JP2002003213A - Amorphous fine silica particle, its production method and its use - Google Patents

Amorphous fine silica particle, its production method and its use

Info

Publication number
JP2002003213A
JP2002003213A JP2000184160A JP2000184160A JP2002003213A JP 2002003213 A JP2002003213 A JP 2002003213A JP 2000184160 A JP2000184160 A JP 2000184160A JP 2000184160 A JP2000184160 A JP 2000184160A JP 2002003213 A JP2002003213 A JP 2002003213A
Authority
JP
Japan
Prior art keywords
silica
flame
silica particles
particles
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184160A
Other languages
Japanese (ja)
Other versions
JP4789080B2 (en
Inventor
Kazuyoshi Honda
Takeyoshi Shibazaki
一義 本多
武義 柴崎
Original Assignee
Nippon Aerosil Co Ltd
日本アエロジル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd, 日本アエロジル株式会社 filed Critical Nippon Aerosil Co Ltd
Priority to JP2000184160A priority Critical patent/JP4789080B2/en
Priority claimed from US10/049,902 external-priority patent/US7083770B2/en
Priority claimed from EP20010941114 external-priority patent/EP1361195B1/en
Publication of JP2002003213A publication Critical patent/JP2002003213A/en
Application granted granted Critical
Publication of JP4789080B2 publication Critical patent/JP4789080B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine silica particle suitable as the filling material of a resin for semiconductor, and provide its production method. SOLUTION: In the method for producing an amorphous fine silica particle by introducing a gaseous silicone compound into a flame and hydrolyzing it, the flame temperature is made to be above the melting point of silica, a silica concentration in the flame is heightened, and a generated silica particle is stayed in the flame to be grown to obtain the amorphous silica particle having a mean particle diameter of 0.1-1.0 μm and a specific surface area of 5-30 m2/g.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体封止材の充填材、プラスチックフィルムやシートのアンチブロッキング用フィラー、あるいは電子写真方式を用いた複写機、プリンター、ファクシミリ、製版システムなどにおける電子写真用トナーの外添剤や内添剤、また電子写真感光体の表面保護層や電荷輸送層の材料として好適な非晶質球体シリカ微粒子とその製造方法に関する。 The present invention relates to the filling material encapsulating a semiconductor material, a plastic film or an anti-blocking filler sheets or copying machine using an electrophotographic system, a printer, a facsimile, electrophotographic such as in plate-making system external additives and internal additives of the toner, also the manufacturing method thereof suitable amorphous spherical silica fine particles as the material of the surface protective layer and the charge transporting layer of the electrophotographic photosensitive member.

【0002】半導体樹脂封止材にはその流動性や耐バリ性を改善するためにシリカ微粉体が充填剤として添加されるが、本発明はこの充填剤として好適な非晶質球状シリカ微粒子とその製造方法に関する。 [0002] Silica fine powder to the semiconductor resin sealing material to improve its fluidity and resistance to burr resistance is added as a filler, the present invention is a suitable amorphous spherical silica fine particles as the filler As a method for manufacturing. また、プラスチックフィルムやシートにフィラーを添加してフィルム表面に微細な凹凸を形成し、接触面積を減少させてブロッキングを防止することが知られているが、本発明の非晶質微細シリカ粒子はこのフィラーとしても好適である。 Further, by adding a filler to the plastic film or sheet to form fine irregularities on the film surface, it is known to prevent blocking by reducing the contact area, amorphous fine silica particles of the present invention even the filler is preferred. さらに、電子写真用トナーの流動性や耐熱性および長期保存性を改善し、さらに帯電性やクリーニング特性、キャリアや感光体表面での付着性、現像材劣化挙動などを制御する目的で外添剤が用いられ、また電子写真用トナーの耐久性を改善し、また電気的あるいは機械的な負荷がかかる電子写真感光体の表面保護層の耐久性を高めるために内添剤が用いられるが、本発明はこのような外添剤および内添剤としても広く用いることができる非晶質微細シリカ粒子とその製造方法に関する。 Furthermore, the external additive for the purpose of flowability and heat resistance of the electrophotographic toner and to improve the long-term storage stability, further chargeability and cleaning properties, adhesion with the carrier and the photosensitive member surface, for controlling the developer material degradation behavior is used also to improve the durability of the electrophotographic toner, also although internal additive used to enhance the durability of the electrical or mechanical load is applied the surface protective layer of the electrophotographic photosensitive member, the invention and its manufacturing method amorphous fine silica particles which can be widely used as such an external additive and an internal additive.

【0003】 [0003]

【従来技術】半導体用樹脂充填材として用いるシリカフィラーはできるだけ高純度であってその形状が真球に近く、適切な粒度分布を有するものが良く、さらに高充填および高流動性であるためにはそのシリカ粒子間の微細空間にも充填でき、かつ粒子間の滑りも向上できるものが有効であり、このため、概ね平均粒径0.1〜1μmおよびBET比表面積(以下、単に比表面積と云う)5〜3 Silica filler used as the Prior Art Semiconductor resin filler shape a highest possible purity is close to a sphere, often having a suitable particle size distribution, in order to be further highly filled and high fluidity also filled in the fine spaces between the silica particles, and it is effective as it can improved slippage between particles and thus, generally the average particle size 0.1~1μm and BET specific surface area (hereinafter, simply referred to as specific surface area ) 5-3
0m 2 /g程度の粒子が使用されている。 0 m 2 / g approximately particles are used. また、現在、電子写真用トナーの外添剤として流動性改善、帯電制御の目的で一般に平均粒径0.006〜0.040μmのシリカ粒子やチタニア粒子等が用いられており、内添剤として平均粒径0.005〜0.040μmのシリカ粒子が用いられているが、高速化、高画像化および現像材劣化挙動等の制御などに対応できるシャープな粒度分布を持った微細シリカ粒子が求められている。 Also, currently, improving fluidity as the external additive for electrophotographic toner, generally are used silica particles and titania particles having an average particle diameter 0.006~0.040μm is in charge control purposes, as internal additives have been used the average particle size 0.005~0.040μm silica particles are faster, fine silica particles having a sharp particle size distribution that can correspond to a control such as high imaging and developer material degradation behavior determined It is. また、電子写真感光体の表面保護層や電荷輸送層の耐久性を高めるために、 In order to enhance the durability of the surface protective layer and the charge transporting layer of the electrophotographic photosensitive member,
平均粒径0.005〜0.150μmのシリカ粒子が用いられているが、珪酸ナトリウムを原料として製造される湿式シリカやシリカゲルはソーダ等のアルカリ金属の含有量が高い問題があり、これに代わる適切な粒度のアルカリ金属量の少ない微細シリカ粒子が求められている。 Have been used silica particles having an average particle diameter 0.005~0.150μm is, wet silica or silica gel produced a sodium silicate as a raw material has a high content of alkali metals such as sodium problems, alternative less fine silica particles alkali metal content suitable particle size is required.

