JP2014125396A - Method and apparatus for manufacturing water-granulated slag - Google Patents

Method and apparatus for manufacturing water-granulated slag Download PDF

Info

Publication number
JP2014125396A
JP2014125396A JP2012284400A JP2012284400A JP2014125396A JP 2014125396 A JP2014125396 A JP 2014125396A JP 2012284400 A JP2012284400 A JP 2012284400A JP 2012284400 A JP2012284400 A JP 2012284400A JP 2014125396 A JP2014125396 A JP 2014125396A
Authority
JP
Japan
Prior art keywords
granulated
water
slag
pit
granulated slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012284400A
Other languages
Japanese (ja)
Other versions
JP5920206B2 (en
Inventor
Junichi Kobayashi
純一 小林
Shigeru Sasai
茂 佐々井
Kazuaki Kawanaka
一哲 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012284400A priority Critical patent/JP5920206B2/en
Publication of JP2014125396A publication Critical patent/JP2014125396A/en
Application granted granted Critical
Publication of JP5920206B2 publication Critical patent/JP5920206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing water-granulated slag for use as sand blasting material, without necessity for large-scale reconstruction.SOLUTION: The method for manufacturing water-granulated slag includes contacting molten slag discharged from a smelting furnace in copper smelting with granulation water so as to be water-granulated, receiving the produced water-granulated slag in a water granulation pit 6 together with granulation water, and collecting the water-granulated slag by sedimentation. Air is blown into the granulation water in the water granulation pit 6 so as to generate fine bubbles, by which fine water-granulated slag is floated and separated. The position for blowing air is within a circle A with a radius of 6 m and the center at a falling point of the granulation water in the top view of the water granulation pit 6, and preferably within the range from a depth of 0.5 m below the water surface to the bottom face.

Description

本発明は、銅製錬工程において得られる水砕スラグの製造方法及び製造装置並びにそれにより得られる粗粒化された水砕スラグに関するものである。   The present invention relates to a method and apparatus for producing granulated slag obtained in a copper smelting process, and a granulated granulated slag obtained thereby.

銅製錬工程においては、銅の主原料である銅精鉱、銅精鉱以外の銅原料(以下、雑原料とよぶ)、及びフラックスとしての珪酸鉱が自熔炉に装入され、約1300℃の高温で熔解された後、比重およそ3のマットと比重およそ2のスラグとに比重分離される。この自熔炉で比重分離されたマットは次工程の転炉に送られ、ここでFeとSが除去されてCu品位約98%の粗銅となる。なお、上記熔錬炉や後述する錬かん炉は熔錬炉とも称される。すなわち、熔錬炉とは、鉱石の製錬あるいは粗金属の精製を熔解状態で実現させる方法で用いる炉のことをいう。   In the copper smelting process, copper concentrate, which is the main raw material of copper, copper raw material other than copper concentrate (hereinafter referred to as miscellaneous raw material), and silicate ore as flux are charged into a flash melting furnace, about 1300 ° C After being melted at a high temperature, the specific gravity is separated into a mat having a specific gravity of about 3 and a slag having a specific gravity of about 2. The mat separated by specific gravity in this auto-smelting furnace is sent to the converter in the next process, where Fe and S are removed to form crude copper with a Cu grade of about 98%. The smelting furnace and the smelting furnace described later are also referred to as smelting furnaces. That is, the smelting furnace refers to a furnace used in a method for realizing ore smelting or crude metal refining in a molten state.

一方、比重分離されたスラグは錬かん炉に送られ、ここで自熔炉で分離しきれなかったマットが分離された後、約1300℃の熔融状態のスラグ(以下、熔融スラグとよぶ)としてスラグ樋を介して水砕樋へ排出される。水砕樋には、排出される熔融スラグ1tに対しておよそ10tの割合に調整された高圧の水(以下、水砕水とよぶ)が供給されている。水砕樋では、この水砕水の流束の中に熔融スラグが潜り込まないように流束の上から熔融スラグが供給され、水砕水との接触が行われる。この水砕水との接触の過程で、熔融スラグは100℃以下まで急冷され、同時にいわゆる水砕により細かい粒子に粉砕される。   On the other hand, the slag separated by specific gravity is sent to the smelting furnace, where the mat that could not be separated in the auto-smelting furnace is separated, and then the slag is melted at about 1300 ° C (hereinafter referred to as molten slag). It is discharged to the water granule through the culm. High-pressure water (hereinafter referred to as granulated water) adjusted to a ratio of about 10 t with respect to 1 t of the molten slag discharged is supplied to the water granulated slag. In the granulated slag, molten slag is supplied from above the flux so that the molten slag does not sink into the flux of the granulated water, and contact with the granulated water is performed. In the process of contact with the granulated water, the molten slag is rapidly cooled to 100 ° C. or less, and simultaneously pulverized into fine particles by so-called granulation.

粉砕された水砕スラグは水砕水と共に水砕ピットに流れ込む。水砕ピットの側部にはオーバーフロー部が設けられており、所定の時間滞留した水砕水がこのオーバーフロー部からオーバーフローして水砕二次ピットに送られる。この滞留時間内に水砕ピットの底部まで沈降した粗大な水砕スラグは、そのまま水砕ピットの底部に堆積する。この堆積した粗大な水砕スラグは、水砕ピットに設けられたバケットエレベーターによりすくい取られて回収される。   The crushed granulated slag flows into the granulated pit together with the granulated water. An overflow part is provided at the side of the granulated pit, and the granulated water staying for a predetermined time overflows from the overflow part and is sent to the granulated secondary pit. Coarse granulated slag that has settled to the bottom of the granulated pit within this residence time is deposited directly on the bottom of the granulated pit. The accumulated coarse granulated slag is scooped and collected by a bucket elevator provided in the granulated pit.

一方、上記滞留時間内に水砕ピットの底部まで沈降しきれなかった微細な水砕スラグは水砕水と共にオーバーフローするが、一部の微細な水砕スラグは水砕ピット内で局所的に生じる水砕水の下向きの流れに巻き込まれ、水砕ピットの底層に押し遣られて粗大な水砕スラグと共に水砕ピットの底部に堆積する。このため、従来の水砕ピットでは、上記したバケットエレベーターで回収されるスラグには粗大な水砕スラグに加えて水砕水と共にオーバーフローしきれなかった微細な水砕スラグが混入している。   On the other hand, fine granulated slag that could not settle to the bottom of the granulated pit within the residence time overflows with the granulated water, but some fine granulated slag is locally generated in the granulated pit. It is caught in the downward flow of granulated water, pushed into the bottom layer of the granulated pit, and accumulated at the bottom of the granulated pit together with coarse granulated slag. For this reason, in the conventional granulated pit, in addition to the coarse granulated slag, fine granulated slag that could not overflow with the granulated water is mixed in the slag collected by the bucket elevator.

