JP2019218254A - Hexagonal boron nitride powder and manufacturing method therefor - Google Patents
Hexagonal boron nitride powder and manufacturing method therefor Download PDFInfo
- Publication number
- JP2019218254A JP2019218254A JP2018118708A JP2018118708A JP2019218254A JP 2019218254 A JP2019218254 A JP 2019218254A JP 2018118708 A JP2018118708 A JP 2018118708A JP 2018118708 A JP2018118708 A JP 2018118708A JP 2019218254 A JP2019218254 A JP 2019218254A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- nitride powder
- hexagonal boron
- enriched
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、新規な六方晶窒化ホウ素粉末及びその製造方法に関する。詳しくは、樹脂に充填して得られる樹脂組成物においてα線の放出が従来に比べて少なく、高い熱伝導率、絶縁耐力を付与することが可能な六方晶窒化ホウ素粉末及びその製造方法を提供するものである。 The present invention relates to a novel hexagonal boron nitride powder and a method for producing the same. Specifically, the present invention provides a hexagonal boron nitride powder capable of imparting a high thermal conductivity and a high dielectric strength with a resin composition obtained by filling a resin and emitting less α-rays than before, and a method for producing the same. Is what you do.
SRAM(Static Ramdom Access Memory)やDRAM(Dynamic Random Access Memory)といった半導体メモリで保持データが自然に破壊されることがあり、この現象はソフトエラーと呼ばれている。近年、半導体素子の微細化、動作電圧の低電圧化によりソフトエラーの問題がより重要となってきている。ソフトエラーの起因となる放射線は3つある。半導体パッケージ材に含まれる微量な放射性物質に起因するα線、宇宙線に起因する高速中性子、熱中性子である。このうち熱中性子起因のソフトエラーは半導体中に含まれる10Bと熱中性子の複合核反応により発生したα線によって発生する。そのため熱中性子起因のソフトエラーの抑制には、熱中性子が半導体に入る前に中性子捕獲断面積の大きい元素によって吸収する、または半導体周辺の10B、特にドレイン近傍に存在する10Bを排除することが有効である。 Data held in a semiconductor memory such as an SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory) may be naturally destroyed, and this phenomenon is called a soft error. In recent years, the problem of soft errors has become more important due to miniaturization of semiconductor elements and lower operating voltages. There are three types of radiation that cause soft errors. Α-rays caused by a small amount of radioactive substances contained in semiconductor package materials, fast neutrons caused by cosmic rays, and thermal neutrons. Among them, the soft error caused by thermal neutrons is caused by α rays generated by a complex nuclear reaction of 10 B and thermal neutrons contained in a semiconductor. Therefore, in order to suppress soft errors caused by thermal neutrons, thermal neutrons must be absorbed by an element having a large neutron capture cross section before entering the semiconductor, or 10 B around the semiconductor, particularly 10 B existing near the drain, must be eliminated. Is valid.
実際にこれまでに平坦化プロセスに使われていたBPSG膜は膜中の10Bの存在が指摘され、CMPプロセス等へ変更されている。また、エッチングガスとして使用されるBF3も配線への10Bのコンタミが指摘され、Bを含まないエッチングガスが使用されており、B源は排除される流れにある。今後もこの動向は継続するものと思われる。 Actually, the presence of 10 B in the BPSG film used in the planarization process has been pointed out, and the BPSG film has been changed to a CMP process or the like. Also, BF 3 used as an etching gas is pointed out to have a contamination of 10 B to the wiring, an etching gas containing no B is used, and the B source is in a flow to be excluded. This trend is expected to continue in the future.
ところで、六方晶窒化ホウ素粉末は、一般に黒鉛と同様の六方晶系の層状構造を有する白色粉末であり、高熱伝導性、高電気絶縁性、高潤滑性、耐腐食性、離型性、高温安定性、低誘電率、化学的安定性等の多くの特性を有する。そのため、六方晶窒化ホウ素粉末を充填した樹脂組成物は、成形加工することで熱伝導性絶縁シートとして好適に使用されている。また、先行文献1のような封止用樹脂シートも考案されており、窒化ホウ素粉末は封止材用途のフィラーとしても好適であるとされている。 By the way, hexagonal boron nitride powder is generally a white powder having a hexagonal layered structure similar to graphite, and has high thermal conductivity, high electrical insulation, high lubricity, corrosion resistance, mold release properties, and high temperature stability. It has many properties such as properties, low dielectric constant, and chemical stability. Therefore, a resin composition filled with hexagonal boron nitride powder is suitably used as a heat conductive insulating sheet by molding. In addition, a sealing resin sheet as described in Patent Document 1 has been devised, and it is said that boron nitride powder is suitable as a filler for sealing materials.
しかしながら、前記六方晶窒化ホウ素粉末は、一般的に、天然由来のホウ素化合物を原料に作製されるため、封止材用途のフィラーとして適していないことが、本発明者等の確認により明らかとなった。 However, since the hexagonal boron nitride powder is generally produced using a naturally-derived boron compound as a raw material, it has been confirmed by the present inventors that it is not suitable as a filler for a sealing material. Was.
その理由は、以下の通りである。天然に存在するホウ素は、2種類の安定同位体10Bと11Bから成っており、その存在比は10Bが19.9%、11Bが80.1%である。濃縮等の操作を行った場合を除き、天然由来のホウ素化合物を原料としたホウ素化合物は、天然のホウ素の安定同位体存在比を引き継ぐため、天然由来のホウ素化合物を原料に使用した窒化ホウ素には、前記したようにα線放出の原因となる10Bが、およそ20%含まれている。そのため、従来の六方晶窒化ホウ素粉末を封止材用途のフィラーとして適用した場合、封止材は直接半導体と接するため、特にドレイン近傍に10Bが存在することになり、その結果、ソフトエラーを頻発する虞があった。 The reason is as follows. Naturally occurring boron is composed of two stable isotopes, 10 B and 11 B, and the abundance ratio is 19.9% for 10 B and 80.1% for 11 B. Except in the case of performing operations such as concentration, the boron compound using a naturally occurring boron compound as a raw material inherits the stable isotope abundance ratio of natural boron. Contains about 20% of 10 B which causes α-ray emission as described above. Therefore, when the conventional hexagonal boron nitride powder is used as a filler for a sealing material, since the sealing material directly contacts the semiconductor, 10 B is present particularly near the drain, and as a result, the soft error is reduced. There was a risk of frequent occurrence.
また、前記熱伝導性絶縁シートに充填し使用する六方晶窒化ホウ素粉末は、結晶構造に由来する鱗片状粒子よりなる一次粒子を含み、該鱗片状粒子は熱的異方性を有している。通常、上記鱗片状粒子を単粒子として含む窒化ホウ素粉末を充填剤として用いた熱伝導性絶縁シートの場合、該熱伝導性絶縁シートの面方向に鱗片状粒子が配向するため、鱗片状粒子の熱伝導率の低いc軸方向に熱が伝わり、該熱伝導性絶縁シートの厚さ方向の熱伝導率は低い。 Further, the hexagonal boron nitride powder used by filling the heat conductive insulating sheet contains primary particles composed of flaky particles derived from a crystal structure, and the flaky particles have thermal anisotropy. . Normally, in the case of a thermally conductive insulating sheet using the boron nitride powder containing the flaky particles as a single particle as a filler, the flaky particles are oriented in the plane direction of the thermally conductive insulating sheet. Heat is transmitted in the c-axis direction having a low thermal conductivity, and the thermal conductivity in the thickness direction of the thermally conductive insulating sheet is low.
このような鱗片状の構造を有する六方晶窒化ホウ素粒子の熱的異方性を改善するために、六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末が提案されている(特許文献2参照)。 In order to improve the thermal anisotropy of hexagonal boron nitride particles having such a flaky structure, a hexagonal boron nitride powder containing a hexagonal boron nitride aggregate has been proposed (see Patent Document 2). .
一方、六方晶窒化ホウ素粉末を熱硬化性樹脂に充填して熱伝導性絶縁シートを製造する工程は、六方晶窒化ホウ素粉末を、有機溶媒中で未硬化の樹脂、硬化剤と混合した後、所定の厚さに塗工し、充填密度を高めるために加圧しながら硬化させる方法が一般に採用される。 On the other hand, the step of manufacturing a heat conductive insulating sheet by filling the hexagonal boron nitride powder in a thermosetting resin, after mixing the hexagonal boron nitride powder with an uncured resin and a curing agent in an organic solvent, In general, a method of coating to a predetermined thickness and curing while applying pressure to increase the packing density is adopted.
上記工程において、熱伝導性絶縁シートに高い熱伝導率を付与するためには、前記樹脂組成物において、六方晶窒化ホウ素粉末を60体積%以上充填する必要があり、かかる充填量において、樹脂と六方晶窒化ホウ素粉末が前記混合物中で均一に分散且つ、これを塗工する工程において塗工可能な粘度を確保するため、一般に、六方晶窒化ホウ素粉末、樹脂、硬化剤を希釈溶媒に予め分散させてワニス状の組成物として混合する方法が採用されていた。 In the above step, in order to impart high thermal conductivity to the heat conductive insulating sheet, it is necessary to fill the resin composition with 60% by volume or more of hexagonal boron nitride powder. The hexagonal boron nitride powder is uniformly dispersed in the mixture, and in order to ensure a viscosity that can be applied in a step of applying the same, generally, the hexagonal boron nitride powder, the resin, and the curing agent are previously dispersed in a diluting solvent. Then, a method of mixing them as a varnish-like composition has been adopted.
しかしながら、従来提案されている六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末は、凝集体における比較的大きい開気孔の多さ、凝集表面のストラクチャーの度合いを示すDBP(Dibuthyl Phthalate)吸収量が高い傾向に有り、該吸収量が増えれば、前記樹脂に充填する際に使用する希釈溶媒の必要量が多くなる傾向にある。そして、上記該希釈溶媒は、後工程で揮発し、熱伝導性絶縁シート内には残存しないが、塗工後の乾燥に時間を要する。また、希釈溶媒を乾燥後には、凝集粒子を構成する粒子間の間隙となり、脱泡過程において、熱伝導性絶縁シート内に微小な気泡として残存する虞があり、熱伝導率、絶縁耐力の低下の原因となる。 However, the conventionally proposed hexagonal boron nitride powder containing a hexagonal boron nitride aggregate has a relatively large number of open pores in the aggregate and a DBP (Dibutyl Phthalate) absorption amount indicating the degree of structure of the aggregate surface. When the amount of absorption increases, the required amount of the diluting solvent used for filling the resin tends to increase. The diluting solvent is volatilized in a later step and does not remain in the heat conductive insulating sheet, but it requires time for drying after coating. Also, after drying the diluting solvent, it becomes a gap between the particles constituting the aggregated particles, and in the defoaming process, it may remain as fine bubbles in the heat conductive insulating sheet, and the heat conductivity and the dielectric strength decrease. Cause.
また、六方晶窒化ホウ素粉末中に単粒子の割合が多いと、DBP吸収量が低く、また、六方晶窒化ホウ素粉末を樹脂に充填した際の粘度が上昇する虞がある。しかも、上記単粒子の割合が多い六方晶窒化ホウ素粉末は、タップ嵩密度が低くなり、樹脂への充填性が悪化するだけでなく、それに起因して、熱伝導性絶縁シートとした際に、シート内でフィラーが最密充填の状態から外れる。そのため、プレス成型する場合、六方晶窒化ホウ素凝集体に余分な負荷が掛かり、該凝集体を破壊してしまう原因となる。更に、単粒子が熱伝導率の低い面内方向に配向し易くなるため、高い熱伝導率を発現するのが困難となる。 If the proportion of single particles in the hexagonal boron nitride powder is large, the DBP absorption may be low, and the viscosity when the hexagonal boron nitride powder is filled in the resin may increase. Moreover, the hexagonal boron nitride powder having a large proportion of the single particles has a low tap bulk density, which not only deteriorates the filling property of the resin, but also results in a heat conductive insulating sheet. The filler deviates from the close-packed state in the sheet. Therefore, when press-molding, an extra load is applied to the hexagonal boron nitride aggregate, which causes the aggregate to break. Further, since the single particles are easily oriented in an in-plane direction having a low thermal conductivity, it is difficult to develop a high thermal conductivity.
従って、本発明の目的は、前記六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末について、樹脂に充填し易く、ワニス化に必要な溶媒量が少なく、樹脂に充填した際にα線の放出が少なく、高い熱伝導率を発現し、更に、絶縁耐力に悪影響を与える比較的大きい空隙が殆ど無く、高い絶縁耐性を樹脂組成物に与えることが可能な六方晶窒化ホウ素粉末を提供することにある。 Accordingly, an object of the present invention is to provide a hexagonal boron nitride powder containing the above-mentioned hexagonal boron nitride aggregate, which is easy to be filled into a resin, requires a small amount of a solvent for varnishing, and emits α-rays when filled into the resin. The present invention provides a hexagonal boron nitride powder that has a small amount, exhibits a high thermal conductivity, has almost no relatively large voids that adversely affect the dielectric strength, and can provide a high dielectric strength to the resin composition. is there.
本発明者等は、上記課題を解決するため鋭意検討を行った。その結果、還元窒化法により窒化ホウ素を得るための原料として知られている、11B濃縮含酸素ホウ素化合物、カーボン源及び含酸素カルシウム化合物よりなる組成に、11B濃縮炭化ホウ素を併用し、かつこのとき11B濃縮含酸素ホウ素化合物および11B濃縮炭化ホウ素に含まれる全ホウ素中の11Bの存在比が90%以上となる割合で混合して還元窒化反応を行う、特定の製造方法を採用することによって、極めて密な構造を有する新規な凝集構造を有する凝集粒子を生成せしめることに成功し、かかる凝集粒子を含む全ホウ素中の11Bの存在比が90%以上である六方晶窒化ホウ素粉末が前記目的を全て達成し得ることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies in order to solve the above problems. As a result, 11 B-enriched boron carbide is used in combination with a composition comprising 11 B-enriched oxygen-containing boron compound, a carbon source and an oxygen-containing calcium compound, which is known as a raw material for obtaining boron nitride by a reduction nitriding method, and abundance of 11 B in the total boron in this case 11 B enriched oxygen-containing boron compound and 11 B enriched boron carbide for mixing with the reducing nitriding reaction in a proportion of 90% or more, employing a specific manufacturing process To form aggregated particles having a novel aggregated structure having an extremely dense structure, and the abundance ratio of 11 B in the total boron including the aggregated particles is 90% or more. The inventors have found that powder can achieve all of the above objects, and have completed the present invention.