【0004】ところで、従来のゾル・ゲル法では1μm以下の微粒子を製造するのは困難であり、このような充填材料として好ましい粒度のシリカ微粒子を得るのは難しい。 Meanwhile, in the conventional sol-gel method and is difficult to produce the following particle 1 [mu] m, it is difficult to obtain the silica particles of the preferred particle size as such a filler material. しかも、ゾル・ゲル法では1μm以下の微粒子を生成しても、その反応物を安定したシリカ粒子に焼成する際に粒子どうしの成長および焼結が生じ、この粒度のままで単分散可能なシリカ粒子を安定に得ることができない。 Moreover, even in the sol-gel method produces the following fine particles 1 [mu] m, cause growth and sintering of particles each other when firing the reaction a stable silica particles, single dispersible silica remains this size it is impossible to obtain particles stably. また、焼成不十分なゾル・ゲル反応物微粒子はシラノール基や有機物が過度に残留しており、これを混練・ The firing inadequate sol-gel reactant particles are silanol groups or organic substances excessively remaining kneading and this
充填したコンパウンドは射出成形・加工する際に気体が発生するなどの問題があり、半導体樹脂封止材用充填材には使用できない。 Filled compound has a problem such as a gas is generated when the injection molding and processing, can not be used for a semiconductor resin sealing material for a filler.

【0005】一方、二酸化チタン粒子については、四塩化チタンを原料として用い、高温下でこれを酸素ガスで直接酸化することによって0.1μm以上の結晶性粒子を製造する方法が知られているが、シリカの直接酸化反応は二酸化チタンよりも高温下で行う必要があり、しかも融点(1730℃)と沸点(2230℃)が近いために粒子の成長が十分ではなく0.1μm以下の超微粒子になりやすい。 On the other hand, for the titanium dioxide particles, four using titanium tetrachloride as a raw material, a method of producing the above crystalline particles 0.1μm by oxidizing directly with oxygen gas it at a high temperature is known the direct oxidation reactions of the silica must be carried out at high temperatures than titanium dioxide, yet the melting point (1730 ° C.) and the boiling point (2230 ° C.) ultrafine particles growth is not sufficient 0.1μm or less of particles to close the Prone. しかも生産性も低い。 Moreover, productivity is also low. 従って、この方法によっても充填材料として好ましい粒度のシリカ粒子を得るのが難しい。 Thus, even difficult to obtain silica particles of the preferred size as a filler material by this method.

【0006】また、酸素含有雰囲気中で金属珪素粉末に着火し、火炎を形成して連続的に酸化燃焼させる方法は、製造されるシリカ粉末の純度が低いと云う問題がある。 Furthermore, igniting the metal silicon powder in an oxygen-containing atmosphere, a method for continuously oxidative combustion to form a flame, there is a problem that the purity of the silica powder to be produced referred to as low. 半導体封止樹脂に用いるシリカ微粉末は高純度のものが求められ、特に、放射線エラーを生じないようにウラン含有量が可能な限り少ないものが必要とされる。 Silica fine powder used in the semiconductor sealing resin of high purity is required, in particular, it is required as small as possible uranium content so as not to cause radiation error. ところが、金属珪素の精製は困難であり、これを原料とする酸化燃焼法では高純度のシリカ微粉末を低コストで製造することができない。 However, purification of silicon metal is difficult, it is impossible to produce a high-purity silica fine powder at low cost in the oxidation combustion method to do this as a raw material.

【0007】 [0007]

【発明が解決しようとする手段】本発明は、従来の製造方法における上記問題を解決したものであり、形状が真球に近く、適度が粒度分布を有する高純度の非晶質微細シリカ粒子を低コストで製造する方法を提供するものであり、また、そのシリカ微粒子に関するものである。 SUMMARY AND SUMMARY OF THE INVENTION The present invention has solved the above problems in the conventional manufacturing method, the shape is close to a sphere, a high purity amorphous fine silica particles moderately have a particle size distribution is intended to provide a method for producing at low cost, also it relates to the silica fine particles.

【0008】 [0008]

【課題を解決する手段】すなわち、本発明は(1)ガス状の珪素化合物を火炎中に導いて加水分解することにより非晶質シリカ微粒子を製造する方法において、火炎温度をシリカの融点以上および火炎中のシリカ濃度を0. A solution to means Namely, the present invention provides a process for preparing amorphous silica particles by hydrolysis led (1) gaseous silicon compound into a flame, the flame temperature silica melting point or more and 0 the silica concentration in the flame.
25kg/Nm 3以上とし、生成したシリカ粒子をシリカの融点以上の高温下に短時間滞留させ、平均粒径(メジアン径)0.1〜0.7μmおよび比表面積5〜30m 2 /gの非晶質シリカ粒子を得ることを特徴とする非晶質微細シリカ粒子の製造方法に関する。 25 kg / Nm 3 or more and then, the resulting silica particles are retained short time high temperature above the melting point of silica, average particle size (median diameter) 0.1 to 0.7 and a specific surface area of 5 to 30 m 2 / g non of the method for producing an amorphous fine silica particles, characterized in that to obtain the amorphous silica particles.

【0009】本発明の製造方法は以下の態様を含む。 The preparation process of the present invention includes the following aspects. (2)火炎中のシリカ濃度(v)が0.25〜1.0kg/Nm 3 (2) the silica concentration in the flame (v) is 0.25~1.0kg / Nm 3
である上記(1)の製造方法。 Manufacturing method (1) it is. (3)シリカ粒子の火炎中の滞留時間(t)が0.02〜 (3) the residence time in the flame of the silica particles (t) is 0.02
0.30秒である上記(1)または(2)の製造方法。 Manufacturing method (1) or (2) it is 0.30 seconds. (4)シリカ粒子の比表面積(S)、メジアン径(r)、火炎中のシリカ濃度(v)、シリカ粒子の火炎中の滞留時間 (4) the specific surface area of ​​the silica particles (S), the median size (r), silica concentration in the flame (v), the residence time in the flame of the silica particles
(t)を、おのおの次式[I]または[II]に従って制御する上記(1)、(2)または(3)の製造方法。 The (t), the (1) to control in accordance with each following formula [I] or [II], the production method of (2) or (3). S=3.52(v・t) -0.4 ……[I] r=1.07(v・t) 0.4 ……[II] S = 3.52 (v · t) -0.4 ...... [I] r = 1.07 (v · t) 0.4 ...... [II]

【0010】また、本発明は(5)平均粒径(メジアン径)0.1〜0.7μmおよび比表面積5〜30m 2 /gであって、次式[III]で表される分散係数(z)が40以下であることを特徴とする非晶質微細シリカ粒子に関する。 The present invention also (5) an average particle diameter (median diameter) 0.1 to 0.7 and a specific surface area of 5 to 30 m 2 / g, the dispersion coefficient expressed by the following formula [III] ( z) is about amorphous fine silica particles, wherein 40 or less. z=Y/2X ……[III] (Xはメジアン径、Yは累積10%到達粒径から累積9 z = Y / 2X ...... [III] (X a median diameter, Y is accumulated from 10% accumulated reaches particle size 9
0%到達粒径までの粒径範囲) 0% size range of up to reach particle size)

【0011】本発明の非晶質微細シリカ粒子は、(6) [0011] amorphous fine silica particles of the present invention, (6)
半導体樹脂封止材の充填材として用いられる上記(5)の非晶質微細シリカ粒子。 Amorphous fine silica particles of the used as a filler for a semiconductor resin sealing material (5). (7)プラスチックフィルムないしシートのアンチブロッキング用フィラーとして用いられる上記(5)の非晶質微細シリカ粒子、(8)トナー用外添剤として用いられる上記(5)の非晶質微細シリカ粒子、(9)電子写真感光体の表面保護層もしくは電荷輸送層に用いられる上記(5)の非晶質微細シリカ粒子を含む。 (7) amorphous fine silica particles of the plastic film or the used as an anti-blocking fillers for the seat (5), the amorphous fine silica particles (8) above which is used as an external additive for toner (5), (9) including an amorphous fine silica particles of the used for the surface protective layer or the charge transport layer of the electrophotographic photosensitive member (5).

