JP2016204759A - Method for production of water-granulated slag - Google Patents

Method for production of water-granulated slag Download PDF

Info

Publication number
JP2016204759A
JP2016204759A JP2016169500A JP2016169500A JP2016204759A JP 2016204759 A JP2016204759 A JP 2016204759A JP 2016169500 A JP2016169500 A JP 2016169500A JP 2016169500 A JP2016169500 A JP 2016169500A JP 2016204759 A JP2016204759 A JP 2016204759A
Authority
JP
Japan
Prior art keywords
granulated slag
slag
particle size
mass
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169500A
Other languages
Japanese (ja)
Other versions
JP6315043B2 (en
Inventor
純一 小林
Junichi Kobayashi
純一 小林
茂 佐々井
Shigeru Sasai
茂 佐々井
川中 一哲
Kazuaki Kawanaka
一哲 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016169500A priority Critical patent/JP6315043B2/en
Publication of JP2016204759A publication Critical patent/JP2016204759A/en
Application granted granted Critical
Publication of JP6315043B2 publication Critical patent/JP6315043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for water-granulated slag, capable of safely performing without needing new classifying facility or a special water-granulation launder and without increasing a risk of phreatic explosion or the like, and capable of optionally adjusting the grain size of the slag.SOLUTION: There is provided a method for producing a water-granulated slag by contacting with water, the molten slag generated in a copper smelting process to cool and pulverize without classifying. Based on the graph in which the relationship of the grain size of cumulative mass 50% of the water-granulated slag with the Pb appearance quality in the slag is previously plotted, the Pb appearance quality of the slag is obtained between 0.09 and 0.28 mass% from the grain size of the target cumulative mass 50% within a range of 1.10 to 1.60 mm. The raw material of the copper smelting process is prepared by adjusting the blending ratio of copper concentrate, miscellaneous raw materials and silicate ore being a flux so that the Pb appearance quality is obtained.SELECTED DRAWING: Figure 2

Description

本発明は、銅製錬工程での溶融スラグから所定の粒径に制御された水砕スラグを得る方法、及びその所定の粒径に制御された水砕スラグに関するものである。   The present invention relates to a method of obtaining granulated slag controlled to a predetermined particle size from molten slag in a copper smelting process, and to a granulated slag controlled to the predetermined particle size.

銅製錬工程においては、銅精鉱及び銅精鉱以外の銅原料(以下、雑原料と称する)と、フラックスとしての珪酸鉱が原料として使用されている。銅精鉱はCu品位が30%前後であって、他にFe及びSをそれぞれ約30%含有し、更にZn、As、Pb等をわずかに含んでいる。尚、銅精鉱以外の銅原料である雑原料としては、銅製錬工程の繰り返し物や銅スクラップなどがある。   In the copper smelting process, copper concentrates and copper raw materials other than copper concentrates (hereinafter referred to as miscellaneous raw materials) and silicate ores as flux are used as raw materials. Copper concentrate has a Cu grade of around 30%, contains about 30% of Fe and S, respectively, and further contains Zn, As, Pb and the like. In addition, as a miscellaneous raw material which is copper raw materials other than copper concentrate, there exist a repetition thing, copper scrap, etc. of a copper smelting process.

銅精鉱と雑原料はフラックスの珪酸鉱と調合され、図1に示すように、自熔炉1などの熔錬炉に装入されて約1300℃の高温で熔解され、比重約3のマット2と比重約2のスラグ3とに比重分離される。得られたマット2は次工程の転炉に送られ、FeとSが除去されて、Cu品位が98%の粗銅となる。一方、スラグ3は不純物の多くが分配されているため、自熔炉樋4を通して錬かん炉5に送られ、分離しきれなかったCu分が分離される。   Copper concentrate and miscellaneous raw materials are mixed with flux silicate ore, and as shown in FIG. 1, they are charged into a smelting furnace such as a self-melting furnace 1 and melted at a high temperature of about 1300 ° C., and a mat 2 having a specific gravity of about 3 And the slag 3 having a specific gravity of about 2. The obtained mat 2 is sent to the converter of the next process, Fe and S are removed, and the copper quality becomes crude copper with 98%. On the other hand, since most of the impurities are distributed in the slag 3, it is sent to the smelting furnace 5 through the self-melting furnace 4, and the Cu component that cannot be separated is separated.

錬かん炉5でCu分が分離されたスラグは、約1300℃の熔融スラグ6としてスラグ樋7から排出され、水砕樋8に供給される。水砕樋8に供給された熔融スラグ6は、水砕樋8内を流れる大量の水と接触することにより水砕されると同時に100℃以下まで急冷され、細かい粒子に砕かれて水砕スラグとなる。尚、上記水砕処理には種々の手段が知られているが、図示するように水砕ノズル9から放出される高圧水を用いることが望ましい。   The slag from which the Cu content has been separated in the smelting furnace 5 is discharged from the slag trough 7 as a molten slag 6 having a temperature of about 1300 ° C. The molten slag 6 supplied to the water slag 8 is crushed by contact with a large amount of water flowing in the water slag 8 and simultaneously cooled to 100 ° C. or less and crushed into fine particles. It becomes. Various means are known for the above-mentioned water granulation treatment, but it is desirable to use high-pressure water discharged from the water granulation nozzle 9 as shown in the figure.

このようにして得られる水砕スラグは、ガラス質で化学的に安定であり、含有元素の溶出がないなど環境的に優れた素材であるため、セメント原料、ケーソンなどの充填剤、サンドブラスト材、コンクリート用細骨材などの用途に使用されている。また、水砕スラグの粒径は、50%粒径で表すと、通常は1.20〜1.40mmの範囲となる場合が多い。尚、50%粒径とは、水砕スラグを2.36mm、1.18mm、0.60mmの各篩を用いて分級を行い、この値をロジン・ラムラー線図にプロットしたとき累積質量が50%となる粒径を言い、一般的にD50と略記されている。   The granulated slag obtained in this way is glassy and chemically stable, and is an environmentally superior material such as no elution of contained elements. Therefore, cement raw materials, fillers such as caisson, sandblasting materials, It is used for applications such as fine aggregate for concrete. In addition, the particle size of the granulated slag is usually in the range of 1.20 to 1.40 mm when expressed in terms of 50% particle size. The 50% particle size means that granulated slag is classified using 2.36 mm, 1.18 mm and 0.60 mm sieves, and when this value is plotted on a Rosin-Rammler diagram, the cumulative mass is 50 %, Generally abbreviated as D50.