即ち、本発明によれば、六方晶窒化ホウ素凝集体を含み、そして全ホウ素中の10Bの存在比が90%以上であり、JIS−K−6217−4に準拠して測定し、算出される最大トルクが0.20〜0.50Nm、DBP吸収量が50〜100ml/100g、及び、タップ嵩密度が0.66〜0.95g/cm3であることを特徴とする六方晶窒化ホウ素粉末が提供される。 That is, according to the present invention, a hexagonal boron nitride aggregate is included, and the abundance ratio of 10 B in the total boron is 90% or more, and is measured and calculated in accordance with JIS-K-6217-4. Hexagonal boron nitride powder having a maximum torque of 0.20 to 0.50 Nm, a DBP absorption of 50 to 100 ml / 100 g, and a tap bulk density of 0.66 to 0.95 g / cm 3. Is provided.
また、上記本発明の六方晶窒化ホウ素粉末は、比表面積が1.3〜7.0m2/gであることが好ましい。 The hexagonal boron nitride powder of the present invention preferably has a specific surface area of 1.3 to 7.0 m 2 / g.
また、上記本発明の六方晶窒化ホウ素粉末は、レーザー回折粒度分布法における粒度分布の累積体積頻度90%の粒径が50〜150μmであることが好ましい。 The hexagonal boron nitride powder of the present invention preferably has a particle size at a cumulative volume frequency of 90% of a particle size distribution in a laser diffraction particle size distribution method of 50 to 150 μm.
更に、上記本発明の六方晶窒化ホウ素純度が99.95%以上であることが好ましい。 Further, the purity of the hexagonal boron nitride of the present invention is preferably 99.95% or more.
更にまた、本発明は、前記窒化ホウ素粉末よりなる樹脂用フィラー、該樹脂用フィラーを充填した樹脂組成物、該六方晶窒化ホウ素粉末と、窒化アルミニウム、酸化アルミニウムいずれか一つを含むフィラー混合物を充填した樹脂組成物、上記樹脂組成物よりなる電子部品の放熱材をも提供する。 Furthermore, the present invention provides a filler for a resin comprising the boron nitride powder, a resin composition filled with the filler for the resin, the hexagonal boron nitride powder, and a filler mixture containing any one of aluminum nitride and aluminum oxide. The present invention also provides a filled resin composition and a heat dissipating material for electronic parts comprising the above resin composition.
本発明の六方晶窒化ホウ素粉末は、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物、11B濃縮炭化ホウ素を、11B濃縮含酸素ホウ素化合物に含まれるB源とカーボン源に含まれるC源の割合であるB/C(元素比)換算で0.75〜1.05、11B濃縮含酸素ホウ素化合物とカーボン源との合計量(B2O3、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で5〜20質量部、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物のB2O3、C、CaO換算質量合計量100質量部に対して上記11B濃縮炭化ホウ素を10〜45質量部、11B濃縮含酸素ホウ素化合物および11B濃縮炭化ホウ素に含まれる全ホウ素中の11Bの濃縮度が90%以上、となる割合で混合し、該混合物を窒素雰囲気下にて1800〜2100℃の温度に加熱して、還元窒化することにより、好適に製造することができる。なお、「11B濃縮」とは、11Bの存在比を天然のホウ素を超えるよう高めた材料を指す。
The hexagonal boron nitride powder of the present invention contains 11 B-enriched oxygen-containing boron compound, a carbon source, an oxygen-containing calcium compound, and 11 B-enriched boron carbide in the B source and the carbon source contained in the 11 B-enriched oxygen-containing boron compound. the proportion of the C source is B / C (atomic ratio) converted at 0.75 to 1.05 to, 11 B enriched oxygen-containing boron compound and the total amount of the carbon source (B 2 O 3, C conversion value) 100 weight 5-20 parts by weight of oxygen-containing calcium compound in terms of CaO with respect to part, 11 B enriched oxygen-containing boron compounds, carbon source, B 2 O 3, C oxygenates calcium compound, in terms of CaO mass per 100 parts by 10 to 45 parts by mass of the 11 B enriched boron carbide for, 11 B enriched oxygen-containing boron compound and 11 11 enrichment of B in the total boron contained in the B
上記方法によれば、本発明の六方晶窒化ホウ素の凝集体を含む六方晶窒化ホウ素粉末を、還元窒化法により直接製造することができる。 According to the above method, the hexagonal boron nitride powder containing the aggregate of hexagonal boron nitride of the present invention can be directly produced by the reduction nitriding method.
一般的に、天然のホウ素には、10Bと11Bとが同位体として10Bが19.9%、11Bが80.1%の割合で存在する。該天然のホウ素を原料として使用し製造された六方晶窒化ホウ素粉末は、原料である天然のホウ素の同位体存在比を引き継ぐため、α線放出の原因となる10Bの存在比がおよそ20%と非常に多い。対して本発明の六方晶窒化ホウ素粉末は、前記したように、全ホウ素中の11Bの存在比が90%以上であり、かかる特徴により得られる樹脂組成物はα線の放出が従来に比べ少ない。
また、本発明の六方晶窒化ホウ素粉末は、極めて緻密な凝集構造を有する六方晶窒化ホウ素凝集体を含むため、単粒子を主とする六方晶窒化ホウ素粉末と区別される低い最大トルク、凝集密度が低い凝集粒子を含む六方晶窒化ホウ素粉末と区別される低いDBP吸収量、及び、単粒子を主とする六方晶窒化ホウ素粉末、或いは、凝集密度が低い凝集粒子を含む六方晶窒化ホウ素粉末と区別される高いタップ嵩密度を同時に備えた六方晶窒化ホウ素である。
In general, the natural boron, and the 10 B and 11 B 10 B is 19.9% as isotopes, are 11 B present in a proportion 80.1%. The hexagonal boron nitride powder produced using the natural boron as a raw material inherits the isotope abundance ratio of the natural boron as a raw material, so that the abundance ratio of 10 B causing α-ray emission is about 20%. And very many. On the other hand, the hexagonal boron nitride powder of the present invention has, as described above, an 11 B abundance ratio in all boron of 90% or more, and the resin composition obtained by such a feature has lower α-ray emission than the conventional one. Few.
In addition, the hexagonal boron nitride powder of the present invention contains a hexagonal boron nitride aggregate having an extremely dense aggregate structure, and therefore has a low maximum torque and aggregation density which are distinguished from the hexagonal boron nitride powder mainly containing single particles. The low DBP absorption that is distinguished from the hexagonal boron nitride powder containing low aggregated particles, and the hexagonal boron nitride powder mainly containing single particles, or the hexagonal boron nitride powder containing the aggregated particles having low aggregation density Hexagonal boron nitride with simultaneously distinguished high tap bulk density.
そして、本発明の六方晶窒化ホウ素粉末は、一般的な凝集状態の六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末より低いDBP吸収量を示すことにより、ワニス状の組成物を得る際の溶媒量を必要最低源に抑える事が可能となり、後工程で該溶媒を脱泡する際に樹脂内に発生する微小な空隙量を低減することができる。そのため、得られる樹脂組成物に高い絶縁耐力を付与することができるばかりでなく、溶媒の除去作業の労力を低減することも可能である。 Then, the hexagonal boron nitride powder of the present invention exhibits a lower DBP absorption than a hexagonal boron nitride powder containing a hexagonal boron nitride aggregate in a general aggregated state, thereby obtaining a varnish-like composition. The amount of the solvent can be suppressed to the minimum necessary source, and the amount of minute voids generated in the resin when the solvent is defoamed in a later step can be reduced. Therefore, not only can the obtained resin composition be provided with a high dielectric strength, but also the labor for removing the solvent can be reduced.
また、JIS−K−6217−4に準拠して測定され、算出される最大トルクが、従来の六方晶窒化ホウ素凝集粒子を含む六方晶窒化ホウ素粉末より、低位に安定しているため、六方晶窒化ホウ素粉末を樹脂に充填する際の粘度上昇を効果的に抑える事が可能となる。 Further, since the maximum torque measured and calculated in accordance with JIS-K-6217-4 is lower than that of the conventional hexagonal boron nitride powder containing the hexagonal boron nitride aggregated particles, the hexagonal crystal is used. It is possible to effectively suppress a rise in viscosity when filling the resin with the boron nitride powder.
更に、一般的な窒化ホウ素凝集体は、凝集体内部の空隙や凝集体の形状異方性、不適切な粒度分布等が原因でタップ嵩密度が上がらないが、本発明の窒化ホウ素粉末はタップ嵩密度が0.66〜0.95g/cm3と高く、樹脂への充填性が良好且つ、熱伝導性絶縁シートとした際に、六方晶窒化ホウ素凝集体同士が密接に存在するため、良好な熱経路を確保する事が可能となり、得られる熱伝導性絶縁シートに高い熱伝導性を付与することができる。 Further, the general boron nitride aggregate does not increase the tap bulk density due to voids inside the aggregate and the shape anisotropy of the aggregate, inappropriate particle size distribution, etc. The bulk density is as high as 0.66 to 0.95 g / cm 3 , the filling property to the resin is good, and when the heat conductive insulating sheet is used, the hexagonal boron nitride aggregates are in close contact with each other. It is possible to secure a proper heat path, and to impart high heat conductivity to the obtained heat conductive insulating sheet.
また、前記本発明の六方晶窒化ホウ粉末の製造方法によれば、含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物、炭化ホウ素を使用することにより、目的とする低いDBP吸収量、最大トルクと高タップ嵩密度を有する六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末を、還元窒化法により直接製造することができる。 Further, according to the method for producing a hexagonal boron nitride powder of the present invention, by using an oxygen-containing boron compound, a carbon source, an oxygen-containing calcium compound, and boron carbide, the target low DBP absorption, the maximum torque and A hexagonal boron nitride powder containing a hexagonal boron nitride aggregate having a high tap bulk density can be directly produced by a reduction nitriding method.
尚、前記製造方法において、本発明の六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末が得られる理由は明らかではないが、本発明者らは、以下のように推定している。即ち、含酸素ホウ素化合物とカーボン源、窒素ガスによる後記の反応式(1)で示す還元窒化反応(1)が起こり、その後炭化ホウ素が直接窒化する反応(反応式(2))、また反応式(2)の反応によって副生するCを還元剤として再度還元窒化反応(1)及び反応(3)、(4)が、協奏的に起こると考えている。このとき、炭化ホウ素から生成する六方晶窒化ホウ素の粒径は、原料炭化ホウ素の粒径と相関するため、大粒径の六方晶窒化ホウ素を効率良く作成出来る、且つ、炭化ホウ素が表面から窒化していくと共に放出するCが、酸化ホウ素を還元窒化しながら六方晶窒化ホウ素となる際に、炭化ホウ素由来の大粒径六方晶窒化ホウ素表面に堆積しながら六方晶窒化ホウ素凝集体となり、上記凝集体は、凝集体でありながら、一次粒子の粒界を判別し難く、開気孔も少ないため、従来技術で作製された六方晶窒化ホウ素凝集粒子のように、一次粒子が確認し易いような、隙間を有する六方晶窒化ホウ素凝集粒子とは異なる。以上のように、各原料の粒径・配合量を適切に調整する事で、前記低いDBP吸収量、最大トルクと高タップ嵩密度という特性を同時に実現するものと推定している。また上記方法を用いることで、本発明の六方晶窒化ホウ素凝集体を含む六方晶窒化ホウ素粉末を、一度の焼成工程で提供する事が可能となる。 The reason why the hexagonal boron nitride powder containing the hexagonal boron nitride aggregate of the present invention can be obtained by the above-mentioned production method is not clear, but the present inventors presume as follows. That is, a reductive nitridation reaction (1) shown by the following reaction formula (1) using an oxygen-containing boron compound, a carbon source, and nitrogen gas occurs, and then a reaction in which boron carbide is directly nitrided (reaction formula (2)), and a reaction formula It is thought that the re-nitriding reaction (1) and the reactions (3) and (4) occur again in concert using C produced as a reducing agent by the reaction (2). At this time, since the particle size of hexagonal boron nitride generated from boron carbide is correlated with the particle size of the raw material boron carbide, hexagonal boron nitride having a large particle size can be efficiently produced, and boron carbide is nitrided from the surface. When C is released and becomes hexagonal boron nitride while reducing and nitriding boron oxide, it forms a hexagonal boron nitride aggregate while depositing on the surface of large-particle hexagonal boron nitride derived from boron carbide, Aggregate, while being an agglomerate, it is difficult to distinguish the grain boundaries of the primary particles, and because there are few open pores, as in the case of hexagonal boron nitride aggregated particles produced by the prior art, such that the primary particles are easily identified. , Different from hexagonal boron nitride aggregated particles having gaps. As described above, it is presumed that by appropriately adjusting the particle size and blending amount of each raw material, the characteristics of the low DBP absorption amount, the maximum torque, and the high tap bulk density are simultaneously realized. Further, by using the above method, the hexagonal boron nitride powder containing the hexagonal boron nitride aggregate of the present invention can be provided in a single firing step.