【0012】本発明の非晶質微細シリカ粒子は、半導体封止用樹脂の充填材、プラスチックフィルム等のアンチブロッキング用フィラー、あるいは電子写真トナーや感光体などの電子写真材料の外添剤ないし内添剤として好適な粒度分布を有しており、これらの充填材料として優れた効果を発揮する。 [0012] amorphous fine silica particles of the present invention, filler semiconductor sealing resin, the external additive to the inner of the electrophotographic material, such as anti-blocking filler or electrophotographic toners and the photoreceptor, such as a plastic film It has a suitable particle size distribution as additive exhibits excellent effects as those of the filler material. また、本発明の製造方法によればこの非晶質微細シリカ粒子を容易に製造することができる。 Further, the amorphous fine silica particles can be easily produced according to the manufacturing method of the present invention.

【0013】 [0013]

【発明の実施の形態】以下、本発明を実施形態に基づいて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described in detail with reference to the present invention embodiment. (I)製造方法本発明の製造方法は、ガス状の珪素化合物を火炎中に導いて加水分解することにより非晶質シリカ微粒子を製造する方法において、火炎温度をシリカの融点以上および火炎中のシリカ濃度を0.25kg/Nm 3以上とし、生成したシリカ粒子をシリカの融点以上の高温下に短時間滞留させ、平均粒径(メジアン径)0.1〜0.7μmおよび比表面積5〜30m 2 /gの非晶質シリカ粒子を得ることを特徴とする方法である。 (I) the production method of the production method the present invention, the gaseous silicon compound in the method for producing the amorphous silica particles by hydrolysis led to the flame, the flame temperature in the melting point or more and the flame of the silica the silica concentration of 0.25 kg / Nm 3 or more, the resulting silica particles are retained briefly to a high temperature above the melting point of silica, average particle size (median diameter) 0.1 to 0.7 and a specific surface area 5~30m a method characterized by obtaining the amorphous silica particles of the 2 / g.

【0014】本発明の製造方法は火炎加水分解法に基づいており、珪素化合物の原料ガスを火炎中に導いて加水分解することによりシリカ粒子を製造する。 [0014] the production method of the present invention is based on the flame hydrolysis, to produce the silica particles by hydrolysis of the raw material gas of silicon compounds leading into the flame. 原料の珪素化合物としては、四塩化珪素、トリクロロシラン、ジクロロシラン、メチルトリクロロシラン等のガス状で酸水素炎中に導入され、高温下で加水分解反応を生じるものが用いられる。 As the silicon compound of the raw material, silicon tetrachloride, trichlorosilane, dichlorosilane, it is introduced into the gaseous an oxyhydrogen flame such as methyltrichlorosilane, is used which results in a hydrolysis reaction at a high temperature. これらの四塩化珪素等のガス状珪素化合物は蒸留精製が容易であり、原料中の不純物を容易に除去できるので高純度のシリカ粒子を製造することができる。 Gaseous silicon compounds such as these silicon tetrachloride is easy to distillation purification, it is possible to produce high purity silica particles because of impurities in the raw material can be easily removed.

【0015】可燃性ガスおよび支燃性ガスを用いて火炎を形成し、火炎温度をシリカの融点(1730℃)以上に高める。 [0015] using a combustible gas and combustion-supporting gas to form a flame, increase the flame temperature silica melting point (1730 ° C.) or more. 可燃性ガスとしては水素や水素含有ガス、水素生成ガスを使用することができる。 The combustible gas may be used hydrogen or hydrogen-containing gas, a hydrogen product gas. 支燃性ガスとしては酸素や酸素含有ガスを使用することができる。 The combustion-supporting gas can be used oxygen or oxygen-containing gas. 火炎温度がシリカの融点より低いと目的とする粒径のシリカ粒子を得るのが難しい。 It is difficult to obtain silica particles having a particle diameter of the flame temperature is intended to be lower than the melting point of silica.

【0016】これらの原料ガス(珪素化合物ガス)、可燃性ガス、支燃性ガスは燃焼バーナによって火炎を形成するが、本発明の火炎加水分解法では、生成したシリカ粒子がシリカ融点以上の高温下で滞留する時間を確保するため、燃焼バーナの外周部で可燃性ガスを燃焼させることによって輻射で失われる熱量を補うと良い。 [0016] These raw material gases (silicon compound gas), combustible gas, but the combustion-supporting gas to form a flame by combustion burner, the flame hydrolysis method of the present invention, the hot product silica particles is more than the silica melting point to ensure a residence time of below, it may compensate for the heat lost by radiation by burning a combustible gas in the outer peripheral portion of the combustion burner. また、反応容器は火炎温度をシリカの融点以上に保持するために1000℃以上の高温に耐える構造とし、排気側には排風機等を設けて吸引し、容器内の圧力を大気圧基準で− Further, the reaction vessel is a structure to withstand temperatures higher than 1000 ° C. in order to keep the flame temperature above the melting point of the silica, the exhaust side with suction provided exhauster, etc., the pressure in the vessel at atmospheric pressure reference -
200mmAgから−10mmAg程度の負圧に保つことが好ましい。 It is preferable to maintain a negative pressure of about -10mmAg from 200MmAg.

【0017】本発明の製造方法では、原料ガスの供給量等を制御して火炎中のシリカの濃度を0.25kg/Nm 3以上、好ましくは0.25〜1.0kg/Nm 3程度に調整する。 [0017] In the production method of the present invention controls the supply amount of the raw material gas concentration of the silica in the flame 0.25 kg / Nm 3 or more, preferably adjusted to about 0.25~1.0kg / Nm 3 to.
このシリカ濃度が0.25kg/Nm 3より低いと十分に粒子が成長せず、所望の粒径のものが得られない。 The silica concentration is not sufficiently grow particles is lower than 0.25 kg / Nm 3, not obtained those desired particle size. 一方、シリカ濃度が1.0kg/Nm 3を上回るとバーナにシリカが付着しやすくなり、また粒径の制御も難しい。 On the other hand, silica concentration of silica is easily attached to the burner exceeds the 1.0 kg / Nm 3, also harder control of particle size.