具体的には、このバケットエレベーターで回収される水砕スラグは、50%粒径で表すと1.20〜1.30mmの粒状のスラグとなる場合が多い。なお、50%粒径とは、水砕スラグを呼び寸法(目開き)2.36mm、1.18mm、及び0.60mmの篩を用いて分級を行い、この値をロジン・ラムラー線図にプロットすることで累積質量が50%となる粒径として求めたものである(以降、これを単に粒径と称する)。   Specifically, the granulated slag collected by this bucket elevator is often a granular slag of 1.20 to 1.30 mm in terms of 50% particle size. In addition, 50% particle size means granulated slag, classifying using sieves with dimensions (openings) of 2.36 mm, 1.18 mm, and 0.60 mm, and plotting this value on the Rosin-Rammler diagram Thus, the particle diameter is determined as the particle diameter at which the cumulative mass becomes 50% (hereinafter simply referred to as the particle diameter).

水砕二次ピットでは、水砕ピットから受け入れた水砕水に含まれる微細な水砕スラグの沈降分離が行われ、これにより微細な水砕スラグが除去された水砕水は、水砕二次ピットからオーバーフローにより抜き出され、再度水砕樋に供給する水砕水としてリサイクルされる。一方、水砕二次ピットの底部に堆積するスラグは、水砕二次ピットスラグとして回収される。この水砕二次ピットスラグは、通常は0.6mm程度の粒径を有している。   In the granulated secondary pit, fine granulated slag contained in the granulated water received from the granulated pit is settled and separated. It is extracted from the next pit by overflow and recycled as granulated water to be supplied again to the granulated water. On the other hand, the slag accumulated at the bottom of the granulated secondary pit is recovered as a granulated secondary pit slag. This granulated secondary pit slag usually has a particle size of about 0.6 mm.

ところで、上述の水砕ピットや水砕二次ピットで得られる水砕スラグはガラス質であって化学的に安定しているので、セメント原料の鉄源、ケーソンなどの充填剤、サンドブラスト材、コンクリート用細骨材などの用途に使用されている。特に水砕スラグは、硬い材質、天然砂を上回る比重、鋭角的な形状という優れた特性を有しているので、サンドブラスト材として好適に使用される。加えて、従来は主に天然砂がサンドブラスト材として用いられてきたが、昨今では天然砂の採取に伴う自然破壊等環境への影響が懸念され、天然砂の採取が制限されてきた。従って、天然砂の代替材として上述の水砕スラグが注目を集めている。   By the way, since the granulated slag obtained in the above-mentioned granulated pit and granulated secondary pit is glassy and chemically stable, it is an iron source of cement raw material, a filler such as caisson, sandblasting material, concrete It is used for applications such as fine aggregates. In particular, granulated slag has excellent properties such as a hard material, a specific gravity higher than natural sand, and an acute-angled shape, and thus is suitably used as a sandblasting material. In addition, conventionally, natural sand has been mainly used as a sandblasting material, but recently, there is a concern about environmental effects such as natural destruction associated with the collection of natural sand, and the collection of natural sand has been limited. Therefore, the above-mentioned granulated slag attracts attention as an alternative to natural sand.

水砕スラグをサンドブラスト材に用いる場合は、橋脚や橋桁の側面、或いは船舶の舷側などに深く喰い込んだ錆を落とす用途に用いられることが多い。従って、前記サンドブラスト材は、深く侵食した錆の除去が容易であることが求められる。このため、上述のサンドブラスト材には、ブラスト時の打痕が大きいことが必要とされ、このサンドブラスト材向けに出荷する水砕スラグの粒径は、従来得られる水砕スラグの粒径より大きい粒径1.30mm〜1.55mmのものが求められている。これに対して、水砕ピットで得られる水砕スラグの粒度は、上述したように粒径1.20mm〜1.30mmのものがほとんどであり、そのままでは、上述のサンドブラスト材に使えないという問題があった。   When granulated slag is used as a sandblasting material, it is often used for removing rust that has deeply penetrated the side of a bridge pier or bridge girder, or the side of a ship. Therefore, the sandblasting material is required to easily remove rust that has been eroded deeply. For this reason, it is necessary for the above-mentioned sandblasting material to have a large dent at the time of blasting, and the particle size of the granulated slag shipped for this sandblasting material is larger than the particle size of the conventionally obtained granulated slag. A diameter of 1.30 mm to 1.55 mm is required. On the other hand, the particle size of the granulated slag obtained in the granulated pit is mostly the particle size of 1.20 mm to 1.30 mm as described above, and cannot be used for the above-mentioned sandblasting material as it is. was there.

そこで、水砕ピットで得られる水砕スラグをサンドブラスト材として求められている粒径1.30mm〜1.55mmにするため、特許文献1には水砕スラグを粗粒化する方法が提案されている。この方法は、水砕樋に供給する水砕水の供給配管に水砕樋をバイパスする分岐管を設け、水砕樋に供給する水砕水の一部を水砕樋に流さずに該分岐管を用いて水砕ピットに直接流入させるものである。   Then, in order to make the granulated slag obtained in the granulated pit into a particle size of 1.30 mm to 1.55 mm which is required as a sandblasting material, Patent Document 1 proposes a method of coarsening granulated slag. Yes. In this method, a branch pipe that bypasses the granulated slag is provided in the supply pipe of the granulated water supplied to the granulated slag, and the branched water is supplied to the granulated slag without flowing part of the spilled water. It is made to flow directly into the granulation pit using a pipe.

この方法によれば、該分岐管によるバイパス流路を介して水砕ピットに直接流入する水の流量を調整することにより、水砕ピットからオーバーフローする水砕水とともに排出される微細な水砕スラグの量を制御することができるので、目的の粒度の水砕スラグを水砕ピットの底部に沈降させることができると記載されている。   According to this method, the fine granulated slag discharged together with the granulated water overflowing from the granulated pit by adjusting the flow rate of the water directly flowing into the granulated pit via the bypass channel by the branch pipe It is described that the granulated slag of the desired particle size can be settled at the bottom of the granulated pit.

すなわち、この方法は、下降流に巻き込まれる傾向にあった粒径0.6mm程度の微細な水砕スラグを水砕ピットから積極的にオーバーフローさせることで、バケットエレベーターで回収される水砕ピットの底部に堆積する水砕スラグの粒径を大きくし、サンドブラスト材向けの粒径1.30〜1.55mmの水砕スラグを得ることを可能にするものである。   That is, in this method, the fine granulated slag having a particle diameter of about 0.6 mm that tends to be caught in the downward flow is positively overflowed from the granulated pit, so that the granulated pit recovered by the bucket elevator The particle size of the granulated slag deposited on the bottom is increased to obtain a granulated slag having a particle size of 1.30 to 1.55 mm for a sandblasting material.

特開2012−184143号公報JP 2012-184143 A

しかしながら、上記特許文献1の方法では、熔融スラグを水砕するために水砕樋に供給する水砕水に加えて、水砕ピットのオーバーフロー量を制御するためのバイパス流路を介して水砕ピットに供給する水が必要となる。即ち、バイパス流路を介して流れる水量が水砕水の量に上乗せされるため、リサイクルさせる水砕水の量を引き上げる必要があった。   However, in the method of the above-mentioned Patent Document 1, in addition to the granulated water supplied to the granulated slag in order to granulate the molten slag, the granulation is performed via a bypass channel for controlling the overflow amount of the granulated pit. Water to be supplied to the pit is required. That is, since the amount of water flowing through the bypass channel is added to the amount of the granulated water, it is necessary to raise the amount of the granulated water to be recycled.

このようにリサイクルさせる水砕水の量が引き上げられても、水砕水をリサイクルするための設備能力に余裕があれば特に問題なく対応できるが、この設備能力に余裕が無い場合は、水砕水をリサイクルするための循環系路の配管径を拡張したり循環ポンプを大型化したりするなどの大掛かりな改造工事が必要になるという問題点があった。   Even if the amount of reclaimed water to be recycled is increased in this way, it can be dealt with without any problems if there is sufficient equipment capacity to recycle the reclaimed water. There has been a problem that a large-scale remodeling work such as expanding the diameter of the circulation system for recycling water or enlarging the circulation pump is required.

本発明は、上述した従来の銅製錬工程における問題点に鑑みてなされたものであり、水砕水の循環系路の配管径の拡張や水砕水循環ポンプの大型化などの大掛かりな改造工事を必要とせずに、サンドブラスト材向けの水砕スラグを得ることが出来る水砕スラグの製造方法及び製造装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems in the conventional copper smelting process, and has undergone major remodeling work such as expansion of the diameter of the circulation path of the granulated water and enlargement of the granulated water circulation pump. It aims at providing the manufacturing method and manufacturing apparatus of the granulated slag which can obtain the granulated slag for sandblasting materials, without requiring.

上記の課題を解決するため、本発明に係る水砕スラグの製造方法は、銅製錬工程における熔錬炉から排出される熔融スラグを水砕水と接触させて水砕し、得られた水砕スラグを水砕水と共に水砕ピットに受け入れて沈降分離により水砕スラグを回収する水砕スラグの製造方法であって、前記水砕ピット内の水砕水に空気を吹き込んで発生させた泡で微細な水砕スラグを浮上分離させることを特徴としている。   In order to solve the above-mentioned problems, the granulated slag manufacturing method according to the present invention is obtained by granulating molten slag discharged from a smelting furnace in a copper smelting process by bringing the molten slag into contact with granulated water. A method for producing granulated slag that receives slag together with granulated water in a granulated pit and collects the granulated slag by sedimentation separation, wherein bubbles are generated by blowing air into the granulated water in the granulated pit. It is characterized by levitating and separating fine granulated slag.

また、本発明に係る水砕スラグの製造装置は、銅製錬工程における熔錬炉から排出された熔融スラグを水砕して得られる水砕スラグを水砕水と共に受け入れて水砕スラグを沈降分離する水砕ピットと、前記水砕ピット内の水砕水に空気を吹き込んで発生させた泡により微細な水砕スラグを浮上分離する空気供給パイプとからなることを特徴としている。   Moreover, the granulated slag manufacturing apparatus according to the present invention receives the granulated slag obtained by granulating the molten slag discharged from the smelting furnace in the copper smelting process together with the granulated water and separates the granulated slag by sedimentation. The pulverized pit and the air supply pipe that floats and separates the finely pulverized slag by bubbles generated by blowing air into the crushed water in the pulverized pit.

本発明によれば、水砕水の循環系路の拡張や水砕水循環ポンプの大型化などの大掛かりな改造を行うことなくサンドブラスト材向けの水砕スラグを得ることができる。   According to the present invention, it is possible to obtain a granulated slag for sandblasting material without extensive modification such as expansion of the circulation system of granulated water or enlargement of the granulated water circulation pump.

本発明に係る水砕スラグの製造方法を模式的に示すフロー図である。It is a flowchart which shows typically the manufacturing method of the granulated slag which concerns on this invention. 本発明に係る水砕スラグの製造方法を実施するために好適に使用される水砕ピットの平面図である。It is a top view of the granulated pit used suitably in order to implement the manufacturing method of the granulated slag which concerns on this invention. 本発明に係る水砕スラグの製造方法における空気吹き込み量と水砕スラグの粒径の関係を示すグラフである。It is a graph which shows the relationship between the amount of air blowing in the manufacturing method of the granulated slag which concerns on this invention, and the particle size of granulated slag.

以下、本発明の水砕スラグの製造方法の一具体例について、図1を参照しながら説明する。銅製錬工程において、自熔炉1及び錬かん炉2でマットが分離された熔融スラグは、スラグ樋3を介して水砕樋4に排出される。水砕樋4の上流側端部には高圧ノズル5が設けられており、ここから供給される高圧の水砕水が水砕樋4の下流側端部(先端)に向かって流れている。スラグ樋3から水砕樋4に落下した熔融スラグは、水砕樋4を流れる水砕水で水砕された後、水砕スラグとして水砕水と共に水砕ピット6に流し込まれる。   Hereinafter, one specific example of the manufacturing method of the granulated slag of this invention is demonstrated, referring FIG. In the copper smelting process, the molten slag from which the mat has been separated in the auto-smelting furnace 1 and the smelting furnace 2 is discharged to the water granulated slag 4 through the slag slag 3. A high-pressure nozzle 5 is provided at the upstream end of the water slag 4, and high-pressure crushed water supplied therefrom flows toward the downstream end (tip) of the water slag 4. The molten slag that has fallen from the slag basin 3 to the granulation basin 4 is crushed with the crushed water flowing through the granulation basin 4 and then poured into the granulation pit 6 together with the granulated water as granulated slag.

図2に示すように、水砕樋4の先端は、上から見て略矩形の水砕ピット6の端部に位置するように配置されており、これにより水砕樋4の先端から水砕ピット6の水面に落下する水砕スラグを含んだ水砕水は、水砕ピット6の端部に落下する。なお、水砕ピット6内には、水砕水の流れを水砕スラグ回収用のバケットエレベーターの方向に整流するために所々開口した垂直な仕切り板6aが設けられており、水砕樋4の先端は、この仕切り板6aで2つに仕切られた部分のうちの一方に落下するように配置されている。   As shown in FIG. 2, the tip of the water granule 4 is disposed so as to be positioned at the end of the substantially rectangular water granulation pit 6 as viewed from above, whereby the water granule 4 is granulated from the tip of the water granule 4. The granulated water containing the granulated slag falling on the water surface of the pit 6 falls to the end of the granulated pit 6. In the granulation pit 6, vertical partition plates 6 a opened in some places are provided to rectify the flow of the granulated water in the direction of the bucket elevator for collecting the granulated slag. The tip is arranged so as to drop into one of the two parts partitioned by the partition plate 6a.

水砕ピット6を構成する4つの側壁部のうち、水砕樋4の先端の位置から水平方向において最も離間する側壁部(図2では紙面左側に図示されている)には、オーバーフロー部6bが設けられており、水砕ピット6内に水砕樋4の先端から落下した水砕水は、水砕ピット6内をこのオーバーフロー部6bに向かって全体として水平方向にゆっくり移動した後、オーバーフロー部6bからオーバーフローにより抜き出され、後段の水砕二次ピット7に送られる。   Of the four side walls constituting the granulated pit 6, the overflow part 6 b is located on the side wall part (shown on the left side in FIG. 2) that is farthest in the horizontal direction from the position of the tip of the water granule 4. The granulated water that has been provided and dropped from the tip of the granule 4 into the granulated pit 6 slowly moves in the horizontal direction as a whole toward the overflow portion 6b in the granulated pit 6, and then the overflow portion. It is extracted from 6b due to overflow and sent to the subsequent granulated secondary pit 7.

水砕水が水砕樋4の先端から落下してオーバーフロー部6bから抜き出されるまでの滞留時間内に、当該水砕水に含まれる粗大な水砕スラグは水砕ピット6の底部に沈降して水砕ピット6の底部に堆積する。水砕ピット6にはバケットエレベーター8が設けられており、その端部は水砕ピット6の底部近傍にまで至っている。これにより、水砕ピット6の底部に堆積した粗大な水砕スラグがすくい取られて回収される。   The coarse granulated slag contained in the granulated water settles to the bottom of the granulated pit 6 within the residence time until the granulated water falls from the tip of the granulated tub 4 and is extracted from the overflow portion 6b. And accumulated at the bottom of the granulated pit 6. A bucket elevator 8 is provided in the granulated pit 6, and an end thereof reaches the vicinity of the bottom of the granulated pit 6. Thereby, the coarse granulated slag accumulated on the bottom of the granulated pit 6 is scooped and collected.

水砕ピット6から水砕二次ピット7に送られる水砕水には、水砕ピット6で沈降しきれなかった微細な水砕スラグが含まれており、水砕二次ピット7ではこの微細な水砕スラグの沈降分離が行われる。水砕二次ピット7で微細な水砕スラグが除かれた水砕水は、水砕二次ピット7からオーバーフローにより抜き出される。この抜き出された水砕水は、水砕水循環ポンプ9で昇圧された後、水砕水循環経路10を経て前述した高圧ノズル5にリサイクルされる。   The granulated water sent from the granulated pit 6 to the granulated secondary pit 7 contains fine granulated slag that could not be settled in the granulated pit 6. Sedimentation separation of granulated slag is performed. The granulated water from which fine granulated slag has been removed in the granulated secondary pit 7 is extracted from the granulated secondary pit 7 by overflow. The extracted crushed water is pressurized by the crushed water circulation pump 9 and then recycled to the high-pressure nozzle 5 described above via the crushed water circulation path 10.

水砕ピット6内において、水砕樋4の先端の中央部の真下に該当する点Oを中心とする半径6mの円A内では、水砕水に連続的に空気が吹き込まれており、空気の泡が発生するようになっている。これにより、上記円A内及びその近傍では空気の泡が水砕水内を上昇するので、この空気の泡と共に粒径0.6mm程度までの微細な水砕スラグを浮き上がらせて、水砕水と共に水砕二次ピットへオーバーフローにより抜き出すことができる。   In the granulated pit 6, air is continuously blown into the granulated water in a circle A having a radius of 6 m centering on a point O corresponding to the center of the tip of the granulated slag 4. Bubbles are generated. Thereby, in the circle A and in the vicinity thereof, air bubbles rise in the granulated water, so that fine granulated slag having a particle size of about 0.6 mm is lifted together with the air bubbles, At the same time, it can be extracted to the secondary granulated pit by overflow.

すなわち、水砕水に含まれる微細な水砕スラグのうち特に粒径0.6mm程度の水砕スラグは、上昇する泡によって水砕水と一緒に押し上げられ、また、水砕水と空気の泡の界面に付着して泡と共に浮上する。そして、この粒径0.6mm程度の水砕スラグは水面に達した後、そのまま水砕水と共にオーバーフロー部6bからオーバーフローし、水砕二次ピットへ送られる。   That is, among the fine granulated slag contained in the granulated water, especially the granulated slag having a particle size of about 0.6 mm is pushed up together with the granulated water by the rising bubbles, and the granulated water and air bubbles It sticks to the interface and floats with bubbles. Then, after the granulated slag having a particle size of about 0.6 mm reaches the water surface, it overflows from the overflow portion 6b together with the granulated water as it is, and is sent to the granulated secondary pit.

これにより、従来、水砕ピット6の水面下の特に水砕樋4の先端の真下及びその近傍に生じる局所的な下降流に巻き込まれて水砕ピット6の底部まで沈降し、粗大な水砕スラグと共に堆積していた微細な水砕スラグの当該沈降を阻止し、泡と共に上昇させて水砕水と共に水砕二次ピットへオーバーフローさせることが可能となる。これは、水砕ピット6内の底部に堆積させる水砕スラグの粒径を従来に比べて粗粒化することを意味している。   Thus, conventionally, the water is caught in a local downward flow generated below the surface of the granulated pit 6, particularly just below and near the tip of the granulated pit 4, and settles down to the bottom of the granulated pit 6. It is possible to prevent the fine granulated slag that has accumulated with the slag from sinking, to rise with the foam, and to overflow into the granulated secondary pit together with the granulated water. This means that the particle size of the granulated slag deposited on the bottom of the granulated pit 6 is coarser than that of the conventional one.

水砕樋4の先端の直下の地点Oを中心とする半径6mの円A内に泡を発生させる理由は、前述したようにこの部分で下降流が生じやすいため、この下降流に伴って粒径0.6mm程度の微細な水砕スラグが水砕ピット6の底部に沈降する前に、空気の泡で効率的に浮き上がらせるためである。   The reason why bubbles are generated in the circle A having a radius of 6 m centering on the point O immediately below the tip of the water granule 4 is that a downward flow is likely to occur in this portion as described above. This is because before the fine granulated slag having a diameter of about 0.6 mm sinks to the bottom of the granulated pit 6, it is efficiently lifted by air bubbles.

このように水砕ピット6の水面下において水砕樋4の先端の直下の地点Oを中心とする半径6mの円A内に空気の泡を発生させるには、当該水面下の円A内に1又は複数箇所の空気吹き出し口が位置するように水砕ピット6内に空気供給パイプを設置すればよい。特に、空気吹き出し口を複数箇所設ける場合は、各空気吹き出し口ごとに1本の空気供給パイプを使用してもよいし、1本の空気供給パイプの先端に例えば環状パイプ部やU字パイプ部を設け、当該環状パイプ部やU字パイプ部に複数の開口部を設けてもよい。図2には、3本の空気供給パイプ11を、それらの空気吹き出し口が水砕樋4の先端の直下の地点Oを中心とする半径6m未満の円上において周方向に略均等な間隔をあけて開口するように配置した例が示されている。   As described above, in order to generate air bubbles in the circle A having a radius of 6 m centering on the point O just below the tip of the water granule 4 under the water surface of the water granulation pit 6, the air bubble is generated in the circle A under the water surface. What is necessary is just to install an air supply pipe in the granulation pit 6 so that one or several air outlets may be located. In particular, when a plurality of air outlets are provided, one air supply pipe may be used for each air outlet, and for example, an annular pipe part or a U-shaped pipe part is provided at the tip of one air supply pipe. And a plurality of openings may be provided in the annular pipe portion or the U-shaped pipe portion. In FIG. 2, the three air supply pipes 11 are spaced substantially evenly in the circumferential direction on a circle with a radius of less than 6 m centered on a point O directly below the tip of the water slag 4. An example is shown in which the holes are opened and opened.

空気の泡を発生させる場所が水砕樋4の先端の直下の地点Oを中心とする半径6mの円Aよりも外側である場合は、上昇する空気の泡の位置が、前述した局所的な下降流の位置から外れることになるので、下降流に巻き込まれる粒径0.6mm程度の水砕スラグのほとんどが、上昇する空気の泡の影響を受けることなく水砕ピット6の底部に沈降することになる。このように一旦水砕ピット6の底部に沈降した水砕スラグを空気の泡によって浮き上がらせるのは難しくなる。   When the place where the air bubbles are generated is outside the circle A having a radius of 6 m centered on the point O just below the tip of the water slag 4, the position of the rising air bubbles is the above-mentioned local location. Since it will deviate from the position of the downward flow, most of the granulated slag having a particle size of about 0.6 mm caught in the downward flow will sink to the bottom of the granulated pit 6 without being affected by the rising air bubbles. It will be. Thus, it becomes difficult to lift the granulated slag once settled at the bottom of the granulated pit 6 by air bubbles.

また、空気の泡を発生させる場所、すなわち上記したようなパイプの空気吹き出し口の位置は、水砕ピット6の水面から深さ方向に0.5m〜底面の間に位置しているのが好ましい。これは、水面からの深さ0.5mよりも深い位置で空気の泡を発生させることで、空気の泡が発生している位置から水面の間に存在している粒径0.6mm程度の水砕スラグを空気の泡により浮き上がらせることが出来るからである。   Moreover, it is preferable that the location where the air bubbles are generated, that is, the position of the air outlet of the pipe as described above is located between 0.5 m and the bottom surface in the depth direction from the water surface of the granulated pit 6. . This is because the air bubbles are generated at a position deeper than the depth of 0.5 m from the water surface, so that the particle diameter of about 0.6 mm existing between the surface where the air bubbles are generated and the water surface is about. This is because the granulated slag can be lifted by air bubbles.

一方、空気の泡を発生させる場所が深さ0.5m未満の場合は、吹き込まれた空気は泡を形成する前に水面に抜けていく度合いが高くなるため、水砕スラグを効率よく浮き上がらせにくくなる。すなわち、粒径0.6mm程度の水砕スラグを空気の泡で浮き上がらせ、水砕水と共にオーバーフローさせ分離することが難しくなる。なお、空気の吹き出し口は水砕ピット6の底部に向かって開口しているのがより好ましい。   On the other hand, if the location where the air bubbles are generated is less than 0.5 m deep, the blown air is more likely to escape to the surface of the water before forming the bubbles, so the granulated slag can be lifted efficiently. It becomes difficult. That is, it becomes difficult to cause granulated slag having a particle size of about 0.6 mm to float with air bubbles and overflow with the granulated water to separate. The air outlet is more preferably open toward the bottom of the granulated pit 6.

発明者らは、更に水砕ピット6への空気吹き込み量が増加するに従い、水砕ピット6の底部に堆積する水砕スラグの粒径が大きくなることを見出した。これは、空気吹き込み量の増加により上述した粒径0.6mm程度の微細な水砕スラグがより多く浮上して水砕水と共にオーバーフローすることで、水砕二次ピット7に流れ込む粒径0.6mm程度の水砕スラグ量が増加し、逆に水砕ピット6の底部に堆積する粗大な水砕スラグに混入する粒径0.6mm程度の水砕スラグの量が減少することによるものと思われる。   The inventors have found that the particle size of the granulated slag deposited at the bottom of the granulated pit 6 increases as the amount of air blown into the granulated pit 6 further increases. This is because a larger amount of fine granulated slag having a particle diameter of about 0.6 mm as described above is caused to rise due to an increase in the amount of air blown and overflow with the granulated water. It seems that the amount of granulated slag of about 6 mm increases, and conversely, the amount of granulated slag with a particle size of about 0.6 mm mixed in the coarse granulated slag deposited at the bottom of the granulated pit 6 is considered to decrease. It is.

発明者らはこれについて更に研究を進めて水砕ピット6への空気吹き込み量と水砕スラグの粒径の関係について調べたところ、図3に示すように、空気吹き出し口1箇所当たりの空気吹き込み量と水砕ピット6の底部に堆積する水砕スラグの粒径との間にほぼ正比例の関係があることを見出した。具体的には、空気吹き出し口1箇所当たりの空気吹き込み量が0〜300Nm/hの範囲において、空気吹き込み量が多いほど、水砕スラグの粒径は粗粒化し、空気吹き込み量が少ないほど、水砕スラグの粒径は微細化することが分かった。 The inventors have further researched on this and investigated the relationship between the amount of air blown into the granulated pit 6 and the particle size of the granulated slag. As shown in FIG. It has been found that there is a substantially direct relationship between the amount and the particle size of the granulated slag deposited at the bottom of the granulated pit 6. Specifically, when the air blowing amount per one air blowing port is in the range of 0 to 300 Nm 3 / h, the larger the air blowing amount, the coarser the particle size of the granulated slag, and the smaller the air blowing amount. It was found that the particle size of the granulated slag was refined.

特に、空気吹き出し口からの空気の吹き込み量は、吹き出し口1箇所当たり100〜300Nm/hが好ましい。この範囲内であれば、粒径0.6mm程度の水砕スラグを浮かび上がらせ、水砕水と共にオーバーフローさせて分離することが可能となり、サンドブラスト用水砕スラグに求められる粒径1.30〜1.55mmの水砕スラグが得られる。 In particular, the amount of air blown from the air outlet is preferably 100 to 300 Nm 3 / h per outlet. Within this range, granulated slag having a particle size of about 0.6 mm can float and be separated by overflowing with the granulated water, and the particle size required for sandblasted granulated slag is 1.30-1. 55 mm of granulated slag is obtained.

この空気量が100Nm/h未満の場合、空気量が少なすぎて、空気の泡で浮上させて水砕水と共にオーバーフローする粒径0.6mm程度の水砕スラグの量が減るため、得られる水砕スラグの粒径はサンドブラスト用水砕スラグに求められる粒径1.30mm〜1.55mmを下回る。 When the amount of air is less than 100 Nm 3 / h, the amount of air is too small, and the amount of granulated slag having a particle size of about 0.6 mm that floats with air bubbles and overflows with the granulated water is reduced. The particle size of the granulated slag is less than the particle size of 1.30 mm to 1.55 mm required for the sand blasted granulated slag.

一方、この空気量が300Nm/hを超えると、サンドブラスト用水砕スラグに求められる粒径1.30〜1.55mmの水砕スラグは得られるものの、吹き込み空気によって生じる泡同士が繋がって、そのまま水面に吹き抜ける度合いが高くなるため、水砕スラグを浮き上がらせる効果が減少する。更に、かかる吹き込み空気の吹き抜けにより周囲への温水の飛散が著しくなり、作業環境上好ましくなくなるおそれがある。 On the other hand, when the amount of air exceeds 300 Nm 3 / h, although granulated slag having a particle size of 1.30 to 1.55 mm required for sandblasted granulated slag is obtained, bubbles generated by the blown air are connected to each other as they are. Since the degree of blowing through the water surface is increased, the effect of floating the granulated slag is reduced. Furthermore, the blow-in of the blown air causes the hot water to scatter to the surroundings, which may be undesirable in the work environment.

このように、図1に示すような水砕スラグの製造方法によって水砕スラグを製造する場合、水砕ピット6の処理能力に応じて空気吹き出し口の個数を定め、必要とする水砕スラグの粒径に対応する各空気吹き出し口からの空気吹き込み量を図3から求めてその空気吹き込み量を供給できる空気ブロワを用いて運転を開始する。そして、運転後はバケットエレベーター8によって水砕ピット6の底部から回収される実際の水砕スラグの粒径を調べながら、空気供給パイプのバルブ開度を調整するなどして空気吹き込み量を調整すれば良い。これにより、所望する粒径の水砕スラグを得ることが出来る。   Thus, when granulated slag is produced by the method for producing granulated slag as shown in FIG. 1, the number of air outlets is determined according to the processing capacity of the granulated pit 6, and the required granulated slag is produced. The operation is started using an air blower capable of obtaining the air blowing amount from each air blowing port corresponding to the particle diameter from FIG. 3 and supplying the air blowing amount. After the operation, the air blowing amount is adjusted by adjusting the valve opening of the air supply pipe while checking the particle size of the actual granulated slag collected from the bottom of the granulated pit 6 by the bucket elevator 8. It ’s fine. Thereby, the granulated slag of a desired particle diameter can be obtained.

空気供給パイプに設ける各吹き出し口の形状は特に限定するものではないが、円形の場合はその内径が10〜60mmであることが好ましい。この内径が10mm未満の場合、空気の泡の径が小さくなると共に泡の数が増えるため、上下の泡が連結してしまう。その結果、吹き込んだ空気が水面に吹き抜けてしまい、水砕スラグを浮き上がらせる効果が減少する。一方、この内径が60mmを超えると、空気の泡の径が大きくなるため、空気の泡の数が少なくなって、水砕水を効率よく押し上げることが出来なくなり、水砕スラグを浮き上がらせる効果が減少する。   The shape of each outlet provided in the air supply pipe is not particularly limited, but in the case of a circular shape, the inner diameter is preferably 10 to 60 mm. When this inner diameter is less than 10 mm, the diameter of air bubbles decreases and the number of bubbles increases, so that the upper and lower bubbles are connected. As a result, the blown air blows through the water surface, and the effect of floating the granulated slag is reduced. On the other hand, if the inner diameter exceeds 60 mm, the diameter of the air bubbles increases, the number of air bubbles decreases, and the water cannot be pushed up efficiently, and the effect of floating the water granulated slag is obtained. Decrease.

(実施例1)
銅製錬工程における熔錬炉から排出される熔融スラグを、水砕水を用いて水砕樋で水砕した後、水砕水と共に水砕ピットに流し込んで沈降分離させた。この水砕ピットには、水砕ピットを上から見たとき、水砕樋の先端中央部の真下の地点を中心とする半径6mの円周上において、均等な間隔をあけた3箇所から空気を吹き出すようにした。これら3箇所からの空気の吹き出しには、各々鉛直方向に延在し、先端が開口する内径10mmの空気供給パイプを用いた。
Example 1
The molten slag discharged from the smelting furnace in the copper smelting process was pulverized with granulated slag using granulated water, and then poured into the granulated pit together with the pulverized water to cause sedimentation. In this granulation pit, when viewed from above, the air from three places with an equal interval on the circumference of a radius of 6 m centered on a point just below the center of the tip of the granulation pit. To blow out. For blowing out air from these three locations, air supply pipes having an inner diameter of 10 mm, each extending in the vertical direction and having an open end, were used.

各パイプの空気吹き出し口は、水砕ピットの底面に向かって開口し且つ水砕ピットの水面から深さ3mの位置にくるようにした。この空気吹き出し用パイプ1本当たり、流量100Nm/hで空気を吹き込んで泡を発生させた。発生した泡の上昇に伴って水砕スラグが浮き上がるのを目視にて確認することができた。 The air outlet of each pipe was opened toward the bottom of the granulation pit and was located at a depth of 3 m from the water surface of the granulation pit. Bubbles were generated by blowing air at a flow rate of 100 Nm 3 / h per one air blowing pipe. It was possible to visually confirm that the granulated slag floated as the generated bubbles rose.

泡と共に浮上した水砕スラグは、そのまま水砕水と共に水砕ピットからオーバーフローにより抜き出して水砕二次ピットに回収した。水砕二次ピットでは、水砕ピットから抜き出した水砕水に含まれる水砕スラグを沈降分離させた。この沈降した水砕スラグは0.6mm程度の粒径を有していた。   The granulated slag that floated along with the foam was taken out from the granulated pit with the granulated water as it was, and collected in the secondary granulated pit. In the granulated secondary pit, granulated slag contained in the granulated water extracted from the granulated pit was settled and separated. The settled granulated slag had a particle size of about 0.6 mm.

他方、水砕ピット内で沈降させた水砕スラグは、水砕ピットに設けられた2つのバケットエレベーターによりすくい上げた後、そのまま水砕スラグ置場まで搬送した。この水砕スラグ置場に搬送された水砕スラグは粒径が1.35mmであり、サンドブラスト向けに出荷することができた。   On the other hand, the granulated slag settled in the granulated pit was scooped up by two bucket elevators provided in the granulated pit, and then transported to the granulated slag yard as it was. The granulated slag transported to this granulated slag storage area had a particle size of 1.35 mm and could be shipped for sandblasting.

(実施例2)
空気供給パイプに内径10mmに代えて内径60mmのパイプを用い、その1本当たり流量100Nm/hに代えて流量300Nm/hで空気を吹き込んだ以外は実施例1と同様にして水砕スラグを作製した。その結果、水砕ピットの底部から粒径1.51mmの水砕スラグが得られ、サンドブラスト向けに出荷することができた。
(Example 2)
Using an inner diameter 60mm pipes in place of the inner diameter 10mm in the air supply pipe, similarly to the water granulated slag, except that air was blown from the first embodiment in place of the Part one per flow 100 Nm 3 / h flow rate 300 Nm 3 / h Was made. As a result, a granulated slag having a particle size of 1.51 mm was obtained from the bottom of the granulated pit, and could be shipped for sandblasting.

(実施例3)
空気供給パイプに内径10mmに代えて内径8mmのパイプを用い、その1本当たり流量100Nm/hに代えて流量400Nm/hで空気を吹き込んだ以外は実施例1と同様にして水砕スラグを作製した。その結果、得られた水砕スラグの粒度は1.45mmであった。この実施例3では、実施例1に比べてパイプ径を細くしたにもかかわらず空気の吹き込み量を増加したため、水砕ピット内で発生した泡同士が繋がり、そのまま水面に吹き抜ける傾向が見られた。
(Example 3)
Using a pipe having an inner diameter of 8mm in place of an inner diameter 10mm in the air supply pipe, similarly to the water granulated slag, except that air was blown from the first embodiment in place of the Part one per flow 100 Nm 3 / h flow rate 400 Nm 3 / h Was made. As a result, the granulated slag obtained had a particle size of 1.45 mm. In this Example 3, since the amount of air blown was increased despite the pipe diameter being made thinner than in Example 1, the bubbles generated in the granulated pit were connected to each other, and a tendency to blow through the water surface as it was was observed. .

これにより、水砕スラグを泡と一緒に水面まで浮き上がらせて粒径0.6mm程度の水砕スラグを浮き上がらせて水砕水から分離する効果が減少したため、実施例2よりも水砕スラグの粒径が小さくなったものと思われる。なお、水砕ピットの周りへの温水の飛散が著しく、作業環境上好ましくないため、操業を中止した。   As a result, the effect of causing the granulated slag to float up to the surface of the water together with the foam to raise the granulated slag having a particle size of about 0.6 mm and separating it from the granulated water is reduced. The particle size seems to have been reduced. In addition, since the scattering of warm water around the granulation pit was remarkable, which was not preferable in the work environment, the operation was stopped.

(実施例4)
空気吹き込み用のパイプに内径10mmに代えて内径65mmのパイプを用い、その1本当たり流量100Nm/hに代えて流量70Nm/hで空気を吹き込んだ以外は実施例1と同様にして水砕スラグを作製した。この実施例4では、実施例1に比べてパイプ径を太くしたにもかかわらず空気吹き込み量を少なくしたため、水砕ピット中で発生する泡が少なくなり、水砕水と共にオーバーフローする水砕スラグの量が実施例1に比べて減少していることが目視にて確認できた。その結果、得られた水砕スラグの粒度は1.28mmであった。
Example 4
Using a pipe having an inner diameter of 65mm instead of inside diameter 10mm pipe for blowing air, except that air was blown at a flow rate of 70 Nm 3 / h in place of the one per flow 100 Nm 3 / h in the same manner as in Example 1 Water Crushed slag was prepared. In this Example 4, since the air blowing amount was reduced despite the pipe diameter being thicker than that in Example 1, the amount of foam generated in the granulated pit was reduced, and the granulated slag overflowed with the granulated water. It was confirmed visually that the amount was reduced as compared with Example 1. As a result, the granulated slag obtained had a particle size of 1.28 mm.

(実施例5)
空気吹き込み用のパイプからの空気吹き出し位置を、水砕ピットを上から見たとき、水砕樋の先端中央部の真下の地点を中心とする半径7mの円周上に3箇所設けたこと以外は実施例1と同様にして水砕スラグを作製した。
(Example 5)
Except for three locations on the circumference with a radius of 7m centered on the point just below the center of the tip of the water slag when the water spilling pit is viewed from above. Produced a granulated slag in the same manner as in Example 1.

その結果、水砕樋の先端から水砕ピットの液面に落下して下降流を生じていると目視にて確認できる位置から泡の発生する位置が離れていたため、泡と共に水面まで上昇する水砕スラグの量が実施例1に比べて減少していることが目視にて確認できた。すなわち、実施例1に比べて少量の水砕スラグしか浮上分離させることが出来なかったため、得られた水砕スラグの粒度は1.28mmであった。   As a result, the position where bubbles were generated was separated from the position where it was visually confirmed that the water flow had fallen from the tip of the water granulation pit to the level of the granulation pit, and the water rising to the water surface along with the bubbles. It was confirmed visually that the amount of crushed slag was reduced as compared with Example 1. That is, since only a small amount of granulated slag could be levitated and separated compared to Example 1, the particle size of the obtained granulated slag was 1.28 mm.

(実施例6)
空気吹き込み用のパイプからの空気吹き出し位置を、水面から深さ0.3mにしたこと以外は実施例1と同様にして水砕スラグを作製した。その結果、吹き出された空気の多くが泡をつくる前に水面に吹き抜けることが目視にて認められた。また、泡と共に水面まで上昇する水砕スラグの量が実施例1に比べて減少していることが目視にて確認できた。すなわち、実施例1に比べて少量の水砕スラグしか浮上分離させることが出来なかったため、得られた水砕スラグの粒度は1.26mmであった。
(Example 6)
A granulated slag was prepared in the same manner as in Example 1 except that the air blowing position from the air blowing pipe was set to a depth of 0.3 m from the water surface. As a result, it was visually observed that much of the air that was blown out blows into the water surface before forming bubbles. Moreover, it has confirmed visually that the quantity of the granulated slag which raises to a water surface with a foam is reducing compared with Example 1. FIG. That is, since only a small amount of granulated slag could be levitated and separated compared to Example 1, the particle size of the obtained granulated slag was 1.26 mm.

(比較例1)
水砕ピット内に、空気吹き込み用のパイプを設けないこと以外は、実施例1と同様にして水砕スラグを作製した。その結果、粒径1.25mmの水砕スラグが得られ、サンドブラスト材向けには出荷することができなかった。
(Comparative Example 1)
A granulated slag was produced in the same manner as in Example 1 except that no air blowing pipe was provided in the granulated pit. As a result, a granulated slag having a particle size of 1.25 mm was obtained, and could not be shipped for sandblasting materials.

1 自熔炉
2 錬かん炉
3 スラグ樋
4 水砕樋
5 高圧ノズル
6 水砕ピット
7 水砕二次ピット
8 バケットエレベーター
9 水砕水循環ポンプ
10 水砕水循環系路
11 空気供給パイプ(バブリング用)
DESCRIPTION OF SYMBOLS 1 Self-melting furnace 2 Smelting furnace 3 Slag tank 4 Granulated water 5 High pressure nozzle 6 Granulated pit 7 Granulated secondary pit 8 Bucket elevator 9 Granulated water circulation pump 10 Granulated water circulation system 11 Air supply pipe (for bubbling)

Claims (5)

銅製錬工程における熔錬炉から排出される熔融スラグを水砕水と接触させて水砕し、得られた水砕スラグを水砕水と共に水砕ピットに受け入れて沈降分離により水砕スラグを回収する水砕スラグの製造方法であって、前記水砕ピット内の水砕水に空気を吹き込んで発生させた泡で微細な水砕スラグを浮上分離させることを特徴とする水砕スラグの製造方法。 The molten slag discharged from the smelting furnace in the copper smelting process is brought into contact with granulated water and granulated. The resulting granulated slag is received in the granulated pit together with the granulated water, and the granulated slag is recovered by sedimentation separation. A method for producing granulated slag, characterized in that fine granulated slag is levitated and separated by bubbles generated by blowing air into the granulated water in the granulated pit. . 前記空気の吹き込みの位置が、前記水砕ピットを真上から見たときに前記水砕水の落下地点を中心とする半径6mの円内であり、かつ前記水砕ピットの水面から深さ方向に0.5mから底面までの範囲内にあることを特徴とする、請求項1に記載の水砕スラグの製造方法。 The position of the air blowing is within a circle with a radius of 6 m centered on the point where the granulated water falls when the granulated pit is viewed from directly above, and the depth direction from the water surface of the granulated pit The method for producing granulated slag according to claim 1, wherein the range is from 0.5 m to the bottom. 前記空気の吹き込みの位置が1又は複数箇所あり、その1箇所当たり空気吹き込み量が100〜300Nm/hであることを特徴とする、請求項1又は2に記載の水砕スラグの製造方法。 The method for producing granulated slag according to claim 1 or 2, wherein there are one or a plurality of air blowing positions, and an air blowing amount per one position is 100 to 300 Nm 3 / h. 前記空気の吹き込みが水面下で開口する開口部を備えたパイプを介して行われ、該開口部が内径10〜60mmの円形を有していることを特徴とする、請求項3に記載の水砕スラグの製造方法。 The water according to claim 3, wherein the blowing of air is performed through a pipe having an opening that opens below the surface of the water, and the opening has a circular shape with an inner diameter of 10 to 60 mm. A method for producing crushed slag. 銅製錬工程における熔錬炉から排出された熔融スラグを水砕して得られる水砕スラグを水砕水と共に受け入れて水砕スラグを沈降分離する水砕ピットと、前記水砕ピット内の水砕水に空気を吹き込んで発生させた泡により微細な水砕スラグを浮上分離する空気供給パイプとからなることを特徴とする水砕スラグの製造装置。 A granulated pit for receiving granulated slag obtained by granulating the molten slag discharged from the smelting furnace in the copper smelting process together with the granulated water and settling and separating the granulated slag, and granulated in the granulated pit An apparatus for producing granulated slag, comprising: an air supply pipe that floats and separates fine granulated slag by bubbles generated by blowing air into water.
JP2012284400A 2012-12-27 2012-12-27 Method and apparatus for producing granulated slag Active JP5920206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284400A JP5920206B2 (en) 2012-12-27 2012-12-27 Method and apparatus for producing granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284400A JP5920206B2 (en) 2012-12-27 2012-12-27 Method and apparatus for producing granulated slag

Publications (2)

Publication Number Publication Date
JP2014125396A true JP2014125396A (en) 2014-07-07
JP5920206B2 JP5920206B2 (en) 2016-05-18

Family

ID=51405182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284400A Active JP5920206B2 (en) 2012-12-27 2012-12-27 Method and apparatus for producing granulated slag

Country Status (1)

Country Link
JP (1) JP5920206B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641863A (en) * 1979-09-06 1981-04-18 Nippon Steel Welding Prod Eng Method and device for manufacturing water granulated slag
JPH08231253A (en) * 1995-02-24 1996-09-10 Sumitomo Metal Ind Ltd Device for producing water-granulated slag
JPH11189440A (en) * 1997-12-26 1999-07-13 Ebara Corp Production of granulated slag
JP2012184143A (en) * 2011-03-07 2012-09-27 Sumitomo Metal Mining Co Ltd Apparatus for manufacturing water granulated slag, and method for controlling the granule size

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641863A (en) * 1979-09-06 1981-04-18 Nippon Steel Welding Prod Eng Method and device for manufacturing water granulated slag
JPH08231253A (en) * 1995-02-24 1996-09-10 Sumitomo Metal Ind Ltd Device for producing water-granulated slag
JPH11189440A (en) * 1997-12-26 1999-07-13 Ebara Corp Production of granulated slag
JP2012184143A (en) * 2011-03-07 2012-09-27 Sumitomo Metal Mining Co Ltd Apparatus for manufacturing water granulated slag, and method for controlling the granule size

Also Published As

Publication number Publication date
JP5920206B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
US3615329A (en) A recirculatory system for the granulation of molten slag
CN109161618A (en) A kind of blast-furnace slag processing system and treatment process
CN201560201U (en) Slag-iron separation device for vanadium-titanium blast furnace slag
CN1985009B (en) Process and apparatus for granulating a melt
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP5920206B2 (en) Method and apparatus for producing granulated slag
JP4894648B2 (en) Method and apparatus for separating and sorting slag and metal
JP4077718B2 (en) Melt treatment facility in waste melting treatment
KR101249058B1 (en) Runner of furnace
JP5482693B2 (en) Granulated slag production apparatus and particle size control method thereof
RU2608120C2 (en) Flotation classifier
CN106755662A (en) The resource recovery device and method of Copper converter smelting slag
CN1186462C (en) Method for using air or water to reversely flush grain slag filter of blast furnace
CN104722387A (en) Discarded metal particle dry method gravity concentration separation method
JP4181972B2 (en) Coagulation sedimentation processing equipment
KR20140079435A (en) Slag ladle for separation and recovery of molten iron from slag
JP6069976B2 (en) Granulated slag and method for producing the same
JPH10130041A (en) Slag separating and recovering method and separating and recovering equipment
CN101920136A (en) Method and system for treating blast-furnace flushing slag water
George et al. Copper matte granulation at the Kennecott Utah copper smelter
JP6315043B2 (en) Granulated slag manufacturing method
JP2001048603A (en) Production of blast-furnace slag fine aggregate
JP6024551B2 (en) Granulated slag particle size control method
JP2002146412A (en) Trough for molten slag
JP6564207B2 (en) Coal combustion ash treatment apparatus and coal combustion ash treatment method using the apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150