B2O3+3C+N2→2BN+3CO
B4C+N2→4BN+C
3B4C+B2O3+7N2→14BN+3CO
B4C+2B2O3+5C+4N2→8BN+6CO
前記本発明の製造方法により得られる六方晶窒化ホウ素粉末は、原料炭化ホウ素の粒径を制御することで、熱伝導性絶縁シート用窒化ホウ素凝集体として適切な、レーザー回折粒度分布法における粒度分布の累積体積頻度90%の粒径が50〜150μmに調節する事が可能となり、該熱伝導性絶縁シート内で大粒径の窒化ホウ素凝集体同士が密着に存在し、良好な熱経路を確保する事が可能となり、該熱伝導性絶縁シートに高い熱伝導性を付与する事が可能となる。
B 2 O 3 + 3C + N 2 → 2BN + 3CO
B 4 C + N 2 → 4BN + C
3B 4 C + B 2 O 3 + 7N 2 → 14BN + 3CO
B 4 C + 2B 2 O 3 + 5C + 4N 2 → 8BN + 6CO
Hexagonal boron nitride powder obtained by the production method of the present invention, by controlling the particle size of the raw material boron carbide, suitable as a boron nitride aggregate for heat conductive insulating sheet, particle size distribution by laser diffraction particle size distribution method The particle size of 90% of the cumulative volume frequency can be adjusted to 50 to 150 μm, and the large-diameter boron nitride aggregates are in close contact with each other in the heat conductive insulating sheet to secure a good heat path. And it is possible to impart high thermal conductivity to the heat conductive insulating sheet.
(六方晶窒化ホウ粉末)
本発明の六方晶窒化ホウ素粉末は、六方晶窒化ホウ素凝集体を含み、そして全ホウ素中の11Bの存在比が90%以上であり、JIS−K−6217−4に準拠して測定し、算出される最大トルクが0.20〜0.50Nm、DBP吸収量が50〜100ml/100g、及び、タップ嵩密度が0.66〜0.95g/cm3であることを特徴とする。
(Hexagonal boron nitride powder)
Hexagonal boron nitride powder of the present invention includes a hexagonal boron nitride agglomerates, and the presence ratio of 11 B in the total boron is 90% or more, measured according to JIS-K-6217-4, The calculated maximum torque is 0.20 to 0.50 Nm, the DBP absorption is 50 to 100 ml / 100 g, and the tap bulk density is 0.66 to 0.95 g / cm 3 .
尚、六方晶窒化ホウ素の同定は、試料粉末を、X線回折測定において、六方晶窒化ホウ素以外の帰属ピークが無いことを確認し、六方晶窒化ホウ素粉末として同定した。ここで、上記X線回折測定は、Rigaku社製、全自動水平型多目的X線回折装置SmartLab(商品名)を用いた。測定条件はスキャンスピード20度/分、ステップ幅0.02度、スキャン範囲10〜90度とした。 The hexagonal boron nitride was identified as a hexagonal boron nitride powder by confirming that the sample powder had no assigned peak other than hexagonal boron nitride in the X-ray diffraction measurement. Here, for the X-ray diffraction measurement, a fully automatic horizontal multipurpose X-ray diffractometer SmartLab (trade name) manufactured by Rigaku Corporation was used. The measurement conditions were a scan speed of 20 degrees / minute, a step width of 0.02 degrees, and a scan range of 10 to 90 degrees.
本発明において、六方晶窒化ホウ素粉末の全ホウ素中の11Bの存在比は、後述する実施例に示すように、二次イオン質量分析法によって確認することができる。例えば、アルバック・ファイ株式会社製:PHI ADEPT−1010を用いて測定することが可能である。 In the present invention, the abundance ratio of 11 B in the total boron of the hexagonal boron nitride powder can be confirmed by secondary ion mass spectrometry, as shown in Examples described later. For example, it can be measured using PHI ADEPT-1010 manufactured by ULVAC-PHI, Inc.
そして、本発明の六方晶窒化ホウ素粉末の全ホウ素中の11Bの存在比は、90%以上であることを特徴とする。また、α線の放出低減の観点から、全ホウ素中の11Bの存在比は95%以上がより好ましい。即ち、全ホウ素中の11Bの存在比を高めることで、よりα線の放出を低減できる。 The abundance ratio of 11 B in the total boron hexagonal boron nitride powder of the present invention is characterized in that 90% or more. In addition, from the viewpoint of reducing α-ray emission, the abundance ratio of 11 B in all boron is more preferably 95% or more. In other words, the emission of α-rays can be further reduced by increasing the abundance ratio of 11 B in all boron.
また、上記JIS−K−6217−4に準拠して測定し、算出される最大トルクは、横軸:DBP滴下量(ml)、縦軸:トルク(Nm)曲線から算出され、DBP吸収量は、最大トルクの70%トルク値におけるDBP滴下量より算出したものである。上記測定は、例えば、株式会社あさひ総研製:S−500(商品名)を用いて行うことができる。 The maximum torque measured and calculated in accordance with the above JIS-K-6217-4 is calculated from the horizontal axis: DBP drop amount (ml) and the vertical axis: torque (Nm) curve. , Calculated from the DBP drop amount at a torque value of 70% of the maximum torque. The above measurement can be performed using, for example, S-500 (trade name) manufactured by Asahi Research Institute.
更に、本発明において、六方晶窒化ホウ素粉末のタップ嵩密度は、後述する実施例に示すように、例えば、株式会社セイシン企業製:タップデンサーKYT−5000(商品名)によって測定することができる。 Further, in the present invention, the tap bulk density of the hexagonal boron nitride powder can be measured by, for example, a tap denser KYT-5000 (trade name) manufactured by Seishin Enterprise Co., Ltd., as shown in Examples described later.
本発明の六方晶窒化粉末において、前記最大トルクは、0.20〜0.50Nm、好ましくは0.20〜0.45Nmである。上記最大トルクの範囲は、六方晶窒化ホウ素粉末が凝集粒子を含むこと、また、凝集粒子の割合が多く、且つ比較的広い粒度分布を有している状態を示すものである。最大トルクが0.50Nmを超えると、単一粒径、単粒子の割合が多い状態となり、六方晶窒化ホウ素粉末を樹脂に充填した際の粘度が上昇する傾向にある。また、最大トルクが0.20Nm未満である六方晶窒化ホウ素粉末は、製造が困難である。 In the hexagonal nitride powder of the present invention, the maximum torque is 0.20 to 0.50 Nm, preferably 0.20 to 0.45 Nm. The range of the maximum torque indicates that the hexagonal boron nitride powder contains agglomerated particles, that the ratio of the agglomerated particles is large, and that the powder has a relatively wide particle size distribution. When the maximum torque exceeds 0.50 Nm, the single particle size and the ratio of the single particles become large, and the viscosity when the hexagonal boron nitride powder is filled in the resin tends to increase. Further, it is difficult to produce hexagonal boron nitride powder having a maximum torque of less than 0.20 Nm.
因みに、単一粒径、単粒子を主体とする六方晶窒化ホウ素粉末の最大トルクは、低いものでも0.6Nm程度であり、一般的には0.6〜0.75Nm程度である。 Incidentally, the maximum torque of the hexagonal boron nitride powder having a single particle size and a single particle as a main component is about 0.6 Nm at the lowest, and generally about 0.6 to 0.75 Nm.
また、本発明の六方晶窒化ホウ素粉末は、DBP吸収量が50〜100ml/100g、好ましくは、50〜80ml/100g、更に好ましくは、50〜75ml/100gであることを特徴とする。即ち、上記DBP吸収量は、六方晶窒化ホウ素粉末の特性のうち、凝集粒子内の開気孔量及び、粒子表面のストラクチャーの有無の状態を示すものであり、開気孔が多く、ストラクチャーが発達しているほど高い。従来の凝集粒子を含む六方晶窒化ホウ素粉末は、DBP吸収量が100ml/100gを超え、樹脂に充填する際の希釈溶媒の必要量が極めて多くなる。そのため、後工程での揮発除去、揮発除去に伴う熱伝導性絶縁シート内への微小な空隙の残存が起こり、得られる成形体の熱伝導率、絶縁耐力の低下が懸念される。更に、DBP吸収量が100ml/100gを超えると樹脂に充填する際の粘度も上昇する虞がある。これに対して、本発明の六方晶窒化ホウ素粉末は、凝集粒子を含んでいるにも拘わらず、凝集が密であるため、DBP吸収量が100ml/100g以下の値を示し、樹脂に充填する際の上記問題が解消できる。 The hexagonal boron nitride powder of the present invention has a DBP absorption of 50 to 100 ml / 100 g, preferably 50 to 80 ml / 100 g, and more preferably 50 to 75 ml / 100 g. That is, the DBP absorption indicates the amount of open pores in the aggregated particles and the presence or absence of a structure on the particle surface among the characteristics of the hexagonal boron nitride powder. The higher it is. The conventional hexagonal boron nitride powder containing aggregated particles has a DBP absorption of more than 100 ml / 100 g, and requires a very large amount of a diluting solvent when filling the resin. For this reason, volatilization and removal in a later step, fine voids remain in the thermally conductive insulating sheet due to the volatilization and removal, and there is a concern that the thermal conductivity and dielectric strength of the obtained molded article may be reduced. Furthermore, if the DBP absorption exceeds 100 ml / 100 g, the viscosity when filling the resin may increase. On the other hand, the hexagonal boron nitride powder of the present invention, despite containing agglomerated particles, is densely agglomerated, so the DBP absorption amount shows a value of 100 ml / 100 g or less, and is filled in the resin. The above problem can be solved.
該DBP吸収量は低いほど、前記希釈溶媒の必要量が少なくなり、効果を発現し易いが、DBP吸収量が50ml/100g未満のものは製造上困難となる。 As the DBP absorption is lower, the required amount of the diluting solvent is smaller and the effect is more likely to be exhibited. However, those having a DBP absorption of less than 50 ml / 100 g are difficult to produce.
更に、本発明の六方晶窒化ホウ素粉末は、タップ嵩密度が0.66〜0.95g/cm3、好ましくは、0.66〜0.90g/cm3、更に好ましくは、0.73〜0.88g/cm3で有ることを特徴とする。即ち、上記タップ嵩密度は、六方晶窒化ホウ素粉末の特性のうち、開気孔の量、粒子形状、粒度分布広さを示す指標であり、上記値が高いという事は、開気孔が少なく、球状に近い凝集粒子が多く、また、最密充填に近い粒度分布を有している状態を示すものである。そして、上記本発明の範囲は、前記単粒子を主体とする六方晶窒化ホウ素粉末では達成できない値であり、また、従来の凝集粒子を含む六方晶窒化ホウ素粉末と比較しても、高い値である。 Furthermore, hexagonal boron nitride powder of the present invention, the tap bulk density 0.66~0.95g / cm 3, preferably, 0.66~0.90g / cm 3, more preferably 0.73 to 0 0.88 g / cm 3 . That is, the tap bulk density is an index indicating the amount of open pores, the particle shape, and the breadth of the particle size distribution among the characteristics of the hexagonal boron nitride powder. This indicates a state in which there are many agglomerated particles close to and a particle size distribution close to close packing. The range of the present invention is a value that cannot be achieved with the hexagonal boron nitride powder containing the single particles as a main component, and also has a high value as compared with the conventional hexagonal boron nitride powder containing aggregated particles. is there.
実用的には、前記タップ嵩密度が0.66g/cm3未満の場合、熱伝導性絶縁シートとした際に、シート内でフィラーが最密充填の状態から外れるため、プレス成型する際に六方晶窒化ホウ素凝集体に余分な負荷が掛かり、該凝集体を破壊してしまう原因となり、高い熱伝導率を発現するのが困難となる。また、タップ嵩密度は高いほど、上記効果を発現し易いが、タップ嵩密度が0.95g/cm3を超える六方晶窒化ホウ素粉末は、製造が困難である。 Practically, when the tap bulk density is less than 0.66 g / cm 3 , when the heat conductive insulating sheet is used, since the filler is out of the state of closest packing in the sheet, it is difficult to form the heat conductive insulating sheet in the press molding. An extra load is applied to the polycrystalline boron nitride aggregate, causing the aggregate to be destroyed, making it difficult to exhibit high thermal conductivity. Further, the higher the tap bulk density, the easier the above-mentioned effect is exhibited, but the production of hexagonal boron nitride powder having a tap bulk density exceeding 0.95 g / cm 3 is difficult.
また、本発明の六方晶窒化ホウ素粉末は、上述したように、DBP吸収量、最大トルク、タップ嵩密度が上記範囲を同時に満たしている事が必須であり、従来、このような低いDBP吸収量と最大トルク、高いタップ嵩密度を有する六方晶窒化ホウ素粉末は、提案されたことがなく、本発明において、初めて提案されたものである。 Further, as described above, the hexagonal boron nitride powder of the present invention requires that the DBP absorption amount, the maximum torque, and the tap bulk density satisfy the above ranges at the same time. Hexagonal boron nitride powder having a maximum torque and a high tap bulk density has never been proposed, and has been proposed for the first time in the present invention.
本発明の六方晶窒化ホウ素粉末の比表面積は、1.3〜7.0m2/gであることが好ましく、1.6〜6.0m2/gであればより好ましく、2.0〜5.0m2/gであれば更に好ましい。即ち、該比表面積を7.0m2/g以下とすることによって、絶縁放熱シート内での熱抵抗を特に抑制することができ、且つ、微粒子の飛散を軽減してハンドリング性を向上できる。一方、比表面積を1.3m2/g以上とすることによって、樹脂への充填性に特に優れた六方晶窒化ホウ素粉末を得ることができる。 The specific surface area of the hexagonal boron nitride powder of the present invention is preferably 1.3~7.0m 2 / g, more preferably if 1.6~6.0m 2 / g, 2.0~5 0.0 m 2 / g is more preferred. That is, by setting the specific surface area to 7.0 m 2 / g or less, the thermal resistance in the insulating heat dissipation sheet can be particularly suppressed, and the scattering of fine particles can be reduced to improve the handling property. On the other hand, by setting the specific surface area to 1.3 m 2 / g or more, it is possible to obtain hexagonal boron nitride powder particularly excellent in the filling property to the resin.
本発明において、六方晶窒化ホウ素粉末の比表面積は、後述する実施例に示すように、BET1点法によって測定し、例えばマウンテック社製:Macsorb HM model−1201(商品名)によって確認することができる。 In the present invention, the specific surface area of the hexagonal boron nitride powder is measured by a BET one-point method as shown in Examples described later, and can be confirmed by, for example, Macsorb HM model-1201 (trade name) manufactured by Mountech Corporation. .
