JP2016204236A - Amorphous spherical silica powder - Google Patents

Amorphous spherical silica powder Download PDF

Info

Publication number
JP2016204236A
JP2016204236A JP2015091755A JP2015091755A JP2016204236A JP 2016204236 A JP2016204236 A JP 2016204236A JP 2015091755 A JP2015091755 A JP 2015091755A JP 2015091755 A JP2015091755 A JP 2015091755A JP 2016204236 A JP2016204236 A JP 2016204236A
Authority
JP
Japan
Prior art keywords
silica powder
spherical silica
less
amorphous spherical
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015091755A
Other languages
Japanese (ja)
Other versions
JP6516549B2 (en
Inventor
淳一 氏田
Junichi Ujita
淳一 氏田
博男 青木
Hiroo Aoki
博男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57486799&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016204236(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2015091755A priority Critical patent/JP6516549B2/en
Publication of JP2016204236A publication Critical patent/JP2016204236A/en
Application granted granted Critical
Publication of JP6516549B2 publication Critical patent/JP6516549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous spherical silica powder having BET specific surface area in a range of 2 m/g or more and less than 30 m/g, having reduced viscosity of a resin composition when highly filling to a resin and small in content of coarse particles.SOLUTION: There is provided an amorphous spherical silica powder having (A) BET specific surface area of 2 m/g or more and less than 30 m/g, (B) particle fill factor of 0.64 or more, (C) content of particles with particle diameter of 1.5 μm or more in a weight based particle size distribution obtained by a centrifugal sedimentation method of 0.1 mass% or less.SELECTED DRAWING: None

Description

本発明は、新規な非晶質球状シリカ粉末、およびそれを用いた樹脂組成物に関する。   The present invention relates to a novel amorphous spherical silica powder and a resin composition using the same.

近年、半導体デバイスの小型化、薄型化、高密度実装化が急速に進展しており、半導体実装の狭ギャップ化が進んでいる。従来、高密度半導体実装用封止剤の充填剤として、BET比表面積2〜30m/g、一次粒子径換算で粒子径0.1〜1.5μm程度の非晶質球状シリカ粉末が用いられてきた。
しかしながら、BET比表面積が上記範囲の既存シリカ粉末は、樹脂に高充填したときの粘度上昇を抑制することが難しく、これを狭ギャップ半導体実装用途に用いた場合、成型に不具合が生じるという問題があり樹脂への充填特性に課題が残っていた。
In recent years, miniaturization, thinning, and high-density mounting of semiconductor devices are rapidly progressing, and the narrowing of semiconductor mounting is progressing. Conventionally, amorphous spherical silica powder having a BET specific surface area of 2 to 30 m 2 / g and a primary particle size of 0.1 to 1.5 μm has been used as a filler for a high-density semiconductor mounting sealant. I came.
However, the existing silica powder having a BET specific surface area in the above range is difficult to suppress an increase in viscosity when the resin is highly filled, and when this is used for a narrow gap semiconductor mounting application, there is a problem that a problem occurs in molding. There remains a problem in the filling characteristics of resin.

また、既存シリカ粉末には、分級等で除去できない粗大粒子が含まれており、前記狭ギャップ化により、ギャップに封止剤が浸透できず、狭ギャップ半導体実装用途への適用に課題が残されていた。   In addition, the existing silica powder contains coarse particles that cannot be removed by classification or the like, and due to the narrowing of the gap, the sealant cannot penetrate into the gap, leaving a problem for application to narrow gap semiconductor mounting applications. It was.

このため、BET比表面積2〜30m/gのシリカ粉末でありながら、樹脂への充填特性に優れ、樹脂に高充填したときの樹脂組成物の粘度が低く抑制され、且つ、粗大粒子の含有量が少ないシリカ粉末が要求されるようになった。 For this reason, although it is a silica powder with a BET specific surface area of 2 to 30 m 2 / g, it has excellent filling properties to the resin, the viscosity of the resin composition when the resin is highly filled is suppressed to a low level, and contains coarse particles A small amount of silica powder has been required.

BET比表面積が上記範囲のシリカ粉末でありながら、樹脂に高充填したときの樹脂組成物の粘度が低く抑制されるものとして、特許文献1に、平均粒子径0.2〜1.0μm、0.1μm以下粒子の含有率1〜5%、粒子径の変動係数40〜150%である球状金属酸化物粉末を用いることにより流動性助長効果が大きくなることが記載されている。
また、特許文献2には、体積平均粒径が0.46〜1.3μm、体積平均粒径に対する標準偏差の値が45〜110%、反応性シラノール基量が1.5〜3.0個/nmである球状シリカ粉末を用いることにより、樹脂へ高充填した際に樹脂組成物の流動性が極めて高くなることが記載されている。
しかしながら、特許文献1、2に記載されたシリカ粉末は石英等の溶融法や金属珪素粉末の燃焼法によって製造されるため、製法由来の粗大粒子が多く、上記狭ギャップ半導体実装用途に用いる上で課題が残されていた。
Although the BET specific surface area is a silica powder in the above range, the viscosity of the resin composition when the resin is highly filled is suppressed to a low level. Patent Document 1 discloses an average particle diameter of 0.2 to 1.0 μm, 0 It is described that the fluidity promoting effect is increased by using a spherical metal oxide powder having a particle content of 1 to 5 μm or less and a particle diameter variation coefficient of 40 to 150%.
Patent Document 2 discloses that the volume average particle diameter is 0.46 to 1.3 μm, the standard deviation value with respect to the volume average particle diameter is 45 to 110%, and the amount of reactive silanol groups is 1.5 to 3.0. It is described that the fluidity of the resin composition becomes extremely high when the resin is highly filled by using spherical silica powder of / nm 2 .
However, since the silica powder described in Patent Documents 1 and 2 is manufactured by a melting method such as quartz or a combustion method of metal silicon powder, there are many coarse particles derived from the manufacturing method, and when used for the above narrow gap semiconductor mounting application There were still challenges.

例えば、溶融法の場合、原料の溶融と同時に、融液同士の衝突によってもシリカ粉末が生成されるため、分級で分離不可能な数μmの粗大粒子が発生する。
また、珪素粉末の燃焼法の場合、珪素粉末の蒸発、蒸発で生じた珪素蒸気と酸素の混合、珪素蒸気と酸素の反応、反応によって生成したシリカ微粒子の成長が、同じ火炎内で同時進行するため、火炎は不均一であり、それを反映して、粗粒が発生する。
For example, in the case of the melting method, silica powder is generated by the collision of melts simultaneously with the melting of the raw materials, and thus coarse particles of several μm that cannot be separated by classification are generated.
In the case of the combustion method of silicon powder, evaporation of silicon powder, mixing of silicon vapor and oxygen generated by evaporation, reaction of silicon vapor and oxygen, and growth of silica fine particles generated by the reaction proceed simultaneously in the same flame. Therefore, the flame is non-uniform and coarse particles are generated reflecting it.

特開2002−362910JP 2002-362910 A 特開2013−212956JP2013-212956A

本発明の目的は、BET比表面積が2m/g以上、30m/g未満の範囲であって、樹脂に高充填したときの樹脂組成物の粘度が低く抑制され、且つ、粗大粒子の含有量が少ない非晶質球状シリカ粉末を提供することにある。 The object of the present invention is that the BET specific surface area is in the range of 2 m 2 / g or more and less than 30 m 2 / g, the viscosity of the resin composition when the resin is highly filled is suppressed, and the inclusion of coarse particles The object is to provide a small amount of amorphous spherical silica powder.

本発明者は上記課題を解決すべく検討を重ねた。その結果、本発明によれば、本発明の上記目的は、以下の条件を全て満足することを特徴とする非晶質球状シリカ粉末によって達成される。
(A)BET比表面積が 2m/g以上、30m/g未満である
(B)粒子充填率が0.64以上である
(C)遠心沈降法によって得られる重量基準粒度分布において、粒子径1.5μm以上の粒子含有量が0.1質量%以下である
The present inventor has repeatedly studied to solve the above problems. As a result, according to the present invention, the above object of the present invention is achieved by an amorphous spherical silica powder characterized by satisfying all of the following conditions.
(A) The BET specific surface area is 2 m 2 / g or more and less than 30 m 2 / g. (B) The particle packing ratio is 0.64 or more. (C) In the weight-based particle size distribution obtained by the centrifugal sedimentation method, The content of particles of 1.5 μm or more is 0.1% by mass or less

本発明の非晶質球状シリカ粉末は、BET比表面積が2m/g以上、30m/g未満でありながら、極めて高い充填特性を示し、さらに1.5μm以上である粗大粒子の含有量が少ないため、これを充填した樹脂組成物は、粘度が低く抑制され、且つ、浸透不良が生じることがない。従って、本発明の非晶質球状シリカ粉末は、高密度半導体実装用封止剤の充填剤として極めて有用である。 The amorphous spherical silica powder of the present invention exhibits extremely high packing characteristics while having a BET specific surface area of 2 m 2 / g or more and less than 30 m 2 / g, and further has a content of coarse particles of 1.5 μm or more. Since there are few, the resin composition with which this was filled has a low viscosity, and a penetration failure does not occur. Therefore, the amorphous spherical silica powder of the present invention is extremely useful as a filler for a high-density semiconductor packaging sealant.

本発明の非晶質球状シリカ粉末は、(A)BET比表面積が 2m/g以上、30m/g未満である。BET比表面積が30m/g以上の場合、樹脂に高充填したとき、樹脂組成物内の樹脂とシリカ粒子との界面が増える結果、樹脂組成物の粘度が高くなる。一方、BET比表面積が2m/gより小さい場合、樹脂組成物の粘度は低いものの、ギャップの幅に対しシリカ粒子の粒子径が大きすぎるため、ボイドの発生による成型不良が発生するため好ましくない。なお、硬化後の樹脂組成物である硬化組成物に十分な強度を付与できる点で、BET比表面積の下限は、3m/g以上であることが好ましく、5m/g以上であることがさらに好ましい。BET比表面積の上限は、25m/g未満であることが好ましく、20m/g未満であることがさらに好ましい。。 The amorphous spherical silica powder of the present invention has (A) a BET specific surface area of 2 m 2 / g or more and less than 30 m 2 / g. When the BET specific surface area is 30 m 2 / g or more, when the resin is highly filled, the interface between the resin and the silica particles in the resin composition increases, resulting in an increase in the viscosity of the resin composition. On the other hand, when the BET specific surface area is less than 2 m 2 / g, the viscosity of the resin composition is low, but the silica particle diameter is too large with respect to the gap width. . In addition, it is preferable that the minimum of a BET specific surface area is 3 m < 2 > / g or more, and it is 5 m < 2 > / g or more at the point which can provide sufficient intensity | strength to the hardening composition which is a resin composition after hardening. Further preferred. The upper limit of the BET specific surface area is preferably less than 25 m 2 / g, and more preferably less than 20 m 2 / g. .

更に、本発明の非晶質球状シリカ粉末は、(B)粒子充填率が0.64以上であり、0.67以上であることが好ましく、0.69以上であることが更に好ましい。   Furthermore, the amorphous spherical silica powder of the present invention has a (B) particle filling rate of 0.64 or more, preferably 0.67 or more, and more preferably 0.69 or more.

上記粒子充填率は一定空間に占めるシリカの体積比率を示し、粒子間の空隙体積の比率である空間率εを使って、下記式(1)により算出される。   The particle filling rate indicates the volume ratio of silica in a certain space, and is calculated by the following formula (1) using the space ratio ε which is the ratio of void volume between particles.

粒子充填率=1−ε 式(1)
即ち、粒子充填率が高いほど一定空間内に充填できるシリカ粒子の体積が多いことを意味する。従って、同一重量の非晶質球状シリカ粉末で比較すると粒子充填率が高いシリカ粉末は粒子充填率が低いシリカ粉末と比べ、粒子間の空隙体積が大きくなる。この空間を樹脂で置き換えると、粒子充填率が高い非晶質球状シリカ粉末は、粒子間に閉じ込められた樹脂が少なく、自由に動くことができる樹脂が多く存在するため、粘度の上昇を抑制できる。
Particle packing ratio = 1−ε Equation (1)
That is, the higher the particle filling rate, the larger the volume of silica particles that can be filled in a certain space. Therefore, when compared with an amorphous spherical silica powder having the same weight, a silica powder having a high particle filling rate has a larger void volume between particles than a silica powder having a low particle filling rate. If this space is replaced with a resin, the amorphous spherical silica powder with a high particle filling rate has less resin confined between the particles, and there are many resins that can move freely, so that an increase in viscosity can be suppressed. .

例えば、単分散球状粒子をランダム充填した際の粒子充填率は、0.6程度であり、粒子充填率が上記範囲であることは充填特性に極めて優れていることを示しており、斯様に粒子充填率の高いシリカ粉末を樹脂に高充填すれば、樹脂組成物の粘度上昇が抑制され、その結果、樹脂組成物は半導体実装時にギャップへ速やかに浸透する。   For example, when the monodispersed spherical particles are randomly packed, the particle packing ratio is about 0.6, and the particle packing ratio in the above range indicates that the packing characteristics are extremely excellent. If the silica powder having a high particle filling rate is highly filled in the resin, an increase in the viscosity of the resin composition is suppressed, and as a result, the resin composition quickly penetrates into the gap during semiconductor mounting.

複数種類の粒度分布を有する粉粒体において、粒子充填率を算出するに必要な空間率εは、文献1の2.空間推定モデル(439ページ)に、ひとつの粒子に着目し得られた空間率を粒度分布で重み付けし、それをもって全体の空間率とすることが記載されている。
本発明において、同様にして空間率を求める。
In a granular material having a plurality of types of particle size distributions, the space ratio ε necessary for calculating the particle filling rate is as described in 2. It is described in the space estimation model (page 439) that the space ratio obtained by paying attention to one particle is weighted by the particle size distribution to obtain the entire space ratio.
In the present invention, the space ratio is similarly determined.

まず、非晶質球状シリカ粉末を水中分散させた後、遠心沈降法の粒度分布測定機を用いて、該非晶質球状シリカ粉末の重量基準粒度分布を測定する。そして、得られた重量基準粒度分布を使い、具体的には、多成分粒子混合充填層空間率推定プログラムCALVOIDN.EXE(兵庫県立大学 大学院工学研究科 機械システム工学科 鈴木道隆教授による。兵庫県立大学 粉粒体工学研究室 ホームページ http://www.eng.u−hyogo.ac.jp/mse/mse6に所蔵)を使い容易に容易に空間率が算定される。   First, the amorphous spherical silica powder is dispersed in water, and then the weight-based particle size distribution of the amorphous spherical silica powder is measured using a particle size distribution measuring machine of centrifugal sedimentation method. Then, using the obtained weight-based particle size distribution, specifically, the multi-component particle mixed packed bed space ratio estimation program CALVIDN. EXE (by Professor Michitaka Suzuki, Department of Mechanical Systems Engineering, Graduate School of Engineering, Hyogo Prefectural University. Homepage http://www.eng.u-hyogo.ac.jp/mse/mse6) Easy to use and easy to calculate space ratio.

なお、上述の空間率を算定するにあたって、単分散粒子の空間率が必要であるが、前述の通り単分散球状粒子をランダム充填した際の粒子充填率が0.6程度であることから、本発明では、単分散粒子の空間率を0.4とした。   In calculating the above-mentioned space ratio, the space ratio of monodispersed particles is necessary. However, since the particle filling ratio when monodispersed spherical particles are randomly packed as described above is about 0.6, In the invention, the space ratio of the monodisperse particles is set to 0.4.

本願発明の非晶質球状シリカ粉末において、(C)遠心沈降法によって得られる重量基準粒度分布において、粒子径が1.5μm以上の粒子含有量が0.1質量%以下であり、0.08質量%以下であることが好ましく、0.06質量%以下であることが更に好ましい。粒子径1.5μm以上の粒子含有量が上記範囲を超えて多いと、粒子径1.5μm以上の粒子が狭ギャップに対し大きすぎるため、浸透障害物となり、たとえ樹脂組成物の粘度が低くとも、封止対象となるギャップでボイドが発生し、浸透不良が起こり、成型の不具合を生じる。   In the amorphous spherical silica powder of the present invention, in the weight-based particle size distribution obtained by (C) centrifugal sedimentation, the content of particles having a particle size of 1.5 μm or more is 0.1% by mass or less, and 0.08 The content is preferably at most mass%, more preferably at most 0.06 mass%. If the content of particles having a particle diameter of 1.5 μm or more exceeds the above range, the particles having a particle diameter of 1.5 μm or more are too large for the narrow gap, so that they become a penetration obstacle. Voids are generated in gaps to be sealed, resulting in poor penetration and defective molding.

斯様なBET比表面積が 2m/g以上、30m/g未満であって、粒子充填率が0.64以上であり、且つ、遠心沈降法によって得られる重量基準粒度分布において、粒子径1.5μm以上の粒子含有量が0.1質量%以下である、非晶質球状シリカ粉末は従来知られておらず、本発明によって初めて提供されるものである。 In such a weight-based particle size distribution obtained by centrifugal sedimentation, the BET specific surface area is 2 m 2 / g or more and less than 30 m 2 / g, the particle packing ratio is 0.64 or more, and the particle size is 1 Amorphous spherical silica powder having a particle content of 0.5 μm or more of 0.1% by mass or less has not been known so far and is provided for the first time by the present invention.

本発明の非晶質球状シリカ粉末において、遠心沈降法によって得られる重量基準粒度分布において、粒子径0.1μm以下の粒子含有量が1質量%未満であることが好ましく、0.5質量%未満であることが更に好ましい。粒子径0.1μm以下の粒子含有量が上記範囲であることにより、該シリカ粉末を樹脂に高充填したときの樹脂組成物の粘度上昇が抑止される。また、併せて該樹脂組成物のチキソ性も抑止される。   In the amorphous spherical silica powder of the present invention, the content of particles having a particle size of 0.1 μm or less is preferably less than 1% by mass and less than 0.5% by mass in the weight-based particle size distribution obtained by centrifugal sedimentation. More preferably. When the content of particles having a particle size of 0.1 μm or less is in the above range, an increase in the viscosity of the resin composition when the silica powder is highly filled in the resin is suppressed. In addition, the thixotropy of the resin composition is also suppressed.