【0018】さらに、本発明の製造方法は、火炎加水分解によって生成したシリカ粒子を火炎中(シリカの融点以上の高温下)に短時間滞留させることによってシリカ粒子を成長させ、その粒径を制御する。 Furthermore, the production method of the present invention, the silica particles produced by flame hydrolysis silica particles grown by staying short time in the flame (a high temperature above the melting point of silica), controlling the particle size to. この滞留時間は0.02〜0.30秒が適当である。 The residence time is suitably 0.02 to 0.30 seconds. 滞留時間が0.02 The residence time is 0.02
秒以下では粒子の成長が十分ではない。 S not enough growth of the particles in the following. また、滞留時間が0.30秒より長いと生成したシリカ粒子どうしの融着が生じ、さらに反応容器内壁に対するシリカの付着も顕著になるので好ましくない。 Further, occurs fusion of silica particles to each other that the residence time is generated longer than 0.30 seconds, the further deposition of the silica is also remarkable for the reaction vessel inner wall is not preferable.

【0019】なお、原料ガス、可燃性ガスおよび支燃性ガスに希釈用ガス(空気や窒素ガスなど)を導入して燃焼温度およびガス流速を調整することにより。 [0019] The starting gas, by introducing a diluent gas (such as air or nitrogen gas) to the combustible gas and combustion supporting gas to adjust the combustion temperature and gas flow rate. シリカ粒子の粒径を制御することができる。 It is possible to control the particle size of the silica particles. 希釈用ガスの供給量を増加して火炎温度を下げると共にガス流速を高めると、 Increasing the gas flow rate with lowering the flame temperature by increasing the supply amount of the gas for dilution,
シリカの滞留時間が減少し、粒子の成長が制限されるので比較的粒径が小さく、従って、比表面積の大きなシリカ粒子となる。 The residence time of the silica decreases, small relatively particle size because grain growth is limited, therefore, a major silica particles specific surface area.

【0020】具体的には、本発明の製造方法において製造するシリカ粒子の比表面積(S)、メジアン径(r)、火炎中のシリカ濃度(v)、シリカ粒子の火炎中の滞留時間 [0020] Specifically, the specific surface area of ​​the silica particles produced in the production method of the present invention (S), the median size (r), silica concentration in the flame (v), the residence time in the flame of the silica particles
(t)はおのおの次式[I]または[II]に従って制御される。 (T) is controlled in accordance with each following formula [I] or [II]. S=3.52(v・t) -0.4 ……[I] r=1.07(v・t) 0.4 ……[II] 本発明の製造方法によって得られる微細シリカ粒子の比表面積(S)とメジアン径(r)は、図2および図3のグラフに示すように、それぞれ火炎中のシリカ濃度(v)と滞留時間(t)の積に対して、上記[I][II]式で表される対数曲線に示す関係を有することが見出される。 S = 3.52 (v · t) -0.4 ...... [I] r = 1.07 (v · t) 0.4 ...... [II] the specific surface area of fine silica particles obtained by the production method of the present invention (S) a median diameter (r), as shown in the graph of FIG. 2 and FIG. 3, with respect to the product of the concentration of silica respectively in the flame (v) and residence time (t), the [I] [II] expression in It is found to have a relationship shown in a logarithmic curve represented. 従って、 Therefore,
このシリカ濃度と滞留時間を因子としてシリカ粒子の比表面積(S)やメジアン径(r)を制御することができる。 The silica concentration and residence time can be controlled specific surface area of ​​the silica particles (S) and the median size (r) as a factor.
また目的の比表面積やメジアン径に応じて火炎中のシリカ濃度や滞留時間を制御する。 Also controls the silica concentration and residence time in the flame in accordance with the specific surface area and the median diameter of the object.

【0021】反応容器から取り出したシリカ粒子は、焼結や融着、再結晶、あるいは表面変化などが生じないように急速に冷却し、 水または他の凝縮しやすい反応物の露点以上の温度にして分離、回収する。 The silica particles were removed from the reaction vessel, sintering or fusion, recrystallization, or rapidly cooled so that no such surface changes, the dew point above the temperature of the water or other condensation easily reactants separation Te, to recover. この回収装置は集塵機、サイクロン、バグフィルターなどを用いることができる。 The collection device can be used a dust collector, cyclone, a bug filter. 回収したシリカ粒子には燃焼ガス中に含まれる塩化水素などのハロゲン、ハロゲン化合物、窒素酸化物などが吸着しているのでこれらを除去するのが好ましい。 Halogen such as the recovered silica particles hydrogen chloride contained in the combustion gas, halogen compounds, such as nitrogen oxides is preferable to remove them so adsorbed. シリカ粒子に吸着しているこれらの揮発性の陰イオン性不純物は電気炉、流動層、ロータリーキルン等での加熱処理により除去ないし低減することができる。 These volatile anionic impurities electric furnace adsorbed on the silica particles, fluidized bed, can be removed or reduced by heat treatment in a rotary kiln. この加熱処理は連続処理ないしバッチ処理の何れでも良い。 The heat treatment may be either continuous treatment or batch treatment. 加熱処理は高温で処理時間が長いほどその除去・低減効果が高いが、800℃以上の高温ではシリカ粒子の凝集ないし融着等を生じる懸念があるのでこの温度以下が適当である。 The heat treatment is high that removal and reduction effect the longer the processing time at high temperature, below this temperature is suitable because aggregation or concerns resulting fusion or the like of the silica particles at a high temperature of at least 800 ° C.. 半導体材料として用いるには可能な限り不純物の少ない高純度のシリカが求められるが、このような吸着不純物を除去することによって半導体材料用として好適なシリカ粒子を得ることができる。 Less impurities high purity silica is determined as possible for use as a semiconductor material, it is possible to obtain a suitable silica particles for the semiconductor material by removing such adsorption impurities.

【0022】 (II)微細シリカ粒子上記製造方法によれば、平均粒径(メジアン径)0.1〜 [0022] (II) according to the fine silica particles above manufacturing method, the average particle diameter (median diameter) 0.1
0.7μmおよび比表面積5〜30m 2 /gであって、次式[I A 0.7μm and a specific surface area of 5 to 30 m 2 / g, the following formula [I
II]で表される分散係数(z)が40%以下の非晶質微細シリカ粒子を得ることができる。 Dispersion coefficient represented by II] (z) can be obtained less than 40% amorphous fine silica particles. z=Y/2X ・・・・[III] ここで、Xはメジアン径、Yは累積10%到達粒径から累積90%到達粒径までの粒径範囲である。 z = Y / 2X ···· [III] wherein, X is the median size, Y is a particle size range from 10% accumulated reaches particle diameter up to 90% cumulative arrival particle size. 式[III]から明らかなように、分散係数zは上記シリカ粒子のメジアン径を中心とする分布状態を示し、この値が小さいものほどメジアン径付近に粒度分布が集中している。 As is apparent from equation [III], dispersion coefficient z represents a distribution around the median diameter of the silica particles, the particle size distribution is concentrated as those this value is smaller in the vicinity of the median diameter. なお、累積10%未満の粒径範囲、および累積90%を上回る粒径範囲は何れも分布の誤差が大きくなるので、累積10%到達粒径から累積90%到達粒径までの粒径範囲Yを基準とする。 The particle size range of less than 10% accumulated, and since an error of any size range distribution above the 90% cumulative increases, the particle size range Y from the cumulative 10% reach particle size up to 90% cumulative arrival particle size a as a reference.