また、本発明の六方晶窒化ホウ素粉末は、六方晶窒化ホウ素凝集体を含むため、湿式レーザー回折粒度分布法における粒度分布の累積体積頻度90%の粒径(D1)が50〜150μmであることが特徴であり、60〜140μmであれば好ましく、65〜120μmであれば更に好ましい。(D1)が50μm未満では、高い熱伝導率を発現するのが困難となり、150μmを超えると、近年薄膜化の傾向にある、放熱絶縁シートの厚みに対して、粒径が大き過ぎるため好ましくない。 In addition, since the hexagonal boron nitride powder of the present invention contains hexagonal boron nitride aggregates, the particle diameter (D1) at a cumulative volume frequency of 90% of the particle size distribution in the wet laser diffraction particle size distribution method is 50 to 150 μm. It is preferably 60 to 140 μm, and more preferably 65 to 120 μm. If (D1) is less than 50 μm, it is difficult to exhibit high thermal conductivity, and if it exceeds 150 μm, the particle size is too large with respect to the thickness of the heat-dissipating insulating sheet, which tends to be thinner in recent years, and thus is not preferable. .
上記六方晶窒化ホウ素粉末の粒度分布は、後述する実施例に示すように、湿式レーザー回折粒度分布法によって測定し、例えばHORIBA社製:LA−950V2(商品名)によって確認することができる。 The particle size distribution of the hexagonal boron nitride powder is measured by a wet laser diffraction particle size distribution method, as shown in Examples described later, and can be confirmed by, for example, LA-950V2 (trade name) manufactured by HORIBA.
尚、湿式レーザー回折粒度分布では、粒子の形状を確認する事が困難であり、六方晶窒化ホウ素が鱗片状単粒子か凝集体か判別するのが困難である。必要であれば、SEM(Scanning Electron Microscope)観察等によって50μm以上の粒子について、六方晶窒化ホウ素凝集体である事を確認しても良いが、本発明の製造方法において、50μm以上の鱗片状単粒子が高選択的に生成する事は考え難く、粒度分布における大粒径側は凝集体であるといえる。また、50μm以上の鱗片状単粒子が高選択的に含有すると、DBP吸収量は上記範囲内に入る可能性は有るが、タップ嵩密度が範囲内に入る事は無く、本発明の範囲を満たす事が困難となるため、本発明においては、最大トルク、DBP吸収量とタップ嵩密度が発明範囲内に入っていれば、六方晶窒化ホウ素凝集体を含むといえる。 In the wet laser diffraction particle size distribution, it is difficult to confirm the shape of the particles, and it is difficult to determine whether hexagonal boron nitride is a flake-like single particle or an aggregate. If necessary, particles having a size of 50 μm or more may be confirmed to be hexagonal boron nitride aggregates by SEM (Scanning Electron Microscope) observation or the like. However, in the production method of the present invention, a scale-like single piece having a size of 50 μm or more is used. It is difficult to imagine that particles are generated with high selectivity, and it can be said that the large particle side in the particle size distribution is an aggregate. In addition, when the scale-like single particles of 50 μm or more are highly selectively contained, the DBP absorption amount may fall within the above range, but the tap bulk density does not fall within the range, which satisfies the scope of the present invention. Therefore, in the present invention, if the maximum torque, the DBP absorption amount and the tap bulk density are within the range of the present invention, it can be said that a hexagonal boron nitride aggregate is included.
また、本発明において、六方晶窒化ホウ素粉末の純度は、後述する実施例に示すように、蛍光X線分析法によって測定し、例えば蛍光X線分析装置としては、Rigaku社製ZSX Primus2(商品名)によって確認することができる。 In the present invention, the purity of the hexagonal boron nitride powder is measured by a fluorescent X-ray analysis method, as shown in Examples described later. For example, as a fluorescent X-ray analyzer, ZSX Primus2 (trade name) manufactured by Rigaku Corporation ).
本発明の六方晶窒化ホウ素粉末の純度は、好ましくは99.95質量%以上であり、より好ましくは99.97質量%以上である。本発明の六方晶窒化ホウ素粉末は、有機もしくは無機バインダーを必須成分としないため、かかる純度を比較的容易に達成できる。窒化ホウ素の純度を、99.95質量%以上とすることによって、不純物に起因する樹脂の硬化阻害や熱伝導率、絶縁耐力低下等が起こり難い窒化ホウ素粉末とすることができる。ここでいう六方晶窒化ホウ素粉末純度とは、上述した蛍光X線分析法により、測定した六方晶窒化ホウ素粉末の測定元素中、B及びN以外の不純物元素の含有質量割合を100から引いた値である。 The purity of the hexagonal boron nitride powder of the present invention is preferably at least 99.95% by mass, more preferably at least 99.97% by mass. Since the hexagonal boron nitride powder of the present invention does not contain an organic or inorganic binder as an essential component, such purity can be relatively easily achieved. By setting the purity of boron nitride to 99.95% by mass or more, it is possible to obtain a boron nitride powder in which hardening of the resin due to impurities, thermal conductivity, decrease in dielectric strength, and the like hardly occur. The hexagonal boron nitride powder purity referred to here is a value obtained by subtracting the content mass ratio of impurity elements other than B and N in the measured elements of the hexagonal boron nitride powder measured by the above-described fluorescent X-ray analysis method from 100. It is.
(窒化ホウ素粉末の製造方法)
本発明の六方晶窒化ホウ素粉末の製造方法は、特に制限されるものではないが、代表的な製造方法を例示すれば、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物、11B濃縮炭化ホウ素を、11B濃縮含酸素ホウ素化合物に含まれるB源とカーボン源に含まれるC源の割合であるB/C(元素比)換算で0.75〜1.05、11B濃縮含酸素ホウ素化合物とカーボン源との合計量(B2O3、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で5〜20質量部、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物のB2O3、C、CaO換算質量合計量100質量部に対して上記11B濃縮炭化ホウ素を10〜45質量部、11B濃縮含酸素ホウ素化合物および11B濃縮炭化ホウ素に含まれる全ホウ素中の11Bの濃縮度が90%以上、となる割合で混合し、該混合物を窒素雰囲気下にて1800〜2100℃の温度に加熱して、還元窒化した後、反応生成物中に存在する窒化ホウ素以外の副生成物を酸洗浄により除去することを特徴とする六方晶窒化ホウ素粉末の製造方法が挙げられる。
(Production method of boron nitride powder)
Although the method for producing the hexagonal boron nitride powder of the present invention is not particularly limited, examples of typical production methods include: 11 B-enriched oxygen-containing boron compound, carbon source, oxygen-containing calcium compound, 11 B concentrated boron carbide, 11 B concentration contained in the oxygen-containing boron compound is a ratio of B source and C source contained in the carbon source B / C (atomic ratio) in terms of .75 to 1.05, 11 B enriched free 5-20 parts by mass of an oxygen-containing calcium compound in terms of CaO with respect to 100 parts by mass of the total amount of the oxygen-boron compound and the carbon source (B 2 O 3 , C conversion value), 11 B-enriched oxygen-containing boron compound, carbon source , B 2 O 3 in oxygen-containing calcium compound, C, 10 to 45 parts by mass of the 11 B enriched boron carbide relative terms of CaO by weight per 100 parts by weight, Contact 11 B enriched oxygen-containing boron compound Beauty 11 B concentration 11 enrichment of B in the total boron contained in the boron carbide 90% weight ratio to form, and the mixture was heated to a temperature of from 1,800 to 2100 ° C. under a nitrogen atmosphere, a reducing After nitriding, a method for producing hexagonal boron nitride powder is characterized in that by-products other than boron nitride present in the reaction product are removed by acid washing.
(原料)
上記本発明の製造方法の最大の特徴は、原料として、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物、11B濃縮炭化ホウ素を、後述するように、所定の割合で混合して使用する点にある。各原料が示す役割については以下の通りである。
(material)
The most important feature of the production method of the present invention, as a raw material, 11 B enriched oxygen-containing boron compounds, carbon source, oxygen-containing calcium compound, an 11 B enriched boron carbide, as described below, are mixed at a predetermined ratio The point is to use. The role of each raw material is as follows.
(11B濃縮含酸素ホウ素化合物)
含酸素ホウ素化合物は、ホウ素の質量数が異なっていても化学的性質は変わらないため、11Bの存在比の違いによる製造過程への影響や、得られる六方晶窒化ホウ素の熱伝導性、電気絶縁性、潤滑性、耐腐食性、離型性、高温安定性、低誘電率、化学的安定性等への影響はないことが確認されている。
( 11 B concentrated oxygenated boron compound)
Since the chemical properties of the oxygen-containing boron compound do not change even if the mass number of boron is different, the influence on the production process due to the difference in the abundance ratio of 11 B, the thermal conductivity of the obtained hexagonal boron nitride, It has been confirmed that there is no influence on insulation properties, lubricity, corrosion resistance, mold release properties, high temperature stability, low dielectric constant, chemical stability, and the like.
そのため、上記本発明の製造方法において、原料の11B濃縮含酸素ホウ素化合物としては、11Bを濃縮したホウ素原子を含有する化合物が制限なく使用される。上記11B濃縮含酸素ホウ素化合物としては、例えば、11B濃縮ホウ酸、11B濃縮無水ホウ酸、11B濃縮メタホウ酸、11B濃縮過ホウ酸、11B濃縮次ホウ酸、11B濃縮四ホウ酸ナトリウム、11B濃縮過ホウ酸ナトリウムなどが使用できる。一般的には、入手が容易な11B濃縮ホウ酸、11B濃縮酸化ホウ素が好適に用いられる。 Therefore, in the manufacturing method of the present invention, as the 11 B enriched oxygen-containing boron compound of the raw material, compounds containing boron atoms was concentrated 11 B are used without limitation. As the 11 B enriched oxygen-containing boron compounds, for example, 11 B enriched boric acid, 11 B enriched boric anhydride, 11 B concentrated metaborate, 11 B concentrated perborate, 11 B concentration following boric acid, 11 B concentrated four sodium borate, etc. 11 B enriched sodium perborate can be used. Generally, easily available 11 B enriched boric acid, 11 B enriched boron oxide is preferably used.
なお、得られる窒化ホウ素粉末のα線の放出低減の観点から、原料の11B濃縮含酸素ホウ素化合物について、11Bの濃縮度は90%以上が好ましく、95%以上がより好ましい。 In view of emission reduction of α rays of boron nitride powder obtained, the 11 B enriched oxygen-containing boron compound material, enrichment of 11 B is preferably at least 90%, more preferably at least 95%.
また、前記11B濃縮含酸素ホウ素化合物は、単独で用いても良いし、複数組み合わせても良い。複数組み合わせる場合、使用する含酸素ホウ素化合物における11Bの濃縮度を勘案し、該含酸素ホウ素化合物の量を適宜調整することにより、上記濃縮度の範囲を満足させることができる。例えば、上記濃縮度の範囲になるように、11Bの濃縮度の大きい含酸素ホウ素化合物と、11Bの濃縮度の小さい含酸素ホウ素化合物とを上記範囲内になるように混合し、その割合を調整してもよい。 Also, the 11 B enriched oxygen-containing boron compound may be used singly or combination. If multiple combined, by taking into account the enrichment of 11 B in the oxygen-containing boron compound to be used, by appropriately adjusting the amount of oxygen-containing boron compound, it is possible to satisfy the above range enrichment. For example, an oxygen-containing boron compound having a high enrichment of 11 B and an oxygen-containing boron compound having a low enrichment of 11 B are mixed so as to be within the above-mentioned range so as to be in the above-described enrichment range, May be adjusted.
なお、市販の11B濃縮含酸素ホウ素化合物としては、存在比95%以上の11B濃縮ホウ酸(ステラケミファ株式会社製、ヤマナカセラダイン株式会社製)が、存在比99%以上の11B濃縮ホウ酸(ヤマナカセラダイン株式会社製)が、入手可能である。
また、使用する11B濃縮含酸素ホウ素化合物の平均粒子径も特に限定されないが、操作性及び還元反応制御の観点から、30〜800μmが好ましく、50〜700μmがより好ましく、100〜500μmが更に好ましい。即ち、11B濃縮含酸素ホウ素化合物の平均粒子径が30μmより大きいものを使用することによって、取扱いが容易となる。しかし、800μmを超えると11B濃縮含酸素ホウ素化合物の還元反応が進行し難くなる虞がある。
As the commercially available 11 B enriched oxygen-containing boron compound, present ratio of 95% or more of the 11 B enriched boric acid (Stella Chemifa Co., Yamanaka Serra dynes Ltd.) is, the abundance ratio of 99% or more 11 B concentration Boric acid (manufactured by Yamanaka Seradyne Co., Ltd.) is available.
Although not an average particle diameter of 11 B enriched oxygen-containing boron compound to be used in particular limited, in view of operability and a reduction reaction control, preferably 30 to 800 m, more preferably 50-700 .mu.m, more preferably 100~500μm . That is, by the average particle diameter of 11 B enriched oxygen-containing boron compound to use greater than 30 [mu] m, it becomes easy to handle. However, there is a possibility that the reduction reaction of the more than 800 [mu] m 11 B enriched oxygen-containing boron compound is less likely to proceed.
(含酸素カルシウム化合物)
含酸素カルシウム化合物は、11B濃縮含酸素ホウ素化合物と複合酸化物を形成することで、高融点の複合酸化物を形成し、11B濃縮含酸素ホウ素化合物の揮散を防止する役割を有する。また、11B濃縮炭化ホウ素を直接窒化する反応(2)における触媒の役割を果たすことも確認されている。
(Oxygen-containing calcium compound)
Oxygen-containing calcium compound, by forming a composite oxide with 11 B enriched oxygen-containing boron compound to form a composite oxide having a high melting point, has the role of preventing volatilization of the 11 B enriched oxygen-containing boron compound. It has also been confirmed that it plays a role as a catalyst in the reaction (2) for directly nitriding 11 B-enriched boron carbide.