上記水砕スラグは、材質が硬く、天然砂を上回る比重を有し、鋭角的な形状であるなど、特にサンドブラスト材として優れた特性を有している。一般的に、サンドブラスト材としては、従来から主に天然砂が用いられてきた。しかし、昨今では天然砂の採取に伴う自然破壊等環境への影響が懸念され、天然砂の採取が制限されるようになったため、それに代わる代替材として水砕スラグが注目を集めている。   The above-mentioned granulated slag is hard, has a specific gravity higher than that of natural sand, has an acute shape, and has particularly excellent characteristics as a sandblasting material. Generally, natural sand has been mainly used as a sandblasting material. However, recently, there are concerns about environmental impacts such as natural destruction associated with the collection of natural sand, and the collection of natural sand has been restricted. Therefore, granulated slag is attracting attention as an alternative material.

しかし、サンドブラスト材には、用途に応じて必要とされる粒径(D50)がほぼ決められている。例えば、造船向けサンドブラスト材と呼ばれる船舶の錆落とに用いるサンドブラスト材は、舷側等に深く喰い込んだ錆を除去するために打痕が大きいことが必要とされ、通常得られる水砕スラグの粒径より大きい1.40〜1.55mmの粒径が求められている。また、塗装の下地処理に用いるサンドブラスト材では、再塗装を行う前に残っている塗装を取り除くために打痕が小さなことが必要とされ、通常得られる水砕スラグの粒径よりも小さい1.10〜1.20mmの粒径が求められている。   However, the required particle size (D50) of the sandblasting material is determined depending on the application. For example, sand blasting material used for ship rusting called sandblasting material for shipbuilding is required to have a large dent to remove rust that has deeply penetrated on the side of the ship. A larger particle size of 1.40 to 1.55 mm is required. In addition, the sandblasting material used for the coating surface treatment requires a small dent to remove the remaining coating before re-coating, and is smaller than the particle size of the granulated slag that is usually obtained. A particle size of 10 to 1.20 mm is required.

一方、通常得られる水砕スラグの粒径(D50)は、上述したように1.20〜1.40mmの範囲がほとんどであることから、そのままではサンドブラスト材として使用できないという問題点があった。そのため、水砕スラグをサンドブラスト材として用いる場合には、用途別に適した粒径に調整することが必要であった。   On the other hand, since the particle diameter (D50) of the granulated slag usually obtained is almost in the range of 1.20 to 1.40 mm as described above, there is a problem that it cannot be used as it is as a sandblasting material. Therefore, when using granulated slag as a sandblasting material, it is necessary to adjust the particle size to suit each application.

サンドブラスト材として水砕スラグを用いる場合、特定の粒径の水砕スラグを得る方法として、例えば特許文献1には水砕スラグを分級する方法が記載されている。具体的には、水分を含む銅スラグの分級において、ジャンピングスクリーン若しくは同原理による特殊篩装置を用い、1500〜3500μm付近の粒度のものを篩い分けすることにより、サンドブラスト材向けとなる粗粒の水砕スラグを得ている。   When granulated slag is used as the sandblasting material, for example, Patent Document 1 describes a method for classifying granulated slag as a method for obtaining granulated slag having a specific particle size. Specifically, in the classification of moisture-containing copper slag, using a jumping screen or a special sieving device based on the same principle, coarse particles of water having a particle size of 1500 to 3500 μm are screened for sandblasting. I have crushed slag.

また、特許文献2には、水蒸気爆発や樋の詰まり現象を起こさないスラグ水砕装置が記載され、水砕スラグの粒径と水砕水量との関係について述べられている。具体的には、錬かん炉から排出されるスラグ樋本体先端下方に短尺樋を配設し、熔融スラグの流れをフラットな流れとすることで、水蒸気爆発や詰まり現象を防止でき、且つ従来に比べて水砕用の押水を15〜20%程度節減でき、同時に微細なスラグの割合を減らすことができるとしている。   Patent Document 2 describes a slag granulating apparatus that does not cause a steam explosion or clogging phenomenon, and describes the relationship between the particle size of the granulated slag and the amount of granulated water. Specifically, by arranging a short rod under the tip of the slag rod body discharged from the smelting furnace and making the flow of the molten slag flat, it is possible to prevent steam explosion and clogging phenomenon, and In comparison, it is possible to save about 15 to 20% of the water used for water granulation, and at the same time reduce the proportion of fine slag.

しかしながら、上記引用文献1及び2に記載の方法では、特別な分級設備を設置したり、溶融スラグをフラットな流れに変える新たな水砕樋を設置したりする必要があるため、設備投資によるコストの増加を招くという問題があった。更に、引用文献2の方法においては、押水の量を減少させると微細な水砕スラグの割合を減らすことができるが、水砕スラグの粒径を任意に制御することは不可能であるうえ、押水の量を減らすと水蒸気爆発や樋の詰まり現象が生じるリスクが増加するという問題があった。   However, in the methods described in the above cited references 1 and 2, it is necessary to install a special classification facility or install a new water slag that changes the molten slag into a flat flow. There was a problem of inviting an increase. Furthermore, in the method of Cited Document 2, if the amount of water is reduced, the proportion of fine granulated slag can be reduced, but it is impossible to arbitrarily control the particle size of the granulated slag, There was a problem that reducing the amount of water pushed increased the risk of steam explosions and clogging of soot.

特開2003−222475号公報JP 2003-222475 A 特開2000−034528号公報JP 2000-034528 A

本発明は、上記した銅製錬工程における水砕スラグの問題点を解決しようとするものであり、新たな分級設備や特別な水砕樋の設置を行わずに、また水蒸気爆発等のリスクを増大させることなく安全に実施でき、粒径を任意に制御することができる水砕スラグの製造方法、及び、その方法により得られるサンドブラスト材として好適な粒径を有する水砕スラグを提供することを目的とする。   The present invention is intended to solve the problem of granulated slag in the copper smelting process described above, without increasing the risk of steam explosion, etc. without installing new classification equipment or special granulated slag. An object of the present invention is to provide a granulated slag production method that can be safely implemented without any control and can arbitrarily control the particle size, and a granulated slag having a suitable particle size as a sandblasting material obtained by the method And

上記目的を達成するため、本発明者らは溶融スラグを水砕処理する際に、水砕スラグの粒径を制御する方法について鋭意検討した結果、水砕スラグ中のPb品位と水砕スラグの粒径とに密接な関係があること、具体的には、水砕スラグ中のPb品位が低いと水砕スラグの粒径が粗粒化し、水砕スラグ中のPb品位が高いと水砕スラグの粒径が微細化することを見出し、本発明を完成するに至ったものである。   In order to achieve the above-mentioned object, the present inventors diligently studied a method of controlling the particle size of the granulated slag when granulating the molten slag, and as a result, the Pb quality in the granulated slag and the granulated slag There is a close relationship with the particle size. Specifically, if the Pb quality in the granulated slag is low, the particle size of the granulated slag becomes coarse, and if the Pb quality in the granulated slag is high, the granulated slag As a result, the present inventors have found that the particle size of the material becomes finer and have completed the present invention.

