JP2016204903A - ダウンホール圧縮装置 - Google Patents

ダウンホール圧縮装置 Download PDF

Info

Publication number
JP2016204903A
JP2016204903A JP2015085543A JP2015085543A JP2016204903A JP 2016204903 A JP2016204903 A JP 2016204903A JP 2015085543 A JP2015085543 A JP 2015085543A JP 2015085543 A JP2015085543 A JP 2015085543A JP 2016204903 A JP2016204903 A JP 2016204903A
Authority
JP
Japan
Prior art keywords
slag
casing
lattice
fluid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085543A
Other languages
English (en)
Other versions
JP6499500B2 (ja
Inventor
聖英 坂本
Kiyohide Sakamoto
聖英 坂本
澄賢 平舘
Kiyotaka HIRADATE
澄賢 平舘
大輔 川口
Daisuke Kawaguchi
大輔 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015085543A priority Critical patent/JP6499500B2/ja
Priority to MYPI2016701037A priority patent/MY176433A/en
Publication of JP2016204903A publication Critical patent/JP2016204903A/ja
Application granted granted Critical
Publication of JP6499500B2 publication Critical patent/JP6499500B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

【課題】大きなスラグの圧縮機へ流入を防止し、圧縮機の破損を防止する。
【解決手段】ダウンホール圧縮装置10は、円筒状のケーシング20内に配設され、ケーシング20の一端から取り込んだ流体60をケーシング内で圧縮する圧縮機30と、圧縮機30の上流側に配設され、流体60に含まれるスラグ80を分離して除去するセパレータ40と、セパレータ40のさらに上流側に配設され、流体60に含まれるスラグ80のうち自身の格子目よりも大きなスラグを破砕するとともに、その格子目よりも小さなスラグ80を含んだ流体60を通過させるスラグ破砕格子50と、を備えてなることを特徴とする。
【選択図】図1