【0023】なお、本発明のシリカ粒子に類似する既存のシリカ粒子の分散係数(z)は概ね43%以上であり本発明よりも分布が広い。 [0023] The dispersion coefficient of the existing silica particles similar to the silica particles of the present invention (z) is approximately wider distribution than might present invention 43% or more. 従って、粒子間の滑り性を付与する場合に比較的多くの添加量を必要とする。 Thus requiring relatively large amount in the case of providing the slip properties between the particles. 一方、本発明の微細シリカ粒子はその分布がメジアン径付近に集中しており、従来品よりも格段に粒度が均一であるので、粒子間の滑り性を付与する場合に比較的少量の添加で効果が得られる利点がある。 On the other hand, the fine silica particles of the present invention are concentrated the distribution around the median diameter, because much granularity than conventional products is uniform, relatively small amounts of additives in the case of imparting slipperiness between particles there is an advantage that the effect can be obtained.

【0024】また、本発明の微細シリカ粒子は容易に単分散可能な粒子である。 Further, the fine silica particles of the present invention are readily monodisperse particles capable. このように本発明の微細シリカ粒子はメジアン径が従来のシリカ粒子より小さく、しかもメジアン径付近に粒度分布が集中しており、粒径が格段に均一であるので、半導体用の樹脂コンパウンドの流動性や耐バリ性等を改善するために用いられるシリカフィラーとして好適である。 Such fine silica particles of the present invention is the median size is smaller than conventional silica particles, moreover has a particle size distribution is concentrated near the median diameter, because the particle size is much uniform flow of the resin compound for semiconductor it is suitable as a silica filler used to improve the resistance and resistance to burr and the like. 因みに、粒径が上記範囲より小さく比表面積が大きいものはコンパウンドの流動性が低下し、一方、上記範囲より粒径が大きく比表面積の小さいものは耐バリ性が低下する。 Incidentally, particle size having a large specific surface area smaller than the above range lowers the fluidity of the compound, while smaller particle size of greater specific surface area than the above range resistance burrs resistance decreases.

【0025】さらに、本発明のシリカ微粒子はほぼ完全な非晶質粒子であり、真球に近い粒子形状を有している。 Furthermore, silica fine particles of the present invention is almost completely amorphous particles, and has a close particle shape to a sphere. 従って、半導体用樹脂コンパウンドの充填材料として優れた効果を発揮する。 Therefore, an excellent effect as a filling material for semiconductor resin compound. なお、図1に対比して示すように、充填材料等として市販されている従来のシリカ粒子は、その粒度分布のピークが本発明のシリカ粒子よりも1μm側に片寄り、本発明のシリカ粒子よりも粒径が大きい。 Incidentally, as shown in contrast to FIG. 1, the conventional silica particles commercially available as the packing material or the like, the peak of the particle size distribution is offset to 1μm side than the silica particles of the present invention, the silica particles of the present invention the particle diameter is larger than the.

【0026】本発明の微細シリカ粒子はプラスチックフィルムないしシートのアンチブロックキング用フィラーとしても好適である。 The fine silica particles of the present invention is also suitable as an anti-blocking fillers for the plastic film or sheet. アンチブロッキング用フィラーはフィルムやシートの表面に微細な凹凸を形成することによってブロッキングを防止する目的で使用され、耐摩耗ないし耐スクラッチ用フィラーよりは粒径が大きく、かつ粒径1μm以下の粒度分布がシャープな粒子が求められる。 Filler for anti-blocking is used for the purpose of preventing blocking by forming fine irregularities on the surface of the film or sheet, a large grain size from abrasion or scratch filler and the particle size distribution of the particle diameter equal to or less than 1μm There sharp particles is required. また、アンチブロッキング用フィラーはプラスチックフィルムないしシートから離脱しない化学的に安定なものが必要とされ、かつ製造時ないし成形加工時に気体を発生させることがなく、樹脂との親和性の高いものが求められる。 Also, the filler for anti-blocking is required chemically stable ones without departing from the plastic film or sheet, and during the production or molding without generating a gas, required a high affinity for the resin It is. 本発明の微細シリカ粒子はこのアンチブロッキング用フィラーとして好適である。 Fine silica particles of the present invention is suitable as the anti-blocking filler.

【0027】本発明の微細シリカ粒子は以上のように比表面積ないしメジアン径が制御されており、かつ高純度であるので、電子写真用トナーの外添剤や内添剤としても好適である。 The fine silica particles of the present invention is to a specific surface area or the median diameter control as described above, and because it is a high purity, it is also suitable as an external additive or internal additive electrophotographic toner.

【0028】本発明のシリカ粒子はガス状の珪素化合物 The silica particles of the present invention is a gaseous silicon compound
(四塩化珪素ガス等)を原料に用いるので蒸留によって不純物を除去するのが容易であり、ウラン含有量などが少ない高純度のシリカ粒子を得ることができる。 The (silicon tetrachloride gas, etc. chloride) is easy to remove impurities by distillation since used as the raw material, it is possible to obtain a high-purity silica particles is small, such as uranium content. 具体的には、ウラン含有量0.5ppb以下、アルミニウムおよび鉄の含有量が各々500ppm以下、カルシウム含有量50p Specifically, uranium content 0.5ppb or less, the content of aluminum and iron, respectively 500ppm or less, calcium content 50p
pm以下、ナトリウム、マンガン、クロムおよびリンの含有量が各々10ppm以下のシリカ微粒子を得ることができる。 pm or less, it is possible to obtain sodium, manganese, the content of chromium and phosphorus respectively 10ppm or less of the silica fine particles. また、火炎加水分解によって製造したシリカ微粒子を回収する際の加熱処理によって吸着不純物が除去・ Further, the adsorption impurities removal and the heat treatment at the time of collecting the fine silica particles produced by flame hydrolysis
低減されるので高純度のシリカ微粒子が得られる。 Since the reduced purity of the silica fine particles are obtained. 半導体メモリーは、その材料に含まれるα線によるソフトエラーを防止するためウラン含有量が可能な限り少ないものが求められる。 Semiconductor memory are those as little as possible uranium content to prevent soft error by α-rays contained in the material is determined. 従って、本発明の高純度シリカ微粒子はこの点からも好ましい。 Thus, high purity silica particles of the present invention is preferred also from this point.

【0029】 [0029]

【実施例】以下、実施例によって本発明を具体的に示す。 EXAMPLES Hereinafter, concrete shows the examples the invention.

【0030】〔実施例1〕図1に示すように、原料の珪素化合物の気化して供給するための蒸発器1、原料の珪素化合物ガスを供給する供給管2、可燃性ガスを供給する供給管3、支燃性ガスを供給する供給管4、これらの供給管2〜4に接続したバーナー5、火炎加水分解反応を行う反応器6、反応容器6の下流に連結された冷却管7、製造されたシリカ粉末を回収する回収装置8、さらに下流に排ガス処理装置9、排風機10からなる製造装置を用い、以下のようにして非晶質微細シリカ粒子を製造した。 [0030] Example 1 as shown in FIG. 1, the evaporator 1 for vaporizing to supply the raw material of the silicon compound, the supply pipe 2 for supplying a raw material of the silicon compound gas supply for supplying a combustible gas tube 3, combustion-supporting gas supply pipe 4 for supplying the reactor 6, the cooling pipe 7 connected to the downstream of the reaction vessel 6 for burners 5 are connected to these supply pipes 2-4, the flame hydrolysis reaction, recovery device 8 for recovering the silica powder produced, the exhaust gas processing device 9 further downstream, using the manufacturing apparatus consisting exhauster 10, to produce an amorphous fine silica particles in the following manner. なお、反応容器6の内壁は1000℃以上の高温に耐えるようにアルミナ煉瓦で内張りして用いた。 Incidentally, the inner wall of the reaction vessel 6 was used lined with alumina bricks to withstand the high temperatures of more than 1000 ° C.. 製造工程支燃性ガス供給管を開いて酸素ガスをバーナーに供給し、着火用バーナー(図示省略)に点火した後、可燃性ガス供給管を開いて水素ガスをバーナーに供給して火炎を形成し、これに四塩化珪素を蒸発器1にてガス化して供給し、表2に示す条件下で火炎加水分解反応を行わせ、 The oxygen gas supplied to the burner by opening the manufacturing process combustion supporting gas supply pipe, after igniting the ignition burner (not shown), forms a flame of hydrogen gas supplied to the burner by opening the flammable gas supply pipe and, this was supplied gasified in the evaporator 1 silicon tetrachloride, to perform the flame hydrolysis reaction under the conditions shown in Table 2,
生成したシソカ粉末を回収装置8のバグフィルターで回収した。 The resulting Shisoka powder was recovered with a bag filter for recovery device 8. 粉末回収後の排ガスは排ガス処理装置9で処理し、排風機10を通じて排気した。 Exhaust gas after powder recovery were treated with the exhaust gas processing device 9, and evacuated through the exhaust fan 10. 原料の四塩化珪素ガス量、水素ガスおよび酸素ガスの量、火炎中のシリカ濃度と滞留時間、生成したシリカ粒子の粒度および分布係数を表1にまとめて示した。 Silicon tetrachloride gas amount of the raw material, the amount of hydrogen gas and oxygen gas, the silica concentration and the residence time in the flame, the particle size and distribution coefficient of the resulting silica particles are summarized in Table 1. なお、既存品のシリカ粒子の値を対比して示した。 Incidentally, as shown by comparing the value of the silica particles of existing products. また、実施例No.1〜6、および既存品の粒度分布を図2に示した。 Further, as shown in Example Nanba1~6, and the particle size distribution of existing products in FIG.

【0031】 [0031]

【表1】 [Table 1]

【0032】表1および図2に示すように、No.1〜6 As shown in Table 1 and FIG. 2, No.1~6
のシリカ粒子は比表面積13.2〜30.0m 2 /g、平均粒径(メジアン径)0.195〜0.37μm、分布係数31 Of the silica particles a specific surface area 13.2~30.0m 2 / g, an average particle diameter (median diameter) 0.195~0.37μm, distribution coefficient 31
〜35%であり、何れも本発明の範囲に含まれる。 Was 35%, are included within the scope of the present invention. 一方、既存品のシリカ粒子は比表面積とメジアン径が本発明の範囲に含まれるものの分散係数は本発明のシリカ粒子よりも大きく、粒度分布のピークが本発明のシリカ粒子より大きい。 On the other hand, the dispersion coefficient of those silica particles having a specific surface area and the median diameter of the existing products are within the scope of the present invention is greater than the silica particles of the present invention, larger silica particles of the present invention the peak of the particle size distribution.

【0033】No.1〜6のシリカ粒子について、火炎中のシリカ濃度(v)と滞留時間(t)の積に対する比表面積 [0033] The silica particles Nanba1~6, the specific surface area for the product of the silica concentration (v) and the residence time in the flame (t)
(S)とメジアン径(r)の関係を図3および図4に示した。 (S) that shows the relationship between the median size (r) in FIGS. この結果から、火炎中のシリカ濃度(v)と滞留時間 From this result, silica concentration (v) and the residence time in the flame
(t)の積は比表面積(S)とメジアン径(r)に対して次式 The product of (t) is the specific surface area (S) by the following equation with respect to the median size (r)
[I][II]の関係にあることが見出された。 It has been found that a relation of [I] [II]. S=3.52(v・t) -0.4 ……[I] r=1.07(v・t) 0.4 ……[II] S = 3.52 (v · t) -0.4 ...... [I] r = 1.07 (v · t) 0.4 ...... [II]

【0034】〔実施例2〕ビフェニル型エポキシ樹脂にフェノールノボラック型硬化剤を添加した表2に示す組成の樹脂分に、標準フィラーに実施例1のシリカ粉末(N [0034] Example 2 biphenyl type epoxy phenol novolac type curing agent was the resin content of the composition shown in Table 2 added to the resin, standard fillers of Example 1 Silica powder (N
o.1〜6)を加えたフィラーを配合して試験用コンバウンドを調製した。 O.1~6) a filler to prepare a test configuration bound by blending the addition. このコンパウンドを加熱したミキシングロールミル(2本ロール)で5分間混練し、そのスパイラルフローとバリ長さを測定した。 This compound was kneaded for 5 minutes in a heated mixing roll mill (2 rolls) were measured and the spiral flow and the burr length. この結果を表3に示した。 The results are shown in Table 3. なお、シリカフィラーは標準フィラーに対して全フィラー中での重量比が5%、10%となるように調合し、コンパウンド中のシリカフィラー充填率を88.0 Note that the silica filler has a weight ratio of 5% in the total filler relative standard filler formulated to be 10%, the silica filler filling ratio in the compound 88.0
重量%とした。 And the weight%. 標準フィラーは平均粒経22.4μm、比表面積2.3m 2 /gの球状シリカ粒子を使用した。 Standard Filler was used spherical silica particles having an average particle diameter 22.4, specific surface area 2.3 m 2 / g. 測定は各試料を射出試験機にて加熱温度180℃、射出圧力7 Measurements heating temperature 180 ° C. Each sample an injection tester, injection pressure 7
0kg/cm 2 G、100秒間で各測定用金型に射出し、スパイラルフローおよびバリの長さを測定した。 Was injected into each measurement mold in 0kg / cm 2 G, 100 seconds to measure the length of the spiral flow and burr. 比較基準との対比から明らかなように、本発明のシリカ粒子を添加したものは何れもスパイラルフローおよびバリ長さが低減されており、この効果は概ね添加量に比例している。 As evident from comparison of comparative reference, that the addition of silica particles of the present invention are all are reduced spiral flow and burr length, this effect is generally proportional to the amount it added.

