JP2006349468A - Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil - Google Patents

Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil Download PDF

Info

Publication number
JP2006349468A
JP2006349468A JP2005175201A JP2005175201A JP2006349468A JP 2006349468 A JP2006349468 A JP 2006349468A JP 2005175201 A JP2005175201 A JP 2005175201A JP 2005175201 A JP2005175201 A JP 2005175201A JP 2006349468 A JP2006349468 A JP 2006349468A
Authority
JP
Japan
Prior art keywords
estimation
actual measurement
soil
pollutant
measured data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005175201A
Other languages
Japanese (ja)
Inventor
Ryoichi Fukagawa
良一 深川
Hiroyuki Ishimori
洋行 石森
Eikon Kiyou
永根 姜
Tetsuya Kiwakawa
哲也 極川
Chihiro Sato
千尋 佐藤
Wataru Oya
渡 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHMI ENVIRONMENTAL DESIGN Ltd
Ritsumeikan Trust
Original Assignee
OHMI ENVIRONMENTAL DESIGN Ltd
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHMI ENVIRONMENTAL DESIGN Ltd, Ritsumeikan Trust filed Critical OHMI ENVIRONMENTAL DESIGN Ltd
Priority to JP2005175201A priority Critical patent/JP2006349468A/en
Publication of JP2006349468A publication Critical patent/JP2006349468A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To scientifically and rationally estimate a continuous polluted soil distribution from a small number of discrete actually measured data and to rapidly and properly performing the calculation of a purifying cost and the judge evaluation of land to disclose and transmit calculation and evaluation results to a customer through network communication. <P>SOLUTION: This estimation system 200 of the pollution distribution of soil for estimating the concentration of a pollutant in land using a computer 202 is equipped inside the computer 202 with an actually measured data memory means 204 for storing the actually measured data of the concentrations of the pollutant in a plurality of actually measuring parts of land to be evaluated, a two-dimensional estimation means 206 for estimating the concentrations of the pollutant at a plurality of the points in the horizontal plane within an estimation range including the actually measuring parts on the basis of the actually measured data of a ground surface part in the actually measured data, a parameter determining means 208 for determining an advective dispersion parameter on the basis of the actually measured data of a ground surface lower part in the actually measured data and a three-dimensional estimation means 210 for estimating the concentrations of the pollutant at a plurality of points in the estimation range on the basis of the estimated concentrations of the pollutant at a plurality of points and the determined advective dispersion parameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定システム、土壌汚染分布推定方法、及び土壌汚染分布推定プログラムに関する。   The present invention relates to a soil contamination distribution estimation system, a soil contamination distribution estimation method, and a soil contamination distribution estimation program that estimate the contamination concentration of land using a computer.

有害物質の使用、排出、周辺施設からの移動などによって、土壌汚染が生じている土地がある。土壌汚染の疑わしい土地に関して、資料の閲覧やヒアリング、またサンプリングや分析によって土壌汚染を調査する定性診断がおこなわれてきた。また、定性診断するシステムが開示されている(例えば、特許文献1参照。)。ところが、調査範囲全てについて土地調査を行って実測データを採取するのは労力及びコストが多大となるため、土中の流れ等を把握して、一定範囲内の実測データに基づいて、調査範囲の汚染度を推定することが好ましい。   Some soils are contaminated by the use, discharge, or transfer from nearby facilities. Qualitative diagnosis has been conducted on the suspected soil contamination by examining the soil contamination by browsing, hearing, sampling and analysis. Moreover, a system for qualitative diagnosis is disclosed (for example, see Patent Document 1). However, since it takes a lot of labor and cost to collect survey data by conducting land surveys for the entire survey area, it is necessary to grasp the flow in the soil and based on the measured data within a certain range, It is preferable to estimate the degree of contamination.

しかし、土中の流れを解明する場合、地盤構造の同定及び水分の浸透特性を直接的に把握することは困難なことが多い。また、これは土壌・地下水汚染問題と関連して、汚染物質の地盤内輸送のメカニズム解明をさらに困難にしている。そのために室内実験やフィールドでの観測によって、間接的に複雑多岐にわたる多孔質媒体中を流れる水分並びに汚染物質の様相を推定せざるを得ない。このような場合、推定を科学的かつ合理的なものとするためには、多孔質媒体と水からなる系を1つのシステムと捉え、各種の数理手法を用いて客観的に解析する必要がある。このシステムを支配する地盤環境状態や各種パラメータ(地下水位、浸透流速、透水係数など)は、時間・空間的に変動し、また相互に複雑に影響し合っている。一般に、このような地盤環境状態や各種パラメータを推定するために、数多くの観測データを得ることは技術的にも経済的にも困難なことが多い。以上の問題背景から、少ない限られた観測データから場の空間構造を把握するため、地盤環境状態や各種パラメータを科学的かつ合理的に推定する手法が要請されるようになってきた。   However, when elucidating the flow in the soil, it is often difficult to directly identify the ground structure identification and moisture permeation characteristics. This also makes it more difficult to elucidate the mechanism of transport of pollutants in the ground in relation to the soil and groundwater contamination problems. Therefore, it is necessary to estimate the aspects of moisture and pollutants flowing in a complex and diverse porous medium indirectly through laboratory experiments and field observations. In such a case, in order to make the estimation scientific and rational, it is necessary to regard a system composed of a porous medium and water as one system, and to perform objective analysis using various mathematical methods. . The ground environmental conditions and various parameters (groundwater level, seepage flow velocity, hydraulic conductivity, etc.) governing this system fluctuate in time and space, and influence each other in a complex manner. In general, in order to estimate such ground environmental conditions and various parameters, it is often difficult technically and economically to obtain a large number of observation data. In view of the above problem background, in order to grasp the spatial structure of the field from a limited amount of observation data, a method for scientifically and rationally estimating the ground environmental condition and various parameters has been demanded.

また、土壌汚染で問題となる汚染物質は、その特性上、地表面付近に残留する可能性が高いため、土壌汚染対策では、汚染土壌を直接取り除く掘削除去が採用されることが多い。汚染土壌を掘削するのに必要な金額を算出する場合、100m2 当たりを掘削土壌の基本単位として算出する場合と、あらかじめ濃度分布を概略的に調べてから算出する場合とでは金額に違いが生じる。算出された金額によって土地の鑑定や評価を行なう不動産鑑定士や土地を担保に資金を貸し付ける金融機関のインパクトが大きく変わるので、これらを解消するためにも、掘削除去に必要な金額を合理的に算出する手法、すなわち三次元土壌汚染範囲を推定する方法が必要となる。
特開2002−168850号公報
In addition, because pollutants that cause problems due to soil contamination are highly likely to remain near the ground surface due to their characteristics, excavation and removal that directly removes contaminated soil is often employed as a countermeasure against soil contamination. When calculating the amount of money necessary to excavate contaminated soil, there is a difference in the amount of money when calculating per 100 m 2 as the basic unit of excavated soil and when calculating after examining the concentration distribution roughly in advance. . The impact of the real estate appraiser who appraises and evaluates the land and the financial institution that lends funds using the land as collateral changes greatly depending on the calculated amount. A calculation method, that is, a method for estimating a three-dimensional soil contamination range is required.
JP 2002-168850 A

本発明の目的は、少数の離散的な実測データから、連続的な汚染土壌分布を科学的かつ合理的に推測し、浄化費用の算出及び土地の鑑定評価を迅速かつ適正に行い、ネットワーク通信を通じて顧客に開示及び伝達することにある。   The purpose of the present invention is to scientifically and rationally estimate the continuous distribution of contaminated soil from a small number of discrete measured data, to quickly and appropriately calculate remediation costs and appraise land, and through network communication. To disclose and communicate to customers.

本発明の土壌汚染分布推定システムは、コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定システムであり、該コンピューター内に、評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶する実測データ記憶手段と、前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定する二次元推定手段と、前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するパラメータ決定手段と、前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定する三次元推定手段と、を備えたことを特徴とする。コンピューターとは、大型コンピューター、パーソナルコンピューター等を言う。端末とは、パーソナルコンピューター又は携帯電話等を言う。各手段は、コンピューターへの指令により又はコンピューター自らの判断により、各処理を行なう。実測部とは、評価対象土地の地表面部及び地表面下部において、汚染濃度を実測した部分を言う。推定範囲とは、本発明によって汚染濃度を推定する範囲であり、調査対象土地の全ての範囲又は一部の範囲である。   The soil contamination distribution estimation system of the present invention is a soil contamination distribution estimation system that estimates the contamination concentration of a land using a computer, and the concentration of contaminants in a plurality of actual measurement parts in the evaluation target land is included in the computer. Two-dimensional estimation of pollutant concentrations at a plurality of points in a horizontal plane in the estimation range including the actual measurement part based on the actual measurement data storage means for storing the actual measurement data and the actual measurement data of the ground surface in the actual measurement data Based on the estimation means, the parameter determination means for determining the advection dispersion parameter based on the measured data of the lower surface of the ground in the measured data, the estimated concentration of pollutants and the determined advection dispersion parameter, And three-dimensional estimation means for estimating the concentration of pollutants at a plurality of points in the estimation range. A computer means a large computer, a personal computer, or the like. A terminal means a personal computer or a mobile phone. Each means performs each process according to a command to the computer or based on the judgment of the computer itself. The actual measurement part refers to a part where the contamination concentration was actually measured in the ground surface part and the ground surface lower part of the evaluation target land. The estimated range is a range in which the concentration of contamination is estimated according to the present invention, and is the entire range or a partial range of the survey target land.

本発明の土壌汚染分布推定システムは、前記土壌汚染分布推定において、前記二次元推定手段が、複数点の汚染物質濃度Cb(x,y)を決定し、前記パラメータ決定手段が、最適移流分散パラメータtROPT及びpeOPTを決定し、前記三次元推定手段が、 前記Cb(x,y)、tROPT及びpeOPTに基き、
C(x,y,z)=(1/2)Cb(x,y)erfc[{peOPT/4tROPT(z)}1/2 {1-tROPT(z)}]を計算して、推定範囲中の複数点の汚染物質濃度C(x,y,z)を決定することを特徴とする。ここで、時間に関する無次元移流分散パラメータtRの最適値をtROPT、ペクレ数peの最適値をpeOPTとする。
In the soil contamination distribution estimation system of the present invention, in the soil contamination distribution estimation, the two-dimensional estimation means determines a plurality of pollutant concentrations Cb (x, y), and the parameter determination means includes an optimum advection dispersion parameter. tR OPT and pe OPT are determined, and the three-dimensional estimation means is based on Cb (x, y), tR OPT and pe OPT ,
C (x, y, z) = (1/2) Cb (x, y) erfc [{pe OPT / 4tR OPT (z)} 1/2 {1-tR OPT (z)}] It is characterized by determining pollutant concentrations C (x, y, z) at a plurality of points in the estimation range. Here, it is assumed that the optimum value of the dimensionless advection dispersion parameter tR with respect to time is tR OPT and the optimum value of the Peclet number pe is pe OPT .

本発明の土壌汚染分布推定システムは、前記土壌汚染分布推定において、前記二次元推定手段による汚染物質濃度の推定と、前記パラメータ決定手段による移流分散パラメータの決定とが同時に行なわれることを特徴とする。   The soil contamination distribution estimation system according to the present invention is characterized in that in the soil contamination distribution estimation, the estimation of the contaminant concentration by the two-dimensional estimation means and the determination of the advection dispersion parameter by the parameter determination means are performed simultaneously. .

本発明の土壌汚染分布推定方法は、コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定方法であり、前記コンピューター内の実測データ記憶手段が、評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶するステップと、前記コンピューター内の二次元推定手段が、前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定するステップと、前記コンピューター内のパラメータ決定手段が、前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するステップと、前記コンピューター内の三次元推定手段が、前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定するステップと、を含むことを特徴とする。   The soil contamination distribution estimation method of the present invention is a soil contamination distribution estimation method that estimates the contamination concentration of land using a computer, and the actual measurement data storage means in the computer includes a plurality of actual measurement units in the evaluation target land. Storing the actual measurement data of the pollutant concentration in the computer, and the two-dimensional estimation means in the computer, based on the actual measurement data of the ground surface in the actual measurement data, in the horizontal plane in the estimation range including the actual measurement unit Estimating a plurality of contaminant concentrations at a plurality of points in the computer, a parameter determining unit in the computer determining an advection dispersion parameter based on actual measurement data of a lower surface of the ground in the actual measurement data, and a tertiary in the computer Based on the estimated pollutant concentration at the plurality of points and the determined advection dispersion parameter, Estimating a contaminant concentration at a plurality of points in the serial estimation range, characterized in that it comprises a.

本発明の土壌汚染分布推定プログラムは、コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定プログラムであり、該コンピューターに、評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶する実測データ記憶手段、前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定する二次元推定手段、前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するパラメータ決定手段、前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定する三次元推定手段、として機能させることを特徴とする。   The soil contamination distribution estimation program of the present invention is a soil contamination distribution estimation program that estimates the contamination concentration of land using a computer, and the computer measures the concentration of pollutants in a plurality of measurement units in the evaluation target land. Actual measurement data storage means for storing data, two-dimensional estimation means for estimating the concentration of pollutants at a plurality of points in a horizontal plane in the estimation range including the actual measurement part based on the actual measurement data of the ground surface portion in the actual measurement data , Parameter determining means for determining advection dispersion parameters based on the measured data of the lower surface of the ground in the measured data, based on the estimated pollutant concentrations at the plurality of points and the determined advection dispersion parameters, It is made to function as a three-dimensional estimation means for estimating the pollutant concentration at a plurality of points.

本発明の土壌汚染分布推定システム、土壌汚染分布推定方法及び土壌汚染分布推定プログラムによれば、二次元推定手段により地表面の汚染物質濃度を推定するのと同時に、パラメータ決定手段により移流分散パラメータを推定しておき、これらの推定結果を用いて三次元推定手段により三次元汚染濃度分布を推定できる。このため、実測データを利用しながらも効率的に三次元汚染濃度分布を推定できる。また、実測部の実測データを利用して調査範囲全ての汚染度を推定できるため、実測コストを低減できる。移流分散パラメータを用いることにより、科学的かつ合理的に推定することができ、土地汚染調査の確実性を向上させることができる。また、浄化費用の算出を迅速かつ適正に行うことができる。さらに、推定結果及び算出結果を、ネットワーク通信を通じて迅速に顧客に開示及び伝達することができる。   According to the soil contamination distribution estimation system, the soil contamination distribution estimation method, and the soil contamination distribution estimation program of the present invention, the advection dispersion parameter is calculated by the parameter determination means at the same time as the pollutant concentration on the ground surface is estimated by the two-dimensional estimation means. The three-dimensional contamination concentration distribution can be estimated by the three-dimensional estimation means using these estimation results. For this reason, it is possible to efficiently estimate the three-dimensional contamination concentration distribution while using the measured data. Moreover, since the contamination degree of the whole investigation range can be estimated using the actual measurement data of the actual measurement unit, the actual measurement cost can be reduced. By using the advection dispersion parameter, it can be estimated scientifically and rationally, and the certainty of land pollution survey can be improved. In addition, the purification cost can be calculated quickly and appropriately. Furthermore, the estimation result and the calculation result can be quickly disclosed and communicated to the customer through network communication.

本発明の土壌汚染分布推定システム、土壌汚染分布推定方法、及び土壌汚染分布推定プログラムについて、以下に図面に基き詳細に説明する。   The soil contamination distribution estimation system, soil contamination distribution estimation method, and soil contamination distribution estimation program of the present invention will be described in detail below with reference to the drawings.

本発明の土壌汚染分布推定システム200は、コンピューター202を利用して土地の汚染濃度を推定する土壌汚染分布推定システムであり、図1に示すように、コンピューター202内に、評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶する実測データ記憶手段204と、実測データの中の地表面部の実測データに基づいて、実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定する二次元推定手段206と、実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するパラメータ決定手段208と、推定した複数点の汚染物質濃度及び決定した移流分散パラメータに基づいて、推定範囲中の複数点の汚染物質濃度を推定する三次元推定手段210と、を備えて構成されている。   The soil contamination distribution estimation system 200 according to the present invention is a soil contamination distribution estimation system that estimates the concentration of land contamination using a computer 202. As shown in FIG. Based on the actual measurement data storage means 204 for storing the actual measurement data of the pollutant concentration in the plurality of actual measurement parts and the actual measurement data on the ground surface part in the actual measurement data, a plurality of points in the horizontal plane in the estimation range including the actual measurement part Two-dimensional estimation means 206 for estimating the pollutant concentration, parameter determination means 208 for determining the advection dispersion parameter based on the actual measurement data below the ground surface in the actual measurement data, the estimated pollutant concentrations at the plurality of points and the determined advection And three-dimensional estimation means 210 for estimating the concentration of pollutants at a plurality of points in the estimation range based on the dispersion parameter. To have.

よって、本発明の土壌汚染分布推定プログラムは、コンピューター202を、実測データ記憶手段204、二次元推定手段206、パラメータ決定手段208、及び三次元推定手段210として機能させるプログラムである。   Therefore, the soil contamination distribution estimation program of the present invention is a program that causes the computer 202 to function as the actual measurement data storage unit 204, the two-dimensional estimation unit 206, the parameter determination unit 208, and the three-dimensional estimation unit 210.

二次元推定手段206は、複数点の汚染物質濃度Cb(x,y)を決定し、パラメータ決定手段208は、最適移流分散パラメータtROPT及びpeOPTを決定し、三次元推定手段210は、Cb(x,y)、tROPT及びpeOPTに基き、
C(x,y,z)=(1/2)Cb(x,y)erfc[{peOPT/4tROPT(z)}1/2 {1-tROPT(z)}]を計算して、推定範囲中の複数点の汚染物質濃度C(x,y,z)を決定する。なお、周知ではあるが、erfc(x)=1−erf(x)であり、erf(x)=(2/π1/2)∫(t=0〜∞){eexp(-t2)}dtである。但し、∫(t=0〜∞)は0から∞までの積分を意味する。
The two-dimensional estimation means 206 determines a plurality of pollutant concentrations Cb (x, y), the parameter determination means 208 determines optimal advection dispersion parameters tR OPT and pe OPT , and the three-dimensional estimation means 210 determines Cb. (x, y), based on tR OPT and pe OPT ,
C (x, y, z) = (1/2) Cb (x, y) erfc [{pe OPT / 4tR OPT (z)} 1/2 {1-tR OPT (z)}] Determine pollutant concentrations C (x, y, z) at a plurality of points in the estimated range. As is well known, erfc (x) = 1−erf (x) and erf (x) = (2 / π 1/2 ) ∫ (t = 0 to ∞) {eexp (−t 2 )} dt. However, ∫ (t = 0 to ∞) means integration from 0 to ∞.

本発明の土壌汚染分布推定システム200によって評価された結果や情報は、ネットワーク通信を介して、土地所有者、不動産会社、不動産鑑定士、又は金融機関等の顧客に提供される。提供方法は、ホームページに掲載する方法、データをダウンロードする方法等、特に限定されない。   The results and information evaluated by the soil contamination distribution estimation system 200 of the present invention are provided to customers such as land owners, real estate companies, real estate appraisers, or financial institutions via network communication. The providing method is not particularly limited, such as a method for posting on a home page or a method for downloading data.

ここで、水平方向の汚染濃度分布評価における、汚染濃度分布形状に及ぼす物質移動パラメータの影響について本発明者が検討した結果を説明する。地表面付近の汚染分布を考えた場合、その水平方向の汚染の拡がり方は、分子拡散係数及び遅延係数に影響を受けると考えられる。そこで、図3(a)に示す拡散方程式を用いて、汚染物質の拡がり方に及ぼす物質移動パラメータの影響を検討した。所定濃度cpを持つ汚染源から汚染物質を連続的に注入させ、汚染濃度分布の経時変化ならびに濃度分布特性に及ぼす分子拡散係数Dm及び遅延係数Rの影響を検討した。   Here, a description will be given of the results of the study by the present inventor regarding the influence of the mass transfer parameter on the contamination concentration distribution shape in the contamination concentration distribution evaluation in the horizontal direction. When considering the distribution of contamination near the ground surface, the spread of contamination in the horizontal direction is considered to be affected by the molecular diffusion coefficient and the delay coefficient. Then, the influence of the mass transfer parameter on how the pollutants spread was examined using the diffusion equation shown in FIG. Contaminants were continuously injected from a contamination source having a predetermined concentration cp, and the influence of the molecular diffusion coefficient Dm and the delay coefficient R on the temporal change of the concentration distribution and the concentration distribution characteristics were examined.

この結果、土壌汚染で問題となる汚染物質の遅延係数を考慮すると、汚染物質が拡散する距離ΔLは長くても1m程度であることから、実現場では汚染が水平方向にほとんど拡大していない可能性が高い。そのため、水平方向の汚染物質の拡大に移流分散特性はほとんど影響していないと考えられる。土壌汚染対策法で定められる調査間隔10mmを考慮すると、各調査地点から検出される濃度値から汚染物質の移動特性(分子拡散現象及び吸着現象)に基いて汚染濃度分布を推定することは困難であることが分かった。   As a result, in consideration of the delay coefficient of the pollutant that is a problem in soil contamination, the distance ΔL at which the pollutant diffuses is about 1 m at the longest. High nature. For this reason, it is considered that the advection dispersion characteristics have little influence on the expansion of pollutants in the horizontal direction. Considering the survey interval of 10 mm defined in the Soil Contamination Countermeasures Law, it is difficult to estimate the concentration distribution of pollutants based on the movement characteristics (molecular diffusion phenomenon and adsorption phenomenon) of pollutants from the concentration values detected at each survey point. I found out.

一方、統計解析を用いた汚染濃度分布の推定について本発明者が検討した結果、後述のクリギング解析は非常に有効な手段と考えられる。すなわち、移流分散特性の影響をほとんど受けない地表面の汚染濃度分布を推定するにあたり、確立統計論を利用したクリギング解析は非常に有効な手段であると考えられる。   On the other hand, as a result of the inventor's investigation on estimation of the contamination concentration distribution using statistical analysis, the kriging analysis described later is considered to be a very effective means. In other words, Kriging analysis using established statistical theory is considered to be a very effective means for estimating the contamination concentration distribution on the ground surface that is hardly affected by advection dispersion characteristics.

また、本発明者は、鉛直方向の汚染濃度分布評価における汚染濃度分布形状に及ぼす物質移動パラメータの影響について検討した。この検討は、深度方向へ浸透する汚染物質の一次元移動についての図3(b)に示す移流分散方程式を用いて行なった。その結果、汚染濃度分布特性に及ぼす浸透流速及び分散長(分散係数)の影響は大きいと考えられる。   Further, the present inventor examined the influence of the mass transfer parameter on the contamination concentration distribution shape in the evaluation of the contamination concentration distribution in the vertical direction. This examination was performed using the advection dispersion equation shown in FIG. 3B for the one-dimensional movement of the contaminant that permeates in the depth direction. As a result, the influence of the osmotic flow velocity and dispersion length (dispersion coefficient) on the contamination concentration distribution characteristics is considered to be large.

このような土壌汚染分布推定システム200の作用について以下に説明することにより、本発明の土壌汚染分布推定方法について説明する。   The operation of the soil contamination distribution estimation system 200 will be described below to describe the soil contamination distribution estimation method of the present invention.

まず、評価対象土地の中の容易に実測可能な部分で実測データを採取し、図2に示すように、実測データを深度ごとに整理し、実測データを実測データ記憶手段204に入力する。その後は、コンピューター202が以下の処理を行なう。   First, actual measurement data is collected at an easily measurable portion in the evaluation target land, and as shown in FIG. 2, the actual measurement data is arranged for each depth, and the actual measurement data is input to the actual measurement data storage means 204. Thereafter, the computer 202 performs the following processing.

コンピューター202は、実測データ記憶手段204を機能させて、各深度ごとの代表値(平均値、中央値等)を計算する。代表値の計算方法は、度数分布を作成した上で決定することが望ましい。度数分布の横軸である階級は、度数分布の形に大きな影響を及ぼすため、階級の取りかた(常数で整理するのか、対数値で整理するのか)や階層幅は十分な注意が払われて設定されている。なお、実測データ記憶手段204内に記憶されている地表面部(Z=0)における実測データは地表面部の汚染濃度分布を推定するために利用され、地表面下部(Z<0)における実測データは移流分散パラメータTR及びPeの決定に利用される。   The computer 202 causes the actual measurement data storage unit 204 to function and calculates a representative value (average value, median value, etc.) for each depth. It is desirable to determine the calculation method of the representative value after creating the frequency distribution. The class that is the horizontal axis of the frequency distribution has a great influence on the shape of the frequency distribution, so sufficient attention has been paid to the way of class classification (whether it is organized by constants or logarithmic values) and the hierarchy width. Is set. The actual measurement data in the ground surface portion (Z = 0) stored in the actual measurement data storage means 204 is used to estimate the contamination concentration distribution on the ground surface portion, and the actual measurement data in the lower ground surface (Z <0). The data is used to determine the advection dispersion parameters TR and Pe.

次に、コンピューター202は、二次元推定手段206により、実測データの空間構造を評価する。すなわち、地表面に分布された実測データの空間構造を評価するために、
2γ(h)=(1/n)Σ(i=1〜n)[Z(Xi)−Z(Xj)]2 (式1)の式を使用しバリオグラムγ(h)を計算する。なお、バリオグラムとは、所定距離h離れた実測データの分散を表わし、バリオグラムがゼロのとき分散が無い。すなわち実測データが均一であることを意味する。本明細書において、Σ(i=1〜n)とは、i=1からi=nまで加算することを意味する。ここで、Z(Xi) は実測データに関する諸量でり、他のパラメータに依存しない正規分布性を持たなければならない。感度解析の結果によれば、地表面部の汚染濃度分布は汚染物質の浸透特性ならびに移流分散特性の影響をほとんど受けないことが明らかであり、一般的には、地表面の実測データは他のパラメータに依存しないと考えられる。また、実測データの対数値は正規分布性をもつことから、ここでは、Z(Xi)=log10C(Xi)(式2)として扱う。ここに、Xi は調査地点iにおける実測データ(濃度又は吸着量であり、単位はmg/kg、mg/m3 等、特に限定されない)である。計算されたバリオグラムγ(h)は球形モデルや指数モデルにフィットさせられて、バリオグラムの関数化が行なわれる。
Next, the computer 202 evaluates the spatial structure of the actual measurement data by the two-dimensional estimation means 206. That is, in order to evaluate the spatial structure of the measured data distributed on the ground surface,
2γ (h) = (1 / n) Σ (i = 1 to n) [Z (Xi) −Z (Xj)] 2 The variogram γ (h) is calculated using the equation (Equation 1). The variogram represents the dispersion of the measured data separated by a predetermined distance h, and there is no dispersion when the variogram is zero. That is, it means that the measured data is uniform. In this specification, Σ (i = 1 to n) means adding from i = 1 to i = n. Here, Z (Xi) is various quantities relating to actually measured data, and must have a normal distribution that does not depend on other parameters. According to the results of the sensitivity analysis, it is clear that the contamination concentration distribution on the ground surface is hardly affected by the infiltration characteristics and advection dispersion characteristics of pollutants. It seems to be independent of parameters. In addition, since the logarithmic value of the actually measured data has normal distribution, it is treated here as Z (Xi) = log10C (Xi) (Formula 2). Here, Xi is actually measured data at the survey point i (concentration or adsorption amount, and the unit is not particularly limited, such as mg / kg, mg / m 3, etc.). The calculated variogram γ (h) is fitted to a spherical model or an exponential model, and the variogram is functionalized.

次に、コンピューター202は、二次元推定手段206を機能させて、地表面部の汚染濃度を推定する。すなわち、計算されたバリオグラムを利用して、任意の地表面位置(x,y)における汚染濃度cb (x,y)を決定する。実測データを対数変換した諸量Z(Xi) を用いてクリギング解析を行い、地表面位置(x,y)における諸量Z(x,y)を推定する。任意位置における諸量Z(x,y)を、調査地点における実測データZ(Xi)の線形結合で、Z(x,y)=Σ(i=1〜n)λiZ(Xi)(式3)なる式により計算できる。重みλiは、−Σ(i=1〜n)λiγ(||Xi-Xj||)+μ=−γ(||Xi-X(x,y)||),i=1,2,3・・・,n,Σ(j=1〜n)λj=1(式4)なる連立一次方程式を解くことにより計算する。μはラグランジェ定数をX(x,y)は任意位置(x,y)の位置ベクトル(座標値)を表わす。重みλiを計算することにより、任意位置(x,y)における汚染濃度Cb(x,y)を上記式2及び式3から計算する。式2中の実測データC(Xi) が液層濃度ならば、Cb(x,y)=10exp[Σ(i=1〜n)λiZ(Xi)]であり、実測データC(Xi) が吸着量であるならば、(1/Kd)10exp[Σ(i=1〜n)λiZ(Xi)]である。ここに、Kdは分配係数[L3/M ]である。 Next, the computer 202 causes the two-dimensional estimation means 206 to function to estimate the contamination concentration on the ground surface. That is, the contamination concentration cb (x, y) at an arbitrary ground surface position (x, y) is determined using the calculated variogram. Kriging analysis is performed using various quantities Z (Xi) obtained by logarithmically converting measured data, and various quantities Z (x, y) at the ground surface position (x, y) are estimated. Z (x, y) = Σ (i = 1 to n) λiZ (Xi) (formula 3) is a linear combination of the measured data Z (Xi) at the survey point. It can be calculated by the following formula. The weight λi is −Σ (i = 1 to n) λiγ (|| Xi-Xj ||) + μ = −γ (|| Xi-X (x, y) ||), i = 1, 2, 3 · .., N, [Sigma] (j = 1 to n) [lambda] j = 1 (equation 4) is calculated by solving the simultaneous linear equations. μ represents a Lagrangian constant, and X (x, y) represents a position vector (coordinate value) at an arbitrary position (x, y). By calculating the weight λi, the contamination concentration Cb (x, y) at an arbitrary position (x, y) is calculated from the above equations 2 and 3. If the measured data C (Xi) in Equation 2 is the liquid layer concentration, Cb (x, y) = 10exp [Σ (i = 1 to n) λiZ (Xi)], and the measured data C (Xi) is adsorbed. If it is a quantity, it is (1 / Kd) 10exp [Σ (i = 1 to n) λiZ (Xi)]. Here, Kd is a distribution coefficient [L 3 / M].

また、コンピューター202は、パラメータ決定手段208を機能させて、移流分散パラメーターを決定する。すなわち、実測データ記憶手段204に記憶された地表面下(z<0)における実測データを利用して、サイトを代表する移流分散パラメータtR及びpeを決定する。フィッティングデータには各深度における実測データの代表値を利用し、
C(tR,pe)=(1/2)Cberfc[(pe/4tR)1/2 (1-tR)](式5)なるフィッティングモデルに適合させる。ここで、tR及びpeは深度zに依存するパラメータであり、tR=(vt/R)(1/z)であり、pe=(v/RD)・zである。上記式5と実測データの代表値の誤差が最小となる最適なパラメータtROPT及びpeOPTを同定する。同定されたtROPT及びpeOPTをサイトを代表する移流分散パラメータと考えれば、地表面部の汚染濃度Cbから深部の汚染濃度分布を、C(z)=(1/2)Cberfc[{peOPT/4tROPT(z)}1/2 {1-tROPT(z)}](式6)を計算して推定する。
In addition, the computer 202 causes the parameter determination unit 208 to function to determine the advection dispersion parameter. That is, the advection dispersion parameters tR and pe representing the site are determined using the measured data under the ground surface (z <0) stored in the measured data storage unit 204. For the fitting data, use the representative value of the measured data at each depth,
C (tR, pe) = (1/2) Cberfc [(pe / 4tR) 1/2 (1-tR)] (Formula 5) Here, tR and pe are parameters depending on the depth z, tR = (vt / R) (1 / z), and pe = (v / RD) · z. The optimum parameters tR OPT and pe OPT that minimize the error between the above equation 5 and the representative value of the measured data are identified. If the identified tR OPT and pe OPT are considered as advection dispersion parameters representing the site, the contamination concentration distribution in the deep part from the contamination concentration Cb in the ground surface part is expressed as C (z) = (1/2) Cberfc [{pe OPT / 4tR OPT (z)} 1/2 {1-tR OPT (z)}] (Equation 6) is calculated and estimated.

次に、コンピューター202は、三次元推定手段210を機能させて、三次元汚染濃度分布を計算する。深度方向の汚染濃度分布を上記式6から決定するには、地表面部における汚染濃度Cbが既知であれば良い。地表面部の濃度分布はクリギング解析から上記Cb(x,y)=10exp[Σ(i=1〜n)λiZ(Xi)]、及び(1/Kd)10exp[Σ(i=1〜n)λiZ(Xi)]なる式のように推定できる。よって、クリギング解析から推定される任意の地表面位置(x,y)における汚染濃度をCb(x,y)と置いて、C(x,y,z)=(1/2)Cb(x,y)erfc[{peOPT/4tROPT(z)}1/2 {1-tROPT(z)}]なる式により三次元濃度分布を計算する。 Next, the computer 202 causes the three-dimensional estimation unit 210 to function to calculate a three-dimensional contamination concentration distribution. In order to determine the contamination concentration distribution in the depth direction from the above equation 6, it is sufficient that the contamination concentration Cb at the ground surface is known. Concentration distribution on the ground surface is calculated from Kriging analysis by Cb (x, y) = 10exp [Σ (i = 1 ~ n) λiZ (Xi)] and (1 / Kd) 10exp [Σ (i = 1 ~ n) λiZ (Xi)] can be estimated. Therefore, C (x, y, z) = (1/2) Cb (x, y) where the contamination concentration at an arbitrary ground surface position (x, y) estimated from kriging analysis is set as Cb (x, y). y) erfc [{pe OPT / 4tR OPT (z)} 1/2 {1-tR OPT (z)}] is used to calculate the three-dimensional concentration distribution.

また、コンピューター202は、推定された三次元濃度分布に基いて掘削土量を計算する。対象サイト中の微小要素を取り出したとき、微小要素中の汚染濃度Cは、Min(i=1〜8){Ci}以上でMax(i=1〜8){Ci}以下である。ここに、Ciは微小要素の各頂点における汚染濃度を表わす。従って、微小要素が基準濃度Ctarget以下である場合、Max(i=1〜8){Ci}がCtarget以下である。逆にMax(i=1〜8){Ci}がCtargetより上回ると対象となる微小要素は基準濃度Ctargetを超過しているから掘削土量として扱う。すなわち、対象サイトを微小要素に分割し、各微小要素について、このような判別を行なうことにより、対象サイト中に含まれる汚染土量(掘削すべき土量)を計算する。   Further, the computer 202 calculates the amount of excavated soil based on the estimated three-dimensional concentration distribution. When the microelements in the target site are taken out, the contamination concentration C in the microelements is Min (i = 1-8) {Ci} or more and Max (i = 1-8) {Ci} or less. Here, Ci represents the contamination concentration at each vertex of the microelement. Therefore, when the microelement is equal to or lower than the reference concentration Ctarget, Max (i = 1 to 8) {Ci} is equal to or lower than Ctarget. Conversely, when Max (i = 1 to 8) {Ci} exceeds Ctarget, the target microelement exceeds the reference concentration Ctarget, and is treated as the amount of excavated soil. That is, the target site is divided into minute elements, and the amount of contaminated soil contained in the target site (the amount of soil to be excavated) is calculated by performing such discrimination for each minute element.

また、コンピューター202は、上記推定された三次元濃度分布及び汚染土量を利用して浄化コストを計算する。上記のコンピューター202による推定結果及び計算結果は、調査端末204からサーバーへ送信される。送信された推定結果及び計算結果は、ホームページに掲載される。又は、顧客からダウンロード可能な状態となる。なお、調査端末204から顧客へ直接送信しても良い。   Further, the computer 202 calculates the purification cost using the estimated three-dimensional concentration distribution and the amount of contaminated soil. The estimation result and calculation result by the computer 202 are transmitted from the survey terminal 204 to the server. The transmitted estimation result and calculation result are posted on the homepage. Alternatively, it can be downloaded from the customer. In addition, you may transmit directly to the customer from the survey terminal 204.

以上のように、移流分散パラメータ(浸透流速、分散係数、遅延係数及び経過時間)を最適移流分散パラメータtR及びpeという2個のパラメータで総括し、各深度ごとの実測データにフィッティングさせることにより、これら2個のパラメータを決定することができる。パラメータ数を4個から2個へと少なくすることで、深度方向の汚染濃度分布特性を合理的かつ定量的に把握することが可能となる。また、実測データへのフィッティングから得られるtROPT及びpeOPTを、移流分散方程式の理論開に反映させることにより深度方向の汚染濃度分布を計算することができる。 As described above, the advection dispersion parameters (osmotic flow velocity, dispersion coefficient, delay coefficient, and elapsed time) are summarized with the two parameters of the optimum advection dispersion parameters tR and pe, and fitted to the measured data for each depth, These two parameters can be determined. By reducing the number of parameters from 4 to 2, it is possible to grasp the contamination concentration distribution characteristics in the depth direction reasonably and quantitatively. Moreover, the contamination concentration distribution in the depth direction can be calculated by reflecting tR OPT and pe OPT obtained from the fitting to the actual measurement data in the theoretical opening of the advection dispersion equation.

また、地表面部における汚染濃度をクリギング解析により決定し、その深部の汚染濃度分布を移流分散方程式の理論解から計算することにより三次元汚染濃度分布を推定することが可能となる。また、三次元濃度分布の推定手法を開発することにより、サイト中の掘削すべき汚染土量を定量的に評価することが可能となる。   In addition, it is possible to estimate the three-dimensional contamination concentration distribution by determining the contamination concentration at the ground surface by kriging analysis and calculating the contamination concentration distribution in the deep portion from the theoretical solution of the advection dispersion equation. In addition, by developing a method for estimating the three-dimensional concentration distribution, it is possible to quantitatively evaluate the amount of contaminated soil to be excavated in the site.

以上、本発明の一実施形態について説明したが、本発明はこの実施形態には限定されない。その他、本発明は、主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment. In addition, the present invention can be implemented in a mode in which various improvements, modifications, and changes are made based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明の土壌汚染分布推定システム、土壌汚染分布推定方法、及び土壌汚染分布推定プログラムによれば、少数の離散的な実測データから、連続的な汚染土壌分布を科学的かつ合理的に推測し、浄化費用の算出及び土地の鑑定評価を迅速かつ適正に行い、ネットワーク通信を通じて顧客に開示及び伝達することができる。このため、土壌汚染調査のために汎用的に利用できる。   According to the soil contamination distribution estimation system, the soil contamination distribution estimation method, and the soil contamination distribution estimation program of the present invention, a continuous and contaminated soil distribution is scientifically and reasonably estimated from a small number of discrete measured data, Calculation of remediation costs and appraisal of land can be performed quickly and appropriately, and disclosed and communicated to customers via network communication. For this reason, it can be used universally for soil contamination investigations.

本発明の土壌汚染分布推定システムの構成を示す接続図である。It is a connection diagram which shows the structure of the soil contamination distribution estimation system of this invention. 図1の土壌汚染分布推定システムのフローチャート図である。It is a flowchart figure of the soil contamination distribution estimation system of FIG. 図1の土壌汚染分布推定システムにおいて、移流分散パラメータの重要性を示す図である。It is a figure which shows the importance of an advection dispersion | distribution parameter in the soil contamination distribution estimation system of FIG.

符号の説明Explanation of symbols

200 土壌汚染分布推定システム
202 コンピューター
204 実測データ記憶手段
206 二次元推定手段
208 パラメータ決定手段
210 三次元推定手段
200 soil contamination distribution estimation system 202 computer 204 measured data storage means 206 two-dimensional estimation means 208 parameter determination means 210 three-dimensional estimation means

Claims (5)

コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定システムであり、該コンピューター内に、
評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶する実測データ記憶手段と、
前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定する二次元推定手段と、
前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するパラメータ決定手段と、
前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定する三次元推定手段と、
を備えた土壌汚染分布推定システム。
A soil contamination distribution estimation system that estimates the contamination concentration of land using a computer,
Actual measurement data storage means for storing actual measurement data of pollutant concentrations in a plurality of actual measurement units in the evaluation target land,
Two-dimensional estimation means for estimating pollutant concentrations at a plurality of points in a horizontal plane in the estimation range including the actual measurement part based on the actual measurement data of the ground surface part in the actual measurement data;
Parameter determining means for determining advection dispersion parameters based on the measured data of the lower surface of the ground in the measured data;
Three-dimensional estimation means for estimating a plurality of contaminant concentrations at a plurality of points in the estimation range based on the estimated plurality of contaminant concentrations and the determined advection dispersion parameter;
Soil pollution distribution estimation system equipped with.
前記二次元推定手段が、複数点の汚染物質濃度Cb(x,y)を決定し、
前記パラメータ決定手段が、最適移流分散パラメータtROPT及びpeOPTを決定し、
前記三次元推定手段が、前記Cb(x,y)、tROPT及びpeOPTに基き、
C(x,y,z)=(1/2)Cb(x,y)erfc[{peOPT/4tROPT(z)}1/2 {1-tROPT(z)}]
を計算して、推定範囲中の複数点の汚染物質濃度C(x,y,z)を決定する請求項1に記載する土壌汚染分布推定システム。
The two-dimensional estimation means determines a plurality of pollutant concentrations Cb (x, y),
The parameter determining means determines optimal advection dispersion parameters tR OPT and pe OPT ;
The three-dimensional estimation means is based on the Cb (x, y), tR OPT and pe OPT ,
C (x, y, z) = (1/2) Cb (x, y) erfc [{pe OPT / 4tR OPT (z)} 1/2 {1-tR OPT (z)}]
The soil pollution distribution estimation system according to claim 1, wherein the pollutant concentration C (x, y, z) at a plurality of points in the estimation range is determined.
前記二次元推定手段による汚染物質濃度の推定と、前記パラメータ決定手段による移流分散パラメータの決定とが同時に行なわれる請求項1又は請求項2に記載する土壌汚染分布推定システム。 The soil contamination distribution estimation system according to claim 1 or 2, wherein the estimation of the pollutant concentration by the two-dimensional estimation unit and the determination of the advection dispersion parameter by the parameter determination unit are performed simultaneously. コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定方法であり、
前記コンピューター内の実測データ記憶手段が、評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶するステップと、
前記コンピューター内の二次元推定手段が、前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定するステップと、
前記コンピューター内のパラメータ決定手段が、前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するステップと、
前記コンピューター内の三次元推定手段が、前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定するステップと、
を含む土壌汚染分布推定方法。
A soil contamination distribution estimation method that estimates the contamination concentration of land using a computer,
A step of storing actual measurement data of pollutant concentration in a plurality of actual measurement units in the evaluation target land, the actual measurement data storage means in the computer;
Two-dimensional estimation means in the computer, based on actual measurement data of the ground surface portion in the actual measurement data, to estimate the pollutant concentration at a plurality of points in the horizontal plane in the estimation range including the actual measurement unit;
Parameter deciding means in the computer determines an advection dispersion parameter based on the measured data of the lower surface of the ground in the measured data;
A three-dimensional estimation means in the computer for estimating a plurality of pollutant concentrations in the estimation range based on the estimated pollutant concentrations at the plurality of points and the determined advection dispersion parameter;
Soil contamination distribution estimation method.
コンピューターを利用して土地の汚染濃度を推定する土壌汚染分布推定プログラムであり、該コンピューターに、
評価対象土地の中の複数の実測部における汚染物質濃度の実測データを記憶する実測データ記憶手段、
前記実測データの中の地表面部の実測データに基づいて、前記実測部を含む推定範囲中の水平面内における複数点の汚染物質濃度を推定する二次元推定手段、
前記実測データの中の地表面下部の実測データに基づき移流分散パラメータを決定するパラメータ決定手段、
前記推定した複数点の汚染物質濃度及び前記決定した移流分散パラメータに基づいて、前記推定範囲中の複数点の汚染物質濃度を推定する三次元推定手段、
として機能させる土壌汚染分布推定プログラム。

A soil contamination distribution estimation program that estimates the contamination concentration of land using a computer.
Actual measurement data storage means for storing actual measurement data of pollutant concentrations in a plurality of actual measurement units in the evaluation target land,
Two-dimensional estimation means for estimating the concentration of pollutants at a plurality of points in a horizontal plane in the estimation range including the actual measurement part based on the actual measurement data of the ground surface part in the actual measurement data;
Parameter determining means for determining advection dispersion parameters based on the measured data of the lower surface of the ground in the measured data,
Three-dimensional estimation means for estimating a plurality of pollutant concentrations in the estimation range based on the estimated pollutant concentrations at the plurality of points and the determined advection dispersion parameter;
Soil contamination distribution estimation program to function as.

JP2005175201A 2005-06-15 2005-06-15 Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil Withdrawn JP2006349468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175201A JP2006349468A (en) 2005-06-15 2005-06-15 Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175201A JP2006349468A (en) 2005-06-15 2005-06-15 Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil

Publications (1)

Publication Number Publication Date
JP2006349468A true JP2006349468A (en) 2006-12-28

Family

ID=37645487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175201A Withdrawn JP2006349468A (en) 2005-06-15 2005-06-15 Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil

Country Status (1)

Country Link
JP (1) JP2006349468A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
CN101949920A (en) * 2010-09-15 2011-01-19 上海岩土工程勘察设计研究院有限公司 Method for determining pollution level of polluted soil
JP2015141122A (en) * 2014-01-29 2015-08-03 株式会社奥村組 Advective diffusion analyzing method for pollutants
JP2016204921A (en) * 2015-04-20 2016-12-08 学校法人東北学院 Design method for installation range of suspension type improvement material, and ground injection method using the same
KR102012007B1 (en) * 2019-05-23 2019-08-19 재단법인 환경기술정책연구원 Method for Estimating Soil Pollution Area and Soil Pollution Quantity Considering Regional Standards by Land category
CN112686497A (en) * 2020-12-05 2021-04-20 辽宁大学 Method for quantizing field soil environmental damage identification object based on kriging interpolation
CN115436573A (en) * 2022-08-30 2022-12-06 南京云创大数据科技股份有限公司 Intelligent monitoring method and device for atmospheric pollution source
CN116773781A (en) * 2023-08-18 2023-09-19 北京建工环境修复股份有限公司 Pollution analysis method, system and medium for perfluorinated compounds in soil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
CN101949920A (en) * 2010-09-15 2011-01-19 上海岩土工程勘察设计研究院有限公司 Method for determining pollution level of polluted soil
JP2015141122A (en) * 2014-01-29 2015-08-03 株式会社奥村組 Advective diffusion analyzing method for pollutants
JP2016204921A (en) * 2015-04-20 2016-12-08 学校法人東北学院 Design method for installation range of suspension type improvement material, and ground injection method using the same
KR102012007B1 (en) * 2019-05-23 2019-08-19 재단법인 환경기술정책연구원 Method for Estimating Soil Pollution Area and Soil Pollution Quantity Considering Regional Standards by Land category
CN112686497A (en) * 2020-12-05 2021-04-20 辽宁大学 Method for quantizing field soil environmental damage identification object based on kriging interpolation
CN115436573A (en) * 2022-08-30 2022-12-06 南京云创大数据科技股份有限公司 Intelligent monitoring method and device for atmospheric pollution source
CN116773781A (en) * 2023-08-18 2023-09-19 北京建工环境修复股份有限公司 Pollution analysis method, system and medium for perfluorinated compounds in soil
CN116773781B (en) * 2023-08-18 2023-12-05 北京建工环境修复股份有限公司 Pollution analysis method, system and medium for perfluorinated compounds in soil

Similar Documents

Publication Publication Date Title
Pellerin et al. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection
JP2006349468A (en) Estimation system of pollution distribution of soil, estimation method of pollution distribution of soil and estimation program of pollution distribution of soil
Trabelsi et al. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQI SWI and GIS: case of a coastal aquifer in Tunisia
Chessman et al. A diatom species index for bioassessment of Australian rivers
Gouze et al. Non‐Fickian dispersion in porous media: 1. Multiscale measurements using single‐well injection withdrawal tracer tests
Gontara et al. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia
Ali et al. The T‐TEL method for assessing water, sediment, and chemical connectivity
Cheng et al. Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments
Wu et al. Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation
Zhao et al. Making global river ecosystem health assessments objective, quantitative and comparable
Gormally et al. Ground‐penetrating radar detection and three‐dimensional mapping of lateral macropores: II. Riparian application
Varol et al. Hydrogeological investigation of Sarkikaraagac Basin (Isparta, Turkey) and groundwater vulnerability
Capolupo et al. Assessing the ability of hybrid poplar for in-situ phytoextraction of cadmium by using UAV-photogrammetry and 3D flow simulator
Kourgialas et al. Groundwater contamination risk assessment in Crete, Greece, using numerical tools within a GIS framework
Nyquist et al. Testing the fill‐and‐spill model of subsurface lateral flow using ground‐penetrating radar and dye tracing
McGarvey et al. Scale dependence in the species‐discharge relationship for fishes of the southeastern USA
Lemaire et al. Evidence of spatio‐temporal variations in contaminants discharging to a peri‐urban stream
Yihdego et al. Gulf war contamination assessment for optimal monitoring and remediation cost-benefit analysis, Kuwait
Catani et al. A new approach for aquifer vulnerability assessment: the case study of Campania Plain
de Barros et al. On the maximum concentration of contaminants in natural aquifers
Leterme et al. Discriminating between point and non-point sources of atrazine contamination of a sandy aquifer
Verreydt et al. Flux-based risk management strategy of groundwater pollutions: the CMF approach
Jang Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation
CN115147011B (en) Surface water and woodland damage identification and evaluation method, device, equipment and medium
Masetti et al. Urbanization affects air and water in Italy's Po Plain

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902