Description

本発明は、ガス井などで用いられるダウンホール圧縮装置に関する。
ガス井などのケーシング内のダウンホール圧縮装置では、その上流側(底部側)の流路では気体と液体が混合した流体が流れている。ガス井の場合、ガスに含まれる水や油からなる液体は不要な物質であり、しばしばスラグと呼ばれる。そこで、ダウンホール圧縮装置では、気体に液体(スラグ)が混合した流体から液体(スラグ)を分離するセパレータが設けられている。すなわち、不要な液体(スラグ)は、気体(採取ガス)を圧縮する圧縮機の上流側に設けられたセパレータによって分離され、除去される。
セパレータには、液体(スラグ)を効率よく分離することが可能な液滴径の範囲が存在する。液滴径がその範囲を外れると、その液滴はセパレータを通過する。すなわち、所定の液滴径の範囲よりも小さい液滴や大きい液滴(スラグ)は、セパレータを素通りする。とくに、多量の液体が混合した気体がセパレータに流入した場合には、その液滴径は、当然ながら過度に大きくなる。そのため、セパレータはその液滴を分離できず、分離されなかった液滴は、セパレータの下流に設けられた圧縮機に流れ込む。その結果、圧縮機は、多量の液体(スラグ)の流入を受け、過負荷により破損する。
このようなダウンホール圧縮装置における技術課題を解決するために、例えば、特許文献1には、圧縮機で圧縮された気体の一部を、リサイクルチャネルを通してセパレータの上流側へ逆流させ、ノズルから噴出させることで、大きな径の液滴(スラグ)を破砕する技術が開示されている。
国際公開第2013/40184号
特許文献1に記載されている液滴(スラグ)を破砕する技術によれば、確かに大きな径のスラグを破砕することはできる。しかしながら、セパレータが大量のスラグの流入を受けた場合、特許文献1に記載の技術により、その大量のスラグすべてをセパレータで分離可能な適切な大きさまで破砕することは困難である。従って、スラグの破砕が十分に行われなかった場合には、スラグはセパレータを通過し、圧縮機へ流入し、圧縮機を破損に至らしめる恐れがある。
そこで、本発明の目的は、大きなスラグの圧縮機へ流入を防止し、圧縮機の破損を防止することが可能なダウンホール圧縮装置を提供することにある。
上記目的を達成するために、本発明に係るダウンホール圧縮装置は、筒状のケーシング内に配設され、前記ケーシングの一端から取り込んだ流体を前記ケーシング内で圧縮する圧縮機と、前記流体の流れの方向に沿って、前記圧縮機の上流側の前記ケーシング内に配設され、前記流体に含まれるスラグを分離して除去するセパレータと、前記流体の流れの方向に沿って、前記セパレータの上流側の前記ケーシング内に配設され、前記流体に含まれるスラグのうち自身の格子目よりも大きなスラグを破砕するとともに、前記格子目よりも小さなスラグを含んだ前記流体を通過させるスラグ破砕格子と、を備えてなることを特徴とする。
本発明によれば、大きなスラグの圧縮機へ流入を防止し、圧縮機の破損を防止することが可能なダウンホール圧縮装置が提供される。
本発明の第1の実施形態に係るダウンホール圧縮装置の縦断面構造の例を模式的に示した図。 本発明の第1の実施形態に係るスラグ破砕格子の(a)平面図および(b)斜視図の例を示した図。 本発明の第1の実施形態に係るダウンホール圧縮装置で用いられるスラグ破砕格子の第1の変形例を示した図。 本発明の第1の実施形態に係るダウンホール圧縮装置で用いられるスラグ破砕格子の第2の変形例を示した図。 本発明の第2の実施形態に係るダウンホール圧縮装置の縦断面構造の例を模式的に示した図。 本発明の第2の実施形態に係るスラグ破砕格子の斜視図の例を示した図。 本発明の第2の実施形態の変形例に係るダウンホール圧縮装置の縦断面構造の例を模式的に示した図。 本発明の第3の実施形態に係るダウンホール圧縮装置の縦断面構造の例を模式的に示した図。 本発明の第3の実施形態に係るダウンホール圧縮装置に設けられるスクリュー翼の斜視図の例を示した図。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。
<第1の実施形態>
図1は、本発明の第1の実施形態に係るダウンホール圧縮装置10の縦断面構造の例を模式的に示した図である。図1に示すように、ダウンホール圧縮装置10は、ガス井などの円筒状のケーシング20の底部から流入する流体60を取り込んでケーシング20内で圧縮し、ケーシング20の上部へ供給する装置である。本実施形態に係るダウンホール圧縮装置10は、圧縮機30、セパレータ40およびスラグ破砕格子50を備えて構成される。ここで、圧縮機30およびセパレータ40としては、いずれも公知の一般的な圧縮機およびセパレータが用いられるものとする。