【0035】 [0035]

【表2】 [Table 2]

【0036】 [0036]

【表3】 [Table 3]

【0037】 [0037]

【発明の効果】本発明の製造方法によれば、平均粒径 According to the production method of the present invention, the average particle size
(メジアン径)0.1〜0.7μmおよび比表面積が5〜3 (Median diameter) 0.1 to 0.7 and a specific surface area of ​​5 to 3
0m 2 /gであって、分散係数(z)40%以下のシャープな粒度分布を有するシリカ微粒子を得ることができる。 A 0 m 2 / g, it is possible to obtain a dispersion coefficient (z) silica fine particles having a sharp particle size distribution of 40% or less. このシリカ微粒子は真球に近い粒子形状を有し、しかも粒径が格段に均一である。 The silica fine particles have a near particle shape to a sphere, moreover the particle size is considerably uniform. 従って、半導体用の樹脂充填材料やプラスチックフィルムないしシートのアンチブロッキング用フィラーとして好適である。 Therefore, it is suitable as a resin filling material and a plastic film or a filler for anti-blocking of the sheet for a semiconductor.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の製造方法を実施する製造装置の構成図 Configuration diagram of a manufacturing apparatus for carrying out the manufacturing method of the present invention; FIG

【図2】 本発明のシリカ微粒子と既存品の粒度分布を示すグラフ Graph showing the particle size distribution of existing products and silica fine particles of the present invention; FIG

【図3】 本発明に係るシリカ粒子の比表面積の関係式を示すグラフ 3 is a graph showing the relationship of the specific surface area of ​​the silica particles according to the present invention

【図4】 本発明に係るシリカ粒子のメジアン径の関係式を示すグラフ Graph showing the relationship of the median diameter of the silica particles according to the present invention; FIG

【符号の説明】 DESCRIPTION OF SYMBOLS

1−蒸発器、2−原料ガスの供給管2、3−可燃性ガスの供給管、4−支燃性ガスの供給管、5−燃焼バーナー、6−反応容器、7−冷却管、8−回収装置、9−排ガス処理装置9、10−排風機。 1-evaporator, 2-material gas supply pipe of the supply pipe 2,3 combustible gas supply pipe 4 combustion-supporting gas, 5-burner, 6-reaction vessel, 7 a cooling tube, 8- recovery device 9 the exhaust gas treatment apparatus 9,10 exhauster.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) G03G 9/08 375 G03G 9/08 375 Fターム(参考) 2H005 AA08 2H068 AA04 4G072 AA25 BB05 BB13 GG01 GG03 HH07 MM01 MM38 RR05 TT01 TT02 TT05 UU01 UU07 UU25 UU30 4J002 AA001 CC042 CD041 DJ016 FD130 FD142 FD150 FD160 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) G03G 9/08 375 G03G 9/08 375 F-term (reference) 2H005 AA08 2H068 AA04 4G072 AA25 BB05 BB13 GG01 GG03 HH07 MM01 MM38 RR05 TT01 TT02 TT05 UU01 UU07 UU25 UU30 4J002 AA001 CC042 CD041 DJ016 FD130 FD142 FD150 FD160

Claims (9)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ガス状の珪素化合物を火炎中に導いて加水分解することにより非晶質シリカ微粒子を製造する方法において、火炎温度をシリカの融点以上および火炎中のシリカ濃度を0.25kg/Nm 3以上とし、生成したシリカ粒子をシリカの融点以上の高温下に短時間滞留させ、 1. A process for preparing amorphous silica particles by a gaseous silicon compound is hydrolyzed led into a flame, the flame temperature silica concentration of more than the melting point of silica and flame 0.25 kg / and Nm 3 or more, the resulting silica particles are retained briefly to a high temperature above the melting point of silica,
    平均粒径(メジアン径)0.1〜0.7μmおよび比表面積5〜30m 2 /gの非晶質シリカ粒子を得ることを特徴とする非晶質微細シリカ粒子の製造方法。 The method for producing an amorphous fine silica particles, characterized in that to obtain the amorphous silica particles having an average particle diameter (median diameter) 0.1 to 0.7 and a specific surface area of 5 to 30 m 2 / g.
  2. 【請求項2】 火炎中のシリカ濃度(v)が0.25〜1. Wherein the silica concentration in the flame (v) is 0.25.
    0kg/Nm 3である請求項1の製造方法。 0 kg / Nm 3 The manufacturing method of claim 1.
  3. 【請求項3】 シリカ粒子の火炎中の滞留時間(t)が0.02〜0.30秒である請求項1または2の製造方法。 3. A process according to claim 1 or 2 of the method for manufacturing the residence time in the flame of the silica particles (t) is 0.02 to 0.30 seconds.
  4. 【請求項4】 シリカ粒子の比表面積(S)、メジアン径 The specific surface area of ​​4. Silica particles (S), the median size
    (r)、火炎中のシリカ濃度(v)、シリカ粒子の火炎中の滞留時間(t)を、おのおの次式[I]または[II]に従って制御する請求項1、2または3の製造方法。 (R), silica concentration in the flame (v), the residence time in the flame of the silica particles (t), respectively the following formula [I] or method according to claim 1, 2 or 3 for controlling according to [II]. S=3.52(v・t) -0.4 ……[I] r=1.07(v・t) 0.4 ……[II] S = 3.52 (v · t) -0.4 ...... [I] r = 1.07 (v · t) 0.4 ...... [II]
  5. 【請求項5】 平均粒径(メジアン径)0.1〜0.7μm 5. The average particle diameter (median diameter) 0.1 to 0.7
    および比表面積5〜30m 2 /gであって、次式[III]で表される分散係数(z)が40以下であることを特徴とする非晶質微細シリカ粒子。 And a specific surface area of 5 to 30 m 2 / g, the amorphous fine silica particle dispersion coefficient represented by the following formula [III] (z) is equal to or 40 or less. z=Y/2X ……[III] (Xはメジアン径、Yは累積10%到達粒径から累積9 z = Y / 2X ...... [III] (X a median diameter, Y is accumulated from 10% accumulated reaches particle size 9
    0%到達粒径までの粒径範囲) 0% size range of up to reach particle size)
  6. 【請求項6】 半導体樹脂封止材の充填材として用いられる請求項5の非晶質微細シリカ粒子。 6. amorphous fine silica particle according to claim 5 for use as a filler of a semiconductor resin sealing material.
  7. 【請求項7】 プラスチックフィルムないしシートのアンチブロッキング用フィラーとして用いられる請求項5 7. The method of claim 5 for use as an anti-blocking filler of the plastic film or sheet
    の非晶質微細シリカ粒子。 Amorphous fine silica particles.
  8. 【請求項8】 トナー用外添剤として用いられる請求項5の非晶質微細シリカ粒子。 8. The amorphous fine silica particle according to claim 5 which is used as an external additive for toner.
  9. 【請求項9】 電子写真感光体の表面保護層もしくは電荷輸送層に用いられる請求項5の非晶質微細シリカ粒子。 9. amorphous fine silica particle according to claim 5 used for the surface protective layer or the charge transport layer of the electrophotographic photosensitive member.
JP2000184160A 2000-06-20 2000-06-20 Production method of the amorphous fine silica particles Active JP4789080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184160A JP4789080B2 (en) 2000-06-20 2000-06-20 Production method of the amorphous fine silica particles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000184160A JP4789080B2 (en) 2000-06-20 2000-06-20 Production method of the amorphous fine silica particles
US10/049,902 US7083770B2 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use
EP20010941114 EP1361195B1 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use
PCT/JP2001/005252 WO2001098211A1 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use
DE2001633416 DE60133416T2 (en) 2000-06-20 2001-06-20 Amorphous fine particles of silicon dioxide, process for their manufacture and use.