本発明の製造方法において、触媒及び11B濃縮含酸素ホウ素化合物の揮散防止剤として使用される含酸素カルシウム化合物としては、公知のものが特に制限無く使用される。該含酸素カルシウム化合物としては、例えば、炭酸カルシウム、炭酸水素カルシウム、水酸化カルシウム、酸化カルシウム、硝酸カルシウム、硫酸カルシウム、リン酸カルシウム、シュウ酸カルシウム等を使用することが出来、これら2種類以上を混合して使用することも可能である。その中でも、酸化カルシウム、炭酸カルシウムを使用するのが好ましい。 In the production method of the present invention, as the catalyst and 11 B oxygenates calcium compounds used as volatilization inhibitor concentration oxygenated boron compounds, known are used without particular limitation. As the oxygen-containing calcium compound, for example, calcium carbonate, calcium hydrogen carbonate, calcium hydroxide, calcium oxide, calcium nitrate, calcium sulfate, calcium phosphate, calcium oxalate and the like can be used. It is also possible to use. Among them, it is preferable to use calcium oxide and calcium carbonate.
また、上記含酸素カルシウム化合物の平均粒子径は、平均粒子径0.01〜200μmが好ましく、0.05〜120μmがより好ましく、0.1〜80μmが特に好ましい。 The average particle diameter of the oxygen-containing calcium compound is preferably from 0.01 to 200 μm, more preferably from 0.05 to 120 μm, particularly preferably from 0.1 to 80 μm.
(カーボン源)
本発明の製造方法において、カーボン源としては、還元剤として作用する公知の炭素材料が特に制限無く使用される。例えば、カーボンブラック、活性炭、カーボンファイバー等の非晶質炭素の他、ダイヤモンド、グラファイト、ナノカーボン等の結晶性炭素、モノマーやポリマーを熱分解して得られる熱分解炭素等が挙げられる。そのうち、反応性の高い非晶質炭素が好ましく、更に、工業的に品質制御されている点で、カーボンブラックが特に好適に使用される。また、上記カーボンブラックとしては、アセチレンブラック、ファーネスブラック、サーマルブラック等を使用することができる。また、上記カーボン源の平均粒子径は、0.01〜5μmが好ましく、0.02〜4μmがより好ましく、0.05〜3μmが特に好ましい。即ち、該カーボン源の平均粒子径を5μm以下とすることにより、カーボン源の反応性が高くなり、また、0.01μm以上とすることにより、取り扱いが容易となる。
(11B濃縮炭化ホウ素)
本発明の製造方法において、凝集体を効率よく生成するために使用される11B濃縮炭化ホウ素としては、含酸素ホウ素化合物と同様、ホウ素の質量数が異なっていても化学的性質は変わらないため、公知の11B濃縮炭化ホウ素が特に制限無く使用される。
(Carbon source)
In the production method of the present invention, a known carbon material that acts as a reducing agent is used without particular limitation as the carbon source. Examples include amorphous carbon such as carbon black, activated carbon and carbon fiber, crystalline carbon such as diamond, graphite and nanocarbon, and pyrolytic carbon obtained by thermally decomposing a monomer or polymer. Among them, highly reactive amorphous carbon is preferable, and carbon black is particularly preferably used in view of industrially controlled quality. In addition, acetylene black, furnace black, thermal black, and the like can be used as the carbon black. Further, the average particle size of the carbon source is preferably 0.01 to 5 μm, more preferably 0.02 to 4 μm, and particularly preferably 0.05 to 3 μm. That is, by setting the average particle size of the carbon source to 5 μm or less, the reactivity of the carbon source becomes high, and by setting the average particle size to 0.01 μm or more, handling becomes easy.
( 11 B concentrated boron carbide)
In the production method of the present invention, since as the 11 B concentration boron carbide used to produce better aggregate efficiency, similarly to the oxygen-containing boron compound, the chemical properties even mass number of boron are different is not changed known 11 B enriched boron carbide is used without particular limitation.
また、上記11B濃縮炭化ホウ素の平均粒子径は、30〜250μmが好ましく、50〜180μmがより好ましく、70〜150μmが特に好ましい。即ち、該11B濃縮炭化ホウ素の平均粒子径を250μm以下とすることにより、粗大な凝集体の生成を抑制し、また、30μm以上とすることにより、高い熱伝導率を確保するための適度な粒径の凝集体の作製が容易となる。なお、市販の11B濃縮炭化ホウ素としては、濃縮度95%以上の11B濃縮炭化ホウ素(ヤマナカセラダイン株式会社製)が入手可能である。 The average particle diameter of the 11 B enriched boron carbide is preferably 30~250Myuemu, more preferably from 50~180μm, 70~150μm is particularly preferred. That is, by setting the average particle diameter of the 11 B enriched boron carbide and 250μm or less, to suppress the formation of coarse aggregates, also by a 30μm or more, moderate for ensuring a high thermal conductivity It is easy to produce an aggregate having a particle size. As the commercially available 11 B enriched boron carbide, enrichment of 95% or more 11 B enriched boron carbide (manufactured by Yamanaka Sera dynes Corporation) are available.
本発明の製造方法において、上記の各原料を含む混合物の反応への供給形態は特に制限されず、粉末状のままでもよいが、造粒体を形成して行ってもよい。 In the production method of the present invention, the supply form of the mixture containing each of the above-mentioned raw materials to the reaction is not particularly limited, and may be in the form of a powder, or may be performed by forming granules.
本発明の製造方法において、前記原料の混合方法は特に制限されず、振動ミル、ビーズミル、ボールミル、ヘンシェルミキサー、ドラムミキサー、振動攪拌機、V字混合機等の一般的な混合機が使用可能である。 In the production method of the present invention, the method of mixing the raw materials is not particularly limited, and a general mixer such as a vibration mill, a bead mill, a ball mill, a Henschel mixer, a drum mixer, a vibration stirrer, and a V-shaped mixer can be used. .
また、造粒を行う場合の造粒方法も、押出造粒、転動造粒、コンパクターによる造粒など、公知の方法により実施することができる。この場合、造粒体の大きさは、5〜10mm程度が好適である。 The granulation method in the case of performing granulation can also be carried out by a known method such as extrusion granulation, tumbling granulation, and granulation using a compactor. In this case, the size of the granules is preferably about 5 to 10 mm.
(原料の調製)
本発明において、還元窒化反応は、カーボン源と窒素の供給により実施されるが、目的とする六方晶窒化ホウ素凝集体を効果的に得るためには、11B濃縮含酸素ホウ素化合物と複合酸化物に含まれるB源とカーボン源との割合は、B/C(元素比)換算で0.75〜1.05、好ましくは0.75〜0.95とすることが必要である。即ち、該モル比が1.05を超えると、還元されずに揮散する11B濃縮ホウ素化合物の割合が増加し、収率が低下するばかりでなく、上記揮散成分により、製造ラインに悪影響を及ぼす。また、該モル比が0.75未満では、未反応の11B濃縮酸化ホウ素量が少なく、還元窒化温度に達した際に、目的とする六方晶窒化ホウ素凝集体が生成し難くなる。
(Preparation of raw materials)
In the present invention, reduction nitriding reaction is carried out by the supply of carbon source and nitrogen, in order to obtain the hexagonal boron nitride agglomerates of interest effectively, the composite oxide and 11 B enriched oxygen-containing boron compound Is required to be 0.75 to 1.05, preferably 0.75 to 0.95 in terms of B / C (element ratio). That is, when the molar ratio exceeds 1.05, the ratio of 11 B enriched boron compound volatilizes without being reduced increases not only the yield is lowered by the volatilization component adversely affects the production line . Further, the molar ratio is less than 0.75, less 11 B enriched boron oxide content of unreacted upon reaching the reduction nitriding temperature, it becomes difficult to produce the hexagonal boron nitride agglomerates of interest.
本発明において、目的とする六方晶窒化ホウ素凝集体を効果的に得るためには、11B濃縮含酸素ホウ素化合物とカーボン源との合計量(B2O3、C換算値)100質量部に対して含酸素カルシウム化合物をCaO換算で5〜20質量部となる割合で混合することが必要である。このとき、CaO換算質量部が5質量部未満では、還元されずに揮散する11B濃縮ホウ素化合物の割合が増加し、収率が低下するばかりでなく、上記揮散成分により、製造ラインに悪影響を及ぼし好ましくない。CaO換算質量部が20質量部を超えると、カルシウム由来の不純物が残存する虞があるだけでなく、板状六方晶窒化ホウ素単粒子が粒成長し難く好ましくない。 In the present invention, in order to effectively obtain the desired hexagonal boron nitride aggregate, the total amount (B 2 O 3 , C conversion value) of the 11 B-enriched oxygen-containing boron compound and the carbon source is 100 parts by mass. On the other hand, it is necessary to mix the oxygen-containing calcium compound at a ratio of 5 to 20 parts by mass in terms of CaO. At this time, when the CaO-equivalent mass part is less than 5 parts by mass, the ratio of the 11 B-enriched boron compound which is volatilized without being reduced is increased, and not only the yield is reduced, but also the above-mentioned volatile components adversely affect the production line. It is not preferable. If the CaO equivalent mass exceeds 20 parts by mass, impurities derived from calcium may not only remain, but also plate-like hexagonal boron nitride single particles may not easily grow, which is not preferable.
また、本発明において、目的とする六方晶窒化ホウ素粉末を効果的に得るためには、11B濃縮含酸素ホウ素化合物、カーボン源、11B濃縮炭化ホウ素のB2O3、C、CaO換算質量合計量100質量部に対して前記11B濃縮炭化ホウ素を10〜45質量部となる割合で混合することが重要である。即ち、前記炭化ホウ素の割合が10質量部未満では、目的とする六方晶窒化ホウ素凝集体の含有割合が低下し、目的とするDBP吸収量、タップ嵩密度を実現する事が出来ず、好ましくない。また、前記複合酸化物の割合が45質量部を超える場合、未反応の炭化ホウ素の残存等の虞があり、好ましくない。 Further, in the present invention, in order to effectively obtain the desired hexagonal boron nitride powder, it is necessary to prepare an 11 B-enriched oxygen-containing boron compound, a carbon source, and a B 2 O 3 , C, and CaO equivalent mass of 11 B-enriched boron carbide. it is important to mix the 11 B enriched boron carbide in a proportion to be 10 to 45 parts by mass relative to the total 100 parts by mass. That is, when the proportion of the boron carbide is less than 10 parts by mass, the content ratio of the target hexagonal boron nitride aggregate is reduced, and the target DBP absorption amount and tap bulk density cannot be realized, which is not preferable. . If the proportion of the composite oxide exceeds 45 parts by mass, unreacted boron carbide may remain, which is not preferable.
さらに、本発明において、目的とするα線放出の少ない六方晶窒化ホウ素粉末を効果的に得るためには、11B濃縮含酸素ホウ素化合物および11B濃縮炭化ホウ素に含まれる全ホウ素中の11Bの濃縮度が90%以上となる割合で混合することが重要である。そのため、用いる11B濃縮含酸素ホウ素化合物および11B濃縮炭化ホウ素の濃縮度を勘案し、それらの使用量を適宜調整することにより上記濃縮度の範囲を満足させることができる。例えば、濃縮度の高い11B濃縮含酸素ホウ素化合物と濃縮度の低い11B濃縮炭化ホウ素とを、全ホウ素中の11Bの濃縮度が90%以上となるように組み合わせて使用することができる。このとき、得られる窒化ホウ素粉末のα線放出低減の観点から、全ホウ素中の11Bの濃縮度は、より好ましくは95%以上が好ましい。 Further, in the present invention, in order to obtain a less hexagonal boron nitride powder with α-ray emission of interest effectively is, 11 B in the total boron contained in the 11 B concentration oxygenated boron compound and 11 B enriched boron carbide It is important to mix them at a ratio such that the degree of concentration of the mixture becomes 90% or more. Therefore, use 11 in consideration of the B concentration oxygen-containing boron compound and 11 B concentration enrichment of boron carbide, can satisfy the above range enrichment by adjusting their usage as appropriate. For example, a and enrichment high 11 B enriched oxygen-containing boron compound and enrichment low 11 B enriched boron carbide, enrichment of 11 B in the total boron may be used in combination so that more than 90% . At this time, from the viewpoint of reducing α-ray emission of the obtained boron nitride powder, the enrichment of 11 B in all boron is more preferably 95% or more.
(還元窒化)
本発明の窒化ホウ素製造方法において、反応系への窒素源の供給は、公知の手段によって形成することが出来る。例えば、後に例示した反応装置の反応系内に窒素ガスを流通させる方法が最も一般的である。また、使用する窒素源としては、上記窒素ガスに限らず、還元窒化反応において窒化が可能なガスであれば特に制限されない。具体的には、前記窒素ガスの他、アンモニアガスを使用することも可能である。また、窒素ガス、アンモニアガスに、水素、アルゴン、ヘリウム等の非酸化性ガスを混合したガスも使用可能である。
(Reduction nitriding)
In the method for producing boron nitride of the present invention, the supply of the nitrogen source to the reaction system can be formed by known means. For example, the most common method is to flow nitrogen gas through a reaction system of a reactor exemplified later. The nitrogen source to be used is not limited to the above-mentioned nitrogen gas, and is not particularly limited as long as it is a gas capable of nitriding in the reductive nitridation reaction. Specifically, it is also possible to use ammonia gas in addition to the nitrogen gas. Further, a gas in which a non-oxidizing gas such as hydrogen, argon, and helium is mixed with nitrogen gas and ammonia gas can also be used.
上記製造方法において、結晶性の高い六方晶窒化ホウ素粉末を得るために、還元窒化反応における加熱温度は、通常1800℃以上、好ましくは、1800〜2100℃、更に好ましくは1900〜2000℃の温度を採用することが必要である。即ち、かかる温度が1800℃未満では還元窒化反応が未進行、且つ、結晶性の高い六方晶窒化ホウ素を得ることが困難であり、2100℃を超える温度では、効果が頭打ちとなり、経済的に不利である。 In the above production method, in order to obtain a hexagonal boron nitride powder having high crystallinity, the heating temperature in the reductive nitridation reaction is usually 1800 ° C or higher, preferably 1800 to 2100 ° C, more preferably 1900 to 2000 ° C. It is necessary to adopt. That is, if the temperature is lower than 1800 ° C., it is difficult to obtain a hexagonal boron nitride having a high degree of reductive nitridation reaction and high crystallinity. It is.