一般に、ケーシング20の底部から流入する流体60は、ガス70と、水滴や油滴などからなるスラグ80との混合体である。前記したように、スラグ80は、圧縮機30を破損させる恐れがある。そこで、ケーシング20内の圧縮機30の上流側(底部側)には、スラグ80を分離し除去するセパレータ40が配設され、セパレータ40により流体60からスラグ80が除去される。なお、図1において、ブロック矢印は、ガス70とスラグ80とからなる流体60の流れの方向を示している。
公知の一般的なセパレータ40では、セパレータ40を通過する流体60に対し、例えば回転力を付与し、遠心分離の原理により、ガス70とスラグ80とを互いに分離する。しかしながら、このようなセパレータ40では、軽い微小なスラグ80は、ガス70との分離が十分に行われず、また、付与する回転力でも回転されないような重い大きなスラグ80についても分離が十分に行われない。そのため、軽い微小なスラグ80や重い大きなスラグ80は、セパレータ40で除去されず、圧縮機30に流入する。
この場合、軽い微小なスラグ80は、圧縮機30にとって大きな負荷とはならないが、重い大きなスラグ80は、圧縮機30にとって大きな負荷となり、過負荷となった場合、圧縮機30を破損に至らしめる恐れがある。そこで、本実施形態では、セパレータ40のさらに上流側(底部側)に、大きなスラグ80を破砕して小さなスラグ80にするためのスラグ破砕格子50が設けられている。
図2は、第1の実施形態に係るスラグ破砕格子50の(a)平面図および(b)斜視図の例を示した図である。図2(a)、(b)に示すように、スラグ破砕格子50は、互いに平行に配列された複数の横方向の横桟51と、縦方向の縦桟52が互いに交差するように配置されて構成される。そして、横桟51および縦桟52の両端部は、ケーシング20の内壁に固定される。すなわち、スラグ破砕格子50は、その格子面がケーシング20の長さ方向と略直交するようにケーシング20の内壁に固定される。このとき、スラグ破砕格子50における横桟51および縦桟52で囲まれるそれぞれの格子目53の大きさ(断面積)は、略均一であるとする。また、スラグ破砕格子50の格子面は、ケーシング20の中心軸に略垂直であるとするが、多少の傾きがあってもよい。
従って、本実施形態では、ケーシング20の底部から流入する流体60は、スラグ破砕格子50が配設された位置に到達すると、流体60のうち、ガス70および格子目53よりも小さなスラグ80は、スラグ破砕格子50を通過する。一方、格子目53よりも大きなスラグ80は、スラグ破砕格子50に衝突して、破砕され、小さくなる。そして、その格子目53よりも小さくなったスラグ80は、スラグ破砕格子50を通過する。
すなわち、ケーシング20の底部から流入する流体60に大きなスラグ80が含まれていたとしても、その大きなスラグ80は、スラグ破砕格子50を通過するとき、スラグ破砕格子50によって破砕され、格子目53よりも小さなスラグ80になる。従って、格子目53の大きさを適切に定めることにより、スラグ破砕格子50を通過するスラグ80の大きさを、セパレータ40で効率よく分離可能な大きさにすることができる。
その場合、微小なスラグ80を除き大部分のスラグ80がセパレータ40で除去されることになるので、少なくとも大きなスラグ80が圧縮機30へ流入することはない。その結果、圧縮機30は過負荷になることはなく、圧縮機30の破損が防止される。よって、本実施形態では、大きなスラグ80がセパレータ40を通過し、圧縮機30へ流入し、圧縮機30を破損に至らしめるという従来技術の課題が解決される。
なお、図2に示したスラグ破砕格子50では、横桟51および縦桟52は、例えばステンレスなどからなる板材で構成されているとしているが、ステンレスなどからなる棒材や線材などで構成されているとしてもよい。
(第1の実施形態の第1の変形例)
図3は、本発明の第1の実施形態に係るダウンホール圧縮装置10で用いられるスラグ破砕格子50の第1の変形例を示した図である。図2に示したスラグ破砕格子50の横桟51および縦桟52は、直線状の板材、棒材、線材などで構成されているが、図3に示した第1の変形例では、スラグ破砕格子50aの横桟51aおよび縦桟52aは、波線状の板材、棒材、線材などで構成されている。また、ここでは、横桟51aおよび縦桟52aで囲まれるそれぞれの格子目53aの大きさ(断面積)は、略均一であるとする。
本変形例でも、スラグ破砕格子50aは、大きなスラグ80を破砕して、格子目53aの大きさに応じたサイズのスラグ80にすることができる。従って、セパレータ40に流入するスラグ80の大きさを、セパレータ40で効率よく分離可能な大きさにすることが可能となる。よって、本変形例でも、大きなスラグ80が圧縮機30へ流入するのを防止し、圧縮機30の破損を防止することができるという前記第1の実施形態と同様の効果を得ることができる。
