JP2012184143A - Apparatus for manufacturing water granulated slag, and method for controlling the granule size - Google Patents

Apparatus for manufacturing water granulated slag, and method for controlling the granule size Download PDF

Info

Publication number
JP2012184143A
JP2012184143A JP2011049178A JP2011049178A JP2012184143A JP 2012184143 A JP2012184143 A JP 2012184143A JP 2011049178 A JP2011049178 A JP 2011049178A JP 2011049178 A JP2011049178 A JP 2011049178A JP 2012184143 A JP2012184143 A JP 2012184143A
Authority
JP
Japan
Prior art keywords
granulated
water
slag
pit
granulated slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049178A
Other languages
Japanese (ja)
Other versions
JP5482693B2 (en
Inventor
Kazuaki Kawanaka
一哲 川中
Shigeru Sasai
茂 佐々井
Junichi Kobayashi
純一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011049178A priority Critical patent/JP5482693B2/en
Publication of JP2012184143A publication Critical patent/JP2012184143A/en
Application granted granted Critical
Publication of JP5482693B2 publication Critical patent/JP5482693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a water granulated slag having a desired granule size by controlling simply the granule size of the water granulated slag manufactured in a water granulation step of a nonferrous smelting process.SOLUTION: In an apparatus for manufacturing a water granulated slag, in which a water granulated slag C water-granulated from a molten-state slag A discharged from a smelting furnace in a water granulating launder 102 with a water-granulating water B is made to settle in a water-granulating pit 104, the water granulated slag C water-granulated in the water-granulating launder 102 is made to flow in the water-granulating pit 104 together with a water-granulating water B1; a water-granulating water B2 is made to flow directly into the water-granulating pit 104 through a bypass flow path 103b branched from a flow path 103a feeding the water-granulating water B1 to the water-granulating launder 102 without passing the water-granulating water B2 through the water-granulating launder 102; and the overflow amount of a water granulated slag C2 made to overflow from the water-granulating pit 104 together with the water-granulating waters B1, B2 is controlled by the flow amount of the water-granulating water B2 made to flow directly in the water-granulating pit 104 through the bypass flow path 103b, thereby controlling the granule size of the water granulated slag C1 made to settle in the water-granulating pit 104.

Description

本発明は、非鉄製錬プロセスにおける水砕スラグの製造装置、及び、その粒度制御方法に関する。   The present invention relates to an apparatus for producing granulated slag in a non-ferrous smelting process and a particle size control method thereof.

従来より、例えば銅やニッケルなどの有価金属を含有する硫化精鉱のような非鉄金属原料から銅やニッケルといった有価金属を得るための非鉄製錬プロセスでは、例えば、自熔炉等の溶錬炉と、錬カン炉と、転炉と、精製炉とを用いる方法が採用されている。   Conventionally, in a non-ferrous smelting process for obtaining a valuable metal such as copper or nickel from a non-ferrous metal raw material such as sulfide concentrate containing a valuable metal such as copper or nickel, for example, a smelting furnace such as a flash furnace and the like A method using a smelting furnace, a converter, and a refining furnace is employed.

非鉄金属製錬の一例である銅製錬においては、硫化銅精鉱とフラックス等とを補助燃料と共に自熔炉内に吹き込み、酸化製錬して銅分をFeSとCuSとを主成分とするカワやCuSを主成分とする白カワとし、硫黄分を亜硫酸ガスとして回収する。得たカワや白カワは自熔炉などの製錬炉からレードル等に抜き出し、これを転炉に搬送し、転炉内に装入する。そして、転炉で引き続き酸化製錬を行う。自熔炉で発生したカラミにはカワが随伴するため、一旦錬カン炉にて静置してカワとカラミとを分離した後、カラミは水砕工程において水砕スラグとし、カワはレードル等に受け、次工程の転炉に装入し、引き続き酸化製錬を行う。 In copper smelting, which is an example of non-ferrous metal smelting, copper sulfide concentrate, flux, etc. are blown into a flash smelting furnace together with auxiliary fuel, and the copper content is mainly composed of FeS and Cu 2 S by oxidation smelting. It is made into a white river whose main component is a river or Cu 2 S, and a sulfur content is recovered as sulfurous acid gas. The obtained river or white river is extracted from a smelting furnace such as a self-melting furnace into a ladle, etc., transported to the converter, and charged into the converter. Then, oxidation smelting is continued in the converter. Since the karami generated in the self-melting furnace is accompanied by a river, once it is left in the smelting furnace to separate the kawa and karami, the karami is made into granulated slag in the pulverization process. Then, it is charged into the converter of the next process, followed by oxidation smelting.

カラミは、錬カン炉内では高温の液状であるが、水砕工程において、水等で急冷されて凝固し、砂あるいは砂利状に粉砕されて水砕スラグとして取り出される。   Karami is a high-temperature liquid in the smelting furnace, but in the water granulation process, it is rapidly cooled and solidified by water or the like, and is crushed into sand or gravel and taken out as granulated slag.

すなわち、非鉄製錬プロセスでは、水砕工程において、炉から排出される溶融状態のカラミに水を直接吹き付けて急冷凝固し、水砕スラグを製造している。   That is, in the non-ferrous smelting process, in the water granulation process, water is directly blown to the molten calami discharged from the furnace to rapidly cool and solidify to produce granulated slag.

従来、上記水砕工程では、例えば、図4に示すような構成の水砕スラグ製造装置100が用いられていた。   Conventionally, in the above-described water granulation step, for example, a granulated slag manufacturing apparatus 100 having a configuration as shown in FIG. 4 has been used.

この水砕スラグ製造装置100において、図示しない製錬炉から排出されたカラミAがカラミ樋101を介して流入される水砕樋102に流路103を介して水砕水Bが流入されるようになっており、製錬炉から排出されたカラミAは、カラミ樋101を介して水砕樋102に流入し、その水砕樋102を流下してきた水砕水Bにより水砕され、水砕スラグCとして水砕ピット104内に落下する。上記水砕ピット104内で沈降した水砕スラグC1は、当該水砕ピット104内に設けたバケットエレベーター105によりすくい上げられ次の工程に搬送される。   In this granulated slag production apparatus 100, the granulated water B is caused to flow through the flow path 103 into the granulated slag 102 into which the calami A discharged from a smelting furnace (not shown) flows through the calami slag 101. The calami A discharged from the smelting furnace flows into the granulated slag 102 through the calami slag 101 and is crushed by the granulated water B flowing down the slag 102, The slag C falls into the granulated pit 104. The granulated slag C1 that has settled in the granulated pit 104 is scooped up by a bucket elevator 105 provided in the granulated pit 104 and is transported to the next step.

このようにして製造される水砕スラグC1は、粒度が0.1〜4.0mm程度であって大部分がセメント原料として利用される。   The granulated slag C1 thus produced has a particle size of about 0.1 to 4.0 mm, and most of it is used as a cement raw material.

この水砕スラグ製造装置100において、上記水砕ピット104内に落下した水砕スラグCは、平均粒径が0.6mm程度である微細な水砕スラグの大部分はピット底に沈降せず、当該水砕ピット4内の水砕水中に浮遊している。また、一部の水砕スラグC2は水砕ピット104から水砕水Bとともにオーバーフローする。この水砕水Bとともに水砕ピット104からオーバーフローした微細な水砕スラグC2は、後工程に設けた水砕2次ピット106にて沈降して分離回収される。この微細な水砕スラグC2は概ね平均粒径は0.6mm程度であり、製品の水砕スラグC1に混在してしまうと平均粒径は低下することとなる。   In this granulated slag production apparatus 100, the granulated slag C that has fallen into the granulated pit 104 has a large proportion of fine granulated slag having an average particle size of about 0.6 mm, and does not settle to the bottom of the pit. It floats in the granulated water in the granulated pit 4. Further, some of the granulated slag C2 overflows with the granulated water B from the granulated pit 104. The fine granulated slag C2 overflowed from the granulated pit 104 together with the granulated water B is settled and collected in the granulated secondary pit 106 provided in the subsequent step. The fine granulated slag C2 has an average particle size of about 0.6 mm, and the average particle size is lowered when mixed with the granulated slag C1 of the product.

このようにして製造される水砕スラグC1は、粒度が0.1〜4.0mm程度であって大部分がセメント原料として利用される。   The granulated slag C1 thus produced has a particle size of about 0.1 to 4.0 mm, and most of it is used as a cement raw material.

ところで、水砕スラグの粒度が1.5〜4.0mm程度と、前記した水砕スラグC1より大きいサイズにシフトできれば、ケーソン向けの骨材やサンドブラスト材として用いることが可能となるので、水砕スラグの粒度を制御することが望まれる。   By the way, if the granulated slag has a particle size of about 1.5 to 4.0 mm and can be shifted to a size larger than the above-described granulated slag C1, it can be used as an aggregate or sandblasting material for caisson. It is desirable to control the slag particle size.

水砕スラグの粒度を大きいサイズにシフトさせる方法として容易に思いつくのは、水砕水Bとともに水砕ピット104からオーバーフローさせる量を多くするために、水砕ピット104に流入する水量を増加させることであるが、従来の水砕スラグ製造装置100では水砕水Bの水量が増大し、伴って水圧が増大するので、水砕スラグCの粒度は逆に細かくなるという問題点がある。   An easy way to shift the granularity of granulated slag to a larger size is to increase the amount of water flowing into the granulated pit 104 in order to increase the amount of overflow from the granulated pit 104 together with the granulated water B. However, in the conventional granulated slag production apparatus 100, the amount of the granulated water B is increased, and the water pressure is increased accordingly. Therefore, there is a problem that the granulated slag C has a finer particle size.

水砕スラグの粒度を増大させる方法は、従来、水砕水を噴出させるノズル形状の改造が主流となっている。   Conventionally, a method for increasing the particle size of the granulated slag has been mainly modified by a nozzle shape that ejects the granulated water.

例えば、特許文献1には、溶融スラグの冷却水を4ケ所に分けて噴射し、溶融状態にあるスラグに最初に当たる水砕水の水圧を低下させて、水砕スラグの粒度を粗くする技術が記載されている。   For example, Patent Document 1 discloses a technique for injecting cooling water of molten slag into four locations and reducing the hydraulic pressure of the granulated water first hitting the molten slag, thereby coarsening the particle size of the granulated slag. Are listed.

また、特許文献2には、銅スラグを分級する際に、ジャンピングスクリーンを用いて1.5〜3.5mm程度の粒度に分級する方法が記載されている。   Patent Document 2 describes a method of classifying copper slag into a particle size of about 1.5 to 3.5 mm using a jumping screen.

また、特許文献3には、コンクリート骨材を生産する際に、ジェット水流を利用して骨材より比重の小さい木片、草木の根、軽石などを分離する技術が記載されている。   Patent Document 3 describes a technique for separating wood fragments, plant roots, pumice, and the like having a specific gravity smaller than that of aggregates using a jet water stream when producing concrete aggregates.

さらに、特許文献4には、砂を採取する際に、例えば分級装置としてサイクロンを備え、原水中に浮遊する浮遊カーボンなどを除去する技術が記載されている。   Furthermore, Patent Document 4 describes a technique for removing, for example, floating carbon floating in raw water when a sand is collected by using a cyclone as a classification device.

特開昭61−021938号公報Japanese Patent Laid-Open No. 61-021938 特開2003−222475号公報JP 2003-222475 A 特開平08−155330号公報JP 08-155330 A 特開2005−256334号公報JP 2005-256334 A

しかしながら、上記特許文献1の開示技術のようにノズル形状を改造するのでは、改造実施スペースに制限があること、および操業中に調整できず、また、改造のために長時間設備を停止する必要があるという問題がある。さらに、水圧を低下させるために水量を低下させると、溶融カラミの冷却が不十分となり水蒸気爆発を起こす可能性も高まるという問題がある。   However, remodeling the nozzle shape as disclosed in the above-mentioned patent document 1 is limited in remodeling space and cannot be adjusted during operation, and the facility must be stopped for a long time for remodeling. There is a problem that there is. Furthermore, when the amount of water is reduced to reduce the water pressure, there is a problem that the molten calami is insufficiently cooled and the possibility of causing a steam explosion increases.

また、上記特許文献2の開示技術のようにスクリーンを使用する方法では、新規設備の導入によるコストの増大や広大な設置スペースが必要となり、好ましくない。   In addition, the method using a screen as disclosed in the above-mentioned Patent Document 2 is not preferable because it requires an increase in cost due to the introduction of new equipment and a large installation space.

また、特許文献3の開示技術のようにジェット水流を利用する方法では、新規設備の導入及び既存設備の改造によるコストの増大が必要となり、好ましくない。   In addition, the method using a jet water flow as disclosed in Patent Document 3 is not preferable because it requires an increase in cost due to the introduction of new equipment and the modification of existing equipment.

さらに、上記特許文献4の開示技術においても、新規設備の導入が必要であり好ましくない。   Furthermore, the technique disclosed in Patent Document 4 is not preferable because it requires introduction of new equipment.

そこで、本発明は、上述の如き従来の問題点を解決するためになされたものであり、その目的は、上記従来の問題点を生じることがなく、非鉄製錬プロセスの水砕工程において製造される水砕スラグの粒度を簡単に制御することができるようにした水砕スラグの製造装置、及び、その粒度制御方法を提供することにある。   Therefore, the present invention has been made to solve the conventional problems as described above, and the object thereof is not produced in the conventional problems, and is manufactured in the water granulation step of the non-ferrous smelting process. An object of the present invention is to provide a granulated slag production apparatus and a method for controlling the particle size of the granulated slag capable of easily controlling the particle size of the granulated slag.

本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.

本発明では、上記課題を解決するために、従来の水砕スラグ製造装置における水砕水の流路を2つ分岐し、水砕樋を介して水砕ピットに水砕水を流入させる流路に、水砕水を上記水砕樋を介さずに水砕ピットに直接流入させるバイパス流路を設け、上記バイパス流路を介して上記水砕ピットに直接流入させる水砕水の流量によって、水砕ピットからオーバーフローされる微細な水砕スラグのオーバーフロー量を制御する。   In the present invention, in order to solve the above-mentioned problem, a flow path for branching the granulated water in the conventional granulated slag manufacturing apparatus into two and allowing the granulated water to flow into the granulated pit via the water granulated slag In addition, a bypass channel is provided for allowing the granulated water to flow directly into the granulation pit without going through the granulation basin, and the flow rate of the granulated water directly flowing into the granulation pit via the bypass channel Controls the overflow amount of fine granulated slag overflowed from the crushing pit.

すなわち、本発明は、水砕スラグの製造装置であって、製錬炉から排出される溶融状態のカラミを水砕水により水砕して水砕スラグとする水砕樋と、上記水砕樋において水砕された水砕スラグが水砕水とともに流入される水砕ピットと、上記水砕樋に上記水砕水を供給する流路と、上記流路から分岐され、水砕水を上記水砕樋を介さずに水砕ピットに直接流入させるバイパス流路とを備え、上記バイパス流路を介して上記水砕ピットに直接流入させる水砕水の流量によって、上記水砕ピットから水砕水とともにオーバーフローされる水砕スラグのオーバーフロー量を制御して、目的の粒度の水砕スラグを上記水砕ピット内に沈降させることを特徴とする。   That is, the present invention is an apparatus for producing granulated slag, which is a granulated slag obtained by granulating molten calami discharged from a smelting furnace with granulated water to form granulated slag, and the above-mentioned granulated slag A granulated pit into which the granulated slag that has been crushed in water together with the granulated water, a flow path for supplying the granulated water to the granulated tub, and a branch from the flow path, A bypass flow path that directly flows into the granulation pit without using the smash, and the granulated water from the granulation pit is flown according to the flow rate of the granulated water that flows directly into the granulation pit via the bypass flow path. At the same time, the amount of overflow of the granulated slag overflowed is controlled to cause the granulated slag having a target particle size to settle in the granulated pit.

また、本発明は、製錬炉から排出される溶融状態のカラミを水砕樋において水砕水で水砕して水砕スラグとし、水砕された水砕スラグを水砕ピット内に沈降させるようにした水砕スラグの製造装置における水砕スラグの粒度制御方法であって、上記水砕樋において水砕された水砕スラグを水砕水とともに水砕ピットに流入させるとともに、上記水砕樋に上記水砕水を供給する流路から分岐されたバイパス流路により、水砕水を上記水砕樋を介さずに水砕ピットに直接流入させ、上記バイパス流路を介して上記水砕ピットに直接流入させる水砕水の流量によって、上記水砕ピットから水砕水とともにオーバーフローされる水砕スラグのオーバーフロー量を制御して、上記水砕ピット内に沈降される水砕スラグの粒度を制御することを特徴とする。   In the present invention, the molten calami discharged from the smelting furnace is granulated with granulated water in a granulated slag to form granulated slag, and the granulated granulated slag is settled in the granulated pit. A granulated slag particle size control method in a granulated slag production apparatus as described above, wherein the granulated slag granulated in the granulated slag flows into the granulated pit together with the granulated water, and the granulated slag By means of a bypass channel branched from the channel for supplying the granulated water to the granulated water, the granulated water is allowed to flow directly into the granulated pit without passing through the granulated pit, and the granulated pit is passed through the bypass channel. The amount of granulated slag that overflows with the granulated water from the granulated pit is controlled by the flow rate of the granulated water that flows directly into the granulated pit, thereby controlling the particle size of the granulated slag that settles in the granulated pit It is characterized by

本発明によれば、非鉄製錬プロセスの水砕工程において製造される水砕スラグの粒度を簡単に制御することができ、しかも、設備を止めることなく、操業に影響を与えることなく、上述の如き従来の上記問題点を解決することができる。   According to the present invention, it is possible to easily control the particle size of the granulated slag produced in the non-ferrous smelting process, and without affecting the operation without stopping the equipment. Such conventional problems as described above can be solved.

本発明に係る水砕スラグ製造装置の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the granulated slag manufacturing apparatus which concerns on this invention. 水砕水バイパス水量と、水砕ピットからオーバーフローされる微細な水砕スラグ量の関係を示す図である。It is a figure which shows the relationship between a granulated water bypass water amount and the fine granulated slag amount overflowed from a granulated pit. 水砕水バイパス水量と、製品となる水砕スラグの平均粒径の関係を示す図である。It is a figure which shows the relationship between the amount of granulated water bypass water, and the average particle diameter of the granulated slag used as a product. 従来の水砕スラグ製造装置の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the conventional granulated slag manufacturing apparatus.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明は、例えば図1に示すような構成の水砕スラグ製造装置10に適用される。   The present invention is applied to a granulated slag manufacturing apparatus 10 having a configuration as shown in FIG.

なお、この水砕スラグ製造装置10は、図4に示した従来の水砕スラグ製造装置100を改良したものであって、従来装置と実質上同一の構成要素には図1中に同一の参照符号が付されている。   The granulated slag production apparatus 10 is an improvement of the conventional granulated slag production apparatus 100 shown in FIG. 4, and the same reference numerals in FIG. The code | symbol is attached | subjected.

この水砕スラグ製造装置10は、図示しない製錬炉から排出されたカラミAがカラミ樋101を介して流入される水砕樋102に流路103を介して水砕水Bが流入されるが、上記水砕水Bの流路103が流路103aとバイパス流路103bに分岐されており、流路103aを介して水砕樋102に水砕水B1が流入され、水砕水B2が水砕樋102を介さずにバイパス流路103bを介して水砕ピット4に直接流入されるようになっている。   In this granulated slag manufacturing apparatus 10, granulated water B is introduced into a granulated slag 102 into which calami A discharged from a smelting furnace (not shown) is introduced via the calami slag 101 through a channel 103. The channel 103 of the granulated water B is branched into a channel 103a and a bypass channel 103b, and the granulated water B1 flows into the granule 102 through the channel 103a, and the granulated water B2 is water. The water is directly introduced into the granulated pit 4 through the bypass flow path 103b without going through the smash 102.

この水砕スラグ製造装置10では、図示しない製錬炉から排出されたカラミAがカラミ樋101を介して流入される水砕樋102に流路103aを介して水砕水B1が流入されるようになっており、製錬炉から排出されたカラミAは、カラミ樋101を介して水砕樋102に流入し、その水砕樋102を流下してきた水砕水B1により水砕され、水砕スラグCとして水砕ピット104内に落下する。上記水砕ピット104内で沈降した水砕スラグC1は、当該水砕ピット104内に設けたバケットエレベーター105によりすくい上げられ次の工程に搬送されるが、粒度が小さく比重が小さい水砕スラグC2は水砕ピット104内に沈降せずに、水砕ピット104から水砕水B1,B2とともにオーバーフローする。   In this granulated slag production apparatus 10, the granulated water B1 is caused to flow through the flow path 103a into the water granule 102 into which the calami A discharged from the smelting furnace (not shown) flows. The calami A discharged from the smelting furnace flows into the granulated slag 102 through the calami slag 101, and is crushed by the granulated water B1 flowing down the slag 102, The slag C falls into the granulated pit 104. The granulated slag C1 settled in the granulated pit 104 is scooped up by the bucket elevator 105 provided in the granulated pit 104 and conveyed to the next step. Instead of settling in the granulated pit 104, it overflows from the granulated pit 104 together with the granulated water B1 and B2.

この水砕水B1,B2とともに水砕ピット104からオーバーフローした微細な水砕スラグC2は後工程に設けた水砕2次ピット106にて沈降し、ショベル等を用いて回収されるため、製品の水砕スラグC1には混在されない。この微細な水砕スラグC2は、従来の概ね平均粒径は0.6mm程度であり、製品の水砕スラグに混在してしまうと平均粒径は低下することとなるが、水砕ピット104からこの微細な水砕スラグC2を多量にオーバーフローさせることで、結果として製品の水砕スラグC1の平均粒径は増大することとなる。   The fine granulated slag C2 overflowing from the granulated pit 104 together with the granulated water B1 and B2 settles in the granulated secondary pit 106 provided in the subsequent process, and is recovered using an excavator or the like. It is not mixed in the granulated slag C1. This fine granulated slag C2 has a conventional average particle size of about 0.6 mm, and if mixed with the granulated slag of the product, the average particle size will decrease. By overflowing a large amount of the fine granulated slag C2, the average particle diameter of the granulated slag C1 of the product is increased as a result.

この水砕スラグ製造装置10では、微細な水砕スラグC2を従来よりも多量にオーバーフローさせるために、水砕樋102に水砕水B1を流入させる流路103aにバイパス流路103bが設けられている。このバイパス流路103bを通じて水砕水B2を水砕ピット104内に流入させることによって、実際にスラグの水砕に供せられる水量は変化させることなく、水砕ピット104に流入する水量のみを増加することができる。このため、この水砕スラグ製造装置10では、従来よりも水砕スラグC2を多量にオーバーフローさせることが可能となり、これに伴って水砕ピット104から排出される微細な水砕スラグ量を増加させることができる。   In this granulated slag manufacturing apparatus 10, in order to overflow the fine granulated slag C2 in a larger amount than before, a bypass channel 103b is provided in the channel 103a for allowing the granulated water B1 to flow into the granulated slag 102. Yes. By causing the granulated water B2 to flow into the granulated pit 104 through the bypass passage 103b, the amount of water actually supplied to the slag is not changed, and only the amount of water flowing into the granulated pit 104 is increased. can do. For this reason, in this granulated slag manufacturing apparatus 10, it becomes possible to overflow the granulated slag C2 more than before, and accordingly, the amount of fine granulated slag discharged from the granulated pit 104 is increased. be able to.

なお、水砕スラグ製造装置10には、バイパス流路103bを通じて水砕ピット104内に直接流入させる水砕水B2の水量、すなわち、水砕水バイパス水量を任意に変更するための流量制御手段として、バイパス流路103bにコントロールダンパー107が設けられている。   The granulated slag manufacturing apparatus 10 has a flow rate control means for arbitrarily changing the amount of the granulated water B2 that flows directly into the granulated pit 104 through the bypass passage 103b, that is, the amount of the granulated water bypass water. A control damper 107 is provided in the bypass flow path 103b.

すなわち、この水砕スラグ製造装置10は、製錬炉から排出される溶融状態のカラミAを水砕樋102において水砕水Bで水砕して水砕スラグCとし、水砕された水砕スラグCを水砕ピット104内に沈降させるようにした水砕スラグの製造装置であって、この水砕スラグ製造装置10では、水砕樋102において水砕された水砕スラグCを水砕水B1とともに水砕ピット104に流入させるとともに、水砕樋102に水砕水B1を供給する流路103aから分岐されたバイパス流路103bにより、水砕水B2を水砕樋102を介さずに水砕ピット104に直接流入させ、バイパス流路103bを介して水砕ピット104に直接流入させる水砕水B2の流量によって、水砕ピット104から水砕水B1,B2とともにオーバーフローされる水砕スラグC2のオーバーフロー量を制御して、水砕ピット104内に沈降される水砕スラグC1の粒度を制御する。   That is, this granulated slag production apparatus 10 granulates molten calami A discharged from a smelting furnace with granulated water B in a granulated slag 102 to form granulated slag C, and the granulated granulated water. An apparatus for producing granulated slag in which the slag C is allowed to settle in the granulated pit 104. In this granulated slag producing apparatus 10, the granulated slag C that has been granulated in the granulation tub 102 is treated with granulated water. B1 is allowed to flow into the granulated pit 104 together with the bypass granule 103b branched from the flow path 103a for supplying the granulated water B1 to the granulated slag 102. Due to the flow rate of the granulated water B2 that directly flows into the granulated pit 104 and directly flows into the granulated pit 104 via the bypass channel 103b, it overflows from the granulated pit 104 together with the granulated water B1 and B2. By controlling the overflow of slag C2, to control the particle size of the granulated slag C1 to be settled in granulated pits 104.

このような構成の水砕スラグ製造装置10において、1時間当たりの水砕水バイパス水量を50〜200T/Hの範囲で段階的に調整を行い、水砕水バイパス水量と、水砕ピット104からオーバーフローされる微細な水砕スラグC2の1日当たりのオーバーフロー量(T/D)を観測したところ、図2に示すような結果が得られた。   In the granulated slag manufacturing apparatus 10 having such a configuration, the amount of granulated water bypass water per hour is adjusted stepwise in the range of 50 to 200 T / H, and the amount of granulated water bypass water and the granulated pit 104 are adjusted. When the overflow amount (T / D) per day of the fine granulated slag C2 overflowed was observed, the results shown in FIG. 2 were obtained.

また、水砕スラグ製造装置10において、水砕水バイパス水量と、製品となる水砕スラグC1の平均粒径の傾向を観測したところ、図3に示すような結果が得られた。   Moreover, in the granulated slag manufacturing apparatus 10, when the tendency of the granulated water bypass water amount and the average particle diameter of the granulated slag C1 used as a product was observed, the result as shown in FIG. 3 was obtained.

図2から明らかなように、水砕スラグ製造装置10では、水砕水バイパス水量が増加する、すなわち、水砕ピット104内に流入する水量が増加するほど当該水砕水ピット104からオーバーフローする微細な水砕スラグC2のオーバーフロー量が増加している。   As apparent from FIG. 2, in the granulated slag production apparatus 10, the amount of the granulated water bypass water increases, that is, the finer the overflow from the granulated water pit 104 increases as the amount of water flowing into the granulated pit 104 increases. The amount of overflow of fresh granulated slag C2 is increasing.

また、図3から明らかなように、水砕スラグ製造装置10では、水砕水バイパス水量が増加する、すなわち、水砕ピット104内に流入する水量が増加するほど製品の水砕スラグC1の平均粒径も増大しており、水砕水バイパス水量を調整することにより、水砕スラグC2の粒度を制御できる。これにより粒径の大きな製品として合格する水砕スラグC1の収量を増加させることができる。   As is clear from FIG. 3, in the granulated slag production apparatus 10, the average of the granulated slag C <b> 1 of the product increases as the amount of granulated bypass water increases, i.e., the amount of water flowing into the granulated pit 104 increases. The particle size is also increasing, and the particle size of the granulated slag C2 can be controlled by adjusting the amount of the granulated water bypass water. Thereby, the yield of the granulated slag C1 which passes as a product with a large particle size can be increased.

なお、平均粒径は、2.35mm、1.18mm、0.6mmの目開きの篩を用いて篩別を行った後、ロージン・ラムラー線図を用いて求めた。   The average particle size was determined using a rosin-ramler diagram after sieving using a sieve having an opening of 2.35 mm, 1.18 mm, and 0.6 mm.

上述の如き水砕スラグ製造装置10では、製錬炉から排出される溶融状態のカラミAを水砕樋102において水砕水Bで水砕して水砕スラグCとし、水砕された水砕スラグCを水砕ピット104内に沈降させるようにした従来の水砕スラグ製造装置100に、水砕水B2が水砕樋102を介さずに水砕ピット4に直接流入されるようにバイパス流路103bを設けるだけで、水砕スラグの製造設備を変えることなく、そのうえ水蒸気爆発等、操業に影響を与えることなく、非鉄製錬プロセスの水砕工程において製造される水砕スラグの粒度を簡単に制御して、所望の粒度の水砕スラグを製造することができる。   In the granulated slag production apparatus 10 as described above, the molten calami A discharged from the smelting furnace is granulated with the granulated water B in the granulated slag 102 to obtain the granulated slag C, and the granulated granulated water. In the conventional granulated slag manufacturing apparatus 100 in which the slag C is allowed to settle in the granulated pit 104, the bypassed flow is such that the granulated water B2 flows directly into the granulated pit 4 without passing through the granulated slag 102. The size of the granulated slag produced in the non-ferrous smelting process of the non-ferrous smelting process is simplified without changing the production facility of the granulated slag, and without affecting the operation such as steam explosion. It is possible to produce a granulated slag having a desired particle size.

10 水砕スラグ製造装置、101 カラミ樋、102 水砕樋、103,103a 流路、103b バイパス流路、104 水砕ピット、105 バケットエレベーター、106 水砕2次ピット、107 コントロールダンパー、A カラミ、B,B1,B2 水砕水、C,C1,C2 水砕スラグ   DESCRIPTION OF SYMBOLS 10 Granulated slag manufacturing apparatus, 101 Calami trough, 102 Granulated trough, 103, 103a channel, 103b Bypass channel, 104 Granulated pit, 105 Bucket elevator, 106 Granulated secondary pit, 107 Control damper, A Calami, B, B1, B2 Granulated water, C, C1, C2 Granulated slag

Claims (3)

製錬炉から排出される溶融状態のカラミを水砕水により水砕して水砕スラグとする水砕樋と、
上記水砕樋において水砕された水砕スラグが水砕水とともに流入される水砕ピットと、
上記水砕樋に上記水砕水を供給する流路と、
上記流路から分岐され、水砕水を上記水砕樋を介さずに水砕ピットに直接流入させるバイパス流路とを備え、
上記バイパス流路を介して上記水砕ピットに直接流入させる水砕水の流量によって、上記水砕ピットから水砕水とともにオーバーフローされる水砕スラグのオーバーフロー量を制御して、目的の粒度の水砕スラグを上記水砕ピット内に沈降させることを特徴とする水砕スラグの製造装置。
A granulated slag made by granulating molten calami discharged from a smelting furnace with granulated water to form granulated slag,
A granulated pit into which the granulated slag that has been granulated in the granulated slag flows together with the granulated water,
A flow path for supplying the granulated water to the granulated paddle,
A bypass flow path branched from the flow path and allowing the granulated water to flow directly into the granulated pit without going through the water granulated basin,
By controlling the amount of granulated slag that overflows from the granulated pit with the granulated water by the flow rate of the granulated water that flows directly into the granulated pit via the bypass channel, An apparatus for producing granulated slag, wherein the granulated slag is allowed to settle in the granulated pit.
上記バイパス流路を介して上記水砕ピットに直接流入される水砕水の流量を制御する流量制御手段を備えることを特徴とする請求項1記載の水砕スラグの製造装置。   The apparatus for producing granulated slag according to claim 1, further comprising a flow rate control means for controlling the flow rate of the granulated water directly flowing into the granulated pit via the bypass channel. 製錬炉から排出される溶融状態のカラミを水砕樋において水砕水で水砕して水砕スラグとし、水砕された水砕スラグを水砕ピット内に沈降させるようにした水砕スラグの製造装置における水砕スラグの粒度制御方法であって、
上記水砕樋において水砕された水砕スラグを水砕水とともに水砕ピットに流入させるとともに、
上記水砕樋に上記水砕水を供給する流路から分岐されたバイパス流路により、水砕水を上記水砕樋を介さずに水砕ピットに直接流入させ、
上記バイパス流路を介して上記水砕ピットに直接流入させる水砕水の流量によって、上記水砕ピットから水砕水とともにオーバーフローされる水砕スラグのオーバーフロー量を制御して、上記水砕ピット内に沈降される水砕スラグの粒度を制御することを特徴とする水砕スラグの粒度制御方法。
Granulated slag in which molten calami discharged from the smelting furnace is granulated with granulated water in granulated slag to form granulated slag, and the granulated slag is allowed to settle in the granulated pit. A method for controlling the particle size of granulated slag in the manufacturing apparatus of
While allowing the granulated slag that has been granulated in the above-mentioned granulated water to flow into the granulated pit together with the granulated water,
By a bypass channel branched from the channel for supplying the granulated water to the granulated water, the granulated water is directly flowed into the granulated pit without going through the water granulated material,
The amount of granulated slag that overflows with the granulated water from the granulated pit is controlled by the flow rate of the granulated water that flows directly into the granulated pit via the bypass flow path, A method for controlling the particle size of granulated slag, which is characterized by controlling the particle size of the granulated slag settled in the water.
JP2011049178A 2011-03-07 2011-03-07 Granulated slag production apparatus and particle size control method thereof Active JP5482693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049178A JP5482693B2 (en) 2011-03-07 2011-03-07 Granulated slag production apparatus and particle size control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049178A JP5482693B2 (en) 2011-03-07 2011-03-07 Granulated slag production apparatus and particle size control method thereof

Publications (2)

Publication Number Publication Date
JP2012184143A true JP2012184143A (en) 2012-09-27
JP5482693B2 JP5482693B2 (en) 2014-05-07

Family

ID=47014563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049178A Active JP5482693B2 (en) 2011-03-07 2011-03-07 Granulated slag production apparatus and particle size control method thereof

Country Status (1)

Country Link
JP (1) JP5482693B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125396A (en) * 2012-12-27 2014-07-07 Sumitomo Metal Mining Co Ltd Method and apparatus for manufacturing water-granulated slag
JP2014185064A (en) * 2013-03-25 2014-10-02 Sumitomo Metal Mining Co Ltd Water granulated slag production apparatus and method for controlling particle size of water granulated slag
JP2016204759A (en) * 2016-08-31 2016-12-08 住友金属鉱山株式会社 Method for production of water-granulated slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125396A (en) * 2012-12-27 2014-07-07 Sumitomo Metal Mining Co Ltd Method and apparatus for manufacturing water-granulated slag
JP2014185064A (en) * 2013-03-25 2014-10-02 Sumitomo Metal Mining Co Ltd Water granulated slag production apparatus and method for controlling particle size of water granulated slag
JP2016204759A (en) * 2016-08-31 2016-12-08 住友金属鉱山株式会社 Method for production of water-granulated slag

Also Published As

Publication number Publication date
JP5482693B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5482693B2 (en) Granulated slag production apparatus and particle size control method thereof
JP2010236069A (en) Method and system of dry processing of converter slag in copper smelting
KR101318479B1 (en) Method and apparatus for lead smelting
CN1985009A (en) Process and apparatus for granulating a melt
TW201843308A (en) Improved process for the production of crude solder
KR101249058B1 (en) Runner of furnace
CN104131159A (en) Copper matte granulation and collection device
JP4894648B2 (en) Method and apparatus for separating and sorting slag and metal
JP4077718B2 (en) Melt treatment facility in waste melting treatment
CN103937992A (en) Method for recycling copper scum during top-blown furnace smelting lead refining process
KR100558310B1 (en) An Apparatus and A Method for dry cooling of molten pretreatment slag
CN101508017B (en) Releasing agent of slag caster
JP3817601B2 (en) Calami treatment method of wrought copper furnace in copper smelting
JP5920206B2 (en) Method and apparatus for producing granulated slag
RU2435646C1 (en) Method of processing manganese ores
CN108085494A (en) A kind of integrated conduct method of jamesonite
JP2011174150A (en) Method for operating copper refining furnace, and copper refining furnace
SU1312115A1 (en) Method of treating copper and copper-zinc sulfide concentrates
CN115382661A (en) Method for comprehensively recycling ferrochromium slag
JP6315043B2 (en) Granulated slag manufacturing method
CS214862B2 (en) Method of continuous production of the raw metal from the sulphide ores or concentrates and appliance for making the same
JP6024551B2 (en) Granulated slag particle size control method
CN103495483A (en) Exploiting and crushing process for mine crushed ores and sand
JP5493994B2 (en) Non-ferrous smelting furnace operation method and charging device
JP5488098B2 (en) Treatment method for acid-resistant waste bricks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150