本発明の非晶質球状シリカ粉末は、塩素含有量が1ppm以下であることが好ましい。塩素含有量が上記範囲であることにより、該シリカ粉末を充填することで、半導体デバイスの配線腐食の原因となる塩素が少ない樹脂組成物が得られる。   The amorphous spherical silica powder of the present invention preferably has a chlorine content of 1 ppm or less. When the chlorine content is within the above range, a resin composition with less chlorine that causes wiring corrosion of the semiconductor device can be obtained by filling the silica powder.

また、本発明の非晶質球状シリカ粉末は、目開き5μmの篩上粒子の含有量が10ppm以下であることが好ましく、5ppm以下であることが更に好ましい。目開き5μmの篩上粒子の含有量が上記範囲にあれば、シリカ粉末を充填した樹脂組成物の製造工程においてフィルトレーション工程が不要あるいは容易となる。   In the amorphous spherical silica powder of the present invention, the content of particles on the sieve having an opening of 5 μm is preferably 10 ppm or less, and more preferably 5 ppm or less. If the content of the particles on the sieve having an opening of 5 μm is in the above range, the filtration step is unnecessary or easy in the production process of the resin composition filled with silica powder.

さらに、本発明の非晶質球状シリカ粉末は130℃での乾燥減量法により測定される水分量が0.5質量%以下であることが好ましい。水分量が上記範囲にあることにより、シリカ粉末の経時的な水分吸着による強固な凝集粒子形成を抑止でき、長期保存の後でも上述の優位性を維持できる。   Furthermore, the amorphous spherical silica powder of the present invention preferably has a water content of 0.5% by mass or less measured by a loss on drying method at 130 ° C. When the amount of water is in the above range, it is possible to suppress the formation of strong aggregated particles due to the moisture adsorption of the silica powder over time, and the above-described superiority can be maintained even after long-term storage.

(非晶質球状シリカ粉末の製造方法)
本発明の非晶質球状シリカ粉末は、ゾルゲル法で合成したのち焼成して非晶質化する方法や特開2014−152048のようなシロキサンの火炎燃焼法によって得ることができる。本発明の非晶質球状シリカ粉末は、BET比表面積が 2m/g以上、30m/g未満であって、1種類の粉末であってもよく、BET比表面積が異なる複数種類の粉末を混合してもよい。粒子充填率を高める上では、BET比表面積が大きく異なる2種類以上の粉末を配合し混合するのが好ましい。
(Method for producing amorphous spherical silica powder)
The amorphous spherical silica powder of the present invention can be obtained by a method of synthesizing by a sol-gel method and then baking to make it amorphous, or a siloxane flame combustion method as disclosed in Japanese Patent Application Laid-Open No. 2014-152048. The amorphous spherical silica powder of the present invention has a BET specific surface area of 2 m 2 / g or more and less than 30 m 2 / g, and may be one kind of powder, or a plurality of kinds of powders having different BET specific surface areas. You may mix. In order to increase the particle filling rate, it is preferable to mix and mix two or more kinds of powders having greatly different BET specific surface areas.

具体的には、最も低いBET比表面積を有する粉末のBET比表面積が2m/g以上4m/g以下、最も高いBET比表面積を有する粉末のBET比表面積が20m/g以上30m/g以下であることが望ましい。最も低いBET比表面積を有する粉末のBET比表面積が2m/g未満である場合、粒子径1.5μm以上の粒子含有量が増加する。最も高いBET比表面積を有する粉末のBET比表面積が30m/g以上である場合、球状でないシリカ粒子や粒子同士が融着したシリカ粒子が増加するため、樹脂組成物の粘度が高くなり、本発明の効果を得ることができない。 Specifically, the lowest BET specific surface area of the powder having a BET specific surface area of 2m 2 / g or more 4m 2 / g or less, a BET specific surface area of the powder with the highest BET specific surface area of 20 m 2 / g or more 30 m 2 / g or less is desirable. When the powder having the lowest BET specific surface area has a BET specific surface area of less than 2 m 2 / g, the content of particles having a particle diameter of 1.5 μm or more increases. When the powder having the highest BET specific surface area has a BET specific surface area of 30 m 2 / g or more, non-spherical silica particles and silica particles fused with each other increase, so that the viscosity of the resin composition increases. The effect of the invention cannot be obtained.

本発明の非晶質球状シリカ粉末は、まず、使用する粉末の重量基準粒度分布を各々測定し、前述の多成分粒子混合充填層空間率推定プログラムを用いて、計算式(1)によって算出される粒子充填率が0.64以上となるように調整されればよい。BET比表面積が上記範囲であって、粒子充填率が0.64以上となるよう調整された粉末は、通常、遠心沈降法によって得られる重量基準粒度分布において、1.5μm以上の粒子含有量が0.1質量%以下である。   The amorphous spherical silica powder of the present invention is first calculated by the calculation formula (1) by measuring the weight-based particle size distribution of the powder to be used and using the aforementioned multicomponent particle mixed packed bed space ratio estimation program. What is necessary is just to adjust so that the particle filling rate to become 0.64 or more. The powder whose BET specific surface area is in the above range and the particle filling rate is adjusted to 0.64 or more usually has a particle content of 1.5 μm or more in the weight-based particle size distribution obtained by centrifugal sedimentation. It is 0.1 mass% or less.

本発明の非晶質球状シリカ粉末は、極めて高い充填特性を示し、さらに1.5μm以上である粗大粒子の含有量が少ないため、これを充填した樹脂組成物は、粘度が低く抑制され、且つ、浸透不良が生じることがない。従って、本発明の非晶質球状シリカ粉末を充填した樹脂組成物は、高密度半導体実装用封止材として極めて有用である。   The amorphous spherical silica powder of the present invention exhibits extremely high filling characteristics, and since the content of coarse particles of 1.5 μm or more is small, the resin composition filled therewith has a low viscosity and is suppressed. No penetration failure occurs. Therefore, the resin composition filled with the amorphous spherical silica powder of the present invention is extremely useful as a sealing material for high-density semiconductor mounting.

上記樹脂組成物において用いられる樹脂組成物の種類は特に限定されないが、本発明の効果を発揮する点から、一般に半導体封止材料に用いられる樹脂であることが好ましく、熱硬化性樹脂(又はその前駆体)を採用することが望ましい。例えば、カチオン重合性化合物を採用することができる。カチオン重合性化合物としては、エポキシ樹脂、オキシラン樹脂、オキセタン化合物、環状エーテル化合物、環状ラクトン化合物、チイラン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルトエステル化合物、ビニル化合物などが挙げられ、これらの化合物を単独で、又は複数種類混合して用いることができる。   The type of the resin composition used in the resin composition is not particularly limited, but is preferably a resin generally used for a semiconductor sealing material from the viewpoint of exhibiting the effects of the present invention, and is preferably a thermosetting resin (or its resin). It is desirable to employ a precursor. For example, a cationic polymerizable compound can be employed. Examples of the cationic polymerizable compound include epoxy resins, oxirane resins, oxetane compounds, cyclic ether compounds, cyclic lactone compounds, thiirane compounds, cyclic acetal compounds, cyclic thioether compounds, spiro orthoester compounds, vinyl compounds, and the like. Can be used alone or in combination.

特に、エポキシ樹脂が入手性、取扱性などの観点から好ましい。エポキシ樹脂は特に限定されないが、1分子中に2以上のエポキシ基を有するモノマー、オリゴマー、ポリマーが挙げられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂が挙げられる。   In particular, an epoxy resin is preferable from the viewpoints of availability, handleability and the like. Although an epoxy resin is not specifically limited, The monomer, oligomer, and polymer which have two or more epoxy groups in 1 molecule are mentioned. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin is mentioned.

エポキシ樹脂以外の具体例としては、フェニルグリシジルエーテル、エチレンオキシド、エピクロロヒドリンなどのオキシラン化合物;トリメチレンオキサイド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタンなどのオキセタン化合物;テトラヒドロフラン、2,3−ジメチルテトラヒドロフラン、トリオキサン、1,3−ジオキソフラン、1,3,6−トリオキサシクロオクタンなどの環状エーテル化合物;β−プロピオラクトン、ε−カプロラクトンなどの環状ラクトン化合物;エチレンスルフィド、3,3−ジメチルチイランなどのチイラン化合物;1,3−プロピンスルフィド、3,3−ジメチルチエタンなどのチエタン化合物;テトラヒドロチオフェン誘導体などの環状チオエーテル化合物;エポキシ化合物とラクトンとの反応によって得られるスピロオルトエステル化合物;スピロオルトカルボナート化合物;環状カルボナート化合物;エチレングリコールジビニルエーテル、アルキルビニルエーテル、トリエチレングリコールジビニルエーテルなどのビニル化合物;スチレン、ビニルシクロヘキセン、イソブチレン、ポリブタジエンなどのエチレン性不飽和化合物が例示できる。カチオン重合性化合物としては、エポキシ樹脂及びこれらの化合物を単独で、又は複数種類混合して用いることができる。   Specific examples other than the epoxy resin include oxirane compounds such as phenylglycidyl ether, ethylene oxide and epichlorohydrin; oxetane compounds such as trimethylene oxide, 3,3-dimethyloxetane and 3,3-dichloromethyloxetane; tetrahydrofuran, 2 Cyclic ether compounds such as 1,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxofuran, 1,3,6-trioxacyclooctane; cyclic lactone compounds such as β-propiolactone and ε-caprolactone; ethylene sulfide, 3, Thiane compounds such as 3-dimethylthiirane; Thiane compounds such as 1,3-propyne sulfide and 3,3-dimethyl thietane; Cyclic thioether compounds such as tetrahydrothiophene derivatives; Spiro ortho ester compounds obtained by reaction with kuton; spiro ortho carbonate compounds; cyclic carbonate compounds; vinyl compounds such as ethylene glycol divinyl ether, alkyl vinyl ether, triethylene glycol divinyl ether; styrene, vinyl cyclohexene, isobutylene, polybutadiene, etc. An ethylenically unsaturated compound can be illustrated. As a cationically polymerizable compound, an epoxy resin and these compounds can be used alone or in combination.

本発明の非晶質球状シリカ粉末を充填した樹脂組成物は、硬化剤の他、必要に応じて硬化促進剤、難燃化剤、カーボンブラックなどを配合し均一に混合して製造される。   The resin composition filled with the amorphous spherical silica powder of the present invention is produced by blending a curing accelerator, a flame retardant, carbon black and the like as required in addition to a curing agent and mixing them uniformly.

(引用文献1)鈴木道隆、市場久貴、長谷川勇、大島敏男:化学工学論文集,11,438−443(1985).   (Cited document 1) Michitaka Suzuki, Kuki Market, Isamu Hasegawa, Toshio Oshima: Chemical Engineering Papers, 11, 438-443 (1985).

本発明を具体的に説明するために実施例及び比較例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples and comparative examples are shown to specifically describe the present invention, but the present invention is not limited to these examples.

なお、以下の実施例および比較例における各種の物性測定等は以下の方法による。   In addition, various physical property measurements in the following examples and comparative examples are based on the following methods.

(1)BET比表面積
柴田理化学社製BET比表面積測定装置SA−1000(商品名)を用い、窒素吸着BET1点法により測定した。
(1) BET specific surface area Using a BET specific surface area measuring device SA-1000 (trade name) manufactured by Shibata Rikagaku Corporation, the BET specific surface area was measured by the nitrogen adsorption BET one-point method.

(2)遠心沈降粒度分布
(測定試料調製)
測定試料であるシリカ濃度1.5質量%水懸濁液を、以下のように調製した。
シリカ0.3gと蒸留水20mlをガラス製のサンプル管瓶(アズワン社製、内容量30ml、外径約28mm)に入れ、超音波細胞破砕器(BRANSON社製Sonifier II Model 250D(商品名)、プローブ:1.4インチ)のプローブチップ下面が水面下15mmになるように試料入りサンプル管瓶を設置し、出力20W、分散時間3分の条件でシリカ微粒子を蒸留水に分散した1.5質量%水懸濁液を調製した。
(2) Centrifugal sedimentation particle size distribution (Measurement sample preparation)
An aqueous suspension having a silica concentration of 1.5% by mass as a measurement sample was prepared as follows.
0.3 g of silica and 20 ml of distilled water are placed in a glass sample tube bottle (manufactured by ASONE, internal volume 30 ml, outer diameter about 28 mm), and an ultrasonic cell crusher (BRANSON Sonifier II Model 250D (trade name), A sample tube bottle with a sample was placed so that the bottom surface of the probe tip of the probe (1.4 inch) was 15 mm below the water surface, and 1.5 mass of silica fine particles dispersed in distilled water under the conditions of an output of 20 W and a dispersion time of 3 minutes. % Aqueous suspension was prepared.

(測定)
CPS社製ディスク遠心沈降式粒度分布測定装置DC−24000(商品名)を用いて、粒度分布を測定し重量基準粒度分布を得た。測定条件は、回転数9000rpm、シリカ真密度2.2g/cmとし、0.476μmのPVC粒子で測定毎に校正した。
(Measurement)
Using CPS disk centrifugal sedimentation type particle size distribution analyzer DC-24000 (trade name), the particle size distribution was measured to obtain a weight-based particle size distribution. The measurement conditions were a rotation speed of 9000 rpm and a true silica density of 2.2 g / cm 3, and calibration was performed with 0.476 μm PVC particles for each measurement.

(3)塩素含有量
(測定試料調製)
超純水50gにシリカ5gを添加し、ポリテトラフルオロエチレン製の分解容器を用いて120℃で24時間加熱した。超純水およびシリカは0.1mg単位まで秤量した。その後、遠心分離器を用いてシリカ固形分を分離し、イオンクロマト測定試料を得た。なお、超純水のみで前記操作を行い、ブランク試料を得た。
(3) Chlorine content (Measurement sample preparation)
5 g of silica was added to 50 g of ultrapure water, and heated at 120 ° C. for 24 hours using a polytetrafluoroethylene decomposition vessel. Ultrapure water and silica were weighed to the nearest 0.1 mg. Thereafter, the silica solid content was separated using a centrifugal separator to obtain a sample for ion chromatography measurement. In addition, the said operation was performed only with ultrapure water and the blank sample was obtained.

(測定)
日本ダイオネクス社製イオンクロマトグラフィーシステムICS−2100(商品名)を用いて、測定試料中の塩化物イオンの濃度を測定した。シリカ粉末中の塩化物イオン濃度を下記式(2)を用いて算出し、これをシリカ粉末の塩素含有量とした。
(Measurement)
The concentration of chloride ions in the measurement sample was measured using an ion chromatography system ICS-2100 (trade name) manufactured by Nippon Dionex. The chloride ion concentration in the silica powder was calculated using the following formula (2), and this was defined as the chlorine content of the silica powder.

Silica=(CSample−CBlank)×MPW/MSilica 式(2)
Silica:シリカ粉末中の塩化物イオン濃度(ppm)
Sample:測定試料中の塩化物イオン濃度(ppm)
Blank:ブランク試料中の塩化物イオン濃度(ppm)
PW:超純水重量(g)
Silica:シリカ粉末の重量(g)
なお、CBlankは0ppmであった。
C Silica = (C Sample −C Blank ) × M PW / M Silica equation (2)
C Silica : Chloride ion concentration (ppm) in silica powder
C Sample : Chloride ion concentration (ppm) in the measurement sample
C Blank : Chloride ion concentration (ppm) in the blank sample
M PW : Ultrapure water weight (g)
M Silica : Silica powder weight (g)
C Blank was 0 ppm.

(4)水分量
130℃での乾燥減量法によって測定した。
(4) Water content Measured by the loss on drying method at 130 ° C.

(5)目開き5μmの篩上粒子含有量
20gのシリカに純水を100ml添加し、日本精機製作所製超音波破砕器US−600T(商品名)を用いて、1分間分散することによってシリカスラリーを得た。このスラリーを目開き5μmの電成篩に通した。その後、篩残を乾燥させ、秤量し、目開き5μmの篩上粒子を求めた。
(6)樹脂組成物の粘度と増粘指数
(測定試料調製)
42.84gのシリカに新日鐵化学製エポキシ樹脂ZX−1059(商品名)を28.56g添加し、シンキー社製のプラネタリーミキサーAR−500(商品名)を用いて、回転数1000rmpで8分間攪拌、続いて回転数2000rpmで2分間脱泡することで、予備混練した。その後、アイメックス社製3本ロールミルBR−150HCV(商品名)を用いて混練することによってエポキシ樹脂組成物を得た。なお、ロールの隙間は20μmとした。樹脂組成物は、混練後室温25℃にて1週間保持した。
(5) Silica slurry by adding 100 ml of pure water to silica having a particle size of 20 g on a sieve having an opening of 5 μm and dispersing for 1 minute using an ultrasonic crusher US-600T (trade name) manufactured by Nippon Seiki Seisakusho. Got. This slurry was passed through an electric sieve having an opening of 5 μm. Thereafter, the sieve residue was dried and weighed to obtain particles on the sieve having an opening of 5 μm.
(6) Viscosity and thickening index of resin composition (Measurement sample preparation)
28.56 g of Nippon Steel Chemical's epoxy resin ZX-1059 (trade name) is added to 42.84 g of silica, and 8 at a rotational speed of 1000 rpm using a planetary mixer AR-500 (trade name) manufactured by Shinky Corporation. Pre-kneading was carried out by stirring for 2 minutes and then defoaming for 2 minutes at 2000 rpm. Then, the epoxy resin composition was obtained by kneading | mixing using the 3 roll mill BR-150HCV (brand name) by an Imex company. The gap between the rolls was 20 μm. The resin composition was kept for 1 week at 25 ° C. after kneading.

(エポキシ樹脂組成物の粘度)
25℃の恒温槽から樹脂組成物を取り出し、Haake社製レオメータ レオストレスRS600を用いてせん断速度10s−1で粘度を測定した。なお、測定温度は25℃、使用センサーはC35/1(コーンプレート型 直径35mm、角度1度、材質チタン)とし、せん断速度10 s−1の状態を3分間保った後での粘度の値をエポキシ樹脂組成物の粘度とした。
(Viscosity of epoxy resin composition)
The resin composition was taken out from the thermostatic bath at 25 ° C., and the viscosity was measured at a shear rate of 10 s −1 using a rheometer Rheo Stress RS600 manufactured by Haake. The measurement temperature is 25 ° C., the sensor used is C35 / 1 (cone plate type diameter 35 mm, angle 1 degree, titanium material), and the viscosity value after maintaining the shear rate of 10 s −1 for 3 minutes. It was set as the viscosity of the epoxy resin composition.

(エポキシ樹脂の粘度)
東都化成製エポキシ樹脂ZX−1059の粘度を、Haake社製レオメータ レオストレスRS600を用いてせん断速度10s−1で粘度を測定した。なお、測定温度は25℃、使用センサーはC35/1(コーンプレート型 直径35mm、角度1度、材質チタン)とし、せん断速度10s−1の状態を3分間保った後での粘度の値をエポキシ樹脂の粘度とした。
(Viscosity of epoxy resin)
The viscosity of the epoxy resin ZX-1059 manufactured by Tohto Kasei Co., Ltd. was measured at a shear rate of 10 s −1 using a rheometer Rheo Stress RS600 manufactured by Haake. The measurement temperature is 25 ° C., the sensor used is C35 / 1 (cone plate type diameter 35 mm, angle 1 degree, material titanium), and the viscosity value after maintaining the state of shear rate 10 s −1 for 3 minutes is epoxy. The viscosity of the resin was used.

(増粘指数)
増粘指数[g/m]を下記式で求めた。
増粘指数[g/m]=(η・η −1・S−2)×100
ここで、ηは、樹脂組成物の粘度[Pa・s]、ηは、樹脂の粘度[Pa・s]、Sは、BET比表面積[m/g]である。
(Thickening index)
The thickening index [g 2 / m 4 ] was determined by the following formula.
Thickening index [g 2 / m 4 ] = (η · η 0 −1 · S −2 ) × 100
Here, η is the viscosity [Pa · s] of the resin composition, η 0 is the viscosity [Pa · s] of the resin, and S is the BET specific surface area [m 2 / g].

実施例1〜4、比較例1〜2
ゾルゲル法で合成した後、900℃で焼成することで表1の混合用の非晶質球状シリカ粉末を得た。表1の混合用非晶質球状シリカ粉末を表2に示した割合で配合、混合することによって、非晶質球状シリカ粉末を調製した。表3に非晶質球状シリカ粉末の特性を示す。粒子充填率は、遠心沈降粒度分布測定により得た重量基準粒度分布を用いて、多成分粒子混合充填層空間率推定プログラムCALVOIDN.EXE(兵庫県立大学 大学院工学研究科 機械システム工学科 鈴木道隆教授による。兵庫県立大学 粉粒体工学研究室 ホームページ http://www.eng.u−hyogo.ac.jp/mse/mse6に所蔵)を使って空間率を求め、式(1)により算出した。この際、単分散粒子の空間率を0.4に設定した。なお、上述の多成分粒子混合充填層空間率推定プログラムには0nmから始めて粒子径区間幅50nmの累積粒度分布値を入力した。
比較例3
市販の非晶質球状シリカ粉末について、実施例1と同様の測定を行なった。その結果を表3に示す。
Examples 1-4, Comparative Examples 1-2
After synthesizing by the sol-gel method, the amorphous spherical silica powder for mixing shown in Table 1 was obtained by firing at 900 ° C. Amorphous spherical silica powder was prepared by blending and mixing the amorphous spherical silica powder for mixing shown in Table 1 in the proportions shown in Table 2. Table 3 shows the characteristics of the amorphous spherical silica powder. The particle filling rate is calculated using the weight-based particle size distribution obtained by centrifugal sedimentation particle size distribution measurement using the multicomponent particle mixed packed bed space ratio estimation program CALVOIDN. EXE (by Professor Michitaka Suzuki, Department of Mechanical Systems Engineering, Graduate School of Engineering, Hyogo Prefectural University. Homepage http://www.eng.u-hyogo.ac.jp/mse/mse6) The space ratio was calculated using the equation (1). At this time, the space ratio of the monodisperse particles was set to 0.4. Note that the cumulative particle size distribution value starting from 0 nm and having a particle diameter interval width of 50 nm was input to the above-described multicomponent particle mixed packed bed space ratio estimation program.
Comparative Example 3
The measurement similar to Example 1 was performed about the commercially available amorphous spherical silica powder. The results are shown in Table 3.

比較例4
シロキサンを3重管ノズルバーナにて燃焼させることによって、非晶質シリカ粉末を得た。得られた非晶質シリカ粉末の特性を表3に示す。
Comparative Example 4
Amorphous silica powder was obtained by burning siloxane with a triple tube nozzle burner. Table 3 shows the characteristics of the obtained amorphous silica powder.

Figure 2016204236
Figure 2016204236

Figure 2016204236
Figure 2016204236

Figure 2016204236
Figure 2016204236

Claims (8)

以下の条件を満足する非晶質球状シリカ粉末。
(A)BET比表面積が 2m/g以上、30m/g未満である
(B)粒子充填率が0.64以上である
(C)遠心沈降法によって得られる重量基準粒度分布において、粒子径1.5μm以上の粒子含有量が0.1質量%以下である
An amorphous spherical silica powder that satisfies the following conditions.
(A) The BET specific surface area is 2 m 2 / g or more and less than 30 m 2 / g. (B) The particle packing ratio is 0.64 or more. (C) In the weight-based particle size distribution obtained by the centrifugal sedimentation method, The content of particles of 1.5 μm or more is 0.1% by mass or less
遠心沈降法によって得られる重量基準粒度分布において、粒子径0.1μm以下の粒子含有量が1質量%未満である請求項1記載の非晶質球状シリカ粉末。 2. The amorphous spherical silica powder according to claim 1, wherein the content of particles having a particle size of 0.1 μm or less is less than 1% by mass in a weight-based particle size distribution obtained by centrifugal sedimentation. 塩素含有量が1ppm以下である請求項1〜2のいずれか一項に記載の非晶質球状シリカ粉末。 The amorphous spherical silica powder according to claim 1, wherein the chlorine content is 1 ppm or less. 目開き5μmの篩上粒子の含有量が10ppm以下である請求項1〜3のいずれか一項に記載の非晶質球状シリカ粉末。 The amorphous spherical silica powder according to any one of claims 1 to 3, wherein the content of particles on the sieve having an opening of 5 µm is 10 ppm or less. BET比表面積が5m/g以上、25m/g未満である請求項1〜4のいずれか一項に記載の非晶質球状シリカ粉末。 BET specific surface area of 5 m 2 / g or more, amorphous spherical silica powder according to any one of claims 1 to 4 is less than 25 m 2 / g. 130℃での乾燥減量法によって測定される水分量が0.5質量%以下である請求項1〜5のいずれか一項に記載の非晶質球状シリカ粉末。 The amorphous spherical silica powder according to any one of claims 1 to 5, wherein a water content measured by a loss on drying method at 130 ° C is 0.5% by mass or less. 請求項1〜6のいずれか一項に記載の半導体用非晶質球状シリカ粉末。 The amorphous spherical silica powder for semiconductor according to any one of claims 1 to 6. 請求項7の非晶質球状シリカ粉末を含有する樹脂組成物。 8. A resin composition containing the amorphous spherical silica powder according to claim 7.
JP2015091755A 2015-04-28 2015-04-28 Amorphous spherical silica powder Active JP6516549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091755A JP6516549B2 (en) 2015-04-28 2015-04-28 Amorphous spherical silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091755A JP6516549B2 (en) 2015-04-28 2015-04-28 Amorphous spherical silica powder

Publications (2)

Publication Number Publication Date
JP2016204236A true JP2016204236A (en) 2016-12-08
JP6516549B2 JP6516549B2 (en) 2019-05-22

Family

ID=57486799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091755A Active JP6516549B2 (en) 2015-04-28 2015-04-28 Amorphous spherical silica powder

Country Status (1)

Country Link
JP (1) JP6516549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240005064A (en) 2021-05-13 2024-01-11 덴카 주식회사 Silica powder and resin composition with reduced agglomeration, and semiconductor sealant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2002003213A (en) * 2000-06-20 2002-01-09 Nippon Aerosil Co Ltd Amorphous fine silica particle, its production method and its use
JP2004244491A (en) * 2003-02-13 2004-09-02 Denki Kagaku Kogyo Kk Highly thermally conductive inorganic powder and resin composition compounded therewith
JP2013067545A (en) * 2011-09-26 2013-04-18 Fuji Xerox Co Ltd Sol-gel silica particle, electrostatic charge image developing toner, electrostatic charge image developing agent, toner cartridge, process cartridge, image forming apparatus, and method for forming image
JP2013212956A (en) * 2012-04-02 2013-10-17 Denki Kagaku Kogyo Kk Slurry composition and resin composition using the same
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048521A (en) * 1999-08-13 2001-02-20 Denki Kagaku Kogyo Kk Fine spherical silica powder and its production and use
JP2002003213A (en) * 2000-06-20 2002-01-09 Nippon Aerosil Co Ltd Amorphous fine silica particle, its production method and its use
JP2004244491A (en) * 2003-02-13 2004-09-02 Denki Kagaku Kogyo Kk Highly thermally conductive inorganic powder and resin composition compounded therewith
JP2013067545A (en) * 2011-09-26 2013-04-18 Fuji Xerox Co Ltd Sol-gel silica particle, electrostatic charge image developing toner, electrostatic charge image developing agent, toner cartridge, process cartridge, image forming apparatus, and method for forming image
JP2013212956A (en) * 2012-04-02 2013-10-17 Denki Kagaku Kogyo Kk Slurry composition and resin composition using the same
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240005064A (en) 2021-05-13 2024-01-11 덴카 주식회사 Silica powder and resin composition with reduced agglomeration, and semiconductor sealant

Also Published As

Publication number Publication date
JP6516549B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP4815209B2 (en) Curing agent and resin composition
US7824644B2 (en) Particulate silica
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP2008285592A (en) Epoxy resin composition for sealing semiconductor and semiconductor device made by using the same
JP2019218254A (en) Hexagonal boron nitride powder and manufacturing method therefor
JP2009263153A (en) Silica fine particle and resin composition containing silica fine particle
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
JP2016204236A (en) Amorphous spherical silica powder
JPWO2018096876A1 (en) Sol-gel silica powder and method for producing the same
JP6112888B2 (en) Dry silica fine particles
JP7208022B2 (en) Silica particle material and silica particle material dispersion
TWI565661B (en) Magnesium hydroxide particle and resin composition containing the same
KR102142386B1 (en) Surface-treated sol-gel silica and its manufacturing method
JP2010513176A5 (en)
JP6084510B2 (en) Dry silica fine particles
KR102607973B1 (en) Silica powder with excellent dispersibility, resin composition using the same, and method for producing the same
JP6091301B2 (en) Dry silica fine particles
JP5937403B2 (en) Slurry composition and resin composition using the same
JP5094184B2 (en) Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
US11072735B2 (en) Particulate material and thermal conductive substance
JP5094183B2 (en) Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
JP2000178414A (en) Spherical silica for semiconductor encapsulant
JP2000178413A (en) Spherical silica for semiconductor encapsulant
JP2022146989A (en) silica-titania composite oxide
WO2023157817A1 (en) Spherical boron nitride particles, filler for resins, resin composition, and method for producing spherical boron nitride particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150