即ち、本発明が提供する水砕スラグの製造方法は、銅製錬工程から排出される熔融スラグを水砕して水砕スラグを製造する方法において、銅製錬の原料である銅精鉱、雑原料及びフラックスの珪酸鉱を配合する際に、得られる水砕スラグのPb品位を調整することによって、該水砕スラグの粒径を制御することを特徴とするものである。   That is, the method for producing granulated slag provided by the present invention is a method of granulating molten slag discharged from a copper smelting process to produce granulated slag, wherein the copper concentrate is a raw material for copper smelting, miscellaneous raw materials In addition, when blending the silicate ore of the flux, the particle size of the granulated slag is controlled by adjusting the Pb quality of the granulated slag obtained.

上記本発明による水砕スラグの製造方法において、上記水砕スラグのPb品位を0.10〜0.16質量%に調整する第1の方法により、得られる水砕スラグの50%粒径を1.40〜1.55mmの範囲に制御することができる。また、上記水砕スラグのPb品位を0.24〜0.28質量%に調整する第2の方法により、得られる水砕スラグの50%粒径を1.10〜1.20mmの範囲に制御することができる。   In the method for producing granulated slag according to the present invention, the 50% particle size of the granulated slag obtained is adjusted to 1 by adjusting the Pb quality of the granulated slag to 0.10 to 0.16% by mass. It can be controlled within a range of .40 to 1.55 mm. Further, the second method of adjusting the Pb quality of the above granulated slag to 0.24 to 0.28% by mass controls the 50% particle size of the obtained granulated slag to the range of 1.10 to 1.20 mm. can do.

本発明は、また、上記した水砕スラグの製造方法により得られる水砕スラグを提供するものである。即ち、本発明が提供する第1の水砕スラグは、上記本発明の第1の方法により得られる水砕スラグであって、Pb品位が0.10〜0.16質量%であり、50%粒径が1.40〜1.55mmの範囲に制御されていることを特徴とする船舶の錆落とし用の水砕スラグである。   The present invention also provides a granulated slag obtained by the above-described method for producing a granulated slag. That is, the first granulated slag provided by the present invention is a granulated slag obtained by the first method of the present invention, and has a Pb quality of 0.10 to 0.16% by mass, 50% A granulated slag for removing rust on a ship, characterized in that the particle size is controlled in the range of 1.40 to 1.55 mm.

また、本発明が提供する第2の水砕スラグは、上記本発明の第2の方法により得られる水砕スラグであって、Pb品位が0.24〜0.28質量%であり、50%粒径が1.10〜1.20mmの範囲に制御されていることを特徴とする塗装の下地処理用の水砕スラグである。   Moreover, the 2nd granulated slag which this invention provides is a granulated slag obtained by the 2nd method of the said invention, Comprising: Pb quality is 0.24-0.28 mass%, 50% It is a granulated slag for the ground treatment of the coating, wherein the particle size is controlled in the range of 1.10 to 1.20 mm.

更に、上記本発明による水砕スラグの製造方法並びに上記本発明による水砕スラグにおいて、水砕スラグの組成(Pbを除く)は、FeO:39〜42質量%、SiO:30質量%〜35質量%、Al:3質量%〜6質量%、CaO:1質量%〜4質量%であることが好ましい。 Furthermore, in the method for producing granulated slag according to the present invention and the granulated slag according to the present invention, the composition of the granulated slag (excluding Pb) is FeO: 39 to 42% by mass, SiO 2 : 30% by mass to 35%. mass%, Al 2 O 3: 3 wt% to 6 wt%, CaO: is preferably 1 mass% to 4 mass%.

本発明によれば、溶融スラグを水砕処理する場合に、新たな分級設備や特別なスラグの水砕樋を設置する必要がなく、即ち新規の設備投資を行うことなく、且つ水蒸気爆発や樋の詰まり等を起こさず安全に実施でき、得られる水砕スラグの粒径を任意に制御することができる。従って、サンドブラスト材として好適な粒径を有する水砕スラグ、例えば、船舶の錆落とし用として好適な粗粒のサンドブラスト材向け、或いは塗装の下地処理用として好適な細粒のサンドブラスト材向けの水砕スラグを安価に提供することができる。   According to the present invention, when granulating molten slag, it is not necessary to install a new classification facility or a special slag granulating slag, that is, without making a new facility investment, and without steam explosion or dredging. Therefore, the particle size of the granulated slag obtained can be arbitrarily controlled. Therefore, granulated slag having a particle size suitable as a sandblasting material, for example, a granulated sandblasting material suitable for a coarse sandblasting material suitable for ship rust removal, or a fine-grained sandblasting material suitable for coating surface treatment Slag can be provided at low cost.

熔錬炉として自熔炉を用いた銅製錬工程における水砕スラグの製造過程を示す概略図である。It is the schematic which shows the manufacturing process of the granulated slag in the copper smelting process which used the self-smelting furnace as a smelting furnace. 水砕スラグにおけるPb品位と粒径との関係を示すグラフである。It is a graph which shows the relationship between the Pb quality in a granulated slag, and a particle size.

本発明においては、銅製錬工程に供給する原料である銅精鉱、雑原料及びフラックスの珪酸鉱を配合する際に、得られる水砕スラグのPb品位を調整することによって、銅製錬工程から排出される熔融スラグを水砕処理して得られる水砕スラグの粒径を制御することができる。即ち、銅製錬工程における原料から水砕スラグへのPbの分配率は操業実績から分かるので、上述したように原料を配合する際に水砕スラグ中のPb品位を調整することができ、このPb品位の調整によって水砕スラグの粒径を所望の範囲に制御することが可能である。   In the present invention, when blending copper concentrate, miscellaneous raw material and flux silicate ore, which are raw materials to be supplied to the copper smelting process, by adjusting the Pb quality of the obtained granulated slag, it is discharged from the copper smelting process. It is possible to control the particle size of the granulated slag obtained by subjecting the molten slag to be granulated. That is, since the distribution ratio of Pb from the raw material to the granulated slag in the copper smelting process can be understood from the operation results, the Pb quality in the granulated slag can be adjusted when blending the raw material as described above. The particle size of the granulated slag can be controlled within a desired range by adjusting the quality.