Publications (2)

Publication Number Publication Date
JP2002003213A true JP2002003213A (en) 2002-01-09
JP4789080B2 JP4789080B2 (en) 2011-10-05

Family

ID=18684635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184160A Active JP4789080B2 (en) 2000-06-20 2000-06-20 Production method of the amorphous fine silica particles

Country Status (1)

Country Link
JP (1) JP4789080B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material
KR100688300B1 (en) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 High-concentration silica slurry
JP2007084383A (en) * 2005-09-22 2007-04-05 Mizusawa Ind Chem Ltd Amorphous sheet-like silica
WO2007142343A1 (en) * 2006-06-08 2007-12-13 Canon Kabushiki Kaisha Toner
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
KR100788857B1 (en) * 2003-09-22 2007-12-27 마츠시다 덴코 가부시키가이샤 Process for fabricating a micro-electro-mechanical system with movable components
JP2007334067A (en) * 2006-06-16 2007-12-27 Canon Inc Image forming method
JP2007334068A (en) * 2006-06-16 2007-12-27 Canon Inc Toner and image forming method
JP2008019157A (en) * 2006-06-09 2008-01-31 Tokuyama Corp Dry-process fine silica particle
JP2008050207A (en) * 2006-08-24 2008-03-06 Admatechs Co Ltd Spherical silica particle, resin composition, semiconductor liquid sealing material and method for producing spherical silica particle
CN100538533C (en) 2003-05-15 2009-09-09 施乐公司 Photosensitive member having nano-size filler
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP2014028738A (en) * 2012-06-27 2014-02-13 Tokuyama Corp Dry silica particulates
JP2014088285A (en) * 2012-10-30 2014-05-15 Tokuyama Corp Dry silica fine particle
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015218102A (en) * 2014-05-21 2015-12-07 デンカ株式会社 Spherical silica fine powder and application of the same
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
US9897932B2 (en) 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485612B1 (en) 2008-04-25 2015-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 A protective film for semi-conductor wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688300B1 (en) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 High-concentration silica slurry
US7192461B2 (en) 2002-11-22 2007-03-20 Nippon Aerosil Co., Ltd. High concentration silica slurry
CN100538533C (en) 2003-05-15 2009-09-09 施乐公司 Photosensitive member having nano-size filler
KR100788857B1 (en) * 2003-09-22 2007-12-27 마츠시다 덴코 가부시키가이샤 Process for fabricating a micro-electro-mechanical system with movable components
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material
JP2007084383A (en) * 2005-09-22 2007-04-05 Mizusawa Ind Chem Ltd Amorphous sheet-like silica
JP4597018B2 (en) * 2005-09-22 2010-12-15 水澤化学工業株式会社 Amorphous shaped silica
US7537877B2 (en) 2006-06-08 2009-05-26 Canon Kabushiki Kaisha Toner used in electrophotography having toner particles and silica powder
CN101449213B (en) 2006-06-08 2012-01-18 佳能株式会社 Toner
WO2007142343A1 (en) * 2006-06-08 2007-12-13 Canon Kabushiki Kaisha Toner
JP2008019157A (en) * 2006-06-09 2008-01-31 Tokuyama Corp Dry-process fine silica particle
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
US7803341B2 (en) 2006-06-09 2010-09-28 Tokuyama Corporation Fine dry silica particles
JP2007334068A (en) * 2006-06-16 2007-12-27 Canon Inc Toner and image forming method
JP2007334067A (en) * 2006-06-16 2007-12-27 Canon Inc Image forming method
JP2008050207A (en) * 2006-08-24 2008-03-06 Admatechs Co Ltd Spherical silica particle, resin composition, semiconductor liquid sealing material and method for producing spherical silica particle
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP5380290B2 (en) * 2007-08-01 2014-01-08 電気化学工業株式会社 The method of manufacturing silica powder
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
JP2014028738A (en) * 2012-06-27 2014-02-13 Tokuyama Corp Dry silica particulates
JP2014088285A (en) * 2012-10-30 2014-05-15 Tokuyama Corp Dry silica fine particle
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015218102A (en) * 2014-05-21 2015-12-07 デンカ株式会社 Spherical silica fine powder and application of the same
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
US9897932B2 (en) 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner

Also Published As

Publication number Publication date
JP4789080B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
KR910008721B1 (en) Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
AU2001247885B2 (en) Precipitated silicas, silica gels with and free of deposited carbon from caustic biomass ash solutions and processes
US20030089279A1 (en) Granules based on pyrogenically prepared silicon dioxide doped with aluminum oxide by means of an aerosol, method of producing same, and use thereof
CA2009715C (en) Process for the production of magnesium oxide
RU2295492C2 (en) High-purity powder silicon dioxide and method and device for production of silicon dioxide
US20020168524A1 (en) Surface-modified, doped, pyrogenically produced oxides
CN100360410C (en) Granules based on pyrogenically produced aluminium oxide, their production process and use
US7749322B2 (en) Aluminium oxide powder produced by flame hydrolysis and having a large surface area
US4015031A (en) Process for hydrophobizing silicas and silicates with organosilanes
US7332144B2 (en) Hydrophobic silica fine powder and making method
US6360563B1 (en) Process for the manufacture of quartz glass granulate
JP2533067B2 (en) Silicon obtained by the hydrolysis flame - aluminum mixed oxide powder, its production method, and manufacturing method of the ceramic and ceramic precursor
CN1043633C (en) Method for making fumed silica
JP2009091246A (en) Method of producing substrate for extreme ultraviolet lithography
US20020035950A1 (en) Doped, pyrogenically prepared oxides
US5190737A (en) High yield manufacturing process for silicon carbide
JP2008273757A (en) Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
US5340417A (en) Process for preparing silicon carbide by carbothermal reduction
US6387302B1 (en) Method of producing spherical silica powder
JP2001520702A (en) Elastomer composition comprising a metal-treated carbon black
JPH05279041A (en) Surface-modified pyrogenically produced titanium dioxide, production of compound, and toner additive made of compound
CN102239117B (en) Iron-silicon oxide particles with a core-shell structure
AU605143B2 (en) A base material for producing ceramic materials
US2819151A (en) Process for burning silicon fluorides to form silica
JP2001518975A (en) Multiphase aggregates and their preparation containing carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250