality.
Moreover, when calculating | requiring the magnitude | size of the improvement body of a construction object ground, it is good also considering the predetermined intensity | strength which an improvement body should be provided as uniaxial compressive strength as 100 kPa generally required for the countermeasure against liquefaction. As a result, if the ground injection method is carried out using this design method, it is possible to secure at least a strength sufficient to suppress the liquefaction of the ground, so that the reliability of ground improvement can be further improved. It becomes possible.

更に、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、地盤に注入する懸濁型改良材として、超微粒子球状シリカ系改良材を用いてもよい。この超微粒子球状シリカ系改良材は、主材としての精製された球形の二酸化ケイ素と、硬化剤としての水酸化カルシウムとを含むものであり、更に、球形の二酸化ケイ素が、例えば、粒径が1μm程度のものであるため、比較的円滑に地盤内に浸透する。従って、改良材が実際に地盤内に注入されたときの、地盤内での浸透のし難さ等に起因する、設計結果と施工結果との差分を、低減することができる。
なお、本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法は、液状化対策や耐震補強といった本設用途の地盤注入工法だけではなく、例えば、掘削工事におけるヒービングや盤ぶくれ対策、トンネル掘削時の鏡切部や切羽の崩壊防止といった、仮設用途の地盤注入工法に対しても、適用可能なものである。
Furthermore, in the method for designing the placement range of the suspension-type improving material according to the embodiment of the present invention, an ultrafine particle spherical silica-based improving material may be used as the suspension-type improving material to be injected into the ground. This ultrafine spherical silica-based improving material contains refined spherical silicon dioxide as a main material and calcium hydroxide as a curing agent. Further, spherical silicon dioxide has a particle size of, for example, Since it is about 1 μm, it penetrates into the ground relatively smoothly. Therefore, when the improved material is actually injected into the ground, the difference between the design result and the construction result due to the difficulty of penetration in the ground can be reduced.
In addition, the design method of the placement range of the suspension-type improvement material according to the embodiment of the present invention is not limited to the ground injection method for permanent installation such as countermeasures against liquefaction and seismic reinforcement, but for example, heaving and boarding in excavation work It can also be applied to ground injection methods for temporary use, such as anti-blurring measures and prevention of mirror breakage and face collapse during tunnel excavation.

一方、本発明の実施の形態に係る地盤注入工法は、上述した本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法を利用するものである。すなわち、施工対象地盤に対して求められている、改良体の強度や大きさを満足するように、懸濁型改良材の打設範囲の設計方法により、所定強度以上の改良体の大きさを求める。そして、その場合に設定した懸濁型改良材の濃度及び注入量に従って、実際に施工対象地盤に懸濁型改良材を注入する。これにより、上述した本発明の実施の形態に係る懸濁型改良材の打設範囲の設計方法と同様の作用効果を奏しながら、施工対象地盤に要求される強度を満たすように、効率よく作業を進めることが可能となる。   On the other hand, the ground injection method according to the embodiment of the present invention uses the above-described method for designing the placement range of the suspension-type improving material according to the embodiment of the present invention. That is, by satisfying the strength and size of the improved body required for the construction target ground, the size of the improved body with a predetermined strength or higher is determined by the design method of the placement range of the suspension type improved material. Ask. And according to the density | concentration and injection | pouring amount of a suspension type improvement material set in that case, a suspension type improvement material is actually inject | poured into a construction object ground. As a result, the work can be efficiently performed so as to satisfy the strength required for the construction target ground while exhibiting the same effects as the method for designing the placement range of the suspension-type improvement material according to the embodiment of the present invention described above. It is possible to proceed.

G:地盤、24:仮想形状、42:改良体   G: Ground, 24: Virtual shape, 42: Improved body

Claims (7)

地盤に注入して地盤を改良する懸濁型改良材の打設範囲の設計方法であって、
前記懸濁型改良材が地盤に浸透する範囲の仮想形状を設定し、地盤の土粒子による前記懸濁型改良材の吸着量をパラメータとして含む、前記仮想形状に対応する移流分散方程式を立て、
濃度が異なる複数の懸濁型改良材、及び、平均粒径が異なる試料により形成した複数の模擬地盤又は施工対象地盤から採取した土により形成した模擬地盤を用いた一次元注入実験と、該一次元注入実験において形成した改良体の一軸圧縮試験とを実施して、これらの結果から、施工対象地盤の分配係数、及び、前記懸濁型改良材の固形成分の質量と改良体の一軸圧縮強度との関係を求め、
前記分配係数から遅延係数を算出し、
該遅延係数と前記懸濁型改良材の濃度及び注入量とをパラメータとして利用して、前記移流分散方程式を解くことにより、前記施工対象地盤内における前記懸濁型改良材の固形成分の予測分布を求め、
該固形成分の予測分布と、前記固形成分の質量と改良体の一軸圧縮強度との関係とから、前記施工対象地盤内の一軸圧縮強度の予測分布を求め、
該一軸圧縮強度の予測分布に基づいて、所定の強度以上の一軸圧縮強度を有する、前記施工対象地盤の改良体の大きさを求めることを特徴とする懸濁型改良材の打設範囲の設計方法。
It is a design method of the placement range of suspension type improvement material that is injected into the ground to improve the ground,
Set a virtual shape in a range where the suspension-type improvement material penetrates into the ground, and include an adsorption amount of the suspension-type improvement material by soil particles of the ground as a parameter, and establish an advection dispersion equation corresponding to the virtual shape,
One-dimensional injection experiment using a plurality of suspension-type improving materials having different concentrations, a plurality of simulated grounds formed from samples having different average particle diameters, or a simulated ground formed from soil sampled from the construction target ground, and the primary The uniaxial compression test of the improved body formed in the original injection experiment was carried out. From these results, the distribution coefficient of the construction target ground, the mass of the solid component of the suspension-type improved material, and the uniaxial compressive strength of the improved body Seeking a relationship with
Calculating a delay coefficient from the distribution coefficient;
Using the delay coefficient and the concentration and injection amount of the suspension-type improving material as parameters, solving the advection dispersion equation, the predicted distribution of the solid component of the suspension-type improving material in the construction target ground Seeking
From the predicted distribution of the solid component, and the relationship between the mass of the solid component and the uniaxial compressive strength of the improved body, the predicted distribution of the uniaxial compressive strength in the construction target ground is obtained,
Based on the predicted distribution of the uniaxial compressive strength, the size of the improvement body of the construction target ground having a uniaxial compressive strength equal to or higher than a predetermined strength is obtained, and the design of the placement range of the suspension type improvement material is characterized. Method.
前記一次元注入実験を、濃度が異なる複数の懸濁型改良材と、平均粒径が異なる試料により形成した複数の模擬地盤とを用いて実施し、この実験結果から、前記模擬地盤を構成する試料の平均粒径と分配係数との関係を求め、該平均粒径と分配係数との関係に基づいて、施工対象地盤の分配係数を推定することを特徴とする請求項1記載の懸濁型改良材の打設範囲の設計方法。   The one-dimensional injection experiment is performed using a plurality of suspension-type improving materials having different concentrations and a plurality of simulated grounds formed of samples having different average particle diameters, and the simulated ground is configured from the experimental results. The suspension type according to claim 1, wherein a relationship between an average particle diameter of the sample and a distribution coefficient is obtained, and a distribution coefficient of the ground to be constructed is estimated based on the relationship between the average particle diameter and the distribution coefficient. Design method for placement of improved material. 前記一次元注入実験を、濃度が異なる複数の懸濁型改良材と、施工対象地盤から採取した土により形成した模擬地盤とを用いて実施し、この実験結果から、施工対象地盤の分配係数を推定することを特徴とする請求項1記載の懸濁型改良材の打設範囲の設計方法。   The one-dimensional injection experiment was carried out using a plurality of suspension-type improvement materials having different concentrations and a simulated ground formed from soil collected from the construction target ground. From this experimental result, the distribution coefficient of the construction target ground was calculated. The method for designing the placement range of the suspension-type improving material according to claim 1, wherein estimation is performed. 前記移流分散方程式を立てる際の仮想形状として、前記懸濁型改良材が、地盤内の一点から、該一点を中心とする球形に浸透する仮想形状を設定することを特徴とする請求項1から3のいずれか1項記載の懸濁型改良材の打設範囲の設計方法。   The virtual shape in which the suspension-type improving material penetrates from a single point in the ground into a sphere centered on the single point is set as a virtual shape when the advection dispersion equation is established. 4. A method for designing a placement range of the suspension-type improving material according to any one of 3 above. 前記所定の強度が100kPaであることを特徴とする請求項1から4のいずれか1項記載の懸濁型改良材の打設範囲の設計方法。   The method for designing the placement range of the suspension-type improving material according to any one of claims 1 to 4, wherein the predetermined strength is 100 kPa. 前記懸濁型改良材は、主材としての球形の二酸化ケイ素と、硬化剤としての水酸化カルシウムとを含む、超微粒子球状シリカ系改良材であることを特徴とする請求項1から5のいずれか1項記載の懸濁型改良材の打設範囲の設計方法。   6. The suspension-type improving material is an ultrafine particle spherical silica-based improving material containing spherical silicon dioxide as a main material and calcium hydroxide as a curing agent. A method for designing the placement range of the suspension-type improving material according to claim 1. 請求項1から6のいずれか1項記載の懸濁型改良材の打設範囲の設計方法により求める、前記施工対象地盤の改良体の大きさに基づいて決定される、前記懸濁型改良材の濃度及び注入量に従って、前記施工対象地盤へ前記懸濁型改良材を注入することを特徴とする地盤注入工法。
The suspension type improvement material, which is determined based on the size of the improvement body of the construction target ground, which is obtained by the method for designing the placement range of the suspension type improvement material according to any one of claims 1 to 6. Injecting the suspension-type improving material into the construction target ground according to the concentration and the injection amount of the ground.
JP2015086039A 2015-04-20 2015-04-20 Method for designing the placement range of suspension type improvement material and ground injection method using this method Active JP6473036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086039A JP6473036B2 (en) 2015-04-20 2015-04-20 Method for designing the placement range of suspension type improvement material and ground injection method using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086039A JP6473036B2 (en) 2015-04-20 2015-04-20 Method for designing the placement range of suspension type improvement material and ground injection method using this method

Publications (2)

Publication Number Publication Date
JP2016204921A true JP2016204921A (en) 2016-12-08
JP6473036B2 JP6473036B2 (en) 2019-02-20

Family

ID=57487055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086039A Active JP6473036B2 (en) 2015-04-20 2015-04-20 Method for designing the placement range of suspension type improvement material and ground injection method using this method

Country Status (1)

Country Link
JP (1) JP6473036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059904A (en) * 2019-10-08 2021-04-15 大成建設株式会社 Evaluation device of water cut-off property, and evaluation method of water cut-off property

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351888A (en) * 2004-05-10 2005-12-22 Nippon Steel Corp Determination method of iron and steel slug and method for predicting its solidified state
JP2006349468A (en) * 2005-06-15 2006-12-28 Ritsumeikan Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil
JP2008267016A (en) * 2007-04-20 2008-11-06 Hikari Kensetsu:Kk Soil improving method
JP2009103724A (en) * 2009-02-16 2009-05-14 Hitachi Ltd Underground environment assessment device and method
JP2014136962A (en) * 2013-04-22 2014-07-28 Kyokado Engineering Co Ltd Soil improvement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351888A (en) * 2004-05-10 2005-12-22 Nippon Steel Corp Determination method of iron and steel slug and method for predicting its solidified state
JP2006349468A (en) * 2005-06-15 2006-12-28 Ritsumeikan Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil
JP2008267016A (en) * 2007-04-20 2008-11-06 Hikari Kensetsu:Kk Soil improving method
JP2009103724A (en) * 2009-02-16 2009-05-14 Hitachi Ltd Underground environment assessment device and method
JP2014136962A (en) * 2013-04-22 2014-07-28 Kyokado Engineering Co Ltd Soil improvement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059904A (en) * 2019-10-08 2021-04-15 大成建設株式会社 Evaluation device of water cut-off property, and evaluation method of water cut-off property
JP7364188B2 (en) 2019-10-08 2023-10-18 大成建設株式会社 Water stop performance evaluation device and water stop performance evaluation method

Also Published As

Publication number Publication date
JP6473036B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP2007198027A (en) In-situ permeability testing method and device
Hossain et al. Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests
CN105136648B (en) Soil effective aperture and its method for testing of distributed constant
CN103439237B (en) Blocking test device and method for water-permeable concrete pile in piping soil foundation
Stirling Multiphase modelling of desiccation cracking in compacted soil
Khan et al. Determination of consolidation behaviour of clay slurries
JP6473036B2 (en) Method for designing the placement range of suspension type improvement material and ground injection method using this method
JP2009236716A (en) Manufacturing method of sample of foundation improvement construction method test
Alagna et al. A simple field method to measure the hydrodynamic properties of soil surface crust
Askarinejad et al. Unsaturated hydraulic conductivity of a silty sand with the instantaneous profile method
Mizrahi et al. Infiltration under confined air conditions: Impact of inclined soil surface
Al-Madhhachi et al. Measuring erodibility of cohesive soils using laboratory jet erosion tests
JPH02268249A (en) Water permeability testing method
Chen et al. Experimental study on macropore flow effects in unsaturated soil on subsurface drainage and soil desalination
Chai et al. Consolidation theory for combined vacuum pressure and surcharge loading
JP2017066827A (en) Alkali drainage risk prediction method at land site
Pap et al. Analysis and finite element modelling of water flow in concrete
CN207133164U (en) The test device of concrete permeable coefficient
JP5700679B2 (en) Method for investigating aging deterioration of chemical injection ground
SHWAN The effect of soil water retention curve hysteresis on the strength of unsaturated soils
Li et al. In situ field measurements of air permeability in eroded loess formations
JP4625273B2 (en) Determination method of chemical concentration used to prevent liquefaction by chemical injection and stabilization treatment method of earth and sand by chemical injection
JP2014159709A (en) Construction method for pavement structure
Pereira et al. A study on the shear strength envelope of an unsaturated colluvium soil
JP7029935B2 (en) How to inject ground improvement chemicals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190124

R150 Certificate of patent or registration of utility model

Ref document number: 6473036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250