具体的には、本発明者らによる研究の結果、水砕スラグ中のPb品位と水砕スラグの50%粒径(以下、単に粒径又はD50と表記する)は図2に示す関係を有することが判明した。この図2から分かるように、水砕スラグ中のPb品位と水砕スラグの粒径はほぼ逆比例の関係を有し、水砕スラグ中のPb品位がほぼ0.09〜0.29質量%の間において、Pb品位が低いほど水砕スラグの粒径は粗粒化し、水砕スラグ中のPb品位が高いほど水砕スラグの粒径は微細化する。   Specifically, as a result of studies by the present inventors, the Pb quality in the granulated slag and the 50% particle size of the granulated slag (hereinafter simply referred to as particle size or D50) have the relationship shown in FIG. It has been found. As can be seen from FIG. 2, the Pb grade in the granulated slag and the particle size of the granulated slag have a substantially inverse relationship, and the Pb grade in the granulated slag is about 0.09 to 0.29% by mass. In the meantime, the particle size of the granulated slag becomes coarser as the Pb grade becomes lower, and the particle size of the granulated slag becomes finer as the Pb grade in the granulated slag becomes higher.

尚、図2に示す水砕スラグ中のPb品位と水砕スラグの粒径の関係は、特殊な原料を使用した場合や事故の場合等を除いて、通常の銅製錬工程で得られる一般的な水砕スラグの組成の範囲において得られる。即ち、本発明における水砕スラグの組成(Pbを除く)は、通常の銅製錬工程で得られる一般的な範囲であればよく、具体的には、FeO:39〜42質量%、SiO:30質量%〜35質量%、Al:3質量%〜6質量%、CaO:1質量%〜4質量%であることが好ましい。 The relationship between the Pb grade in the granulated slag shown in FIG. 2 and the particle size of the granulated slag is generally obtained in a normal copper smelting process except when special raw materials are used or in the case of an accident. Obtained in a range of granulated slag compositions. That is, the composition of the granulated slag in the present invention (excluding Pb) may be in a general range obtained by a normal copper smelting process. Specifically, FeO: 39 to 42% by mass, SiO 2 : 30 wt% to 35 wt%, Al 2 O 3: 3 wt% to 6 wt%, CaO: is preferably 1 mass% to 4 mass%.

本発明によって所定粒径の水砕スラグを製造する場合、得ようとする水砕スラグの粒径に対応する水砕スラグのPb品位を図2から求め、求めたPb品位の水砕スラグとなるように原料を配合して銅製錬工程に供給し、得られる熔融スラグを水砕処理することによって、目標とする粒径を有する水砕スラグを簡単に製造することができる。   When producing granulated slag having a predetermined particle diameter according to the present invention, the Pb quality of the granulated slag corresponding to the particle diameter of the granulated slag to be obtained is obtained from FIG. 2, and the obtained granulated slag of Pb quality is obtained. Thus, the granulated slag which has a target particle diameter can be easily manufactured by mix | blending a raw material and supplying it to a copper smelting process, and carrying out the granulation process of the molten slag obtained.

サンドブラスト材向けの水砕スラグの場合、例えば船舶の錆落とし用の水砕スラグとしては粒径1.40〜1.55mmの粗粒のものが求められるので、図2から水砕スラグのPb品位を0.10〜0.16質量%の範囲に調整する。水砕スラグのPb品位が0.10質量%未満になると、粒径が1.55mmを超えてしまい、サンドブラストの際に配管詰まり等のトラブルを起こす原因となりやすい。また、水砕スラグのPb品位が0.16質量%を超えると、粒径が1.40mm未満になるため打痕が小さくなり、深く喰い込んだ錆を取り除くことが難しくなる。   In the case of granulated slag for sandblasting materials, for example, coarse granulated slag for removing rust of ships is required to have a coarse particle size of 1.40 to 1.55 mm. Is adjusted in the range of 0.10 to 0.16% by mass. If the Pb quality of the granulated slag is less than 0.10% by mass, the particle size exceeds 1.55 mm, which is likely to cause troubles such as pipe clogging during sandblasting. On the other hand, if the Pb quality of the granulated slag exceeds 0.16% by mass, the particle diameter becomes less than 1.40 mm, so that the dent becomes small and it is difficult to remove the deeply entrapped rust.

また、塗装の下地処理用の水砕スラグとしては粒径1.10〜1.20mmの細粒のものが必要とされるので、図2から水砕スラグのPb品位を0.24〜0.28質量%の範囲に調整する。水砕スラグのPb品位が0.24質量%未満では、粒径が1.20mmを超えるものが得られ、粒径が大きいために打痕が大きくなり、サンドブラスト後の表面が荒くなるので好ましくない。また、Pb品位が0.28質量%を超えると、粒径が1.10mm未満の細かいものが増加するため、サンドブラストの効果が小さく、またサンドブラスト時の発塵が著しくなる。   In addition, since the granulated slag for the ground treatment of the coating is required to have a fine particle size of 1.10 to 1.20 mm, the Pb quality of the granulated slag is 0.24 to 0.00 from FIG. Adjust to the range of 28% by mass. When the Pb quality of the granulated slag is less than 0.24% by mass, a particle size exceeding 1.20 mm is obtained, and since the particle size is large, the dent becomes large and the surface after sandblasting becomes rough. . On the other hand, when the Pb quality exceeds 0.28% by mass, fine particles having a particle size of less than 1.10 mm increase, so that the effect of sandblasting is small, and dust generation during sandblasting becomes significant.

次に、本発明により所定の粒径を有する水砕スラグを製造する方法について更に詳しく説明する。まず、製造すべき水砕スラグのPb品位が目標とする所定粒径に対応したPb品位となるように、水砕スラグのPb品位と50%粒径の関係を示す図2に基づいて必要な水砕スラグのPb品位を定める。   Next, the method for producing granulated slag having a predetermined particle diameter according to the present invention will be described in more detail. First, it is necessary based on FIG. 2 showing the relationship between the Pb quality of the granulated slag and the 50% particle size so that the Pb quality of the granulated slag to be produced becomes the Pb quality corresponding to the target predetermined particle size. Determine the Pb quality of granulated slag.

その後、水砕スラグのPb品位が上記のごとく定めた値となるように、銅製錬の原料である銅精鉱、雑原料及び珪酸鉱(フラックス)を配合する。具体的には、原料から水砕スラグへのPbの分配率は操業実績から分かるので、その分配率と必要な水砕スラグのPb品位とから、熔錬炉で熔解する全原料中のPb量を求める。次に、銅精鉱、雑原料及び珪酸鉱に含まれる全Pb量が上記全原料中のPb量に一致するように、銅精鉱、雑原料及び珪酸鉱の配合割合を定める。尚、雑原料としては、銅製錬工程の繰り返し物や銅スクラップなどがある。   Then, the copper concentrate, the miscellaneous raw material, and the silicate ore (flux) which are the raw materials of copper smelting are mix | blended so that Pb quality of granulated slag may become the value defined as mentioned above. Specifically, since the distribution ratio of Pb from the raw material to the granulated slag can be understood from the operation results, the amount of Pb in the total raw material melted in the smelting furnace from the distribution ratio and the required Pb quality of the granulated slag. Ask for. Next, the blending ratio of the copper concentrate, miscellaneous raw material, and silicate ore is determined so that the total Pb amount contained in the copper concentrate, miscellaneous raw material, and silicate ore matches the Pb amount in the total raw material. As miscellaneous raw materials, there are repeated copper smelting processes and copper scraps.

上記により求めた各原料の配合割合に基づき、それぞれの原料ビンから原料を切り出し、図1に示すように、自熔炉1などの熔錬炉に投入して熔解する。熔解された原料は比重によりマット2とスラグ3に分離され、スラグ3は錬かん炉5に送られてCu分が分離された後、熔融スラグ6としてスラグ樋7から排出され、水砕樋8内で水砕処理されて水砕スラグとなる。   Based on the blending ratio of each raw material obtained as described above, the raw material is cut out from each raw material bottle, and, as shown in FIG. The melted raw material is separated into a mat 2 and a slag 3 by specific gravity. The slag 3 is sent to a smelting furnace 5 and Cu content is separated. It is granulated in the slag.

上記水砕処理の方法については特に制限はなく、水砕樋を流れる大量の水に対して上方から熔融スラグが供給され、大量の水と接触する過程で周囲から急冷されると同時に、粉砕されて水砕スラグとなればよい。その際、水蒸気爆発や詰まり現象の発生を防ぐため、熔融スラグが水流の中に潜り込まないように熔融スラグと水の流量を調整維持する必要がある。特に水砕ノズルから噴出する高圧水を用いる方法や上記特許文献2に記載された水砕装置を用いる方法は、水蒸気爆発や詰まり現象の発生がないため好ましい。   There is no particular restriction on the method of the above-mentioned water granulation treatment, and molten slag is supplied from above to a large amount of water flowing through the water pulverized water, and is rapidly cooled from the surroundings in the process of contacting with the large amount of water, and simultaneously pulverized. It is sufficient to use granulated slag. At that time, in order to prevent the occurrence of steam explosion and clogging phenomenon, it is necessary to adjust and maintain the flow rates of the molten slag and water so that the molten slag does not sink into the water flow. In particular, a method using high-pressure water ejected from a water granulating nozzle or a method using a water granulating device described in Patent Document 2 is preferable because neither steam explosion nor clogging occurs.

尚、上記のごとく水砕スラグのPb品位が所定の値となるように銅製錬の原料である銅精鉱、雑原料及びフラックスの珪酸鉱を予め配合しても、得られる水砕スラグのPb品位が低い場合には、例えばPbを含む雑原料などを錬かん炉に装入することで調整できる。また、得られる水砕スラグのPb品位が高い場合には、例えば既存のPb品位の低い水砕スラグなどを錬かん炉に装入することにより調整できる。   As described above, even if the copper concentrate as a raw material for copper smelting, miscellaneous raw material, and silicate ore of flux are blended in advance so that the Pb quality of the granulated slag becomes a predetermined value, the Pb of the granulated slag obtained When the quality is low, for example, it can be adjusted by charging miscellaneous raw materials containing Pb into a smelting furnace. Moreover, when the Pb quality of the obtained granulated slag is high, it can be adjusted, for example, by charging an existing granulated slag with a low Pb quality into a smelting furnace.

上記した本発明の水砕スラグの製造方法により得られた水砕スラグは、その粒径が所定の範囲に制御されているので、そのまま、粗粒のものは船舶の錆落とし用のサンドブラスト材として、或いは、細粒のものは塗装の下地処理用のサンドブラスト材として用いることができる。   Since the particle size of the granulated slag obtained by the above-described method for producing granulated slag of the present invention is controlled within a predetermined range, the coarse particles are used as sandblasting materials for removing rust on ships. Alternatively, fine particles can be used as a sand blasting material for coating surface treatment.

[実施例1]
銅製錬工程において、銅精鉱と雑原料及びフラックスとしての珪酸鉱を配合した原料を自熔炉に装入して熔解し、得られたマットを転炉に送って粗銅とする一方、スラグは錬かん炉に送って更にCu分を分離し、排出された熔融スラグを水砕処理して水砕スラグを製造した。その際、製造する水砕スラグの粒径の目標値を、造船向け粗粒品の上限である1.55mmに設定し、水砕スラグ中のPb品位と水砕スラグの粒径の関係を示す図2から、水砕スラグ中のPb品位が上記粒径に必要な0.10質量%となるように原料の配合を調整した。
[Example 1]
In the copper smelting process, a raw material blended with copper concentrate, miscellaneous raw materials and silicate ore as flux is charged into a self-melting furnace and melted, and the resulting mat is sent to a converter to make crude copper, while slag is smelted It sent to the furnace and isolate | separated Cu content further, and the discharged molten slag was granulated, and the granulated slag was manufactured. At that time, the target value of the particle size of the granulated slag to be manufactured is set to 1.55 mm which is the upper limit of the coarse-grained product for shipbuilding, and the relationship between the Pb quality in the granulated slag and the particle size of the granulated slag is shown. From FIG. 2, the blending of the raw materials was adjusted so that the Pb quality in the granulated slag was 0.10% by mass required for the above particle size.

即ち、水砕スラグ中のPb品位が上記した必要とされるPb品位の0.10質量%となるように、操業実績による原料から水砕スラグへのPbの分配率に基づいて原料中の全Pb量を求めたところ、本実施例では原料中の全Pbの供給量は時間当たり0.22tであった。そこで、原料中の全Pb供給量が0.22t/hとなるように、銅精鉱と雑原料及び珪酸鉱の配合比率と、その配合比率に基づいて混合した銅精鉱と雑原料及び珪酸鉱の時間当たりの装入量を求めた。   That is, based on the distribution ratio of Pb from the raw material to the granulated slag according to the operation results so that the Pb quality in the granulated slag becomes 0.10% by mass of the required Pb quality as described above, When the amount of Pb was determined, in this example, the supply amount of all Pb in the raw material was 0.22 t per hour. Therefore, the copper concentrate, miscellaneous raw material and silicic acid ore mixing ratio, and the copper concentrate, miscellaneous raw material and silicic acid mixed based on the mixing ratio so that the total Pb supply amount in the raw material becomes 0.22 t / h. The amount of ore charge per hour was determined.

その後、上記のごとく求めた配合比率と装入量に基づき、銅精鉱と雑原料及び珪酸鉱を自熔炉に連続的に装入して熔解した。具体的には、銅精鉱は3銘柄を混合して得た調合銅精鉱を毎時154tの割合で、雑原料は3銘柄を混合して得た調合雑原料を毎時0.9tの割合で、及び珪酸鉱は毎時23tの割合で、それぞれ自熔炉へ連続的に装入して熔解した。上記の調合銅精鉱、調合雑原料及び珪酸鉱のCuを除く主な組成、即ちFe品位、SiO品位、Al品位、CaO品位及びPb品位、並びに時間当たりの装入量を、それぞれ下記表1にまとめて示した。 Then, based on the mixing | blending ratio and charging amount which were calculated | required as mentioned above, the copper concentrate, miscellaneous raw material, and the silicate ore were continuously charged into the automelting furnace, and were melted. Specifically, copper concentrate is a mixed copper concentrate obtained by mixing three brands at a rate of 154t / hr, miscellaneous raw materials are blended raw materials obtained by mixing three brands at a rate of 0.9t / hr. , And silicate ore were continuously charged in a flash furnace at a rate of 23 tons per hour and melted. Main composition excluding Cu in the above prepared copper concentrate, mixed raw materials and silicate ore, that is, Fe grade, SiO 2 grade, Al 2 O 3 grade, CaO grade and Pb grade, and charging amount per hour, The results are summarized in Table 1 below.

Figure 2016204759
Figure 2016204759

上記原料は自熔炉で熔解され、比重によりマットとスラグに分離された。尚、操業温度はマット温度で1210℃であり、炉内の重油バーナーの燃料供給量で調整した。自熔炉で得られたマットは転炉へ送られ、FeとSを取り除いてCu品位98%の粗銅に精製した。一方、スラグは電気炉である錬かん炉へ送られ、電力負荷3600kWhにて、熔融スラグ温度1270℃及び滞留時間3時間とすることにより、自熔炉で分離しきれなかったCu分を分離した。錬かん炉から排出された熔融スラグは、スラグ中のCu分が0.8質量%であり、粘性悪化によりCu分の比重分離が困難になるなどの問題もなかった。   The raw material was melted in a flash furnace and separated into mats and slag by specific gravity. The operation temperature was 1210 ° C. as a mat temperature, and was adjusted by the fuel supply amount of the heavy oil burner in the furnace. The mat obtained in the auto-smelting furnace was sent to a converter, where Fe and S were removed, and it was refined to a crude copper having a Cu grade of 98%. On the other hand, the slag was sent to a smelting furnace, which is an electric furnace, and at a power load of 3600 kWh, the molten slag temperature was set to 1270 ° C. and the residence time was set to 3 hours, thereby separating the Cu component that could not be separated in the self-melting furnace. The molten slag discharged from the smelting furnace had a Cu content in the slag of 0.8% by mass, and there was no problem such that it was difficult to separate the specific gravity of the Cu due to the deterioration of viscosity.

上記のCu分を0.8質量%まで下げられた熔融スラグは、錬かん炉から排出されて水砕樋に供給され、熔融スラグ1tに対して10tの割合で水砕ノズルから放出される圧力1MPaの高圧水によって水砕された。尚、水砕スラグを得る際に、水蒸気爆発や水砕樋の詰まりなどの問題は何ら発生せず、安全に水砕スラグを得ることができた。得られた水砕スラグは、サンプルを水砕スラグ搬送用コンベヤーの落口で4時間毎に採取して、粒径と組成を調べた。   The molten slag whose Cu content has been reduced to 0.8% by mass is discharged from the smelting furnace and supplied to the granulated slag, and the pressure released from the granulated nozzle at a rate of 10 t with respect to 1 t of molten slag. It was crushed with 1 MPa high-pressure water. When obtaining the granulated slag, no problems such as steam explosion or clogging of the granulated slag occurred, and the granulated slag could be obtained safely. The obtained granulated slag was sampled every 4 hours at the outlet of a conveyor for conveying granulated slag, and the particle size and composition were examined.

上記方法により得られた試料1の水砕スラグは、目標粒径が1.55mm(水砕スラグ中の目標Pb品位0.10質量%)に対して、顕微鏡で測定した実際の粒径は1.52mmであった。また、蛍光X線分析による上記試料1の水砕スラグの組成は、Feが40質量%、SiOが32質量%、Alが5質量%、CaOが2質量%及びPbが0.105質量%であった。尚、得られた試料1の水砕スラグは、そのまま船舶の錆落とし用(造船向け)のサンドブラスト材として出荷することができた。 The granulated slag of Sample 1 obtained by the above method has a target particle size of 1.55 mm (target Pb quality of 0.10% by mass in the granulated slag), and the actual particle size measured with a microscope is 1. It was 0.52 mm. The composition of the granulated slag of the sample 1 by X-ray fluorescence analysis is as follows: Fe is 40% by mass, SiO 2 is 32% by mass, Al 2 O 3 is 5% by mass, CaO is 2% by mass, and Pb is 0. It was 105% by mass. The obtained granulated slag of Sample 1 could be shipped as it is as a sand blasting material for ship rust removal (for shipbuilding).

[実施例2]
上記実施例1と同様に実施したが、本実施例では目標とする水砕スラグの粒径を、試料2で1.10mm、試料3で1.40mm、試料4で1.20mm、試料5で1.60mm、試料6で1.00mmとした。
[Example 2]
In the present example, the target granulated slag particle size was 1.10 mm for sample 2, 1.40 mm for sample 3, 1.20 mm for sample 4, and 5. The thickness of 1.60 mm and Sample 6 were set to 1.00 mm.