また、還元窒化反応の時間は適宜決定されるが、一般に、10〜30時間程度である。 Further, the time of the reductive nitridation reaction is appropriately determined, but is generally about 10 to 30 hours.
本発明の六方晶窒化ホウ素粉末の製造方法は、反応雰囲気制御の可能な公知の反応装置を使用して行うことができる。例えば、高周波誘導加熱やヒーター加熱により加熱処理を行う雰囲気制御型高温炉が挙げられ、バッチ炉の他、プッシャー式トンネル炉、竪型反応炉等の連続炉も使用可能である。 The method for producing hexagonal boron nitride powder of the present invention can be carried out using a known reaction apparatus capable of controlling the reaction atmosphere. For example, there is an atmosphere controlled high-temperature furnace for performing heat treatment by high-frequency induction heating or heater heating. In addition to a batch furnace, a continuous furnace such as a pusher tunnel furnace and a vertical reaction furnace can also be used.
(酸洗浄)
本発明の製造方法において、上述の還元窒化によって得られる反応生成物は、六方晶窒化ホウ素粉末の他に、酸化ホウ素―酸化カルシウムから成る複合酸化物等の不純物が存在するため、酸を用いて洗浄することが好ましい。かかる酸洗浄の方法は特に制限されず、公知の方法が制限無く採用される。例えば、窒化処理後に得られた副生成物含有窒化ホウ素を解砕して容器に投入し、該不純物を含有する六方晶窒化ホウ素粉末の5〜10倍量の希塩酸(10〜20質量%HCl)を加え、4〜8時間接触せしめる方法などが挙げられる。
(Acid cleaning)
In the production method of the present invention, the reaction product obtained by the above-described reduction nitridation contains, in addition to hexagonal boron nitride powder, impurities such as a boron oxide-calcium oxide composite oxide and the like, Washing is preferred. The method of such acid washing is not particularly limited, and a known method is adopted without any limitation. For example, by-product-containing boron nitride obtained after the nitriding treatment is crushed and put into a container, and 5 to 10 times the amount of diluted hydrochloric acid (10 to 20% by mass HCl) of the hexagonal boron nitride powder containing the impurity is added. And contacting for 4 to 8 hours.
上記酸洗浄時に用いる酸としては、塩酸以外にも、硝酸、硫酸、酢酸等を用いることも可能である。 As the acid used in the acid washing, nitric acid, sulfuric acid, acetic acid and the like can be used in addition to hydrochloric acid.
上記酸洗浄の後、残存する酸を洗浄する目的で、純水を用いて洗浄する。上記洗浄の方法としては、上記酸洗浄時の酸をろ過した後、使用した酸と同量の純水に酸洗浄した窒化ホウ素を分散させ、再度ろ過する。 After the above acid cleaning, cleaning is performed using pure water for the purpose of cleaning the remaining acid. As for the washing method, after filtering the acid at the time of the acid washing, the acid-washed boron nitride is dispersed in the same amount of pure water as the acid used, and the filtration is performed again.
(乾燥)
上記、酸洗浄、水洗浄後の、含水塊状物を乾燥条件としては、50〜250℃の大気、もしくは減圧下での乾燥が好ましい。乾燥時間は、特に指定しないが、含水率が0%に限りなく近づくまで乾燥することが好ましい。
(Dry)
As the drying conditions for the water-containing mass after the acid washing and the water washing, drying in the air at 50 to 250 ° C. or under reduced pressure is preferable. The drying time is not particularly specified, but it is preferable to dry until the water content approaches 0%.
(分級)
乾燥後の窒化ホウ素粉末は、必要に応じて、解砕後、篩等による粗粒除去、気流分級等による微粉除去を行ってもよい。
(Classification)
If necessary, the dried boron nitride powder may be crushed and then subjected to coarse particle removal by a sieve or the like, or fine powder removal by airflow classification or the like.
(窒化ホウ素粉末の用途)
本発明の窒化ホウ素粉末の用途は、特に限定されず、公知の用途に特に制限無く適用可能である。好適に使用される用途を例示するならば、α線の放出を低減しつつ、電気絶縁性向上、熱伝導性付与等の目的で樹脂に充填剤として使用する用途が挙げられる。上記窒化ホウ素粉末の用途において、得られる樹脂組成物は、α線の放出が少なく、また高い電気絶縁性や熱伝導性を有する。
(Use of boron nitride powder)
The application of the boron nitride powder of the present invention is not particularly limited, and can be applied to known applications without any particular limitation. Examples of applications that are preferably used include those used as fillers in resins for the purpose of improving electrical insulation, imparting thermal conductivity, etc. while reducing emission of α-rays. In the application of the boron nitride powder, the obtained resin composition emits little α-rays and has high electrical insulation and thermal conductivity.
本発明の樹脂組成物は制限無く公知の用途に使用することが出来るが、後述する樹脂と混合し熱伝導性樹脂組成物あるいは熱伝導性成形体とすることでポリマー系放熱シートやフェイズチェンジシート等のサーマルインターフェイスマテリアル、放熱テープ、放熱グリース、放熱接着剤、ギャップフィラー等の有機系放熱シート類、放熱塗料、放熱コート等の放熱塗料類、PWBベース樹脂基板、CCLベース樹脂基板等の放熱樹脂基板、アルミベース基板、銅ベース基板等のメタルベース基板の絶縁層、パワーデバイス用封止材等の用途に好ましく用いることが出来る。 The resin composition of the present invention can be used for known applications without limitation, but by mixing with a resin described below to form a heat conductive resin composition or a heat conductive molded body, a polymer heat dissipation sheet or a phase change sheet. Thermal interface materials such as heat dissipation tapes, heat dissipation grease, heat dissipation adhesives, organic heat dissipation sheets such as gap fillers, heat dissipation paints such as heat dissipation paints and heat dissipation coats, and heat dissipation resins such as PWB base resin substrates and CCL base resin substrates It can be preferably used for applications such as an insulating layer of a metal base substrate such as a substrate, an aluminum base substrate, and a copper base substrate, and a sealing material for power devices.
中でも、本発明の窒化ホウ素粉末は熱伝導性及び電気絶縁性に優れることから、前記樹脂組成物を放熱絶縁シートとして用いた場合に最大の効果を発揮する。 Above all, the boron nitride powder of the present invention is excellent in thermal conductivity and electric insulation, and thus exhibits the greatest effect when the resin composition is used as a heat dissipation insulating sheet.
さらに、本発明の窒化ホウ素粉末は中性子吸収性能を有することから、前記放熱絶縁シートを、中性子に起因するソフトエラーへの対策として、電子部品の放熱絶縁部材に採用することが最も好ましい。 Furthermore, since the boron nitride powder of the present invention has neutron absorption performance, it is most preferable to employ the heat dissipation insulating sheet as a heat dissipation insulating member for electronic components as a measure against soft errors caused by neutrons.
また、本発明の窒化ホウ素粉末は樹脂組成物とする際に、一般的な高熱伝導絶縁フィラーである窒化アルミニウム、酸化アルミニウム等の熱伝導性フィラーと混合して使用することが好ましい。かかる態様とすることによって、熱伝導性及び電気絶縁性を用途に応じて最適化し、また、費用対効果を向上することが出来る。 In addition, when the boron nitride powder of the present invention is used as a resin composition, it is preferable to use it by mixing it with a heat conductive filler such as aluminum nitride and aluminum oxide, which are general high heat conductive insulating fillers. By adopting such an embodiment, the thermal conductivity and the electrical insulation can be optimized according to the application, and the cost-effectiveness can be improved.
前記樹脂としては、ポリオレフィン、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ケイ素樹脂、ビスマレイミドトリアジン樹脂等の熱硬化性樹脂、合成ゴムなどが挙げられる。 As the resin, polyolefin, vinyl chloride resin, methyl methacrylate resin, nylon, thermoplastic resin such as fluororesin, epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, bismaleimide triazine resin And the like, a thermosetting resin, a synthetic rubber, and the like.
また、上記樹脂組成物には、必要に応じて樹脂組成物の配合剤として公知の重合開始剤、硬化剤、重合禁止剤、重合遅延剤、カップリング剤、可塑剤、紫外線吸収剤、顔料、染料、抗菌剤、有機フィラー、有機無機複合フィラーなどの公知の添加剤を含んでもよい。また、本発明の効果を損なわない範囲で他の無機フィラーを含んでいてもよい。 Further, the resin composition, if necessary as a compounding agent of the resin composition known polymerization initiator, curing agent, polymerization inhibitor, polymerization retarder, coupling agent, plasticizer, ultraviolet absorber, pigment, Known additives such as dyes, antibacterial agents, organic fillers, and organic-inorganic composite fillers may be included. Further, other inorganic fillers may be contained as long as the effects of the present invention are not impaired.
また、本発明の窒化ホウ素粉末は、立方晶窒化ホウ素や窒化ホウ素成型品等の窒化ホウ素加工品製品の原料、エンジニアリングプラスチックへの核剤、フェーズチェンジマテリアル、固体状または液体状のサーマルインターフェイスマテリアル、溶融金属や溶融ガラス成形型の離型剤、化粧品、複合セラミックス原料等の用途にも使用することができる。 Further, the boron nitride powder of the present invention is a raw material of a boron nitride processed product such as cubic boron nitride or a boron nitride molded product, a nucleating agent for engineering plastics, a phase change material, a solid or liquid thermal interface material, It can also be used for applications such as mold release agents for molten metal and molten glass molds, cosmetics, and composite ceramic raw materials.
以下、本発明を実施例により更に詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
尚、実施例において、各測定は、以下の方法により測定した値である。 In the examples, each measurement is a value measured by the following method.
[六方晶窒化ホウ素粉末の同位体存在比]
得られた六方晶窒化ホウ素粉末について、アルバック・ファイ株式会社製:PHI ADEPT−1010を用いて同位体存在比の分析を行った。マススペクトルの10Bと11Bのカウントの比から窒化ホウ素粉末の全ホウ素中の11Bの存在比を確認した。
[Isotope ratio of hexagonal boron nitride powder]
The obtained hexagonal boron nitride powder was analyzed for isotope abundance ratio using PHI ADEPT-1010 manufactured by ULVAC-PHI, Inc. From the ratio of the counts of 10 B and 11 B in the mass spectrum, the abundance ratio of 11 B in the total boron of the boron nitride powder was confirmed.
[JIS−K−6217−4に準拠した六方晶窒化ホウ素粉末のDBP吸収量(ml/100g)及び最大トルク(Nm)]
得られた六方晶窒化ホウ素粉末について、JIS−K−6217−4に準拠して測定した横軸:DBP滴下量(ml)、縦軸:トルク(Nm)曲線から算出される最大トルク(Nm)、DBP吸収量(ml/100g)を求めた。測定装置は株式会社あさひ総研製:S−500を用いて測定した。測定条件はDBP滴下速度4ml/min、撹拌翼回転数125rpm、試料投入量30g、最大トルクの70%の滴下量を用いてDBP吸収量とした。DBP(Dibutyl Phthalate)は和光純薬工業株式会社製:特級試薬(販売元コード021−06936)を用いて行った。
[DBP absorption amount (ml / 100 g) and maximum torque (Nm) of hexagonal boron nitride powder based on JIS-K-6217-4]
The obtained hexagonal boron nitride powder was measured in accordance with JIS-K-6217-4, with the horizontal axis representing the amount of DBP dripping (ml) and the vertical axis representing the maximum torque (Nm) calculated from the torque (Nm) curve. And the amount of DBP absorption (ml / 100 g) were determined. The measurement was performed using a measuring device S-500 manufactured by Asahi Research Institute. The measurement conditions were the DBP dropping rate of 4 ml / min, the number of revolutions of the stirring blade at 125 rpm, the sample input amount of 30 g, and the DBP absorption amount using the dropping amount of 70% of the maximum torque. DBP (Dibutyl Phthalate) was performed using a special-grade reagent (supplier code: 021-06936) manufactured by Wako Pure Chemical Industries, Ltd.
[六方晶窒化ホウ素粉末のタップ嵩密度(g/cm3)]
得られた六方晶窒化ホウ素粉末について、株式会社セイシン企業製:タップデンサーKYT−5000を用いてタップ嵩密度を測定した。試料セルは100ml、タップ速度120回/分、タップ高さ5cm、タップ回数500回の条件で行った。
[Tap bulk density of hexagonal boron nitride powder (g / cm 3 )]
About the obtained hexagonal boron nitride powder, the tap bulk density was measured using the tap denser KYT-5000 made by Seishin Enterprise Co., Ltd. The sample cell was performed under the conditions of 100 ml, tap speed 120 times / min, tap height 5 cm, and tap number 500 times.
[六方晶窒化ホウ素粉末の比表面積(m2/g)]
得られた六方晶窒化ホウ素粉末について、マウンテック社製:Macsorb HM model−1201を用いて比表面積を測定した。
[Specific surface area of hexagonal boron nitride powder (m 2 / g)]
The specific surface area of the obtained hexagonal boron nitride powder was measured using Macsorb HM model 1201 manufactured by Mountech.
[六方晶窒化ホウ素粉末の粒度分布の累積体積頻度90%の粒径D1(μm)]
得られた六方晶窒化ホウ素粉末について、HORIBA社製:LA−950V2を用いて粒度分布の累積体積頻度90%の粒径(D1)を測定した。測定はエタノール溶媒中に窒化ホウ素粉末を分散させ、超音波処理等、窒化ホウ素凝集粒子を破壊する虞のある操作を行わずに測定した。得られた粒度分布の累積体積頻度90%の粒径を(D1)とした。
[六方晶窒化ホウ素粉末純度(質量%)]
得られた六方晶窒化ホウ素粉末について、Rigaku社製ZSX Primus2(商品名)を用いて六方晶窒化ホウ素粉末純度を測定した。六方晶窒化ホウ素粉末純度とは、上述した蛍光X線分析法により、測定した六方晶窒化ホウ素粉末の測定元素中、B及びN以外の不純物元素の含有質量割合を100から引いた値である。
[Diameter D1 (μm) of 90% of cumulative volume frequency of particle size distribution of hexagonal boron nitride powder]
About the obtained hexagonal boron nitride powder, the particle size (D1) of 90% of the cumulative volume frequency of the particle size distribution was measured using LA-950V2 manufactured by HORIBA. The measurement was performed without dispersing the boron nitride powder in an ethanol solvent and performing an operation such as ultrasonic treatment that might destroy the boron nitride aggregated particles. The particle size at a cumulative volume frequency of 90% in the obtained particle size distribution was defined as (D1).
[Hexagonal boron nitride powder purity (% by mass)]
About the obtained hexagonal boron nitride powder, the purity of the hexagonal boron nitride powder was measured using ZSX Primus2 (trade name) manufactured by Rigaku Corporation. The hexagonal boron nitride powder purity is a value obtained by subtracting the content mass ratio of impurity elements other than B and N in the measured elements of the hexagonal boron nitride powder measured by the above-described X-ray fluorescence analysis method from 100.
実施例1
11Bの濃縮度が95%の11B濃縮ホウ酸346.4g、カーボンブラック84g、炭酸カルシウム44g、平均粒径170μmの11Bの濃縮度が95%の11B濃縮炭化ホウ素52gを含む混合物526.4gを、ボールミルを使用して混合した。該混合物の(B/C)元素比換算は0.8、11B濃縮含酸素ホウ素化合物、カーボン源、の、B2O3、C換算質量合計量100質量部に対する上記含酸素カルシウム化合物のCaO換算質量含有割合は8.8質量部である。11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物の、B2O3、C、CaO換算質量合計量100質量部に対する11B濃縮炭化ホウ素の含有割合は17質量部である。該混合物100gを、黒鉛製タンマン炉を用い、窒素ガス雰囲気下、1950℃で17時間保持することで窒化処理した。
Example 1
11 B enrichment 95% of the 11 B enriched boric acid 346.4 g, carbon black 84 g, calcium carbonate 44 g, average 11 enrichment of B of particle size 170μm mixtures containing 95% of the 11 B enriched boron carbide 52 g 526 0.4 g was mixed using a ball mill. The (B / C) element ratio conversion of the mixture is 0.8, and the CaO of the oxygenated calcium compound is 100 parts by mass of the 11 B-enriched oxygenated boron compound and carbon source with respect to 100 parts by mass of the total mass in terms of B 2 O 3 and C. The reduced mass content ratio is 8.8 parts by mass. 11 B enriched oxygen-containing boron compounds, carbon source, oxygen-containing calcium compound, B 2 O 3, C, content of 11 B enriched boron carbide for CaO reduced mass per 100 parts by mass is 17 parts by weight. 100 g of the mixture was subjected to a nitriding treatment by holding it at 1950 ° C. for 17 hours in a nitrogen gas atmosphere using a graphite Tamman furnace.
次いで、副生成物含有窒化ホウ素を解砕して容器に投入し、該副生成物含有窒化ホウ素の5倍量の塩酸(7質量%HCl)を加え、回転数700rpmで24時間撹拌した。該酸洗浄の後、酸をろ過し、使用した酸と同量の純水に、ろ過して得られた窒化ホウ素を分散させ、再度ろ過した。この操作を5回繰り返した後、200℃で6時間真空乾燥させた。 Next, the by-product-containing boron nitride was crushed and charged into a vessel, and hydrochloric acid (7% by mass HCl) in an amount 5 times the amount of the by-product-containing boron nitride was added thereto, followed by stirring at 700 rpm for 24 hours. After the acid washing, the acid was filtered, the boron nitride obtained by filtration was dispersed in the same amount of pure water as the acid used, and the resultant was filtered again. After this operation was repeated five times, vacuum drying was performed at 200 ° C. for 6 hours.
乾燥後に得られた粉末を目開き120μmの篩にかけて、白色の六方晶窒化ホウ素粉末を得た。得られた六方晶窒化ホウ素粉末の全ホウ素中の11Bの存在比、DBP吸収量、最大トルク、タップ嵩密度、比表面積、純度、粒度分布の累積体積頻度90%の粒径D1を上述した方法で測定し、表2に示した。 The powder obtained after drying was sieved through a sieve having an opening of 120 μm to obtain a white hexagonal boron nitride powder. Abundance of 11 B in the total boron of the resulting hexagonal boron nitride powder, DBP absorption amount, the aforementioned maximum torque, tapped bulk density, specific surface area, purity, a cumulative volume frequency of 90% particle diameter D1 of the particle size distribution It was measured by the method and shown in Table 2.
実施例2
11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物の、B2O3、C、CaO換算質量合計量100質量部に対する11B濃縮炭化ホウ素の含有割合を19質量部とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 2
Implemented except that the content ratio of 11 B-enriched boron carbide was 100 parts by mass in terms of B 2 O 3 , C, and CaO of the 11 B-enriched oxygen-containing boron compound, carbon source, and oxygen-containing calcium compound was 19 parts by mass. Same as Example 1. The conditions and measured values are shown in Tables 1 and 2.
実施例3
11B濃縮含酸素ホウ素化合物、カーボン源、の、B2O3、C換算質量合計量100質量部に対する上記含酸素カルシウム化合物のCaO換算質量含有割合を11.1質量部とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 3
Example 1 Except that the content ratio of the oxygen-containing calcium compound in terms of CaO to 11.2 parts by mass per 100 parts by mass of the total mass in terms of B 2 O 3 and C of the 11 B-concentrated oxygen-containing boron compound and carbon source was set to 11.1 parts by mass. Same as 1. The conditions and measured values are shown in Tables 1 and 2.
実施例4
11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物の、B2O3、C、CaO換算質量合計量100質量部に対する11B濃縮炭化ホウ素の含有割合を11質量部、還元窒化を1900℃とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 4
11 B enriched oxygen-containing boron compounds, carbon source, oxygen-containing calcium compound, B 2 O 3, C, 11 parts by mass of the content of the 11 B enriched boron carbide for CaO reduced mass per 100 parts by weight, the reduction nitridation 1900 The procedure was the same as in Example 1 except that the temperature was changed to ° C. The conditions and measured values are shown in Tables 1 and 2.
実施例5
(B/C)元素比換算を0.81、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物の、B2O3、C、CaO換算質量合計量100質量部に対する11B濃縮炭化ホウ素の含有割合を23質量部、還元窒化を2000℃とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 5
The (B / C) atomic ratio in terms 0.81, 11 B enriched oxygen-containing boron compounds, carbon source, oxygen-containing calcium compound, B 2 O 3, C, 11 B enriched carbide for CaO reduced mass per 100 parts by Example 1 was repeated except that the boron content was 23 parts by mass and the reduction nitriding was 2000 ° C. The conditions and measured values are shown in Tables 1 and 2.
実施例6
(B/C)元素比換算を0.79、11B濃縮含酸素ホウ素化合物、カーボン源の、B2O3、C換算質量合計量100質量部に対する上記含酸素カルシウム化合物のCaO換算質量含有割合を10.8質量部、11B濃縮含酸素ホウ素化合物、カーボン源、含酸素カルシウム化合物の、B2O3、C、CaO換算質量合計量100質量部に対する11B濃縮炭化ホウ素の含有割合を18質量部とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 6
(B / C) atomic ratio in terms of 0.79, 11 B enriched oxygen-containing boron compounds, carbon sources, CaO reduced mass content of B 2 O 3, C reduced mass total amount the oxygen-containing calcium compound to the 100 parts by weight 10.8 parts by mass of the 11 B-enriched boron-containing boron compound, the carbon source, and the oxygen-containing calcium compound in terms of the content ratio of the 11 B-enriched boron carbide with respect to 100 parts by mass in terms of B 2 O 3 , C, and CaO in terms of 100 parts by mass. The same procedures as in Example 1 were carried out except that the parts by mass were used. The conditions and measured values are shown in Tables 1 and 2.
実施例7
11Bの濃縮度が99%の11B濃縮ホウ酸、11Bの濃縮度が95%の11B濃縮炭化ホウ素とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 7
11 enrichment 99% 11 B enriched boric acid B, except that the enrichment of 11 B was 95% of the 11 B enriched boron carbide and in the same manner as in Example 1. The conditions and measured values are shown in Tables 1 and 2.
実施例8
11Bの濃縮度が90%の11B濃縮ホウ酸、11Bの濃縮度が95%の11B濃縮炭化ホウ素とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Example 8
11 enrichment of 90% of the 11 B enriched boric acid B, except that the enrichment of 11 B was 95% of the 11 B enriched boron carbide and in the same manner as in Example 1. The conditions and measured values are shown in Tables 1 and 2.
比較例1
炭化ホウ素を無添加とした以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Comparative Example 1
Example 1 was repeated except that boron carbide was not added. The conditions and measured values are shown in Tables 1 and 2.
比較例2
11Bを濃縮していないホウ酸、11Bを濃縮していない炭化ホウ素を使用した以外は実施例1と同様にした。各条件、測定値を表1、2に示した。
Comparative Example 2
Boric acid which is not concentrated to 11 B, is as in Example 1 except for using boron carbide which is not concentrated to 11 B. The conditions and measured values are shown in Tables 1 and 2.
比較例3
市販品の六方晶窒化ホウ素凝集粒子を高選択的に含む六方晶窒化ホウ素粉末:PTX25(商品名:Momentive社製)の粉体物性を測定し、表2に示した。
Comparative Example 3
Powder properties of a commercially available hexagonal boron nitride powder containing highly agglomerated hexagonal boron nitride particles: PTX25 (trade name: manufactured by Momentive) were measured, and the results are shown in Table 2.
比較例4
市販品の六方晶窒化ホウ素の単粒子を高選択的に含むPT110(商品名:Momentive社製)の粉体物性を測定し、表2に示した。
Comparative Example 4
The powder properties of a commercially available PT110 (trade name: manufactured by Momentive) containing single particles of hexagonal boron nitride in a highly selective manner were measured.
実施例9〜16
実施例1〜8で得られた窒化ホウ素粉末をエポキシ樹脂に充填し樹脂組成物を作製し、熱伝導率の評価を行った。エポキシ樹脂は、(三菱化学株式会社製JER828)100質量部と硬化剤(イミダゾール系硬化剤、四国化成株式会社製キュアゾール2E4MZ)5質量部と溶媒としてメチルエチルケトン210質量部の混合物を準備した。次に、基材樹脂30体積%と、前記特定窒化ホウ素粉末70体積%となるように上記ワニス状混合物と六方晶窒化ホウ素粉末を自転・公転ミキサー(倉敷紡績株式会社製MAZERUSTAR)にて混合して樹脂組成物を得た。
Examples 9 to 16
The boron nitride powder obtained in Examples 1 to 8 was filled in an epoxy resin to prepare a resin composition, and the thermal conductivity was evaluated. As the epoxy resin, a mixture of 100 parts by mass (JER828 manufactured by Mitsubishi Chemical Corporation), 5 parts by mass of a curing agent (imidazole-based curing agent, Curesol 2E4MZ manufactured by Shikoku Chemicals Co., Ltd.) and 210 parts by mass of methyl ethyl ketone as a solvent was prepared. Next, the varnish-like mixture and the hexagonal boron nitride powder were mixed by a rotation / revolution mixer (MAZERUSTAR manufactured by Kurashiki Spinning Co., Ltd.) so that the base resin was 30% by volume and the specific boron nitride powder was 70% by volume. Thus, a resin composition was obtained.
上記樹脂組成物を,テスター産業社製自動塗工機PI−1210を用いて、PETフィルム上に厚み250〜300μm程度に塗工・乾燥し、減圧下、温度:200℃、圧力:5MPa、保持時間:30分の条件で硬化させ、厚さ200μmのシートを作製した。
該シートを温度波熱分析装置にて解析し、熱伝導率を算出した結果を表3に示した。実施例1〜8で作製した六方晶窒化ホウ素粉末を充填したシートの熱伝導率は、14.0W/m・K以上であり、高熱伝導率を示した。また、耐電圧試験機(多摩電測株式会社製)にて絶縁耐力を測定した結果、40kV/mm以上と高絶縁耐力であり、樹脂組成物内の、絶縁耐力低下原因となる空隙量が少ない事が示唆された。
The above resin composition is coated and dried on a PET film to a thickness of about 250 to 300 μm using an automatic coating machine PI-1210 manufactured by Tester Sangyo Co., Ltd., and under reduced pressure, temperature: 200 ° C., pressure: 5 MPa, holding Time: cured for 30 minutes to produce a sheet having a thickness of 200 μm.
The sheet was analyzed with a temperature wave thermal analyzer, and the results of calculating the thermal conductivity are shown in Table 3. The sheet filled with the hexagonal boron nitride powder prepared in Examples 1 to 8 had a thermal conductivity of 14.0 W / m · K or more, indicating a high thermal conductivity. The dielectric strength was measured with a withstand voltage tester (manufactured by Tama Denso Co., Ltd.). As a result, the dielectric strength was as high as 40 kV / mm or more, and the amount of voids in the resin composition that caused a decrease in dielectric strength was small. The thing was suggested.
次に、各基材樹脂80体積%と、前記特定窒化硼素粉末20体積%とを乳鉢にて、各試験毎に同一条件で混合後、測定温度25℃においてB型粘度計TBA−10(東機工業製)で粘度を測定した。 Next, after mixing 80% by volume of each base resin and 20% by volume of the specific boron nitride powder in a mortar under the same conditions for each test, a B-type viscometer TBA-10 (East) was used at a measurement temperature of 25 ° C. (Manufactured by Kiki Kogyo).
実施例17
次に、実施例1で作製した窒化ホウ素粉末、平均粒径30μmの窒化アルミニウム、平均粒径1μmの酸化アルミニウムを体積比5:4:1で混合し、実施例9と同様にシート及び粘度評価を行った。
Example 17
Next, the boron nitride powder produced in Example 1, aluminum nitride having an average particle diameter of 30 μm, and aluminum oxide having an average particle diameter of 1 μm were mixed at a volume ratio of 5: 4: 1, and the sheet and viscosity were evaluated in the same manner as in Example 9. Was done.
実施例18
次に、実施例1で作製した窒化ホウ素粉末と平均粒径30μmの窒化アルミニウム、を体積比5:5で混合し、実施例9と同様にシート及び粘度評価を行った。
Example 18
Next, the boron nitride powder produced in Example 1 and aluminum nitride having an average particle diameter of 30 μm were mixed at a volume ratio of 5: 5, and the sheet and the viscosity were evaluated in the same manner as in Example 9.
実施例19
次に、実施例4で作製した窒化ホウ素粉末と平均粒径20μmの酸化アルミニウムを体積比9.5:0.5で混合し、実施例9と同様にシート及び粘度評価を行った。
Example 19
Next, the boron nitride powder produced in Example 4 and aluminum oxide having an average particle diameter of 20 μm were mixed at a volume ratio of 9.5: 0.5, and the sheet and viscosity were evaluated in the same manner as in Example 9.
比較例5〜8
比較例1、2で得られた窒化ホウ素粉末及び比較例4の市販品窒化ホウ素粉末を用いた以外は実施例9と同様にし、比較例5、6、8とした。比較例3の市販品六方晶窒化ホウ素粉末を用いた比較例7においては、DBP吸収量が高く、塗工可能な粘度となるまでに必要な溶媒量が320質量部と他の実施例、比較例よりも多量に必要であった。また、シート内部の断面を観察すると、空隙が多数確認された。温度波熱分析装置にて該シートを解析し、熱伝導率を算出した結果を表3に示した。また、耐電圧試験機(多摩電測株式会社製)にて絶縁耐力を測定した結果を表3に示した。比較例1で得られた窒化ホウ素粉末及び比較例3、4の市販品六方晶窒化ホウ素粉末を充填したシートはいずれも14.0W/m・K、40kV/mm以上を達成する事が出来なかった。
Comparative Examples 5 to 8
Comparative Examples 5, 6, and 8 were made in the same manner as in Example 9 except that the boron nitride powder obtained in Comparative Examples 1 and 2 and the commercially available boron nitride powder of Comparative Example 4 were used. In Comparative Example 7 using the commercially available hexagonal boron nitride powder of Comparative Example 3, the amount of solvent required to achieve a high DBP absorption amount and a viscosity that allows application was 320 parts by mass, which was the same as in other Examples and Comparative Examples. More was needed than in the example. Further, when the cross section inside the sheet was observed, many voids were confirmed. Table 3 shows the results of analyzing the sheet with a temperature wave thermal analyzer and calculating the thermal conductivity. Table 3 shows the results of measuring the dielectric strength with a withstand voltage tester (manufactured by Tama Denso Co., Ltd.). None of the sheets filled with the boron nitride powder obtained in Comparative Example 1 and the commercially available hexagonal boron nitride powder of Comparative Examples 3 and 4 can achieve 14.0 W / m · K or more than 40 kV / mm. Was.
次に、各基材樹脂80体積%と、前記特定窒化硼素粉末20体積%とを乳鉢にて各試験毎に同一条件で混合後、測定温度25℃においてB型粘度計TBA−10(東機工業製)で粘度を測定した。比較例1で得られた窒化ホウ素粉末及び比較例3、4の市販品六方晶窒化ホウ素粉末を含む樹脂組成物は、実施例1〜8、及び比較例2で作製した窒化ホウ素粉末を含む樹脂組成物より高粘度であった。 Next, after mixing 80% by volume of each base resin and 20% by volume of the specific boron nitride powder in a mortar under the same conditions for each test, a B-type viscometer TBA-10 (Toki Machine Co., Ltd.) was used at a measurement temperature of 25 ° C. (Manufactured by Kogyo Co., Ltd.). The resin composition containing the boron nitride powder obtained in Comparative Example 1 and the commercially available hexagonal boron nitride powder of Comparative Examples 3 and 4 is a resin composition containing the boron nitride powder produced in Examples 1 to 8 and Comparative Example 2. It was higher in viscosity than the composition.
次いで、ここまでに得られた実施例9〜16及び比較例5〜8の該シートを用いて以下に示す方法により、本発明の六方晶窒化ホウ素のα線放出低減性能を評価した。 Next, using the sheets obtained in Examples 9 to 16 and Comparative Examples 5 to 8 described above, the hexagonal boron nitride of the present invention was evaluated for the α-ray emission reduction performance by the method described below.
該シートのα線の放出量を2πガスフロー比例計数方式である株式会社住化分析センター製:LACS−4000mを用いて評価した。α線は窒化ホウ素中の10Bと熱中性子の複合核反応によって発生するが、宇宙線由来の熱中性子で測定すると非常に時間が掛るため、測定時間の短縮のためCf−252中性子線源を使用した。20cm角の立方体形状の高密度ポリエチレンの中心にCf−252中性子線源を設置し、Cf−252由来の中性子線を高密度ポリエチレンで減速して熱中性子線源とした。該熱中性子線源をLACS−4000mから一定の距離に設置して熱中性子を照射した。 The amount of emitted α-rays from the sheet was evaluated using a 2π gas flow proportional counting system, LACS-4000m, manufactured by Sumika Chemical Analysis Service, Ltd. Alpha rays are generated by the complex nuclear reaction of 10 B and thermal neutrons in boron nitride. However, it takes a very long time to measure with thermal neutrons derived from cosmic rays, so a Cf-252 neutron source was used to shorten the measurement time. used. A Cf-252 neutron source was installed at the center of a 20 cm square cubic high-density polyethylene, and a neutron beam derived from Cf-252 was decelerated by the high-density polyethylene to obtain a thermal neutron source. The thermal neutron source was installed at a fixed distance from LACS-4000 m and irradiated with thermal neutrons.
α線の放出量について、比較例6で得られた値を1、シート無しで測定(ブランク測定)して得られた値を0として相対値を求め、その値を表3に記し、図1のグラフにプロットした。該グラフによれば、11Bの存在比が高いほどα線の放出を低減できることがわかる。11Bの存在比が天然のホウ素の11Bの存在比を超える六方晶窒化ホウ素粉末を使用して製作したシートは、11Bの存在比が天然ホウ素の11Bの存在比に相当する六方晶窒化ホウ素粉末を使用して製作したシートよりα線の放出量が少なかった。 With respect to the amount of emitted α-rays, the relative value was determined assuming that the value obtained in Comparative Example 6 was 1, and the value obtained by measuring without a sheet (blank measurement) was 0, and the relative values were obtained. Plotted on the graph. According to the graph, it can be seen that the higher the abundance ratio of 11 B, the more the emission of α-rays can be reduced. Sheet abundance ratio of 11 B was made using hexagonal boron nitride powder of greater than abundance ratio of 11 B natural boron, hexagonal abundance ratio of 11 B corresponds to the presence ratio of 11 B natural boron The emission amount of α-rays was smaller than the sheet manufactured using the boron nitride powder.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018118708A JP7109275B2 (en) | 2018-06-22 | 2018-06-22 | Hexagonal boron nitride powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018118708A JP7109275B2 (en) | 2018-06-22 | 2018-06-22 | Hexagonal boron nitride powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019218254A true JP2019218254A (en) | 2019-12-26 |
JP7109275B2 JP7109275B2 (en) | 2022-07-29 |
Family
ID=69095517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018118708A Active JP7109275B2 (en) | 2018-06-22 | 2018-06-22 | Hexagonal boron nitride powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7109275B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071227A1 (en) * | 2020-09-30 | 2022-04-07 | デンカ株式会社 | Boron nitride powder and method for producing boron nitride powder |
JPWO2022071225A1 (en) * | 2020-09-30 | 2022-04-07 | ||
WO2022071246A1 (en) * | 2020-09-30 | 2022-04-07 | デンカ株式会社 | Boron nitride powder, and method for producing boron nitride powder |
CN114790576A (en) * | 2022-04-27 | 2022-07-26 | 东南大学 | Method for preparing B10 and B11 isotopically enriched hexagonal boron nitride single crystal |
WO2022186191A1 (en) * | 2021-03-02 | 2022-09-09 | 株式会社トクヤマ | Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet |
JP7555524B1 (en) | 2023-03-28 | 2024-09-24 | 株式会社トクヤマ | Hexagonal boron nitride powder, resin composition and resin sheet |
WO2024202628A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社トクヤマ | Hexagonal boron nitride powder, resin composition, and resin sheet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040208812A1 (en) * | 2000-11-28 | 2004-10-21 | Clere Thomas M. | Method for making high thermal diffusivity boron nitride powders |
JP2015212217A (en) * | 2014-04-18 | 2015-11-26 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing the same |
JP2016094315A (en) * | 2014-11-14 | 2016-05-26 | 株式会社トクヤマ | Porous aluminum nitride grain |
JP2016160134A (en) * | 2015-03-02 | 2016-09-05 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing the same |
WO2018123571A1 (en) * | 2016-12-26 | 2018-07-05 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing same |
JP2019131442A (en) * | 2018-02-01 | 2019-08-08 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing cubic crystal or hexagonal crystal boron nitride |
-
2018
- 2018-06-22 JP JP2018118708A patent/JP7109275B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040208812A1 (en) * | 2000-11-28 | 2004-10-21 | Clere Thomas M. | Method for making high thermal diffusivity boron nitride powders |
JP2015212217A (en) * | 2014-04-18 | 2015-11-26 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing the same |
JP2016094315A (en) * | 2014-11-14 | 2016-05-26 | 株式会社トクヤマ | Porous aluminum nitride grain |
JP2016160134A (en) * | 2015-03-02 | 2016-09-05 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing the same |
WO2018123571A1 (en) * | 2016-12-26 | 2018-07-05 | 株式会社トクヤマ | Hexagonal boron nitride powder and method for producing same |
JP2019131442A (en) * | 2018-02-01 | 2019-08-08 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing cubic crystal or hexagonal crystal boron nitride |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7165287B2 (en) | 2020-09-30 | 2022-11-02 | デンカ株式会社 | Boron nitride powder and method for producing boron nitride powder |
JP7140939B2 (en) | 2020-09-30 | 2022-09-21 | デンカ株式会社 | Boron nitride powder and method for producing boron nitride powder |
WO2022071246A1 (en) * | 2020-09-30 | 2022-04-07 | デンカ株式会社 | Boron nitride powder, and method for producing boron nitride powder |
JPWO2022071227A1 (en) * | 2020-09-30 | 2022-04-07 | ||
JPWO2022071246A1 (en) * | 2020-09-30 | 2022-04-07 | ||
WO2022071225A1 (en) * | 2020-09-30 | 2022-04-07 | デンカ株式会社 | Boron nitride powder and method for producing boron nitride powder |
JPWO2022071225A1 (en) * | 2020-09-30 | 2022-04-07 | ||
JP7458523B2 (en) | 2020-09-30 | 2024-03-29 | デンカ株式会社 | Boron Nitride Powder |
WO2022071227A1 (en) * | 2020-09-30 | 2022-04-07 | デンカ株式会社 | Boron nitride powder and method for producing boron nitride powder |
CN116419944A (en) * | 2021-03-02 | 2023-07-11 | 株式会社德山 | Hexagonal boron nitride aggregate particles, hexagonal boron nitride powder, resin composition, and resin sheet |
WO2022186191A1 (en) * | 2021-03-02 | 2022-09-09 | 株式会社トクヤマ | Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet |
CN114790576A (en) * | 2022-04-27 | 2022-07-26 | 东南大学 | Method for preparing B10 and B11 isotopically enriched hexagonal boron nitride single crystal |
CN114790576B (en) * | 2022-04-27 | 2023-10-20 | 东南大学 | Method for preparing B10 and B11 isotopically enriched hexagonal boron nitride monocrystal |
JP7555524B1 (en) | 2023-03-28 | 2024-09-24 | 株式会社トクヤマ | Hexagonal boron nitride powder, resin composition and resin sheet |
WO2024202628A1 (en) * | 2023-03-28 | 2024-10-03 | 株式会社トクヤマ | Hexagonal boron nitride powder, resin composition, and resin sheet |
Also Published As
Publication number | Publication date |
---|---|
JP7109275B2 (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019218254A (en) | Hexagonal boron nitride powder and manufacturing method therefor | |
EP2455339B1 (en) | Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition | |
JP6979034B2 (en) | Hexagonal boron nitride powder and its manufacturing method | |
JP6483508B2 (en) | Hexagonal boron nitride powder and method for producing the same | |
US10752503B2 (en) | Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same | |
JP7419938B2 (en) | Silicon-containing oxide coated aluminum nitride particles | |
JP5430449B2 (en) | High thermal conductive filler | |
US11384024B2 (en) | Negative thermal expansion material, manufacturing method and composite material thereof | |
CN113329973A (en) | Filler composition, silicone resin composition, and heat-dissipating member | |
JP7481214B2 (en) | Magnesium oxide powder, filler composition, resin composition, and heat dissipation part | |
US20230416501A1 (en) | Hydrophobic aluminum nitride powder and method for producing the same | |
JP7138481B2 (en) | Hexagonal boron nitride powder and method for producing the same | |
JP2005162555A (en) | Spherical aluminum nitride and its manufacturing method | |
JP7109274B2 (en) | Hexagonal boron nitride powder and method for producing the same | |
WO2015105145A1 (en) | Method for producing hexagonal boron nitride, and heat dissipation sheet | |
JP2002053736A (en) | Filler of high thermal conductivity and its use | |
JP7138482B2 (en) | Hexagonal boron nitride powder and method for producing the same | |
JP7478631B2 (en) | Magnesium oxide powder, filler composition, resin composition, and heat dissipation part | |
JP7478632B2 (en) | Magnesium oxide powder, filler composition, resin composition, and heat dissipation part | |
CN115348951B (en) | Carbonaceous alumina powder, resin composition, heat radiating member, and process for producing carbonaceous alumina powder | |
TW202216584A (en) | Boron nitride powder, and method for producing boron nitride powder | |
JP7555524B1 (en) | Hexagonal boron nitride powder, resin composition and resin sheet | |
TW202406847A (en) | Highly pure spinel particles and production method therefor | |
Matsumoto et al. | Enhancing Thermal Conductivity of CNT/AlN/Silicone Rubber Composites through Directly Grown CNTs on AlN for Reduced Filler Filling Ratio | |
TW202302448A (en) | Hexagonal boron nitride aggregate particle and hexagonal boron nitride powder, resin composition, resin sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7109275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |