JP7364188B2 - Water stop performance evaluation device and water stop performance evaluation method - Google Patents

Water stop performance evaluation device and water stop performance evaluation method Download PDF

Info

Publication number
JP7364188B2
JP7364188B2 JP2019184988A JP2019184988A JP7364188B2 JP 7364188 B2 JP7364188 B2 JP 7364188B2 JP 2019184988 A JP2019184988 A JP 2019184988A JP 2019184988 A JP2019184988 A JP 2019184988A JP 7364188 B2 JP7364188 B2 JP 7364188B2
Authority
JP
Japan
Prior art keywords
water
container
injection material
performance evaluation
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019184988A
Other languages
Japanese (ja)
Other versions
JP2021059904A (en
Inventor
裕泰 石井
与志雄 西田
学 福井
茂生 笹原
大地 黒岩
雄司 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Fuji Chemical Co Ltd
Original Assignee
Taisei Corp
Fuji Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Fuji Chemical Co Ltd filed Critical Taisei Corp
Priority to JP2019184988A priority Critical patent/JP7364188B2/en
Publication of JP2021059904A publication Critical patent/JP2021059904A/en
Application granted granted Critical
Publication of JP7364188B2 publication Critical patent/JP7364188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、地盤改良薬液の止水性能評価装置および評価方法に関する。 TECHNICAL FIELD The present invention relates to an apparatus and method for evaluating water stop performance of soil improvement chemicals.

地下水位の影響を受ける建設工事では、工事を安全かつ効率的に進めるために適切な止水工を講じる必要がある。地下水の止水工としては、掘削域の周囲に鋼矢板等により止水壁を構築する方法、固化材により低透水性の改良固化体を形成する方法、薬液注入により同様の改良固化体を形成する方法、井戸等により地下水位を低下させる方法等がある。
鋼矢板による止水壁は、地上部からの施工になるため、止水可能な深さが限定されてしまう。また、セメントなどの固化材を利用した改良体は、固化材が硬化するまでに時間を要する。また、井戸などにより地下水位を低下させる方法も地下水位が低下するまでに時間を要する。薬液注入は、比較的短時間でゲル化(硬化)するものの、地下水の流れよってゲル化する前に流される場合があり、所望の位置に改良体を形成し難い場合がある。
そのため、特許文献1には、流速が大きい地下水域に対する地盤の止水方法として、地下水に流されない粒径で高比重の粒状材を地中に供給した後、粒状材が供給された領域に薬液注入を行い、粒状材の隙間でゲル化または固化させる方法が開示されている。
ところで、従来の地盤改良薬液の止水効果は、地盤改良薬液のゲルタイム(注入薬液が硬化して流動性がなくなるまでの時間)のみで判断されるのが一般的である。しかし、薬液注入による止水効果は、対象地盤の物理的特性、化学的特性、流水状況、流水速度や温度条件に大きく依存する。そのため、薬液注入により所望の止水性を確保するためには、現地の地山条件に応じた地盤改良薬液を選定する必要がある。
In construction work that is affected by groundwater levels, it is necessary to take appropriate water-stopping measures in order to proceed safely and efficiently. Groundwater can be stopped by constructing a water-stopping wall around the excavation area using steel sheet piles, etc., by forming an improved solidified body with low permeability using a solidifying material, or by forming a similar improved solidified body by injecting a chemical solution. There are several methods, including methods of lowering the groundwater level using wells, etc.
Water-stop walls made of steel sheet piles are constructed from above the ground, which limits the depth at which water can be stopped. Furthermore, improved bodies that utilize a solidifying agent such as cement require time for the solidifying agent to harden. Furthermore, methods of lowering the groundwater level using wells and the like also require time for the groundwater level to drop. Although the chemical solution injected gels (hardens) in a relatively short time, it may be washed away by underground water flow before it gels, and it may be difficult to form an improved body at a desired location.
For this reason, Patent Document 1 describes a method for stopping water in the ground for groundwater bodies with high flow rates, after supplying granular material with a particle size and high specific gravity that will not be washed away by groundwater into the ground, and then applying a chemical solution to the area where the granular material was supplied. A method is disclosed in which the material is injected and gelled or solidified in the interstices of the granular material.
By the way, the water-stopping effect of conventional soil improvement chemicals is generally judged only by the gel time of the soil improvement chemicals (the time it takes for the injected chemicals to harden and lose their fluidity). However, the water-stopping effect of chemical injection depends largely on the physical and chemical characteristics of the target ground, water flow conditions, water flow rate, and temperature conditions. Therefore, in order to ensure the desired water-stopping properties through chemical injection, it is necessary to select a soil improvement chemical that is appropriate for the local ground conditions.

特開2010-053589号公報Japanese Patent Application Publication No. 2010-053589

本発明は、施工条件(地質、地下水位、地下水の流速等)に応じた地盤改良薬液の止水性能を確認することを可能とした止水性能評価装置および止水性能評価方法を提案することを課題とする。 The present invention proposes a water stop performance evaluation device and a water stop performance evaluation method that make it possible to check the water stop performance of a ground improvement chemical solution according to construction conditions (geology, groundwater level, groundwater flow velocity, etc.). The task is to

前記課題を解決するための本発明の止水性能評価装置は、粒状物が充填された筒状の容器と、前記容器の一端から一定量の水を供給する給水手段と、前記容器の他端から排出された液体の量を計測する排液計測手段と、前記容器の前記一端と前記他端との間にある中間部に注入材を供給する注入手段とを備えるものである。
また、本発明の止水性能評価方法は、筒状の容器に粒状物が充填されてなる仮想地盤に対し、前記容器の一端から他端に向けて一定流速の水を通水するとともに、前記容器の前記一端と前記他端との間にある中間部から注入材を注入し、前記仮想地盤から排出された液体の量(流速)の経時変化を測定するものである。
かかる止水性能評価装置および止水性能評価方法によれば、一定の流速で流れる地下水中に地盤改良薬液(注入材)を注入した際の効果を、水の排出量(排出水の流速)により把握することができる。そのため、地山の状況(地質、地下水位、地下水の流速等)に応じた注入材を適切に選定することができる。
A water stop performance evaluation device of the present invention for solving the above problem includes: a cylindrical container filled with granular material; a water supply means for supplying a certain amount of water from one end of the container; and the other end of the container. The container includes a drainage measuring means for measuring the amount of liquid discharged from the container, and an injection means for supplying an injection material to an intermediate portion between the one end and the other end of the container.
Further, the water stop performance evaluation method of the present invention includes passing water at a constant flow rate from one end of the container to the other end of the virtual ground formed by filling a cylindrical container with granular materials, and The injection material is injected from an intermediate portion between the one end and the other end of the container, and the change over time in the amount (flow rate) of liquid discharged from the virtual ground is measured.
According to this water stop performance evaluation device and water stop performance evaluation method, the effect of injecting a ground improvement chemical (injection material) into groundwater flowing at a constant flow rate can be evaluated based on the amount of water discharged (flow rate of discharged water). can be grasped. Therefore, the injection material can be appropriately selected according to the conditions of the ground (geology, groundwater level, groundwater flow rate, etc.).

なお、前記止水性能評価装置の前記給水手段が、貯水槽と、前記貯水槽から前記容器に至る給水管とを備えている場合において、貯水槽内の水位が前記容器よりも高くなるように前記貯水槽を配置すれば、一定の流速による水を自然流下により供給することができる。
また、前記容器(粒状物)、水または注入材を冷却または加温する温度調整手段を備えていれば、前記仮想地盤を冷却または加温することが可能となり、例えば、凍結工法等により周辺地盤が凍結している場合など、特別な条件下における地山に対する地盤改良薬液の性能を確認することができる。
In addition, when the water supply means of the water stop performance evaluation device includes a water storage tank and a water supply pipe leading from the water storage tank to the container, the water level in the water storage tank may be higher than the container. By arranging the water tank, water can be supplied by gravity at a constant flow rate.
Furthermore, if a temperature adjustment means for cooling or heating the container (granular material), water, or injection material is provided, it becomes possible to cool or heat the virtual ground, for example, by freezing the surrounding ground. You can check the performance of soil improvement chemicals under special conditions, such as when the ground is frozen.

本発明の止水性能評価装置および止水性能評価方法によれば、施工条件に応じた地盤改良薬液の性能を確認することが可能となる。 According to the water stop performance evaluation device and the water stop performance evaluation method of the present invention, it is possible to check the performance of a ground improvement chemical solution according to construction conditions.

第一実施形態に係る評価装置の概略図である。FIG. 1 is a schematic diagram of an evaluation device according to a first embodiment. 第二実施形態に係る評価装置の概略図である。It is a schematic diagram of the evaluation device concerning a second embodiment. 実験に使用した薬液の温度とゲルタイムの関係を示すグラフである。It is a graph showing the relationship between the temperature of the chemical solution used in the experiment and the gel time. 実証実験結果を示す図であって、ケース1の経過時間と排水速度の関係を示すグラフである。It is a diagram showing the results of a demonstration experiment, and is a graph showing the relationship between elapsed time and drainage speed in Case 1. 実証実験結果を示す図であって、ケース2の経過時間と排水速度の関係を示すグラフである。It is a diagram showing the results of a demonstration experiment, and is a graph showing the relationship between elapsed time and drainage speed in Case 2. 実証実験結果を示す図であって、ケース3の経過時間と排水速度の関係を示すグラフである。It is a diagram showing the results of a demonstration experiment, and is a graph showing the relationship between elapsed time and drainage speed in Case 3. 実証実験結果を示す図であって、ケース4の経過時間と排水速度の関係を示すグラフである。It is a figure which shows the result of a demonstration experiment, Comprising: It is a graph which shows the relationship between the elapsed time and the drainage speed of Case 4. ケース1~4の経過時間と通水分排水速度の関係を示すグラフである。3 is a graph showing the relationship between elapsed time and water supply and drainage rate in Cases 1 to 4.

<第一実施形態>
第一実施形態では、地盤改良薬液の性能を確認するための止水性能評価装置1について説明する。本実施形態の止水性能評価装置1は、図1に示すように、容器2と、給水手段3と、排液計測手段4と、注入手段5と、温度調整手段6とを備えている。
容器2は、円筒状を呈している。容器2には、砂や砂利などの粒状物20が仮想地盤として充填されている。本実施形態の容器2は、透明な塩化ビニル管からなる筒体21と、筒体21の両端を遮蔽する蓋材22と、筒体21の外周に沿って配設された複数の固定ボルト23とを備えている。すなわち、容器2は、内部を視認することが可能である。筒体21は、中心軸が縦向きになるように配設されている。筒体21の上下端に設けられた一対の蓋材22は、蓋材22同士をつなぐ固定ボルト23を締め付けることにより筒体21の端部に固定されている。なお、筒体21を構成する材料は限定されるものではなく、例えば、アクリル製の筒であってもよい。また、筒体21は、円筒状である必要はなく、例えば、角筒であってもよい。また、筒体21は、複数の筒状部材を連結することにより形成してもよい。また、筒体21は、中心軸が横向きになるように配設してもよい。さらに、蓋材22の固定方法は限定されるものではなく、筒体21の端部にフランジが形成されている場合には、蓋材22をフランジに固定してもよい。
<First embodiment>
In the first embodiment, a water stop performance evaluation device 1 for checking the performance of a ground improvement chemical solution will be described. As shown in FIG. 1, the water stop performance evaluation device 1 of this embodiment includes a container 2, a water supply means 3, a drained liquid measuring means 4, an injection means 5, and a temperature adjustment means 6.
The container 2 has a cylindrical shape. The container 2 is filled with granular materials 20 such as sand and gravel as a virtual ground. The container 2 of this embodiment includes a cylindrical body 21 made of a transparent vinyl chloride pipe, a lid member 22 that shields both ends of the cylindrical body 21, and a plurality of fixing bolts 23 disposed along the outer periphery of the cylindrical body 21. It is equipped with That is, the inside of the container 2 can be visually recognized. The cylindrical body 21 is arranged so that its central axis is vertical. A pair of lid members 22 provided at the upper and lower ends of the cylindrical body 21 are fixed to the ends of the cylindrical body 21 by tightening fixing bolts 23 that connect the lid members 22 together. Note that the material constituting the cylinder 21 is not limited, and may be, for example, an acrylic cylinder. Further, the cylinder body 21 does not need to be cylindrical, and may be, for example, a rectangular tube. Further, the cylindrical body 21 may be formed by connecting a plurality of cylindrical members. Further, the cylindrical body 21 may be arranged so that the central axis thereof is oriented laterally. Furthermore, the method of fixing the lid 22 is not limited, and if a flange is formed at the end of the cylindrical body 21, the lid 22 may be fixed to the flange.

給水手段3は、容器2の一端(下端)から一定量の水を供給する。本実施形態の給水手段3は、貯水槽31と、貯水槽31から容器2に至る給水管32と、越流水計測槽33とを備えている。貯水槽31は、貯水槽31内の水位が容器2の上端よりも高くなるように配置されている。貯水槽31の内部は、仕切壁34により貯水部35と越流部36とに分離されている。貯水槽31には、連続して水を供給するものとし、貯水部35には所定量の水が常時貯留されている。貯水部35には給水管32が接続されている。本実施形態では、貯水部35(貯水槽31)の底面に給水管32の一端が接続されている。給水管32の他端は、容器2の下端(下側の蓋材22)に接続されている。越流部36は、貯水部35に供給された水のうち、仕切壁34を乗り越えた水が流れ込む。越流部36の底部には、越流水計測槽33に至る接続管37が接続されている。越流水計測槽33は、貯水槽31よりも低い位置に配設されている。越流部36に流れ込んだ越流水は、接続管37を介して越流水計測槽33に流下する。越流水計測槽33では、仕切壁34を乗り越えて流下した越流水の量を計測する。越流水計測槽33内の水量は、電子天秤38を利用して測定する。越流水の水量の経時変化を測定することにより、貯水槽31に供給する水の量を調整する。 The water supply means 3 supplies a certain amount of water from one end (lower end) of the container 2 . The water supply means 3 of this embodiment includes a water storage tank 31, a water supply pipe 32 extending from the water storage tank 31 to the container 2, and an overflow water measurement tank 33. The water tank 31 is arranged such that the water level in the water tank 31 is higher than the upper end of the container 2. The inside of the water storage tank 31 is separated into a water storage section 35 and an overflow section 36 by a partition wall 34 . Water is continuously supplied to the water tank 31, and a predetermined amount of water is always stored in the water storage section 35. A water supply pipe 32 is connected to the water storage section 35 . In this embodiment, one end of the water supply pipe 32 is connected to the bottom surface of the water storage section 35 (water storage tank 31). The other end of the water supply pipe 32 is connected to the lower end of the container 2 (lower lid member 22). Of the water supplied to the water storage section 35, water that has overcome the partition wall 34 flows into the overflow section 36. A connecting pipe 37 leading to the overflow water measurement tank 33 is connected to the bottom of the overflow section 36 . The overflow water measuring tank 33 is arranged at a lower position than the water storage tank 31. The overflow water that has flowed into the overflow section 36 flows down to the overflow water measurement tank 33 via the connecting pipe 37. The overflow water measurement tank 33 measures the amount of overflow water that has flowed down over the partition wall 34. The amount of water in the overflow water measurement tank 33 is measured using an electronic balance 38. The amount of water supplied to the water storage tank 31 is adjusted by measuring the change over time in the amount of overflow water.

排液計測手段4は、容器2の他端(上端)から排出された液体の量を計測する。排液計測手段4は、容器2から排出された液体を貯留する排液槽41と、容器2から排液槽41に至る排水管42と、排液槽41の液体の量を測定する電子天秤43とを備えている。排水管42は、筒体21の上端に固定された蓋材22に接続されている。容器2の上端から排出された液体は、排水管42を通じて排液槽41に輸送される。排液槽41に貯留された液体の量は、電子天秤43により測定する。液体の測定方法は電子天秤43による測定に限定されるものではなく、例えば、排液槽41のメモリを読むことにより測定してもよい。 The drained liquid measuring means 4 measures the amount of liquid drained from the other end (upper end) of the container 2 . The drain liquid measuring means 4 includes a drain tank 41 that stores the liquid discharged from the container 2, a drain pipe 42 leading from the container 2 to the drain tank 41, and an electronic balance that measures the amount of liquid in the drain tank 41. 43. The drain pipe 42 is connected to the lid member 22 fixed to the upper end of the cylindrical body 21. The liquid discharged from the upper end of the container 2 is transported to the drain tank 41 through the drain pipe 42. The amount of liquid stored in the drain tank 41 is measured by an electronic balance 43. The method of measuring the liquid is not limited to the measurement using the electronic balance 43, and may be measured by reading the memory of the drain tank 41, for example.

注入手段5は、容器2に注入材を供給する。本実施形態では、注入材として、注入後、数秒~数十秒でゲル化する溶液型瞬結タイプのものを使用する。注入材は、二液混合タイプで、注入直前に混合する。注入手段5は、A液を貯留する第一タンク51と、B液を貯留する第二タンク52と、第一タンク51および第二タンク52からA液およびB液を同時に定量排出するための定量供給装置53と、容器2(筒体21)の高さ方向中間部に接続された注入部54と、第一タンク51または第二タンク52から注入部54に至る送液管55とを備えている。注入材供給箇所を筒体21の下端部にしなかった理由は、注入材の逆流により通水経路を閉塞し、模型地盤内での止水効果を適切に評価できなくなるのを回避するためである。なお、止水性能評価装置1による評価の対象となる注入材は、二液混合タイプに限定されるものではない。注入材として1液タイプのものを使用する場合には、タンクは一つのみとする。また、注入材は、必ずしも瞬結タイプに限定されるものではなく、例えばセメントミルクなどの懸濁型注入材であってもよい。
定量供給装置53は、第一タンク51および第二タンク52に接続されている。本実施形態の定量供給装置53は、第一タンク51内のA液と第二タンク52内のB液に対して同時に押出力を付与するピストンである。ピストンにはガスケットが装着されている。定量供給装置53が作動すると、ピストンによって第一タンク51内のA液および第二タンク52内のB液に押出力が付与される。定量供給装置53により押出力が付与されると、A液とB液がそれぞれ第一タンク51または第二タンク52から同時に排出されて、送液管55を介して容器2に供給される。
注入部54は、ラインミキサー(スタティックミキサー)を備えており、第一タンク51から供給されたA液と、第二タンク52から供給されたB液を混合して容器2に供給する。
The injection means 5 supplies the injection material to the container 2 . In this embodiment, the injection material used is a solution-type, instant-setting type that gels within several seconds to several tens of seconds after injection. The injection material is a two-component mixture type and is mixed immediately before injection. The injection means 5 includes a first tank 51 for storing liquid A, a second tank 52 for storing liquid B, and a metering device for simultaneously discharging liquid A and liquid B from the first tank 51 and the second tank 52. It includes a supply device 53, an injection part 54 connected to the middle part in the height direction of the container 2 (cylindrical body 21), and a liquid feeding pipe 55 leading from the first tank 51 or the second tank 52 to the injection part 54. There is. The reason why the injection material was not supplied to the lower end of the cylinder 21 was to avoid the backflow of the injection material clogging the water flow path and making it impossible to properly evaluate the water-stopping effect within the model ground. . Note that the injection material to be evaluated by the water stop performance evaluation device 1 is not limited to the two-component mixture type. If a one-liquid type injection material is used, only one tank should be used. Further, the injection material is not necessarily limited to an instant setting type, and may be a suspension type injection material such as cement milk.
The quantitative supply device 53 is connected to the first tank 51 and the second tank 52. The quantitative supply device 53 of this embodiment is a piston that simultaneously applies a pushing force to liquid A in the first tank 51 and liquid B in the second tank 52. A gasket is attached to the piston. When the quantitative supply device 53 operates, the piston applies a pushing force to the A liquid in the first tank 51 and the B liquid in the second tank 52. When a pushing force is applied by the quantitative supply device 53, liquid A and liquid B are simultaneously discharged from the first tank 51 or the second tank 52, respectively, and are supplied to the container 2 via the liquid feeding pipe 55.
The injection unit 54 is equipped with a line mixer (static mixer), and mixes the A liquid supplied from the first tank 51 and the B liquid supplied from the second tank 52 and supplies the mixture to the container 2.

温度調整手段6は、容器2を冷却または加温する。本実施形態の温度調整手段6は、容器2が挿入された水槽(筒状部材)である。例えば、容器2を0℃近くに冷却する場合には、温度調整手段6に寒剤(氷が浸された食塩水、塩化カリウム水溶液、塩化カルシウム水溶液など)を貯留する。一方、常温で評価を行う場合には、温度調整手段6内を空にした状態あるいは常温の液体(水、食塩水など)を貯留した状態で試験を行う。さらに、容器2を加熱する場合には、温度調整手段6内に所定の温度の温水を貯留する。また、簡易な評価法として、容器2は常温としつつ、注入材を予め冷却または加温する方法も有効である。 The temperature adjustment means 6 cools or warms the container 2. The temperature adjustment means 6 of this embodiment is a water tank (cylindrical member) into which the container 2 is inserted. For example, when the container 2 is cooled to near 0° C., a cold agent (salt water soaked with ice, potassium chloride aqueous solution, calcium chloride aqueous solution, etc.) is stored in the temperature adjusting means 6. On the other hand, when performing the evaluation at room temperature, the test is performed with the temperature adjustment means 6 empty or with room temperature liquid (water, saline, etc.) stored therein. Furthermore, when heating the container 2, hot water at a predetermined temperature is stored in the temperature adjustment means 6. Furthermore, as a simple evaluation method, it is also effective to cool or heat the injection material in advance while keeping the container 2 at room temperature.

次に、本実施形態の止水性能評価装置1を利用した止水性能評価方法について説明する。
まず、容器2に砂が充填されてなる仮想地盤に一定流速の水を通水する。水は、貯水槽31から給水管32を介して筒体21の下端から注入され、筒体21の上端から排出される。貯水槽31には、常に水が供給され続けられているとともに、余分な水は仕切壁34を越流することにより、一定の水位が保たれている。そのため、容器2には、一定の圧力により水が供給される。
なお、容器2(仮想地盤)は、温度調整手段6により冷却または加温して温度を調整することができる。
水の流速が安定したら、容器2の中間部から注入材を注入する。注入材は、定量供給装置53を介して供給するものとし、一定量のA液とB液とが同時に供給される。A液およびB液は、注入部54のラインミキサーにより混合された状態で、筒体21内に注入される。筒体21内に注入された注入材は、容器2内の水の流れに沿って上方に流れながら硬化する。容器2から排出された液体は、排液計測手段4に流下する。本実施形態の止水性評価方法では、排液計測手段4に流下した排液の量に基づいて排液の流速(重量変化速度)の経時変化を算出し、注入材による止水性の評価を行う。また、筒体21内で注入材が硬化すると、筒体21内の通水性(透水係数)が低下するため、筒体21の通水量が低下する。その結果、貯水槽31の越流水が増加する。
Next, a water stop performance evaluation method using the water stop performance evaluation device 1 of this embodiment will be explained.
First, water is passed at a constant flow rate through a virtual ground formed by filling a container 2 with sand. Water is injected from the water storage tank 31 through the water supply pipe 32 from the lower end of the cylindrical body 21 and discharged from the upper end of the cylindrical body 21 . Water is constantly being supplied to the water tank 31, and excess water flows over the partition wall 34 to maintain a constant water level. Therefore, water is supplied to the container 2 at a constant pressure.
Note that the temperature of the container 2 (virtual ground) can be adjusted by cooling or heating by the temperature adjustment means 6.
When the water flow rate becomes stable, the injection material is injected from the middle of the container 2. The injection material is supplied via a quantitative supply device 53, and fixed amounts of liquid A and liquid B are supplied at the same time. The A liquid and the B liquid are injected into the cylinder 21 in a mixed state by the line mixer of the injection part 54. The injection material injected into the cylinder 21 hardens while flowing upward along the flow of water in the container 2. The liquid discharged from the container 2 flows down to the drained liquid measuring means 4. In the water-stopping property evaluation method of the present embodiment, the time-dependent change in the flow rate (weight change rate) of the drained liquid is calculated based on the amount of the drained liquid that has flowed down to the drained liquid measuring means 4, and the water-stopping property of the injection material is evaluated. . Moreover, when the injection material hardens within the cylinder 21, the water permeability (water permeability coefficient) within the cylinder 21 decreases, and thus the amount of water passing through the cylinder 21 decreases. As a result, overflow water in the water tank 31 increases.

本実施形態の止水性能評価装置1および止水性能評価方法によれば、一定の流速で流れる地下水中に地盤改良薬液(注入材)を注入した際の効果を、排出液(水)の排出量(排出液の流速)により把握することができる。そのため、地山の状況(地質、地下水位、地下水の流速、温度等)に応じた注入材を適切に選定することができる。さらに給水手段3により、地下水の供給量(容器2内の水圧)や地下水の流速を調整することができ、また、温度調整手段6によって温度条件を変化させることができる。そのため、改良対象地盤の地山条件や施工条件に応じた止水性能を発現する注入材の選定を行うことができる。すなわち、地下水の流速が大きい場合や、周辺地盤が凍結している場合等において、注入後に所望の範囲内においてゲル化して止水性を発現する注入材を選定することができる。
また、貯水槽31内の水位が容器2よりも高くなるように貯水槽31を配置しているため、水を自然流下により一定の流速で供給することができる。そのため、水を供給するための動力等を必要としない。
また、温度調整手段6によって仮想地盤を冷却または加温することができるため、例えば、凍結工法等により周辺地盤が凍結している場合など、特別な条件下における地山に対する地盤改良薬液の性能を確認することができる。
According to the water stop performance evaluation device 1 and the water stop performance evaluation method of the present embodiment, the effect of injecting a ground improvement chemical solution (injection material) into groundwater flowing at a constant flow rate is evaluated by the discharge of effluent (water). It can be determined by the amount (flow rate of drained liquid). Therefore, the injection material can be appropriately selected according to the conditions of the ground (geology, groundwater level, groundwater flow rate, temperature, etc.). Furthermore, the water supply means 3 can adjust the supply amount of groundwater (water pressure in the container 2) and the flow rate of groundwater, and the temperature adjustment means 6 can change the temperature conditions. Therefore, it is possible to select an injection material that exhibits water-stopping performance according to the ground conditions and construction conditions of the ground to be improved. That is, in cases where the groundwater flow rate is high or the surrounding ground is frozen, it is possible to select an injection material that gels within a desired range after injection and exhibits water-stopping properties.
Moreover, since the water storage tank 31 is arranged so that the water level in the water storage tank 31 is higher than that in the container 2, water can be supplied at a constant flow rate by gravity. Therefore, no power or the like is required to supply water.
In addition, since the virtual ground can be cooled or heated by the temperature adjustment means 6, the performance of the ground improvement chemical solution on the ground under special conditions, such as when the surrounding ground is frozen due to freezing methods, etc. can be improved. It can be confirmed.

<第二実施形態>
第二実施形態では、第一実施形態と同様に、地盤改良薬液の性能を確認するための止水性能評価装置1について説明する。本実施形態では、注入材を冷却または加温した状態で仮想地盤に注入した場合における注入材による止水性の評価を行うことで、地山の温度状況による注入材の性能への影響の確認を行う。本実施形態の止水性能評価装置1は、図2に示すように、容器2と、給水手段3と、排液計測手段4と、注入手段5と、温度調整手段6とを備えている。なお、容器2、給水手段3、排液計測手段4および注入手段5の詳細は、第一実施形態で示した内容と同様なため、詳細な説明は省略する。
<Second embodiment>
In the second embodiment, similarly to the first embodiment, a water stop performance evaluation device 1 for confirming the performance of a soil improvement chemical solution will be described. In this embodiment, by evaluating the water-stopping properties of the injection material when cooled or heated and injected into the virtual ground, we can confirm the influence of the temperature condition of the ground on the performance of the injection material. conduct. The water stop performance evaluation device 1 of this embodiment includes a container 2, a water supply means 3, a drained liquid measuring means 4, an injection means 5, and a temperature adjustment means 6, as shown in FIG. Note that the details of the container 2, water supply means 3, waste liquid measuring means 4, and injection means 5 are the same as those shown in the first embodiment, so detailed explanations will be omitted.

温度調整手段6は、注入材を冷却または加温する。温度調整手段6は、第一タンク51と第二タンク52の両方を収納可能な水槽からなる。注入材を0℃近くに冷却する場合には、温度調整手段6に寒剤(氷が浸された食塩水、塩化カリウム水溶液、塩化カルシウム水溶液など)を貯留する。一方、常温で評価を行う場合には、温度調整手段6内に常温の液体などを貯留した状態あるいは温度調整内を空にした状態で試験を行う。さらに、注入材を加熱する場合には、温度調整手段6内に所定の温度の温水を貯留する。なお、温度調整手段6は、第一タンク51と第二タンク52をそれぞれ個別に収納する水槽や、第一タンク51または第二タンク52の周囲に周設された氷嚢や水槽等により構成することも可能である。 The temperature adjustment means 6 cools or warms the injection material. The temperature adjustment means 6 consists of a water tank that can accommodate both the first tank 51 and the second tank 52. When the injection material is cooled to near 0° C., a cold agent (salt water soaked with ice, potassium chloride aqueous solution, calcium chloride aqueous solution, etc.) is stored in the temperature adjustment means 6. On the other hand, when performing evaluation at room temperature, the test is performed with a liquid at room temperature stored in the temperature adjustment means 6 or with the temperature adjustment means 6 empty. Furthermore, when heating the injection material, hot water at a predetermined temperature is stored in the temperature adjustment means 6. Note that the temperature adjustment means 6 may be constituted by a water tank housing the first tank 51 and the second tank 52 individually, or an ice pack or a water tank provided around the first tank 51 or the second tank 52. is also possible.

次に、本実施形態の止水性能評価装置1を利用した止水性能評価方法について説明する。
まず、容器2に砂が充填されてなる仮想地盤に一定流速の水を通水する。水は、筒体21の下端から注入され、筒体21の上端から排出される。水の流速が安定したら、容器2の中間部から注入材を注入する。注入材は、定量供給装置53を介して供給するものとし、一定量のA液とB液とが同時に供給される。このとき、注入材は、温度調整手段6により冷却または加温してもよい。A液およびB液は、注入部54のラインミキサーにより混合された状態で、筒体21内に注入される。筒体21内に注入された注入材は、容器2内の水の流れに沿って上方に流れながら硬化する。容器2から排出された液体は、排液計測手段4に流下する。止水性評価方法では、排液計測手段4に流下した排液の量に基づいて排液の流速の経時変化を算出し、注入材による止水性の評価を行う。
本実施形態の止水性能評価装置1および止水性能評価方法によれば、第一実施形態の止水性能評価装置1および止水性能評価方法と同様の効果が得られる。
Next, a water stop performance evaluation method using the water stop performance evaluation device 1 of this embodiment will be explained.
First, water is passed at a constant flow rate through a virtual ground formed by filling a container 2 with sand. Water is injected from the lower end of the cylinder 21 and discharged from the upper end of the cylinder 21. When the water flow rate becomes stable, the injection material is injected from the middle of the container 2. The injection material is supplied via a quantitative supply device 53, and fixed amounts of liquid A and liquid B are supplied at the same time. At this time, the injection material may be cooled or heated by the temperature adjustment means 6. The A liquid and the B liquid are injected into the cylinder 21 in a mixed state by the line mixer of the injection part 54. The injection material injected into the cylinder 21 hardens while flowing upward along the flow of water in the container 2. The liquid discharged from the container 2 flows down to the drained liquid measuring means 4. In the water-stopping property evaluation method, the time-dependent change in the flow rate of the drained liquid is calculated based on the amount of the drained liquid that has flowed down to the drained liquid measuring means 4, and the water-stopping property of the injection material is evaluated.
According to the water stop performance evaluation device 1 and the water stop performance evaluation method of the present embodiment, the same effects as the water stop performance evaluation device 1 and the water stop performance evaluation method of the first embodiment can be obtained.

以下、第二実施形態の止水性能評価方法による実験結果について説明する。
本実験では、注入対象の模型地盤(筒体21)は、直径50mm、長さ1000mmの円筒形の透明塩化ビニル管を使用した。容器2の下方から上方にはヘッド差hにより一定水流を確保した上で、排出水量を経時的に重量測定して止水性能の発揮度合を把握することとした。このとき、供給側でヘッドを固定するために設けた貯水槽31には、蛇口の開口は固定して直接水道水を供給し続け、実際の流入量の変化の把握、さらには浸透状況の理解につなげるべく越流水計測槽33に流下した水を重量測定した。注入材の供給箇所を筒体21の中心高さに設けた。注入材供給箇所を筒体21の下端部にしなかった理由は、注入材の逆流により通水経路を閉塞し、模型地盤内での止水効果を適切に評価できなくなるのを回避するためである。
注入材は二液を等量混合する瞬結タイプの溶液型配合を利用することから、A液を第一タンク51、B液を第二タンク52に個々に準備の上、注入材の供給速度に準じた変位制御にて定量供給装置53を押し出し等量供給した。送液管55を介して注入材を供給するにあたり、模型地盤への流入直前にラインミキサー(注入部54)で混合する。
Hereinafter, experimental results using the water stop performance evaluation method of the second embodiment will be explained.
In this experiment, a cylindrical transparent vinyl chloride pipe with a diameter of 50 mm and a length of 1000 mm was used as the model ground (cylindrical body 21) to be injected. A constant water flow was ensured from the bottom to the top of the container 2 by the head difference h, and the amount of discharged water was weighed over time to determine the degree of water-stopping performance. At this time, the opening of the faucet is fixed and tap water is continued to be directly supplied to the water storage tank 31 provided to fix the head on the supply side, allowing for an understanding of changes in the actual inflow amount and further understanding of the infiltration situation. The weight of the water flowing down into the overflow water measuring tank 33 was measured in order to connect it to the overflow water measurement tank 33. A supply point for the injection material was provided at the center height of the cylinder body 21. The reason why the injection material was not supplied to the lower end of the cylinder 21 was to avoid the backflow of the injection material clogging the water flow path and making it impossible to properly evaluate the water-stopping effect within the model ground. .
Since the injection material uses an instant-setting solution type formulation in which two liquids are mixed in equal amounts, liquid A is prepared in the first tank 51 and liquid B is individually prepared in the second tank 52, and the supply rate of the injection material is adjusted accordingly. The quantitative feeder 53 was pushed out and fed in an equal amount under displacement control according to the above. When supplying the injection material via the liquid supply pipe 55, the injection material is mixed in a line mixer (injection section 54) immediately before flowing into the model ground.

本試験は通水状況下で用いられる注入材が有する止水性能の検証を目的としていることから、模型地盤材料として、通水速度を通水ヘッドの調整で設定でき、比較的入手が容易である材料であるφ5~10mmの粗骨材を採用した。
注入材には、表1に示す2種類の溶液型薬液(薬液アおよび薬液イ)を使用した。薬液アおよび薬液イの構成材料の違いはあるが、硬化材の含有量や密度は概ね等価となっている。
Since the purpose of this test is to verify the water-stopping performance of the injection material used under water flow conditions, the water flow rate can be set by adjusting the water flow head as a model ground material, and it is relatively easy to obtain. A certain material, coarse aggregate with a diameter of 5 to 10 mm, was used.
Two types of solution-type chemicals (chemical solution A and drug solution B) shown in Table 1 were used as injection materials. Although there are differences in the constituent materials of chemical solutions A and B, the content and density of the curing agent are roughly equivalent.

Figure 0007364188000001
Figure 0007364188000001

地盤注入材に関して一般的に提示される特性値として、薬液アおよび薬液イが備える温度とゲルタイムの関係を図3に示す。図3に示すように、5℃以下では2秒程度の差異が見られるものの、薬液アおよび薬液イの温度とゲルタイムの関係は概ね一致している。以上の基本特性に基づけば、薬液アと薬液イについては、ケイ酸ナトリウムの濃度や密度などの物理特性とゲルタイムが該当する化学特性については同等とみなされ、性能ベースでの明確な相違を見出すには至らない。 FIG. 3 shows the relationship between the temperature and gel time of chemical solutions A and B, which are characteristic values generally presented for ground injection materials. As shown in FIG. 3, although there is a difference of about 2 seconds below 5° C., the relationship between temperature and gel time for chemical solutions A and B are generally the same. Based on the above basic characteristics, chemical solutions A and B are considered to be equivalent in physical properties such as the concentration and density of sodium silicate, and chemical properties such as gel time, and there is a clear difference in performance. It doesn't reach that point.

止水目的で地盤凍結工法を用いる場合、地下水流が1m/dayを超えると凍土の成長が阻害されるため、流速を緩和させる補助工法として溶液型瞬結タイプを用いた薬液注入工法が採用される。そのため、通水条件の設定は、上記目安値を十分に超過した上で、実験条件として簡潔・明瞭さを備える条件として、全長1000mmの仮想地盤を3分かけて通過する速度とした。そのため、見かけの通水速度を1000mm/3mins=33cm/min(480m/day)と定め、通水排水量の設定値を291cm/min(=33cm/min×2.5cm×2.5cm×3.14×0.45(間隙比相当値))とした。また、仕切壁34と筒体21の上端とのヘッド差(水頭差)hを30cmとした(図2参照)。
注入材の注入は、表2に示すように、薬液アおよび薬液イについて、それぞれ20℃の室温状態と、0℃未満に冷却した状態との2ケースについて行った。後者(ケース3,4)については、地盤凍結工法との併用適用で注入材が冷却される場合を念頭に置く。また、注入材の供給速度は、実験条件としての簡潔・明瞭さのみを考慮して、上記通水と等量として、供給装置を制御した。
When using the ground freezing method to stop water, if the groundwater flow exceeds 1 m/day, the growth of frozen soil will be inhibited, so a chemical injection method using a solution-type instant setting method is used as an auxiliary method to reduce the flow velocity. Ru. Therefore, the water flow conditions were set to a speed that sufficiently exceeded the above guideline values and to ensure conciseness and clarity as the experimental conditions, such that the water flow would pass through a hypothetical ground with a total length of 1000 mm in 3 minutes. Therefore, the apparent water flow rate is set as 1000 mm/3 mins = 33 cm/min (480 m/day), and the set value of water flow and drainage amount is set as 291 cm 3 /min (= 33 cm/min x 2.5 cm x 2.5 cm x 3. 14×0.45 (gap ratio equivalent value)). Further, the head difference (water head difference) h between the partition wall 34 and the upper end of the cylindrical body 21 was set to 30 cm (see FIG. 2).
As shown in Table 2, injection of the injection material was carried out in two cases for chemical solutions A and B, respectively: at room temperature of 20°C and in a state cooled to below 0°C. Regarding the latter (cases 3 and 4), keep in mind the case where the injection material is cooled when used in combination with the ground freezing method. In addition, the supplying speed of the injection material was controlled to be equal to the water flow rate described above, considering only the simplicity and clarity of the experimental conditions.

Figure 0007364188000002
Figure 0007364188000002

実験では、まず、容器2に水を通水させる。通水が定常状態にあることが確認出来たら、注入材を一定速度で注入し、排液量の経時変化を計測する。一定速度で注入材を供給する間、通水排水量が徐々に減少する様子を目視観察し、排液量がなくなった時点、あるいは少量排水の定常状態に落ち着いたことを確認できた時点で注入材の供給を停止する。各ケース1~4における注入材の供給時間は、1分~1.5分程度であった。
図4にケース1、図5にケース2、図6にケース3、図7にケース4の経過時間と排水速度との関係を示す。なお、図中の「通水分」とは、排液計測手段4に排水された水であり、「越流分」とは、給水手段3の仕切壁34を超えて越流水計測槽33に排水された水のことである。
In the experiment, water was first passed through the container 2. Once it is confirmed that the water flow is in a steady state, the injection material is injected at a constant rate and the change in drainage volume over time is measured. While supplying the injection material at a constant rate, visually observe how the amount of water passing through and draining gradually decreases, and when the amount of drainage water disappears or when it is confirmed that the steady state of a small amount of drainage has settled, remove the injection material. supply will be stopped. The injection material supply time in each case 1 to 4 was about 1 minute to 1.5 minutes.
FIG. 4 shows the relationship between elapsed time and drainage speed for case 1, FIG. 5 for case 2, FIG. 6 for case 3, and FIG. 7 for case 4. In addition, "water passing" in the figure is the water drained into the drain liquid measuring means 4, and "overflow water" is the water drained into the overflow water measuring tank 33 beyond the partition wall 34 of the water supply means 3. It refers to water that has been washed.

ケース1~4のいずれの場合も、注入材の供給開始から数10秒程度で注入材が白濁してゲル化したことが確認できた。注入材の白濁は、供給口(注入手段5の接続部)から100mm程度の範囲で進展し、その後、供給口の下方50~100mmの領域に広がった。
また、図4~図7に示すように、ケース1~4のいずれの場合においても、注入材の供給開始後、通水分の排水速度の増加が一時的に増加するものの、その後はゲル形成の効果として通水分の排水速度が低下する傾向となった。また、室温状態(常温条件)のケース1は、図4に示すように、注入材の供給開始から20秒程度後から急激に通水分の排水速度が低下した。図5に示すように、同じく室温状態(常温条件)のケース2も、ケース1と同様に、注入材の供給開始から20秒程度後から急激に通水分の排水速度が低下した。結果として注入材の供給を停止したタイミングは、常温条件であるケース1,2では、供給開始後1分となった。一方、低温状態のケース3では、図6に示すように、注入材の供給開始数秒後から徐々に通水分の排水速度が低下する結果となった。また、低温状態のケース4においても、図7に示すように、注入材の供給開始15秒程度後から徐々に通水分の排水速度が低下する結果となった。結果として、ケース1,2は、供給開始から1分後に注入材の供給を停止し(図4,5参照)、ケース3は1分30秒後(図6参照)、ケース4では1分20秒後(図7参照)にそれぞれ注入材の供給を停止した。
一方、越流分の排水速度の変化については、注入材の供給開始に先立ち、排水速度の水準や安定性が十分に保たれていないことを示している。
In all of Cases 1 to 4, it was confirmed that the injection material became cloudy and gelled within several tens of seconds from the start of supply of the injection material. The clouding of the injection material developed within a range of approximately 100 mm from the supply port (the connection portion of the injection means 5), and then spread to an area of 50 to 100 mm below the supply port.
In addition, as shown in Figures 4 to 7, in all cases 1 to 4, after the injection material supply starts, the water drainage rate increases temporarily, but after that, gel formation does not increase. As an effect, the water drainage rate tended to decrease. Furthermore, in case 1 under room temperature conditions (normal temperature conditions), as shown in FIG. 4, the water permeation and drainage rate suddenly decreased about 20 seconds after the start of supply of the injection material. As shown in FIG. 5, in Case 2, which was also at room temperature (normal temperature condition), similarly to Case 1, the water permeation and drainage rate suddenly decreased about 20 seconds after the start of supply of the injection material. As a result, the timing at which the supply of the injection material was stopped was 1 minute after the start of supply in Cases 1 and 2 under room temperature conditions. On the other hand, in Case 3 in the low temperature state, as shown in FIG. 6, the water permeation and drainage rate gradually decreased several seconds after the start of supply of the injection material. Furthermore, in Case 4 in the low temperature state, as shown in FIG. 7, the water permeation and drainage rate gradually decreased from about 15 seconds after the start of supply of the injection material. As a result, in Cases 1 and 2, the supply of injection material was stopped 1 minute after the start of supply (see Figures 4 and 5), in Case 3 after 1 minute and 30 seconds (see Figure 6), and in Case 4 after 1 minute and 20 seconds. After a few seconds (see FIG. 7), the injection material supply was stopped.
On the other hand, changes in the drainage rate of the overflow indicate that the level and stability of the drainage rate were not maintained sufficiently prior to the start of supply of the injection material.

ケース1~4の観察の結果、止水性能の評価指標として、通水分の排水速度の活用が有力視されることが確認できた。そのため、図8において、ケース1~4の通水分の排水速度を集約し、比較を行った。
図8に示すように、室温条件では、薬液ア(ケース1)と薬液イ(ケース2)は似たような軌跡を示した。一方、低温条件では、薬液ア(ケース3)は注入材供給後1分10秒過ぎ頃から急激に通水排水速度が低下するのに対し、薬液イ(ケース4)は、注入材供給開始後15秒程度から通水分の排水速度(重量変化速度)の減少が略一定であり、薬液アと薬液イとの間で通水分の排水速度の低下率に明らかな違いが見られた。
図8において確認できる排水速度の変化は、薬液性能を表す指標として活用性が見いだせるため、排水速度が線形的に減少する区間で近似線を描きその勾配を排水速度変化率として抽出した。抽出した排水速度変化率を表3に示す。表3に示すように、薬液アは、薬液イに比べて、常温で1.3倍程度、低温で1.8倍程度の効率で止水効果を発揮できると表現できる。
このように、ゲルタイムで比較した場合(図3参照)に性能が同等の薬材であったとしても、温度条件等の違いによって、止水性能に違いが生じることが確認できた。
As a result of the observations in Cases 1 to 4, it was confirmed that the use of water drainage rate is considered to be a promising indicator for evaluating water stoppage performance. Therefore, in FIG. 8, the water permeation and drainage speeds of Cases 1 to 4 were summarized and compared.
As shown in FIG. 8, under room temperature conditions, chemical liquid A (case 1) and chemical liquid B (case 2) showed similar trajectories. On the other hand, under low-temperature conditions, for chemical solution A (case 3), the water flow and drainage rate suddenly decreases from about 1 minute and 10 seconds after injection material is supplied, whereas for chemical solution A (case 4), the water flow rate decreases rapidly after 1 minute and 10 seconds after injection material supply starts. After about 15 seconds, the decrease in water drainage rate (weight change rate) was approximately constant, and there was a clear difference in the rate of decrease in water drainage rate between chemical solution A and chemical solution B.
Since the change in drainage speed that can be seen in Figure 8 can be used as an index representing the performance of the chemical solution, an approximate line was drawn in the section where the drainage speed decreased linearly, and its slope was extracted as the rate of change in drainage speed. Table 3 shows the extracted drainage rate change rates. As shown in Table 3, it can be expressed that chemical solution A can exhibit a water-stopping effect about 1.3 times more efficiently at room temperature and about 1.8 times more efficiently at low temperatures than chemical solution B.
In this way, when comparing gel times (see FIG. 3), it was confirmed that even if the medicinal materials had the same performance, there were differences in water-stopping performance due to differences in temperature conditions, etc.

Figure 0007364188000003
Figure 0007364188000003

以上、本発明に係る実施形態について説明したが、本発明は前述の実施形態に限られず、前記の各構成要素については本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
例えば、給水手段3による水の供給量や流速を変化させることや、温度調整手段6により温度を変化させることで、地山条件および施工条件に応じた条件で地盤改良薬液(注入材)の評価を行うことができる。そのため、地下水が集中して流れ込むことにより流速および流量が大きい箇所に対して適切な注入材を選定する場合に、地山条件に応じた条件に設定して評価を行うことができる。
また、前記実施形態では、温度調整手段6により容器2または注入材の温度を調整したが、容器2に通水する水の温度を調整してもよい。
また、容器2への水の供給方法は自然流下に限定されるものではなく、例えば、ポンプ圧送してもよい。
容器2に充填する粒状物20は砂に限定されるものではなく、評価対象となる現地の地山に応じて設定をすることができる。
Although the embodiments according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and each of the above-mentioned components can be modified as appropriate without departing from the spirit of the present invention.
For example, by changing the amount and flow rate of water supplied by the water supply means 3 or by changing the temperature by the temperature adjustment means 6, the soil improvement chemical solution (injection material) can be evaluated under conditions according to the ground conditions and construction conditions. It can be performed. Therefore, when selecting an appropriate injection material for a location where groundwater flows in a concentrated manner and has a large flow velocity and flow rate, it is possible to perform evaluation by setting conditions according to the ground conditions.
Further, in the embodiment described above, the temperature of the container 2 or the injection material is adjusted by the temperature adjustment means 6, but the temperature of the water flowing into the container 2 may be adjusted.
Furthermore, the method of supplying water to the container 2 is not limited to gravity flow, and, for example, a pump may be used to supply water under pressure.
The granular material 20 to be filled into the container 2 is not limited to sand, and can be set depending on the local ground to be evaluated.

1 止水性能評価装置
2 容器
3 給水手段
31 貯水槽
32 給水管
4 排液計測手段
5 注入手段
6 温度調整手段
1 Water stop performance evaluation device 2 Container 3 Water supply means 31 Water tank 32 Water supply pipe 4 Drainage measuring means 5 Injection means 6 Temperature adjustment means

Claims (5)

粒状物が充填された筒状の容器と、
前記容器の一端から一定量の水を供給する給水手段と、
前記容器の他端から排出された液体の量を計測する排液計測手段と、
前記容器の前記一端と前記他端との間にある中間部に注入材を供給する注入手段と、を備えていることを特徴とする、止水性能評価装置。
a cylindrical container filled with granules;
Water supply means for supplying a certain amount of water from one end of the container;
drained liquid measuring means for measuring the amount of liquid drained from the other end of the container;
A water stop performance evaluation device comprising: injection means for supplying an injection material to an intermediate portion between the one end and the other end of the container.
前記給水手段は、貯水槽と、前記貯水槽から前記容器に至る給水管とを備えており、
前記貯水槽は、当該貯水槽内の水位が前記容器よりも高くなるように配置されていることを特徴とする、請求項1に記載の止水性能評価装置。
The water supply means includes a water tank and a water supply pipe extending from the water tank to the container,
The water stop performance evaluation device according to claim 1, wherein the water tank is arranged such that the water level in the water tank is higher than the water level in the container.
前記容器を冷却または加熱する温度調整手段をさらに備えていることを特徴とする、請求項1または請求項2に記載の止水性能評価装置。 The water stop performance evaluation device according to claim 1 or 2, further comprising a temperature adjustment means for cooling or heating the container. 筒状の容器に粒状物が充填されてなる仮想地盤に対し、前記容器の一端から他端に向けて一定流速の水を通水するとともに、前記容器の前記一端と前記他端との間にある中間部から注入材を注入し、前記仮想地盤から排出された液体の量の経時変化を測定することを特徴とする、止水性能評価方法。 Water is passed at a constant flow rate from one end of the container to the other end of the virtual ground formed by filling a cylindrical container with granular materials, and between the one end and the other end of the container. A method for evaluating water stoppage performance, comprising injecting an injection material from a certain intermediate portion and measuring changes over time in the amount of liquid discharged from the virtual ground. 前記水または前記注入材が冷却または加温されていることを特徴とする、請求項4に記載の止水性能評価方法。 The water stop performance evaluation method according to claim 4, wherein the water or the injection material is cooled or heated.
JP2019184988A 2019-10-08 2019-10-08 Water stop performance evaluation device and water stop performance evaluation method Active JP7364188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019184988A JP7364188B2 (en) 2019-10-08 2019-10-08 Water stop performance evaluation device and water stop performance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184988A JP7364188B2 (en) 2019-10-08 2019-10-08 Water stop performance evaluation device and water stop performance evaluation method

Publications (2)

Publication Number Publication Date
JP2021059904A JP2021059904A (en) 2021-04-15
JP7364188B2 true JP7364188B2 (en) 2023-10-18

Family

ID=75379696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184988A Active JP7364188B2 (en) 2019-10-08 2019-10-08 Water stop performance evaluation device and water stop performance evaluation method

Country Status (1)

Country Link
JP (1) JP7364188B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914849A (en) * 2021-10-21 2022-01-11 西南石油大学 Experimental device and method for simulating single-node blockage and blockage removal process of polymer injection well

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121433A (en) 2001-10-15 2003-04-23 Toa Harbor Works Co Ltd Manufacturing method and manufacturing device of stabilizing-treated soil specimen
JP2007051481A (en) 2005-08-18 2007-03-01 Kyokado Eng Co Ltd Grouting method
JP2010133816A (en) 2008-12-04 2010-06-17 Kyokado Eng Co Ltd Preparation apparatus and preparation method of specimen for chemical solution injection
JP2013119731A (en) 2011-12-07 2013-06-17 Kyokado Kk Method for improving durability of ground
JP2014005617A (en) 2012-06-22 2014-01-16 Kyokado Engineering Co Ltd Ground improvement construction method
JP2016204921A (en) 2015-04-20 2016-12-08 学校法人東北学院 Design method for installation range of suspension type improvement material, and ground injection method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121433A (en) 2001-10-15 2003-04-23 Toa Harbor Works Co Ltd Manufacturing method and manufacturing device of stabilizing-treated soil specimen
JP2007051481A (en) 2005-08-18 2007-03-01 Kyokado Eng Co Ltd Grouting method
JP2010133816A (en) 2008-12-04 2010-06-17 Kyokado Eng Co Ltd Preparation apparatus and preparation method of specimen for chemical solution injection
JP2013119731A (en) 2011-12-07 2013-06-17 Kyokado Kk Method for improving durability of ground
JP2014005617A (en) 2012-06-22 2014-01-16 Kyokado Engineering Co Ltd Ground improvement construction method
JP2016204921A (en) 2015-04-20 2016-12-08 学校法人東北学院 Design method for installation range of suspension type improvement material, and ground injection method using the same

Also Published As

Publication number Publication date
JP2021059904A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP7364188B2 (en) Water stop performance evaluation device and water stop performance evaluation method
CN107907562A (en) Constant pressure self-loopa frost heave test system
CN105571988B (en) A kind of polymer thermostable detection device and detection method
US2560619A (en) Grouting process and apparatus
JP2014129675A (en) Ground reinforcement method and injection system
TWI588325B (en) Unsaturated soil improvement device and unsaturated ground improvement method
JP2011256574A (en) Filling method for underground cavity
SE431339B (en) SET FOR STABILIZING A WATER-containing GEL-CREATING SYSTEM THROUGH SEATING WITH MOLECULATED ACID
JP6942494B2 (en) Grout lumber and grout injection method
RU172968U1 (en) DEVICE FOR DOSING A LIQUID REAGENT TO A WELL
ITRE20090095A1 (en) METHOD OF CONSOLIDATION OF SOIL BY MEANS OF EXPANDING RESIN INJECTION
CN210145855U (en) Production device for ionic membrane caustic soda salt
CN207297031U (en) A kind of all-hydraulic coupling control system of novel double liquid grout injecting
JP3515014B2 (en) Filling method for cavity
RU105345U1 (en) LIQUID PREPARATION NODE FOR SILENCING AND WASHING WELLS
KR101991648B1 (en) Manufaturing apparatus of bentonite slurry
CN114319020B (en) Emulsified asphalt sprinkling equipment
CN205340758U (en) Reation kettle&#39;s automatic feeding device for paint produce
CN220154214U (en) Model water pipe infiltration test device
CN109115944A (en) A kind of three-dimensional solid-liquid coupling analog simulation loose aquifer simulator and method
JP6996687B2 (en) Installation of a coiled object covered with a net
RU2434119C1 (en) Equipment for preparation of backfilling solution at cementing oil and gas wells
JPS62185922A (en) Expanded mortar injection work in shield tunnel
JP2019076851A5 (en) Contaminated soil or contaminated water treatment method, contaminated soil or contaminated water treatment device, and contaminated soil treatment system
JP2012229541A (en) Revetment reinforcement method and grout material used for the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7364188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150