上記試料2〜6の各水砕スラグの目標粒径を得るために必要な水砕スラグ中のPb品位は、図2から、試料2では0.28質量%、試料3では0.16質量%、試料4では0.24質量%、試料5では0.08質量%、試料6では0.30質量%と求められた。そこで、各水砕スラグ中のPb品位がそれぞれ上記の値となるように原料の配合を調整した以外は上記実施例1と同様にして、試料2〜6の各水砕スラグを得た。   From FIG. 2, the Pb quality in the granulated slag necessary for obtaining the target particle size of each of the granulated slags of Samples 2 to 6 is 0.28% by mass for Sample 2 and 0.16% by mass for Sample 3. The sample 4 was found to be 0.24% by mass, the sample 5 was 0.08% by mass, and the sample 6 was 0.30% by mass. Thus, each granulated slag of Samples 2 to 6 was obtained in the same manner as in Example 1 except that the blending of the raw materials was adjusted so that the Pb quality in each granulated slag was the above value.

得られた試料2の水砕スラグの粒径は、目標粒径が1.10mm(水砕スラグ中の目標Pb品位0.28質量%)に対して、1.10mm(水砕スラグ中のPb品位0.28質量%)であった。得られた試料2の水砕スラグは、そのまま塗装の下地処理用のサンドブラスト材として出荷することができた。   The particle size of the granulated slag of Sample 2 obtained was 1.10 mm (Pb in the granulated slag) with respect to the target particle size of 1.10 mm (target Pb quality of 0.28% by mass in the granulated slag). The quality was 0.28% by mass). The obtained granulated slag of Sample 2 could be shipped as a sandblasting material for the base treatment of the coating as it was.

また、試料3の水砕スラグは、目標粒径が1.40mmに対して、実際の粒径も1.40mm(水砕スラグ中のPb品位0.158質量%)であり、そのまま船舶の錆落とし用(造船向け)のサンドブラスト材として出荷することができた。試料4の水砕スラグの粒径は、目標粒径が1.20mmに対して、実際の粒径も1.20mm(水砕スラグ中のPb品位0.243質量%)であり、そのまま塗装の下地処理用のサンドブラスト材として出荷することができた。   In addition, the granulated slag of Sample 3 has a target particle size of 1.40 mm and an actual particle size of 1.40 mm (Pb quality 0.158% by mass in the granulated slag). We were able to ship as sandblasting material for dropping (for shipbuilding). The particle size of the granulated slag of Sample 4 is 1.20 mm for the target particle size and 1.20 mm for the actual particle size (Pb quality 0.243 mass% in the granulated slag). It was possible to ship as a sandblasting material for surface treatment.

更に、得られた試料5の水砕スラグは、目標粒径が1.60mmに対して、実際の粒径は1.60mm(水砕スラグ中のPb品位0.09質量%)であった。試料6の水砕スラグは、目標粒径が1.00mmに対して、実際の粒径は1.60mm(水砕スラグ中のPb品位0.30質量%)であった。ただし、上記試料5及び6の水砕スラグは、船舶の錆落とし用(造船向け)のサンドブラスト材としては粗粒過ぎ、また下地処理用のサンドブラスト材としては細粒過ぎるため出荷はできなかった。   Furthermore, the granulated slag of Sample 5 thus obtained had a target particle size of 1.60 mm and an actual particle size of 1.60 mm (Pb quality 0.09% by mass in the granulated slag). The granulated slag of Sample 6 had a target particle size of 1.00 mm and an actual particle size of 1.60 mm (Pb quality 0.30% by mass in the granulated slag). However, the granulated slags of Samples 5 and 6 were too coarse as sandblasting materials for ship rust removal (for shipbuilding) and too fine as sandblasting materials for ground treatment, and could not be shipped.

尚、上記試料2〜6の各水砕スラグの組成(Pbを除く)は、いずれも、FeOが39〜42質量%、SiOが30質量%〜35質量%、Alが3質量%〜6質量%、及びCaOが1質量%〜4質量%の範囲内であった。 Note that (excluding Pb) composition of each water granulated slag of the sample 2-6 are all, FeO is 39 to 42 wt%, SiO 2 of 30 wt% to 35 wt%, Al 2 O 3 is 3 mass % To 6% by mass and CaO in the range of 1% to 4% by mass.

[参考例1]
水砕スラグにおけるAl含有量が7質量%となるように原料を配合した以外は、上記実施例1と同様の方法により水砕スラグを製造しようとしたが、調合した原料を自熔炉に装入して熔解開始後3時間経過した時点から炉内に未反応生成物の存在が確認されて、この状態を継続することは困難であった。
[Reference Example 1]
An attempt was made to produce granulated slag by the same method as in Example 1 except that the raw material was blended so that the Al 2 O 3 content in the granulated slag was 7% by mass. It was difficult to continue this state since the presence of unreacted products was confirmed in the furnace from the time when 3 hours had passed after the start of melting.

1 自熔炉
2 マット
3 スラグ
4 自熔炉樋
5 錬かん炉
6 熔融スラグ
7 スラグ樋
8 水砕樋
9 水砕ノズル
DESCRIPTION OF SYMBOLS 1 Self-melting furnace 2 Mat 3 Slag 4 Self-melting furnace 5 Smelting furnace 6 Melting slag 7 Slag tank 8 Granulation mill 9 Granulation nozzle

Claims (4)

銅製錬工程によって生成される熔融スラグを水に接触させて冷却すると同時に粉砕することで分級を行うことなく水砕スラグを製造する方法であって、
水砕スラグの累積質量50%の粒径と該水砕スラグ中のPb品位との関係を予めプロットしたグラフに基づいて、1.10〜1.60mmの範囲内で目標とする水砕スラグの累積質量50%の粒径から水砕スラグのPb品位を0.09〜0.28質量%の間で求め、そのPb品位となるように銅精鉱、雑原料及びフラックスの珪酸鉱の配合割合を調整して前記銅製錬工程の原料とすることを特徴とする水砕スラグの製造方法。
A method for producing granulated slag without performing classification by bringing the molten slag produced by the copper smelting process into contact with water and cooling and simultaneously crushing,
Based on a graph in which the relationship between the particle size of 50% cumulative mass of granulated slag and the Pb quality in the granulated slag is plotted in advance, the target granulated slag is within a range of 1.10 to 1.60 mm. The Pb grade of granulated slag is determined from 0.09 to 0.28 mass% from the particle size of 50% cumulative mass, and the copper sinter, miscellaneous raw materials, and flux silicate ore blending ratio so as to obtain the Pb grade A method for producing granulated slag, characterized in that the raw material for the copper smelting step is adjusted.
前記目標とする水砕スラグの累積質量50%の粒径が1.40〜1.55mmの範囲内にある時は、該水砕スラグのPb品位を0.10〜0.16質量%の間で求めることを特徴とする、請求項1に記載の水砕スラグの製造方法。   When the particle size of 50% of the cumulative mass of the granulated slag is within the range of 1.40 to 1.55 mm, the Pb quality of the granulated slag is between 0.10 and 0.16% by mass. The method for producing granulated slag according to claim 1, characterized in that it is obtained by: 前記目標とする水砕スラグの累積質量50%の粒径が1.10〜1.20mmの範囲内にある時は、該水砕スラグのPb品位を0.24〜0.28質量%の間で求めることを特徴とする、請求項1に記載の水砕スラグの製造方法。   When the particle size of 50% of the cumulative mass of the granulated slag is within the range of 1.10 to 1.20 mm, the Pb quality of the granulated slag is between 0.24 and 0.28% by mass. The method for producing granulated slag according to claim 1, characterized in that it is obtained by: 前記水砕スラグの組成が、FeO:39〜42質量%、SiO:30〜35質量%、Al:3〜6質量%、CaO:1〜4質量%であることを特徴とする、請求項1〜3のいずれかに記載の水砕スラグの製造方法。 The composition of the slag is, FeO: 39 to 42 wt%, SiO 2: 30 to 35 wt%, Al 2 O 3: 3~6 wt%, CaO: characterized in that it is a 1-4 wt% The manufacturing method of the granulated slag in any one of Claims 1-3.
JP2016169500A 2016-08-31 2016-08-31 Granulated slag manufacturing method Active JP6315043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169500A JP6315043B2 (en) 2016-08-31 2016-08-31 Granulated slag manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169500A JP6315043B2 (en) 2016-08-31 2016-08-31 Granulated slag manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012197086A Division JP6069976B2 (en) 2012-09-07 2012-09-07 Granulated slag and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016204759A true JP2016204759A (en) 2016-12-08
JP6315043B2 JP6315043B2 (en) 2018-04-25

Family

ID=57487431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169500A Active JP6315043B2 (en) 2016-08-31 2016-08-31 Granulated slag manufacturing method

Country Status (1)

Country Link
JP (1) JP6315043B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569168A (en) * 1979-06-28 1981-01-30 Nippon Kokan Kk <Nkk> Blasting material for blasting process
JPS5992951A (en) * 1982-11-16 1984-05-29 日本鋼管株式会社 Water-granulated slag granulation
JPS6265958A (en) * 1985-09-18 1987-03-25 日本鉱業株式会社 Method for roughly granulating copper slag
JPH10251044A (en) * 1997-03-13 1998-09-22 Kawasaki Heavy Ind Ltd Production of granulated and water granulated slag
JP2001240437A (en) * 2000-02-25 2001-09-04 Kawasaki Steel Corp Method for controlling particle size of hard water- granulated slag
JP2002146448A (en) * 2000-11-10 2002-05-22 Dowa Mining Co Ltd Copper refining slag and copper refining method
JP2012184143A (en) * 2011-03-07 2012-09-27 Sumitomo Metal Mining Co Ltd Apparatus for manufacturing water granulated slag, and method for controlling the granule size
JP2014227333A (en) * 2013-05-27 2014-12-08 住友金属鉱山株式会社 Grain-coarsening method for water-granulated slag
US20150101257A1 (en) * 2012-05-22 2015-04-16 Aichi Steel Corporation Abrasive material for shot blasting, and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569168A (en) * 1979-06-28 1981-01-30 Nippon Kokan Kk <Nkk> Blasting material for blasting process
JPS5992951A (en) * 1982-11-16 1984-05-29 日本鋼管株式会社 Water-granulated slag granulation
JPS6265958A (en) * 1985-09-18 1987-03-25 日本鉱業株式会社 Method for roughly granulating copper slag
JPH10251044A (en) * 1997-03-13 1998-09-22 Kawasaki Heavy Ind Ltd Production of granulated and water granulated slag
JP2001240437A (en) * 2000-02-25 2001-09-04 Kawasaki Steel Corp Method for controlling particle size of hard water- granulated slag
JP2002146448A (en) * 2000-11-10 2002-05-22 Dowa Mining Co Ltd Copper refining slag and copper refining method
JP2012184143A (en) * 2011-03-07 2012-09-27 Sumitomo Metal Mining Co Ltd Apparatus for manufacturing water granulated slag, and method for controlling the granule size
US20150101257A1 (en) * 2012-05-22 2015-04-16 Aichi Steel Corporation Abrasive material for shot blasting, and method for producing same
JP2014227333A (en) * 2013-05-27 2014-12-08 住友金属鉱山株式会社 Grain-coarsening method for water-granulated slag

Also Published As

Publication number Publication date
JP6315043B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN101637744A (en) Method for recovering and utilizing kiln slag of zinc hydrometallurgy volatilizing kiln
WO2015098232A1 (en) Method for processing electrical/electronic component scraps
WO2013176095A1 (en) Abrasive material for shot blasting, and method for producing same
CN101921933A (en) High-purity stabilized aluminum alloy ingot and production method thereof
JP7137467B2 (en) Modified slag produced during non-ferrous metal production
MX2014012467A (en) Method for processing slags of non-ferrous metallurgy.
DE112014003176T5 (en) Flux, process for its preparation, agglomeration mixture and use of a secondary metallurgy slag
JP2012067375A (en) Dry processing method and system for converter slag in copper smelting
CN108187880B (en) A kind of slag advanced treatment process
JP2015124413A (en) Method of processing electric/electronic parts scrap in copper smelting
JP6069976B2 (en) Granulated slag and method for producing the same
JP6315043B2 (en) Granulated slag manufacturing method
KR101598448B1 (en) Slag treating apparatus
JP5565826B2 (en) Abrasive for blasting and method for producing the same
CN105593386A (en) Treatment of minerals
CN101781710A (en) Method for recycling and utilizing kiln slag of wet-method zinc-smelting volatilizing kiln
KR101675941B1 (en) Separation method of limonite and saprorite from nickel laterite ores
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
CN101781709A (en) Method for using kiln slag of wet-method zinc-smelting volatilizing kiln
CN101781708A (en) Method for using kiln slag of wet-method zinc-smelting volatilizing kiln
JP6188022B2 (en) Slag manufacturing method and slag manufacturing system
JP6140423B2 (en) Method for recovering metal containing desulfurized slag
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material
WO1997014760A1 (en) Method for processing iron-containing materials and products produced thereby
KR101295157B1 (en) Treating method of cobalt ore

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6315043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150