(第1の実施形態の第2の変形例)
図4は、本発明の第1の実施形態に係るダウンホール圧縮装置10で用いられるスラグ破砕格子の第2の変形例を示した図である。図4に示すように、第2の変形例に係るスラグ破砕格子50bは、径が異なる円形状(円弧状)の複数の横桟51bがケーシング20の中心軸を中心に同心円状に配置され、直線状の複数の縦桟52bがケーシング20の中心軸を通るように放射状に配置されて構成される。この場合、横桟51bと縦桟52bとで囲まれる格子目53bの大きさ(断面積)は、ケーシング20内の中心部で小さく、周辺部で大きくなる。
従って、ガス70とスラグ80とからなる流体60がスラグ破砕格子50aを通過すると、通過後のスラグ80の平均的な大きさは、ケーシング20内の中心部で小さく、周縁部で大きくなる。従って、ケーシング20内の中心部で平均的に小さく、周縁部で平均的に大きいスラグ80を含んだ流体60が、セパレータ40に流入することとなる。言い換えれば、セパレータ40には、スラグ80の分離が何ほどか行われた状態の流体60が流入すると考えることができる。従って、本変形例では、セパレータ40は、より効率よくスラグ80を分離することが可能になる。
よって、本変形例でも、複数の円形状の横桟51bのおよび放射状の縦桟52bの数および間隔を適切に決めることにより、セパレータ40を通過した後のスラグ80の大きさをセパレータ40が効率よく分離可能な大きさにすることができる。よって、本変形例では、大きなスラグ80が圧縮機30へ流入するのをより効果的に防止することができ、圧縮機30の破損をより効果的に防止することができるようになる。
<第2の実施形態>
図5は、本発明の第2の実施形態に係るダウンホール圧縮装置10cの縦断面構造の例を模式的に示した図である。また、図6は、第2の実施形態に係るスラグ破砕格子50cの斜視図の例を示した図である。
図5に示すように、第2の実施形態に係るダウンホール圧縮装置10cは、円筒状のケーシング20の底部から流入する流体60をケーシング20内で圧縮し、ケーシング20の上部へ供給する装置であり、圧縮機30、セパレータ40およびスラグ破砕格子50cを備えて構成される。この第2の実施形態に係るダウンホール圧縮装置10cは、スラグ破砕格子50cの形状が図1および図2に示したスラグ破砕格子50と相違することを除けば、第1の実施形態に係るダウンホール圧縮装置10と同じである。
図5および図6に示すように、第2の実施形態では、スラグ破砕格子50cは、その格子面の一部または全体が流体60の流れの上流側に向かって凸状に突出したものとなっている。図6に示すように、スラグ破砕格子50cは、例えば、倒立した半円錐の底面および側面に配置された直線状または円弧状の桟により構成され、その格子面の形状は、倒立半円錐のかご状を呈している。
ちなみに、図6に例示したスラグ破砕格子50cは、倒立半円錐の底面部が、図2に示したような横桟と縦桟とからなる格子で構成され、倒立半円錐の側面部が、当該円錐の軸を中心とした円形の桟と当該円錐の頂点を通る直線に沿った直線状の桟とからなる格子で構成されている。このような形状を有するスラグ破砕格子50cの場合、ケーシング20内の中心部、すなわち、倒立半円錐の底面部では、格子目の大きさは略均一なものとなっている。それに対し、ケーシング20内の周縁部、すなわち、倒立半円錐の側面部では、その格子目の大きさは周縁部に行くほど大きくなっている。そして、その格子目の大きさを、底面部の格子目の大きさよりも大きくすることができる。
従って、このような形状を有するスラグ破砕格子50cをセパレータ40の上流側のケーシング20に配設すると、ケーシング20の底部から流入する流体60に含まれる大きなスラグ80は、スラグ破砕格子50cによって破砕され、その格子目よりも小さなスラグ80になる。従って、スラグ破砕格子50cの格子目の大きさを適切に定めることにより、スラグ破砕格子50cによって破砕されるスラグ80の大きさを、セパレータ40で効率よく分離可能な大きさにすることができる。
また、本実施形態の場合、図4の例の場合と同様に、スラグ破砕格子50c通過後のスラグ80の平均的な大きさを、ケーシング20内の中心部で小さく周辺部で大きくすることができる。従って、本実施形態では、セパレータ40は、より効率よくスラグ80を分離することが可能になる。よって、本実施形態では、大きなスラグ80が圧縮機30へ流入するのをより効果的に防止することができ、圧縮機30の破損をより効果的に防止することができるようになる。
なお、図6に示した例では、スラグ破砕格子50cの格子面の形状は、倒立半円錐のかご状であるとしているが、例えば、球面の一部からなるボール(容器)状であるとしてもよい。この場合のスラグ破砕格子50cの形状の例としては、例えば、図4に示したスラグ破砕格子50bの格子面を流体60の流れの上流側に向かって凸球面状に突出させた形状とすることができる。
(第2の実施形態の変形例)
図7は、本発明の第2の実施形態の変形例に係るダウンホール圧縮装置10dの縦断面構造の例を模式的に示した図である。図7に示すように、本変形例に係るダウンホール圧縮装置10dは、スラグ破砕格子50dの格子面の一部または全体が流体60の流れの下流側(上部側)に凸状に突出している点で、図5に示した第2の実施形態に係るダウンホール圧縮装置10cと相違している。従って、スラグ破砕格子50dとしては、図6に示した倒立半円錐のかご状のスラグ破砕格子50cを上下反転したものをそのまま用いることができる。
すなわち、本変形例は、第2の実施形態とは、スラグ破砕格子50dの格子面の突出方向が相違しているだけであるので、本変形例でも第2の実施形態と同様の作用効果を奏する。よって、本変形例でも、大きなスラグ80が圧縮機30へ流入するのを防止し、圧縮機30の破損を防止することができる。
<第3の実施形態>
図8は、本発明の第3の実施形態に係るダウンホール圧縮装置10eの縦断面構造の例を模式的に示した図である。また、図9は、第3の実施形態に係るダウンホール圧縮装置10eに設けられるスクリュー翼90の斜視図の例を示した図である。
図8に示すように、第3の実施形態に係るダウンホール圧縮装置10eは、円筒状のケーシング20の底部から流入する流体60をケーシング20内で圧縮し、ケーシング20の上部へ供給する装置であり、圧縮機30、セパレータ40、スラグ破砕格子50およびスクリュー翼90を備えて構成される。この第3の実施形態に係るダウンホール圧縮装置10eは、スクリュー翼90がセパレータ40の上流側に追加して配設されている点で、図1に示した第3の実施形態に係るダウンホール圧縮装置10と相違する。
スクリュー翼90は、図8および図9に示すように、軸材91とケーシング20の内壁との間に配設され、固定される。ここでは、スクリュー翼90は、4枚で構成されているとし、そのいずれもがケーシング20の内壁および軸材91の外壁にケーシング20の軸方向に対して傾斜するように取り付けられている。従って、ケーシング20の底部から上昇してくる流体60は、スクリュー翼90およびケーシング20の内壁に沿って斜め上方に流れることとなる。その結果、流体60は、スクリュー翼90を通過すると、その中に渦が生じる。ここで、図8に示した渦巻き型のブロック矢印は、流体60に生じる渦を表し、また、図9に示した太線の矢印は、スクリュー翼90を通過する流体60の流れの方向を表している。
以上のようにして、流体60に渦が生じると、大きい(重い)スラグ80は、ケーシング20の周縁側に押しやられ、小さい(軽い)スラグ80は、ケーシング20の中心近傍に残る。従って、流体60がスラグ破砕格子50を通過すると、とくに大きいスラグ80は、スラグ破砕格子50で小さく破砕されるが、セパレータ40の周縁部には、平均して大きいスラグ80が流入し、セパレータ40の中心部には、平均して小さいスラグが流れ込むことになる。
すなわち、セパレータ40には、セパレータ40で分離すべきスラグ80が事前にある程度分離された状態で流入することになるので、セパレータ40は、スラグ80をより効率よく分離することが可能になる。従って、本実施形態では、大きなスラグ80が圧縮機30へ流入するのをより効果的に防止することができ、圧縮機30の破損をより効果的に防止することができるようになる。
なお、図8および図9では、スクリュー翼90の数は、4枚としているが、その数は、4枚には限定されず、何枚であってもよい。また、スクリュー翼90は、ケーシング20の内壁と軸材91の外壁との間に固定されるとしているが、軸材91は、ないものとしてもよい。
また、本実施形態に係るダウンホール圧縮装置10eでは、図2に示されたスラグ破砕格子50が用いられているが、スラグ破砕格子50は、図3〜図6に示した構造のスラグ破砕格子50b〜50dであってもよい。さらに、横桟51と縦桟52とからなる図2に示したようなスラグ破砕格子50を用いる場合、中心部の格子目53の大きさを小さくし、周縁部の格子目53の大きさを大きくしてもよい。
本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。
10,10c,10d,10e ダウンホール圧縮装置
20 ケーシング
30 圧縮機
40 セパレータ
50,50a,50b,50c,50d スラグ破砕格子
51,51a,51b 横桟
52,52a,52b 縦桟
53,53a,53b 格子目
60 流体
70 ガス
80 スラグ
90 スクリュー翼
91 軸材

Claims (8)

  1. 筒状のケーシング内に配設され、前記ケーシングの一端から取り込んだ流体を前記ケーシング内で圧縮する圧縮機と、
    前記流体の流れの方向に沿って、前記圧縮機の上流側の前記ケーシング内に配設され、前記流体に含まれるスラグを分離して除去するセパレータと、
    前記流体の流れの方向に沿って、前記セパレータの上流側の前記ケーシング内に配設され、前記流体に含まれるスラグのうち自身の格子目よりも大きなスラグを破砕するとともに、前記格子目よりも小さなスラグを含んだ前記流体を通過させるスラグ破砕格子と、
    を備えてなることを特徴とするダウンホール圧縮装置。
  2. 前記スラグ破砕格子は、互いに交差する横桟および縦桟からなり、前記横桟および前記縦桟の少なくとも一方は、直線状の板材、棒材または線材により構成されること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  3. 前記スラグ破砕格子は、互いに交差する横桟および縦桟からなり、前記横桟および前記縦桟の少なくとも一方は、波線状の板材、棒材または線材により構成されること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  4. 前記スラグ破砕格子は、互いに交差する横桟および縦桟からなり、前記横桟および前記縦桟の少なくとも一方は、円弧状の板材、棒材または線材により構成されること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  5. 前記スラグ破砕格子は、その格子面が前記流体の流れの上流側に凸状に突出していること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  6. 前記スラグ破砕格子は、その格子面が前記流体の流れの下流側に凸状に突出していること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  7. 前記スラグ破砕格子の格子目の大きさは、前記ケーシング内の中央部に位置する格子目よりも前記ケーシング内の周縁部に位置する格子目のほうが大きいこと
    を特徴とする請求項1に記載のダウンホール圧縮装置。
  8. 前記流体の流れの方向に沿って、前記スラグ破砕格子の上流側の前記ケーシング内に配設されて、通過した前記流体に渦を発生させるスクリュー翼を、さらに備えること
    を特徴とする請求項1に記載のダウンホール圧縮装置。
JP2015085543A 2015-04-20 2015-04-20 ダウンホール圧縮装置 Expired - Fee Related JP6499500B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015085543A JP6499500B2 (ja) 2015-04-20 2015-04-20 ダウンホール圧縮装置
MYPI2016701037A MY176433A (en) 2015-04-20 2016-03-23 Downhole compression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085543A JP6499500B2 (ja) 2015-04-20 2015-04-20 ダウンホール圧縮装置

Publications (2)

Publication Number Publication Date
JP2016204903A true JP2016204903A (ja) 2016-12-08
JP6499500B2 JP6499500B2 (ja) 2019-04-10

Family

ID=57486882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085543A Expired - Fee Related JP6499500B2 (ja) 2015-04-20 2015-04-20 ダウンホール圧縮装置

Country Status (2)

Country Link
JP (1) JP6499500B2 (ja)
MY (1) MY176433A (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119618A (ja) * 1989-09-23 1991-05-22 Calor Emag Elektrizitaets Ag 真空スイッチチャンバ形成方法
JPH04210251A (ja) * 1990-12-14 1992-07-31 Daido Concrete Kogyo Kk ガラス廃砂材団塊の解砕装置
JPH0510082A (ja) * 1991-07-04 1993-01-19 Mitani Sekisan Co Ltd 杭穴掘削用ロツド
JP2000274175A (ja) * 1999-03-26 2000-10-03 Tone Geo Tech Co Ltd 礫対応型掘削ヘッド
US20020059866A1 (en) * 2000-09-13 2002-05-23 Grant Alexander Angus Downhole gas/water separation and re-injection
JP2006326398A (ja) * 2005-05-23 2006-12-07 Tdk Corp 噴霧盤、噴霧装置及び噴霧乾燥機
JP2011163021A (ja) * 2010-02-10 2011-08-25 Seikotone Co Ltd 掘削ヘッド
JP2013512089A (ja) * 2009-11-25 2013-04-11 エクソンモービル アップストリーム リサーチ カンパニー スラグサプレッサ及び/又は噴霧化装置を用いた遠心湿式ガス圧縮又は膨張
JP2014029254A (ja) * 2012-06-27 2014-02-13 Toshiba Corp 蒸気乾燥器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119618A (ja) * 1989-09-23 1991-05-22 Calor Emag Elektrizitaets Ag 真空スイッチチャンバ形成方法
JPH04210251A (ja) * 1990-12-14 1992-07-31 Daido Concrete Kogyo Kk ガラス廃砂材団塊の解砕装置
JPH0510082A (ja) * 1991-07-04 1993-01-19 Mitani Sekisan Co Ltd 杭穴掘削用ロツド
JP2000274175A (ja) * 1999-03-26 2000-10-03 Tone Geo Tech Co Ltd 礫対応型掘削ヘッド
US20020059866A1 (en) * 2000-09-13 2002-05-23 Grant Alexander Angus Downhole gas/water separation and re-injection
JP2006326398A (ja) * 2005-05-23 2006-12-07 Tdk Corp 噴霧盤、噴霧装置及び噴霧乾燥機
JP2013512089A (ja) * 2009-11-25 2013-04-11 エクソンモービル アップストリーム リサーチ カンパニー スラグサプレッサ及び/又は噴霧化装置を用いた遠心湿式ガス圧縮又は膨張
JP2011163021A (ja) * 2010-02-10 2011-08-25 Seikotone Co Ltd 掘削ヘッド
JP2014029254A (ja) * 2012-06-27 2014-02-13 Toshiba Corp 蒸気乾燥器

Also Published As

Publication number Publication date
MY176433A (en) 2020-08-08
JP6499500B2 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
CN102575677B (zh) 包括旋流分离级的多级油分离系统
JP4967685B2 (ja) 気泡分離器
US10710013B2 (en) Compact axial flow separator
EP2869929B1 (en) Centrifugal cyclone separator
KR20160038738A (ko) 분리기
US10413853B2 (en) Gas-liquid separator
EP2943264B1 (en) Gas desander
EP3524358B1 (en) Vortex separator and separation method
EP2322279A1 (en) Biomass crushing and separating device
US20180008910A1 (en) Gas-liquid separator
JP6499500B2 (ja) ダウンホール圧縮装置
JP5188450B2 (ja) サイクロン式ガスセパレーター
KR101377440B1 (ko) 교반장치의 임펠러 및 이를 이용한 교반장치
KR20140056813A (ko) 싸이클론 분리기
EP3260183B1 (en) Pocketed cyclonic separator
CN114286724A (zh) 具有旋转棒形笼的旋风分离器
JP5776326B2 (ja) 気液分離器
CN105135770A (zh) 一种螺旋式油分离器
US20190126171A1 (en) Gas-liquid separator
JP6797675B2 (ja) 油分離器
JP6723447B2 (ja) 油分離器及び冷凍サイクル装置
JP2004081957A (ja) サイクロン
RU2611790C1 (ru) Дезинтегратор
CN211536881U (zh) 一种高效自增强型椎体叶片式分离器
JP7105134B2 (ja) 気液分離装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6499500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees