JP2002003213A - Amorphous fine silica particle, its production method and its use - Google Patents

Amorphous fine silica particle, its production method and its use

Info

Publication number
JP2002003213A
JP2002003213A JP2000184160A JP2000184160A JP2002003213A JP 2002003213 A JP2002003213 A JP 2002003213A JP 2000184160 A JP2000184160 A JP 2000184160A JP 2000184160 A JP2000184160 A JP 2000184160A JP 2002003213 A JP2002003213 A JP 2002003213A
Authority
JP
Japan
Prior art keywords
silica
silica particles
flame
particles
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184160A
Other languages
Japanese (ja)
Other versions
JP4789080B2 (en
Inventor
Takeyoshi Shibazaki
武義 柴崎
Kazuyoshi Honda
一義 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2000184160A priority Critical patent/JP4789080B2/en
Priority to DE60133416T priority patent/DE60133416T2/en
Priority to EP01941114A priority patent/EP1361195B1/en
Priority to US10/049,902 priority patent/US7083770B2/en
Priority to PCT/JP2001/005252 priority patent/WO2001098211A1/en
Publication of JP2002003213A publication Critical patent/JP2002003213A/en
Application granted granted Critical
Publication of JP4789080B2 publication Critical patent/JP4789080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine silica particle suitable as the filling material of a resin for semiconductor, and provide its production method. SOLUTION: In the method for producing an amorphous fine silica particle by introducing a gaseous silicone compound into a flame and hydrolyzing it, the flame temperature is made to be above the melting point of silica, a silica concentration in the flame is heightened, and a generated silica particle is stayed in the flame to be grown to obtain the amorphous silica particle having a mean particle diameter of 0.1-1.0 μm and a specific surface area of 5-30 m2/g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体封止材の充
填材、プラスチックフィルムやシートのアンチブロッキ
ング用フィラー、あるいは電子写真方式を用いた複写
機、プリンター、ファクシミリ、製版システムなどにお
ける電子写真用トナーの外添剤や内添剤、また電子写真
感光体の表面保護層や電荷輸送層の材料として好適な非
晶質球体シリカ微粒子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler for semiconductor encapsulants, an antiblocking filler for plastic films and sheets, or an electrophotographic photocopier, a printer, a facsimile machine, a plate making system and the like. The present invention relates to amorphous spherical silica fine particles suitable as an external additive or an internal additive of a toner, a material for a surface protective layer or a charge transport layer of an electrophotographic photoreceptor, and a method for producing the same.

【0002】半導体樹脂封止材にはその流動性や耐バリ
性を改善するためにシリカ微粉体が充填剤として添加さ
れるが、本発明はこの充填剤として好適な非晶質球状シ
リカ微粒子とその製造方法に関する。また、プラスチッ
クフィルムやシートにフィラーを添加してフィルム表面
に微細な凹凸を形成し、接触面積を減少させてブロッキ
ングを防止することが知られているが、本発明の非晶質
微細シリカ粒子はこのフィラーとしても好適である。さ
らに、電子写真用トナーの流動性や耐熱性および長期保
存性を改善し、さらに帯電性やクリーニング特性、キャ
リアや感光体表面での付着性、現像材劣化挙動などを制
御する目的で外添剤が用いられ、また電子写真用トナー
の耐久性を改善し、また電気的あるいは機械的な負荷が
かかる電子写真感光体の表面保護層の耐久性を高めるた
めに内添剤が用いられるが、本発明はこのような外添剤
および内添剤としても広く用いることができる非晶質微
細シリカ粒子とその製造方法に関する。
[0002] A silica fine powder is added as a filler to a semiconductor resin encapsulant in order to improve its fluidity and burr resistance. The present invention relates to amorphous spherical silica fine particles suitable for this filler. It relates to the manufacturing method. It is also known that a filler is added to a plastic film or sheet to form fine irregularities on the film surface, thereby reducing the contact area and preventing blocking, but the amorphous fine silica particles of the present invention are This filler is also suitable. In addition, external additives are used to improve the fluidity, heat resistance, and long-term storage properties of the toner for electrophotography, and to control the chargeability, cleaning characteristics, adhesion on the carrier and photoreceptor surfaces, and the deterioration behavior of the developer. An internal additive is used to improve the durability of the toner for electrophotography and to increase the durability of the surface protective layer of the electrophotographic photosensitive member subjected to electrical or mechanical load. The present invention relates to amorphous fine silica particles which can be widely used as such external additives and internal additives, and a method for producing the same.

【0003】[0003]

【従来技術】半導体用樹脂充填材として用いるシリカフ
ィラーはできるだけ高純度であってその形状が真球に近
く、適切な粒度分布を有するものが良く、さらに高充填
および高流動性であるためにはそのシリカ粒子間の微細
空間にも充填でき、かつ粒子間の滑りも向上できるもの
が有効であり、このため、概ね平均粒径0.1〜1μmお
よびBET比表面積(以下、単に比表面積と云う)5〜3
0m2/g程度の粒子が使用されている。また、現在、電子
写真用トナーの外添剤として流動性改善、帯電制御の目
的で一般に平均粒径0.006〜0.040μmのシリカ
粒子やチタニア粒子等が用いられており、内添剤として
平均粒径0.005〜0.040μmのシリカ粒子が用い
られているが、高速化、高画像化および現像材劣化挙動
等の制御などに対応できるシャープな粒度分布を持った
微細シリカ粒子が求められている。また、電子写真感光
体の表面保護層や電荷輸送層の耐久性を高めるために、
平均粒径0.005〜0.150μmのシリカ粒子が用い
られているが、珪酸ナトリウムを原料として製造される
湿式シリカやシリカゲルはソーダ等のアルカリ金属の含
有量が高い問題があり、これに代わる適切な粒度のアル
カリ金属量の少ない微細シリカ粒子が求められている。
2. Description of the Related Art A silica filler used as a resin filler for semiconductors is preferably as pure as possible, has a shape close to a true sphere, has an appropriate particle size distribution, and further has a high filling and high fluidity. What can fill the fine space between the silica particles and can also improve the slip between the particles is effective. Therefore, the average particle diameter is generally about 0.1 to 1 μm and the BET specific surface area (hereinafter, simply referred to as specific surface area). ) 5-3
Particles of about 0 m 2 / g are used. Further, at present, silica particles or titania particles having an average particle diameter of 0.006 to 0.040 μm are generally used as an external additive for electrophotographic toner for the purpose of improving fluidity and controlling charge, and are used as internal additives. Although silica particles with an average particle diameter of 0.005 to 0.040 μm are used, fine silica particles having a sharp particle size distribution that can respond to speeding up, high image quality, control of developer deterioration behavior, etc. are required. Have been. Also, in order to increase the durability of the surface protective layer and the charge transport layer of the electrophotographic photoreceptor,
Silica particles having an average particle diameter of 0.005 to 0.150 μm are used, but wet silica or silica gel produced using sodium silicate as a raw material has a problem in that the content of alkali metals such as soda is high, and this is an alternative. There is a demand for fine silica particles having an appropriate particle size and a small amount of alkali metal.

【0004】ところで、従来のゾル・ゲル法では1μm以
下の微粒子を製造するのは困難であり、このような充填
材料として好ましい粒度のシリカ微粒子を得るのは難し
い。しかも、ゾル・ゲル法では1μm以下の微粒子を生
成しても、その反応物を安定したシリカ粒子に焼成する
際に粒子どうしの成長および焼結が生じ、この粒度のま
まで単分散可能なシリカ粒子を安定に得ることができな
い。また、焼成不十分なゾル・ゲル反応物微粒子はシラ
ノール基や有機物が過度に残留しており、これを混練・
充填したコンパウンドは射出成形・加工する際に気体が
発生するなどの問題があり、半導体樹脂封止材用充填材
には使用できない。
By the way, it is difficult to produce fine particles of 1 μm or less by the conventional sol-gel method, and it is difficult to obtain silica fine particles having a preferable particle size as such a filling material. In addition, even if fine particles of 1 μm or less are produced by the sol-gel method, the particles are grown and sintered when the reactant is baked into stable silica particles. Particles cannot be obtained stably. In addition, the sol-gel reactant particles that are insufficiently calcined have excessive silanol groups and organic substances, which are kneaded.
The filled compound has problems such as generation of gas during injection molding and processing, and cannot be used as a filler for semiconductor resin sealing materials.

【0005】一方、二酸化チタン粒子については、四塩
化チタンを原料として用い、高温下でこれを酸素ガスで
直接酸化することによって0.1μm以上の結晶性粒子を
製造する方法が知られているが、シリカの直接酸化反応
は二酸化チタンよりも高温下で行う必要があり、しかも
融点(1730℃)と沸点(2230℃)が近いために粒子の成長が
十分ではなく0.1μm以下の超微粒子になりやすい。し
かも生産性も低い。従って、この方法によっても充填材
料として好ましい粒度のシリカ粒子を得るのが難しい。
On the other hand, with respect to titanium dioxide particles, a method of producing crystalline particles of 0.1 μm or more by using titanium tetrachloride as a raw material and directly oxidizing the same with oxygen gas at a high temperature is known. However, the direct oxidation reaction of silica must be performed at a higher temperature than titanium dioxide, and the melting point (1730 ° C) and boiling point (2230 ° C) are close to each other. Prone. Moreover, productivity is low. Therefore, even with this method, it is difficult to obtain silica particles having a preferable particle size as the filler.

【0006】また、酸素含有雰囲気中で金属珪素粉末に
着火し、火炎を形成して連続的に酸化燃焼させる方法
は、製造されるシリカ粉末の純度が低いと云う問題があ
る。半導体封止樹脂に用いるシリカ微粉末は高純度のも
のが求められ、特に、放射線エラーを生じないようにウ
ラン含有量が可能な限り少ないものが必要とされる。と
ころが、金属珪素の精製は困難であり、これを原料とす
る酸化燃焼法では高純度のシリカ微粉末を低コストで製
造することができない。
Further, the method of igniting metal silicon powder in an oxygen-containing atmosphere, forming a flame and continuously oxidizing and burning, has a problem that the purity of the produced silica powder is low. The silica fine powder used for the semiconductor encapsulation resin is required to have a high purity, and in particular, a uranium content as small as possible so as not to cause a radiation error. However, it is difficult to purify metallic silicon, and it is not possible to produce high-purity silica fine powder at low cost by the oxidative combustion method using the metallic silicon as a raw material.

【0007】[0007]

【発明が解決しようとする手段】本発明は、従来の製造
方法における上記問題を解決したものであり、形状が真
球に近く、適度が粒度分布を有する高純度の非晶質微細
シリカ粒子を低コストで製造する方法を提供するもので
あり、また、そのシリカ微粒子に関するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional production method, and provides high-purity amorphous fine silica particles having a shape close to a true sphere and having a moderate particle size distribution. It is intended to provide a method for producing at a low cost, and to the silica fine particles.

【0008】[0008]

【課題を解決する手段】すなわち、本発明は(1)ガス
状の珪素化合物を火炎中に導いて加水分解することによ
り非晶質シリカ微粒子を製造する方法において、火炎温
度をシリカの融点以上および火炎中のシリカ濃度を0.
25kg/Nm3以上とし、生成したシリカ粒子をシリカの融
点以上の高温下に短時間滞留させ、平均粒径(メジアン
径)0.1〜0.7μmおよび比表面積5〜30m2/gの非晶
質シリカ粒子を得ることを特徴とする非晶質微細シリカ
粒子の製造方法に関する。
That is, the present invention provides (1) a method for producing amorphous silica fine particles by introducing a gaseous silicon compound into a flame and hydrolyzing the gaseous silicon compound. Reduce the silica concentration in the flame to 0.
25 kg / Nm 3 or more, and the produced silica particles are allowed to stay for a short time at a high temperature not lower than the melting point of silica, and have an average particle diameter (median diameter) of 0.1 to 0.7 μm and a specific surface area of 5 to 30 m 2 / g. The present invention relates to a method for producing amorphous fine silica particles, characterized by obtaining crystalline silica particles.

【0009】本発明の製造方法は以下の態様を含む。 (2)火炎中のシリカ濃度(v)が0.25〜1.0kg/Nm3
である上記(1)の製造方法。 (3)シリカ粒子の火炎中の滞留時間(t)が0.02〜
0.30秒である上記(1)または(2)の製造方法。 (4)シリカ粒子の比表面積(S)、メジアン径(r)、火
炎中のシリカ濃度(v)、シリカ粒子の火炎中の滞留時間
(t)を、おのおの次式[I]または[II]に従って制御する
上記(1)、(2)または(3)の製造方法。 S=3.52(v・t)-0.4 ……[I] r=1.07(v・t)0.4 ……[II]
The manufacturing method of the present invention includes the following aspects. (2) The silica concentration (v) in the flame is 0.25 to 1.0 kg / Nm 3
The production method according to the above (1). (3) The residence time (t) of the silica particles in the flame is from 0.02 to
The production method according to the above (1) or (2), wherein the production time is 0.30 seconds. (4) Specific surface area of silica particles (S), median diameter (r), silica concentration in flame (v), residence time of silica particles in flame
The method according to (1), (2) or (3), wherein (t) is controlled according to the following formula [I] or [II], respectively. S = 3.52 (v · t) −0.4 ... [I] r = 1.07 (v · t) 0.4 ... [II]

【0010】また、本発明は(5)平均粒径(メジアン
径)0.1〜0.7μmおよび比表面積5〜30m2/gであっ
て、次式[III]で表される分散係数(z)が40以下であ
ることを特徴とする非晶質微細シリカ粒子に関する。 z=Y/2X ……[III] (Xはメジアン径、Yは累積10%到達粒径から累積9
0%到達粒径までの粒径範囲)
The present invention also provides (5) an average particle diameter (median diameter) of 0.1 to 0.7 μm and a specific surface area of 5 to 30 m 2 / g, and a dispersion coefficient (III) represented by the following formula [III]: and z) is 40 or less. z = Y / 2X [III] (X is the median diameter, and Y is the cumulative 9
Particle size range up to 0% particle size)

【0011】本発明の非晶質微細シリカ粒子は、(6)
半導体樹脂封止材の充填材として用いられる上記(5)の
非晶質微細シリカ粒子。(7)プラスチックフィルムな
いしシートのアンチブロッキング用フィラーとして用い
られる上記(5)の非晶質微細シリカ粒子、(8)トナー
用外添剤として用いられる上記(5)の非晶質微細シリカ
粒子、(9)電子写真感光体の表面保護層もしくは電荷
輸送層に用いられる上記(5)の非晶質微細シリカ粒子を
含む。
[0011] The amorphous fine silica particles of the present invention can be obtained by:
The amorphous fine silica particles according to the above (5), which are used as a filler for a semiconductor resin sealing material. (7) The amorphous fine silica particles of (5) used as an antiblocking filler for a plastic film or sheet, (8) the amorphous fine silica particles of (5) used as an external additive for toner, (9) It contains the fine amorphous silica particles of the above (5) used for the surface protective layer or the charge transport layer of the electrophotographic photosensitive member.

【0012】本発明の非晶質微細シリカ粒子は、半導体
封止用樹脂の充填材、プラスチックフィルム等のアンチ
ブロッキング用フィラー、あるいは電子写真トナーや感
光体などの電子写真材料の外添剤ないし内添剤として好
適な粒度分布を有しており、これらの充填材料として優
れた効果を発揮する。また、本発明の製造方法によれば
この非晶質微細シリカ粒子を容易に製造することができ
る。
The amorphous fine silica particles of the present invention can be used as a filler for a semiconductor encapsulating resin, an antiblocking filler such as a plastic film, or an external additive or an internal additive for electrophotographic materials such as electrophotographic toners and photoreceptors. It has a suitable particle size distribution as an additive, and exhibits excellent effects as these fillers. Further, according to the production method of the present invention, the amorphous fine silica particles can be easily produced.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。(I)製造方法 本発明の製造方法は、ガス状の珪素化合物を火炎中に導
いて加水分解することにより非晶質シリカ微粒子を製造
する方法において、火炎温度をシリカの融点以上および
火炎中のシリカ濃度を0.25kg/Nm3以上とし、生成し
たシリカ粒子をシリカの融点以上の高温下に短時間滞留
させ、平均粒径(メジアン径)0.1〜0.7μmおよび比
表面積5〜30m2/gの非晶質シリカ粒子を得ることを特
徴とする方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. (I) Production method The production method of the present invention is directed to a method for producing amorphous silica fine particles by introducing a gaseous silicon compound into a flame and hydrolyzing the same, wherein the flame temperature is higher than the melting point of silica and The silica concentration is 0.25 kg / Nm 3 or more, and the generated silica particles are kept for a short time at a high temperature not lower than the melting point of silica, and have an average particle diameter (median diameter) of 0.1 to 0.7 μm and a specific surface area of 5 to 30 m. This method is characterized by obtaining 2 / g of amorphous silica particles.

【0014】本発明の製造方法は火炎加水分解法に基づ
いており、珪素化合物の原料ガスを火炎中に導いて加水
分解することによりシリカ粒子を製造する。原料の珪素
化合物としては、四塩化珪素、トリクロロシラン、ジク
ロロシラン、メチルトリクロロシラン等のガス状で酸水
素炎中に導入され、高温下で加水分解反応を生じるもの
が用いられる。これらの四塩化珪素等のガス状珪素化合
物は蒸留精製が容易であり、原料中の不純物を容易に除
去できるので高純度のシリカ粒子を製造することができ
る。
The production method of the present invention is based on a flame hydrolysis method, in which silica particles are produced by introducing a silicon compound raw material gas into a flame for hydrolysis. As a silicon compound as a raw material, a compound such as silicon tetrachloride, trichlorosilane, dichlorosilane, methyltrichlorosilane, which is introduced into an oxyhydrogen flame in a gaseous state and causes a hydrolysis reaction at a high temperature is used. These gaseous silicon compounds such as silicon tetrachloride can be easily purified by distillation and impurities in the raw material can be easily removed, so that high-purity silica particles can be produced.

【0015】可燃性ガスおよび支燃性ガスを用いて火炎
を形成し、火炎温度をシリカの融点(1730℃)以上に高め
る。可燃性ガスとしては水素や水素含有ガス、水素生成
ガスを使用することができる。支燃性ガスとしては酸素
や酸素含有ガスを使用することができる。火炎温度がシ
リカの融点より低いと目的とする粒径のシリカ粒子を得
るのが難しい。
[0015] A flame is formed using the combustible gas and the supporting gas, and the flame temperature is raised to the melting point of silica (1730 ° C) or higher. As the combustible gas, hydrogen, a hydrogen-containing gas, and a hydrogen-producing gas can be used. Oxygen or an oxygen-containing gas can be used as the supporting gas. When the flame temperature is lower than the melting point of silica, it is difficult to obtain silica particles having a desired particle size.

【0016】これらの原料ガス(珪素化合物ガス)、可燃
性ガス、支燃性ガスは燃焼バーナによって火炎を形成す
るが、本発明の火炎加水分解法では、生成したシリカ粒
子がシリカ融点以上の高温下で滞留する時間を確保する
ため、燃焼バーナの外周部で可燃性ガスを燃焼させるこ
とによって輻射で失われる熱量を補うと良い。また、反
応容器は火炎温度をシリカの融点以上に保持するために
1000℃以上の高温に耐える構造とし、排気側には排
風機等を設けて吸引し、容器内の圧力を大気圧基準で−
200mmAgから−10mmAg程度の負圧に保つことが好ま
しい。
These raw material gas (silicon compound gas), flammable gas, and supporting gas form a flame by a combustion burner. However, in the flame hydrolysis method of the present invention, the generated silica particles have a high temperature above the silica melting point. In order to secure time for staying under the combustion burner, it is preferable to compensate for the amount of heat lost by radiation by burning the combustible gas at the outer periphery of the combustion burner. The reaction vessel has a structure capable of withstanding a high temperature of 1000 ° C. or more in order to maintain the flame temperature at or above the melting point of silica. An exhaust fan or the like is provided on the exhaust side for suction, and the pressure in the vessel is reduced based on the atmospheric pressure.
It is preferable to maintain a negative pressure of about 200 mmAg to about -10 mmAg.

【0017】本発明の製造方法では、原料ガスの供給量
等を制御して火炎中のシリカの濃度を0.25kg/Nm3
上、好ましくは0.25〜1.0kg/Nm3程度に調整する。
このシリカ濃度が0.25kg/Nm3より低いと十分に粒子
が成長せず、所望の粒径のものが得られない。一方、シ
リカ濃度が1.0kg/Nm3を上回るとバーナにシリカが付
着しやすくなり、また粒径の制御も難しい。
[0017] In the production method of the present invention controls the supply amount of the raw material gas concentration of the silica in the flame 0.25 kg / Nm 3 or more, preferably adjusted to about 0.25~1.0kg / Nm 3 I do.
If the silica concentration is lower than 0.25 kg / Nm 3 , the particles will not grow sufficiently and a desired particle size cannot be obtained. On the other hand, if the silica concentration exceeds 1.0 kg / Nm 3 , silica tends to adhere to the burner, and it is difficult to control the particle size.

【0018】さらに、本発明の製造方法は、火炎加水分
解によって生成したシリカ粒子を火炎中(シリカの融点
以上の高温下)に短時間滞留させることによってシリカ
粒子を成長させ、その粒径を制御する。この滞留時間は
0.02〜0.30秒が適当である。滞留時間が0.02
秒以下では粒子の成長が十分ではない。また、滞留時間
が0.30秒より長いと生成したシリカ粒子どうしの融
着が生じ、さらに反応容器内壁に対するシリカの付着も
顕著になるので好ましくない。
Further, in the production method of the present invention, the silica particles produced by flame hydrolysis are allowed to stay for a short time in a flame (at a high temperature not lower than the melting point of silica) to grow the silica particles and to control the particle size. I do. The residence time is suitably from 0.02 to 0.30 seconds. Residence time is 0.02
In seconds or less, particle growth is not sufficient. On the other hand, if the residence time is longer than 0.30 seconds, the generated silica particles are fused to each other, and the adhesion of silica to the inner wall of the reaction vessel becomes remarkable, which is not preferable.

【0019】なお、原料ガス、可燃性ガスおよび支燃性
ガスに希釈用ガス(空気や窒素ガスなど)を導入して燃焼
温度およびガス流速を調整することにより。シリカ粒子
の粒径を制御することができる。希釈用ガスの供給量を
増加して火炎温度を下げると共にガス流速を高めると、
シリカの滞留時間が減少し、粒子の成長が制限されるの
で比較的粒径が小さく、従って、比表面積の大きなシリ
カ粒子となる。
Incidentally, by introducing a diluting gas (such as air or nitrogen gas) into the raw material gas, the combustible gas, and the supporting gas, the combustion temperature and the gas flow rate are adjusted. The particle size of the silica particles can be controlled. Increasing the gas flow rate by increasing the supply of dilution gas and lowering the flame temperature,
Since the silica residence time is reduced and the particle growth is restricted, the silica particles have a relatively small particle size and therefore have a large specific surface area.

【0020】具体的には、本発明の製造方法において製
造するシリカ粒子の比表面積(S)、メジアン径(r)、火
炎中のシリカ濃度(v)、シリカ粒子の火炎中の滞留時間
(t)はおのおの次式[I]または[II]に従って制御され
る。 S=3.52(v・t)-0.4 ……[I] r=1.07(v・t)0.4 ……[II] 本発明の製造方法によって得られる微細シリカ粒子の比
表面積(S)とメジアン径(r)は、図2および図3のグラ
フに示すように、それぞれ火炎中のシリカ濃度(v)と滞
留時間(t)の積に対して、上記[I][II]式で表される対
数曲線に示す関係を有することが見出される。従って、
このシリカ濃度と滞留時間を因子としてシリカ粒子の比
表面積(S)やメジアン径(r)を制御することができる。
また目的の比表面積やメジアン径に応じて火炎中のシリ
カ濃度や滞留時間を制御する。
Specifically, the specific surface area (S), the median diameter (r), the silica concentration in the flame (v), the residence time of the silica particles in the flame produced by the production method of the present invention.
(t) is controlled according to the following equation [I] or [II]. S = 3.52 (v · t) −0.4 ... [I] r = 1.07 (v · t) 0.4 ... [II] Specific surface area (S) of fine silica particles obtained by the production method of the present invention And the median diameter (r) are, as shown in the graphs of FIGS. 2 and 3, respectively, the product of the silica concentration (v) and the residence time (t) in the flame, using the above formulas [I] and [II]. It is found to have the relationship shown in the logarithmic curve represented. Therefore,
The specific surface area (S) and the median diameter (r) of the silica particles can be controlled by using the silica concentration and the residence time as factors.
Further, the silica concentration and the residence time in the flame are controlled according to the target specific surface area and the median diameter.

【0021】反応容器から取り出したシリカ粒子は、焼
結や融着、再結晶、あるいは表面変化などが生じないよ
うに急速に冷却し、 水または他の凝縮しやす
い反応物の露点以上の温度にして分離、回収する。この
回収装置は集塵機、サイクロン、バグフィルターなどを
用いることができる。回収したシリカ粒子には燃焼ガス
中に含まれる塩化水素などのハロゲン、ハロゲン化合
物、窒素酸化物などが吸着しているのでこれらを除去す
るのが好ましい。シリカ粒子に吸着しているこれらの揮
発性の陰イオン性不純物は電気炉、流動層、ロータリー
キルン等での加熱処理により除去ないし低減することが
できる。この加熱処理は連続処理ないしバッチ処理の何
れでも良い。加熱処理は高温で処理時間が長いほどその
除去・低減効果が高いが、800℃以上の高温ではシリ
カ粒子の凝集ないし融着等を生じる懸念があるのでこの
温度以下が適当である。半導体材料として用いるには可
能な限り不純物の少ない高純度のシリカが求められる
が、このような吸着不純物を除去することによって半導
体材料用として好適なシリカ粒子を得ることができる。
The silica particles taken out of the reaction vessel are rapidly cooled so as not to cause sintering, fusion, recrystallization, or surface change, to a temperature above the dew point of water or other easily condensed reactants. To separate and collect. This collection device can use a dust collector, a cyclone, a bag filter, or the like. Since the recovered silica particles adsorb halogens such as hydrogen chloride, halogen compounds, nitrogen oxides and the like contained in the combustion gas, it is preferable to remove these. These volatile anionic impurities adsorbed on the silica particles can be removed or reduced by heat treatment in an electric furnace, a fluidized bed, a rotary kiln or the like. This heat treatment may be either a continuous treatment or a batch treatment. The longer the heat treatment at a high temperature, the longer the effect of removing and reducing the heat treatment. However, at a high temperature of 800 ° C. or more, there is a concern that the silica particles may aggregate or fuse together. For use as a semiconductor material, high-purity silica with as few impurities as possible is required. By removing such adsorbed impurities, silica particles suitable for a semiconductor material can be obtained.

【0022】(II)微細シリカ粒子 上記製造方法によれば、平均粒径(メジアン径)0.1〜
0.7μmおよび比表面積5〜30m2/gであって、次式[I
II]で表される分散係数(z)が40%以下の非晶質微細
シリカ粒子を得ることができる。 z=Y/2X ・・・・[III] ここで、Xはメジアン径、Yは累積10%到達粒径から
累積90%到達粒径までの粒径範囲である。式[III]か
ら明らかなように、分散係数zは上記シリカ粒子のメジ
アン径を中心とする分布状態を示し、この値が小さいも
のほどメジアン径付近に粒度分布が集中している。な
お、累積10%未満の粒径範囲、および累積90%を上
回る粒径範囲は何れも分布の誤差が大きくなるので、累
積10%到達粒径から累積90%到達粒径までの粒径範
囲Yを基準とする。
(II) Fine silica particles According to the above production method, the average particle diameter (median diameter) is 0.1 to 0.1.
0.7 μm and a specific surface area of 5 to 30 m 2 / g.
II], amorphous fine silica particles having a dispersion coefficient (z) of 40% or less can be obtained. z = Y / 2X [III] Here, X is the median diameter, and Y is the particle diameter range from the cumulative particle diameter reaching 10% to the cumulative particle diameter reaching 90%. As is clear from the formula [III], the dispersion coefficient z indicates a distribution state centered on the median diameter of the silica particles, and the smaller this value is, the more the particle size distribution is concentrated near the median diameter. Since the distribution error increases in both the particle size range of less than 10% cumulative and the particle size range of more than 90% cumulative, the particle size range Y from the 10% cumulative particle size to the 90% cumulative particle size Y Based on

【0023】なお、本発明のシリカ粒子に類似する既存
のシリカ粒子の分散係数(z)は概ね43%以上であり本
発明よりも分布が広い。従って、粒子間の滑り性を付与
する場合に比較的多くの添加量を必要とする。一方、本
発明の微細シリカ粒子はその分布がメジアン径付近に集
中しており、従来品よりも格段に粒度が均一であるの
で、粒子間の滑り性を付与する場合に比較的少量の添加
で効果が得られる利点がある。
The dispersion coefficient (z) of the existing silica particles similar to the silica particles of the present invention is generally 43% or more, and the distribution is wider than that of the present invention. Therefore, a relatively large amount of addition is required when imparting slipperiness between particles. On the other hand, the distribution of the fine silica particles of the present invention is concentrated around the median diameter, and the particle size is much more uniform than conventional products. There is an advantage that an effect can be obtained.

【0024】また、本発明の微細シリカ粒子は容易に単
分散可能な粒子である。このように本発明の微細シリカ
粒子はメジアン径が従来のシリカ粒子より小さく、しか
もメジアン径付近に粒度分布が集中しており、粒径が格
段に均一であるので、半導体用の樹脂コンパウンドの流
動性や耐バリ性等を改善するために用いられるシリカフ
ィラーとして好適である。因みに、粒径が上記範囲より
小さく比表面積が大きいものはコンパウンドの流動性が
低下し、一方、上記範囲より粒径が大きく比表面積の小
さいものは耐バリ性が低下する。
The fine silica particles of the present invention are easily monodispersible particles. As described above, the fine silica particles of the present invention have a smaller median diameter than conventional silica particles, and the particle size distribution is concentrated near the median diameter, and the particle size is extremely uniform, so that the flow of the resin compound for semiconductors is increased. It is suitable as a silica filler used for improving the properties and burr resistance. By the way, compounds having a particle size smaller than the above range and a larger specific surface area decrease the fluidity of the compound, while those having a larger particle size and a smaller specific surface area than the above range have a reduced burr resistance.

【0025】さらに、本発明のシリカ微粒子はほぼ完全
な非晶質粒子であり、真球に近い粒子形状を有してい
る。従って、半導体用樹脂コンパウンドの充填材料とし
て優れた効果を発揮する。なお、図1に対比して示すよ
うに、充填材料等として市販されている従来のシリカ粒
子は、その粒度分布のピークが本発明のシリカ粒子より
も1μm側に片寄り、本発明のシリカ粒子よりも粒径が
大きい。
Further, the silica fine particles of the present invention are almost completely amorphous particles, and have a particle shape close to a true sphere. Therefore, it exhibits an excellent effect as a filling material for a resin compound for semiconductors. As shown in comparison with FIG. 1, the conventional silica particles commercially available as a filling material and the like have peaks in the particle size distribution which are shifted to the 1 μm side from the silica particles of the present invention, and the silica particles of the present invention Particle size is larger than

【0026】本発明の微細シリカ粒子はプラスチックフ
ィルムないしシートのアンチブロックキング用フィラー
としても好適である。アンチブロッキング用フィラーは
フィルムやシートの表面に微細な凹凸を形成することに
よってブロッキングを防止する目的で使用され、耐摩耗
ないし耐スクラッチ用フィラーよりは粒径が大きく、か
つ粒径1μm以下の粒度分布がシャープな粒子が求めら
れる。また、アンチブロッキング用フィラーはプラスチ
ックフィルムないしシートから離脱しない化学的に安定
なものが必要とされ、かつ製造時ないし成形加工時に気
体を発生させることがなく、樹脂との親和性の高いもの
が求められる。本発明の微細シリカ粒子はこのアンチブ
ロッキング用フィラーとして好適である。
The fine silica particles of the present invention are also suitable as a filler for anti-blocking of a plastic film or sheet. The anti-blocking filler is used to prevent blocking by forming fine irregularities on the surface of the film or sheet, and has a particle size larger than the abrasion or scratch-resistant filler and a particle size of 1 μm or less. However, sharp particles are required. In addition, the antiblocking filler is required to be chemically stable so as not to be detached from the plastic film or sheet, and to have a high affinity for the resin without generating gas during production or molding. Can be The fine silica particles of the present invention are suitable as the filler for antiblocking.

【0027】本発明の微細シリカ粒子は以上のように比
表面積ないしメジアン径が制御されており、かつ高純度
であるので、電子写真用トナーの外添剤や内添剤として
も好適である。
Since the fine silica particles of the present invention have a controlled specific surface area or median diameter and high purity as described above, they are also suitable as external additives and internal additives for electrophotographic toners.

【0028】本発明のシリカ粒子はガス状の珪素化合物
(四塩化珪素ガス等)を原料に用いるので蒸留によって不
純物を除去するのが容易であり、ウラン含有量などが少
ない高純度のシリカ粒子を得ることができる。具体的に
は、ウラン含有量0.5ppb以下、アルミニウムおよび鉄
の含有量が各々500ppm以下、カルシウム含有量50p
pm以下、ナトリウム、マンガン、クロムおよびリンの含
有量が各々10ppm以下のシリカ微粒子を得ることがで
きる。また、火炎加水分解によって製造したシリカ微粒
子を回収する際の加熱処理によって吸着不純物が除去・
低減されるので高純度のシリカ微粒子が得られる。半導
体メモリーは、その材料に含まれるα線によるソフトエ
ラーを防止するためウラン含有量が可能な限り少ないも
のが求められる。従って、本発明の高純度シリカ微粒子
はこの点からも好ましい。
The silica particles of the present invention are a gaseous silicon compound
Since (eg, silicon tetrachloride gas) is used as a raw material, impurities can be easily removed by distillation, and high-purity silica particles having a small uranium content and the like can be obtained. Specifically, the uranium content is 0.5 ppb or less, the aluminum and iron contents are each 500 ppm or less, and the calcium content is 50 ppb.
Silica fine particles having a content of sodium, manganese, chromium and phosphorus of 10 ppm or less can be obtained. In addition, adsorbed impurities are removed by heat treatment at the time of recovering silica fine particles produced by flame hydrolysis.
As a result, high-purity silica fine particles can be obtained. The semiconductor memory is required to have a uranium content as small as possible in order to prevent a soft error due to α rays contained in the material. Therefore, the high-purity silica fine particles of the present invention are also preferable from this point.

【0029】[0029]

【実施例】以下、実施例によって本発明を具体的に示
す。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0030】〔実施例1〕図1に示すように、原料の珪
素化合物の気化して供給するための蒸発器1、原料の珪
素化合物ガスを供給する供給管2、可燃性ガスを供給す
る供給管3、支燃性ガスを供給する供給管4、これらの
供給管2〜4に接続したバーナー5、火炎加水分解反応
を行う反応器6、反応容器6の下流に連結された冷却管
7、製造されたシリカ粉末を回収する回収装置8、さら
に下流に排ガス処理装置9、排風機10からなる製造装
置を用い、以下のようにして非晶質微細シリカ粒子を製
造した。なお、反応容器6の内壁は1000℃以上の高
温に耐えるようにアルミナ煉瓦で内張りして用いた。製造工程 支燃性ガス供給管を開いて酸素ガスをバーナーに供給
し、着火用バーナー(図示省略)に点火した後、可燃性ガ
ス供給管を開いて水素ガスをバーナーに供給して火炎を
形成し、これに四塩化珪素を蒸発器1にてガス化して供
給し、表2に示す条件下で火炎加水分解反応を行わせ、
生成したシソカ粉末を回収装置8のバグフィルターで回
収した。粉末回収後の排ガスは排ガス処理装置9で処理
し、排風機10を通じて排気した。原料の四塩化珪素ガ
ス量、水素ガスおよび酸素ガスの量、火炎中のシリカ濃
度と滞留時間、生成したシリカ粒子の粒度および分布係
数を表1にまとめて示した。なお、既存品のシリカ粒子
の値を対比して示した。また、実施例No.1〜6、および
既存品の粒度分布を図2に示した。
Embodiment 1 As shown in FIG. 1, an evaporator 1 for vaporizing and supplying a raw material silicon compound, a supply pipe 2 for supplying a raw material silicon compound gas, and a supply for supplying a combustible gas A pipe 3, a supply pipe 4 for supplying a supporting gas, a burner 5 connected to these supply pipes 2 to 4, a reactor 6 for performing a flame hydrolysis reaction, a cooling pipe 7 connected downstream of the reaction vessel 6, Using a recovery device 8 for recovering the produced silica powder and a production device including an exhaust gas treatment device 9 and an exhaust fan 10 further downstream, amorphous fine silica particles were produced as follows. The inner wall of the reaction vessel 6 was lined with alumina brick to withstand a high temperature of 1000 ° C. or higher. The oxygen gas supplied to the burner by opening the manufacturing process combustion supporting gas supply pipe, after igniting the ignition burner (not shown), forms a flame of hydrogen gas supplied to the burner by opening the flammable gas supply pipe Then, silicon tetrachloride was gasified and supplied in the evaporator 1 and subjected to a flame hydrolysis reaction under the conditions shown in Table 2.
The generated perilla powder was collected by a bag filter of the collecting device 8. Exhaust gas after powder recovery was treated by an exhaust gas treatment device 9 and exhausted through an exhaust fan 10. Table 1 shows the amounts of silicon tetrachloride gas, the amounts of hydrogen gas and oxygen gas, the silica concentration and residence time in the flame, the particle size of the silica particles produced, and the distribution coefficient. In addition, the value of the silica particle of the existing product was shown in comparison. FIG. 2 shows the particle size distributions of Examples Nos. 1 to 6 and existing products.

【0031】[0031]

【表1】 [Table 1]

【0032】表1および図2に示すように、No.1〜6
のシリカ粒子は比表面積13.2〜30.0m2/g、平均粒
径(メジアン径)0.195〜0.37μm、分布係数31
〜35%であり、何れも本発明の範囲に含まれる。一
方、既存品のシリカ粒子は比表面積とメジアン径が本発
明の範囲に含まれるものの分散係数は本発明のシリカ粒
子よりも大きく、粒度分布のピークが本発明のシリカ粒
子より大きい。
As shown in Table 1 and FIG.
Has a specific surface area of 13.2 to 30.0 m 2 / g, an average particle diameter (median diameter) of 0.195 to 0.37 μm, and a distribution coefficient of 31.
To 35%, all of which are included in the scope of the present invention. On the other hand, the existing silica particles have a specific surface area and a median diameter falling within the range of the present invention, but have a larger dispersion coefficient than the silica particles of the present invention, and a particle size distribution peak is larger than that of the silica particles of the present invention.

【0033】No.1〜6のシリカ粒子について、火炎中
のシリカ濃度(v)と滞留時間(t)の積に対する比表面積
(S)とメジアン径(r)の関係を図3および図4に示し
た。この結果から、火炎中のシリカ濃度(v)と滞留時間
(t)の積は比表面積(S)とメジアン径(r)に対して次式
[I][II]の関係にあることが見出された。 S=3.52(v・t)-0.4 ……[I] r=1.07(v・t)0.4 ……[II]
For the silica particles of Nos. 1 to 6, specific surface area with respect to the product of the silica concentration (v) in the flame and the residence time (t)
The relationship between (S) and the median diameter (r) is shown in FIGS. From these results, the silica concentration (v) in the flame and the residence time
The product of (t) is the following equation for the specific surface area (S) and the median diameter (r).
It was found that they had the relationship [I] [II]. S = 3.52 (v · t) −0.4 ... [I] r = 1.07 (v · t) 0.4 ... [II]

【0034】〔実施例2〕ビフェニル型エポキシ樹脂に
フェノールノボラック型硬化剤を添加した表2に示す組
成の樹脂分に、標準フィラーに実施例1のシリカ粉末(N
o.1〜6)を加えたフィラーを配合して試験用コンバウン
ドを調製した。このコンパウンドを加熱したミキシング
ロールミル(2本ロール)で5分間混練し、そのスパイラ
ルフローとバリ長さを測定した。この結果を表3に示し
た。なお、シリカフィラーは標準フィラーに対して全フ
ィラー中での重量比が5%、10%となるように調合
し、コンパウンド中のシリカフィラー充填率を88.0
重量%とした。標準フィラーは平均粒経22.4μm、比
表面積2.3m2/gの球状シリカ粒子を使用した。測定は
各試料を射出試験機にて加熱温度180℃、射出圧力7
0kg/cm2G、100秒間で各測定用金型に射出し、スパ
イラルフローおよびバリの長さを測定した。比較基準と
の対比から明らかなように、本発明のシリカ粒子を添加
したものは何れもスパイラルフローおよびバリ長さが低
減されており、この効果は概ね添加量に比例している。
Example 2 A resin having the composition shown in Table 2 obtained by adding a phenol novolak type curing agent to a biphenyl type epoxy resin was added to the silica powder of Example 1 (N
A compound for testing was prepared by blending a filler to which o.1 to 6) was added. This compound was kneaded for 5 minutes in a heated mixing roll mill (two rolls), and the spiral flow and burr length were measured. The results are shown in Table 3. The silica filler was prepared so that the weight ratio of all the fillers to the standard filler was 5% and 10%, and the silica filler filling rate in the compound was 88.0.
% By weight. As the standard filler, spherical silica particles having an average particle diameter of 22.4 μm and a specific surface area of 2.3 m 2 / g were used. The measurement was performed using an injection tester at a heating temperature of 180 ° C. and an injection pressure of 7 for each sample.
It was injected into each measuring mold at 0 kg / cm 2 G for 100 seconds, and the spiral flow and the length of the burr were measured. As is clear from the comparison with the comparative standard, the spiral flow and the burr length were all reduced in any of the samples to which the silica particles of the present invention were added, and this effect was substantially proportional to the added amount.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】本発明の製造方法によれば、平均粒径
(メジアン径)0.1〜0.7μmおよび比表面積が5〜3
0m2/gであって、分散係数(z)40%以下のシャープな
粒度分布を有するシリカ微粒子を得ることができる。こ
のシリカ微粒子は真球に近い粒子形状を有し、しかも粒
径が格段に均一である。従って、半導体用の樹脂充填材
料やプラスチックフィルムないしシートのアンチブロッ
キング用フィラーとして好適である。
According to the production method of the present invention, the average particle size is
(Median diameter) 0.1 to 0.7 μm and specific surface area 5 to 3
Silica fine particles having a sharp particle size distribution of 0 m 2 / g and a dispersion coefficient (z) of 40% or less can be obtained. These silica fine particles have a particle shape close to a true sphere, and the particle size is extremely uniform. Therefore, it is suitable as a resin filling material for semiconductors and a filler for antiblocking plastic films or sheets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法を実施する製造装置の構成
FIG. 1 is a configuration diagram of a manufacturing apparatus that performs a manufacturing method of the present invention.

【図2】 本発明のシリカ微粒子と既存品の粒度分布を
示すグラフ
FIG. 2 is a graph showing the particle size distribution of the silica fine particles of the present invention and existing products.

【図3】 本発明に係るシリカ粒子の比表面積の関係式
を示すグラフ
FIG. 3 is a graph showing a relational expression of the specific surface area of the silica particles according to the present invention.

【図4】 本発明に係るシリカ粒子のメジアン径の関係
式を示すグラフ
FIG. 4 is a graph showing a relational expression of a median diameter of silica particles according to the present invention.

【符号の説明】[Explanation of symbols]

1−蒸発器、2−原料ガスの供給管2、3−可燃性ガス
の供給管、4−支燃性ガスの供給管、5−燃焼バーナ
ー、6−反応容器、7−冷却管、8−回収装置、9−排
ガス処理装置9、10−排風機。
1-evaporator, 2-source gas supply pipe 2, 3-flammable gas supply pipe, 4-combustion gas supply pipe, 5-combustion burner, 6-reaction vessel, 7-cooling pipe, 8- Collection device, 9-exhaust gas treatment device 9, 10-exhaust fan.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03G 9/08 375 G03G 9/08 375 Fターム(参考) 2H005 AA08 2H068 AA04 4G072 AA25 BB05 BB13 GG01 GG03 HH07 MM01 MM38 RR05 TT01 TT02 TT05 UU01 UU07 UU25 UU30 4J002 AA001 CC042 CD041 DJ016 FD130 FD142 FD150 FD160──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03G 9/08 375 G03G 9/08 375 F term (Reference) 2H005 AA08 2H068 AA04 4G072 AA25 BB05 BB13 GG01 GG03 HH07 MM01 MM38 RR05 TT01 TT02 TT05 UU01 UU07 UU25 UU30 4J002 AA001 CC042 CD041 DJ016 FD130 FD142 FD150 FD160

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガス状の珪素化合物を火炎中に導いて加
水分解することにより非晶質シリカ微粒子を製造する方
法において、火炎温度をシリカの融点以上および火炎中
のシリカ濃度を0.25kg/Nm3以上とし、生成したシリ
カ粒子をシリカの融点以上の高温下に短時間滞留させ、
平均粒径(メジアン径)0.1〜0.7μmおよび比表面積
5〜30m2/gの非晶質シリカ粒子を得ることを特徴とす
る非晶質微細シリカ粒子の製造方法。
1. A method for producing amorphous silica fine particles by introducing a gaseous silicon compound into a flame and hydrolyzing the same, wherein the flame temperature is set to be higher than the melting point of silica and the silica concentration in the flame is set to 0.25 kg /. Nm 3 or more, and the generated silica particles are kept for a short time at a high temperature equal to or higher than the melting point of silica,
A method for producing amorphous fine silica particles, wherein amorphous silica particles having an average particle diameter (median diameter) of 0.1 to 0.7 μm and a specific surface area of 5 to 30 m 2 / g are obtained.
【請求項2】 火炎中のシリカ濃度(v)が0.25〜1.
0kg/Nm3である請求項1の製造方法。
2. The silica concentration (v) in the flame is 0.25 to 1.
0 kg / Nm 3 The manufacturing method of claim 1.
【請求項3】 シリカ粒子の火炎中の滞留時間(t)が
0.02〜0.30秒である請求項1または2の製造方
法。
3. The method according to claim 1, wherein the residence time (t) of the silica particles in the flame is 0.02 to 0.30 seconds.
【請求項4】 シリカ粒子の比表面積(S)、メジアン径
(r)、火炎中のシリカ濃度(v)、シリカ粒子の火炎中の
滞留時間(t)を、おのおの次式[I]または[II]に従って
制御する請求項1、2または3の製造方法。 S=3.52(v・t)-0.4 ……[I] r=1.07(v・t)0.4 ……[II]
4. Specific surface area (S) of silica particles, median diameter
4. The method according to claim 1, wherein (r), the concentration of silica in the flame (v), and the residence time (t) of the silica particles in the flame are controlled in accordance with the following formula [I] or [II], respectively. S = 3.52 (v · t) −0.4 ... [I] r = 1.07 (v · t) 0.4 ... [II]
【請求項5】 平均粒径(メジアン径)0.1〜0.7μm
および比表面積5〜30m2/gであって、次式[III]で表
される分散係数(z)が40以下であることを特徴とする
非晶質微細シリカ粒子。 z=Y/2X ……[III] (Xはメジアン径、Yは累積10%到達粒径から累積9
0%到達粒径までの粒径範囲)
5. An average particle diameter (median diameter) of 0.1 to 0.7 μm.
Amorphous fine silica particles having a specific surface area of 5 to 30 m 2 / g and a dispersion coefficient (z) represented by the following formula [III] of 40 or less. z = Y / 2X [III] (X is the median diameter, and Y is the cumulative 9
Particle size range up to 0% particle size)
【請求項6】 半導体樹脂封止材の充填材として用いら
れる請求項5の非晶質微細シリカ粒子。
6. The amorphous fine silica particles according to claim 5, which is used as a filler for a semiconductor resin sealing material.
【請求項7】 プラスチックフィルムないしシートのア
ンチブロッキング用フィラーとして用いられる請求項5
の非晶質微細シリカ粒子。
7. Use as an antiblocking filler for a plastic film or sheet.
Of amorphous fine silica particles.
【請求項8】 トナー用外添剤として用いられる請求項
5の非晶質微細シリカ粒子。
8. The amorphous fine silica particles according to claim 5, which is used as an external additive for a toner.
【請求項9】 電子写真感光体の表面保護層もしくは電
荷輸送層に用いられる請求項5の非晶質微細シリカ粒
子。
9. The amorphous fine silica particles according to claim 5, which is used for a surface protective layer or a charge transport layer of an electrophotographic photosensitive member.
JP2000184160A 2000-06-20 2000-06-20 Method for producing amorphous fine silica particles Expired - Lifetime JP4789080B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000184160A JP4789080B2 (en) 2000-06-20 2000-06-20 Method for producing amorphous fine silica particles
DE60133416T DE60133416T2 (en) 2000-06-20 2001-06-20 AMORPHIC FINE PARTICLES FROM SILICON DIOXIDE, PROCESS FOR THEIR PREPARATION AND USE.
EP01941114A EP1361195B1 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use
US10/049,902 US7083770B2 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use
PCT/JP2001/005252 WO2001098211A1 (en) 2000-06-20 2001-06-20 Amorphous, fine silica particles, and method for their production and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184160A JP4789080B2 (en) 2000-06-20 2000-06-20 Method for producing amorphous fine silica particles

Publications (2)

Publication Number Publication Date
JP2002003213A true JP2002003213A (en) 2002-01-09
JP4789080B2 JP4789080B2 (en) 2011-10-05

Family

ID=18684635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184160A Expired - Lifetime JP4789080B2 (en) 2000-06-20 2000-06-20 Method for producing amorphous fine silica particles

Country Status (1)

Country Link
JP (1) JP4789080B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material
KR100688300B1 (en) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 High-concentration silica slurry
JP2007084383A (en) * 2005-09-22 2007-04-05 Mizusawa Ind Chem Ltd Amorphous sheet-like silica
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
WO2007142343A1 (en) * 2006-06-08 2007-12-13 Canon Kabushiki Kaisha Toner
JP2007334068A (en) * 2006-06-16 2007-12-27 Canon Inc Toner and image forming method
JP2007334067A (en) * 2006-06-16 2007-12-27 Canon Inc Image forming method
KR100788857B1 (en) * 2003-09-22 2007-12-27 마츠시다 덴코 가부시키가이샤 Process for fabricating a micro-electro-mechanical system with movable components
JP2008019157A (en) * 2006-06-09 2008-01-31 Tokuyama Corp Dry-process fine silica particle
JP2008050207A (en) * 2006-08-24 2008-03-06 Admatechs Co Ltd Spherical silica particle, resin composition, semiconductor liquid sealing material and method for producing spherical silica particle
CN100538533C (en) * 2003-05-15 2009-09-09 施乐公司 Light activated element with nano-scale filler
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP2014028738A (en) * 2012-06-27 2014-02-13 Tokuyama Corp Dry silica particulates
JP2014088285A (en) * 2012-10-30 2014-05-15 Tokuyama Corp Dry silica fine particle
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015218102A (en) * 2014-05-21 2015-12-07 デンカ株式会社 Spherical silica fine powder and application of the same
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
JP2017116570A (en) * 2015-12-21 2017-06-29 キヤノン株式会社 Toner and manufacturing method of toner
JP2017119621A (en) * 2015-12-25 2017-07-06 株式会社トクヤマ Hydrophilic dry silica powder
US9897932B2 (en) 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner
KR20190082895A (en) * 2017-03-10 2019-07-10 와커 헤미 아게 Method for producing pyrogenic silica
WO2020175160A1 (en) * 2019-02-28 2020-09-03 株式会社トクヤマ Silica powder, resin composition, and dispersion
KR20210126109A (en) * 2019-03-12 2021-10-19 제지앙 써드 에이지 매터리얼 테크놀로지 컴퍼니., 리미티드 Manufacturing method of spherical silica powder filler, spherical silica powder filler obtained therefrom, and application thereof
WO2021215285A1 (en) * 2020-04-24 2021-10-28 株式会社トクヤマ Method for producing surface-treated silica powder
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials
US12098076B2 (en) 2019-02-28 2024-09-24 Tokuyama Corporation Silica powder, resin composition, and dispersion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485612B1 (en) 2008-04-25 2015-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 A protective film for semi-conductor wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688300B1 (en) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 High-concentration silica slurry
US7192461B2 (en) 2002-11-22 2007-03-20 Nippon Aerosil Co., Ltd. High concentration silica slurry
CN100538533C (en) * 2003-05-15 2009-09-09 施乐公司 Light activated element with nano-scale filler
KR100788857B1 (en) * 2003-09-22 2007-12-27 마츠시다 덴코 가부시키가이샤 Process for fabricating a micro-electro-mechanical system with movable components
JP2006256913A (en) * 2005-03-17 2006-09-28 Admatechs Co Ltd Spherical silica particle, resin composition and semiconductor liquid sealing material
JP2007084383A (en) * 2005-09-22 2007-04-05 Mizusawa Ind Chem Ltd Amorphous sheet-like silica
JP4597018B2 (en) * 2005-09-22 2010-12-15 水澤化学工業株式会社 Amorphous platy silica
WO2007142343A1 (en) * 2006-06-08 2007-12-13 Canon Kabushiki Kaisha Toner
CN101449213B (en) * 2006-06-08 2012-01-18 佳能株式会社 Toner
US7537877B2 (en) 2006-06-08 2009-05-26 Canon Kabushiki Kaisha Toner used in electrophotography having toner particles and silica powder
JP2008019157A (en) * 2006-06-09 2008-01-31 Tokuyama Corp Dry-process fine silica particle
US7803341B2 (en) 2006-06-09 2010-09-28 Tokuyama Corporation Fine dry silica particles
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
JP2007334068A (en) * 2006-06-16 2007-12-27 Canon Inc Toner and image forming method
JP2007334067A (en) * 2006-06-16 2007-12-27 Canon Inc Image forming method
JP2008050207A (en) * 2006-08-24 2008-03-06 Admatechs Co Ltd Spherical silica particle, resin composition, semiconductor liquid sealing material and method for producing spherical silica particle
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP5380290B2 (en) * 2007-08-01 2014-01-08 電気化学工業株式会社 Method for producing silica powder
JP2010243664A (en) * 2009-04-02 2010-10-28 Ricoh Co Ltd Toner, developer using the same, and image forming method
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
JP2014028738A (en) * 2012-06-27 2014-02-13 Tokuyama Corp Dry silica particulates
JP2014088285A (en) * 2012-10-30 2014-05-15 Tokuyama Corp Dry silica fine particle
JP2014152048A (en) * 2013-02-05 2014-08-25 Tokuyama Corp Dry-process silica fine particle
JP2015218102A (en) * 2014-05-21 2015-12-07 デンカ株式会社 Spherical silica fine powder and application of the same
JP2016079278A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
JP2017116570A (en) * 2015-12-21 2017-06-29 キヤノン株式会社 Toner and manufacturing method of toner
JP2017119621A (en) * 2015-12-25 2017-07-06 株式会社トクヤマ Hydrophilic dry silica powder
US9897932B2 (en) 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner
KR102278196B1 (en) 2017-03-10 2021-07-16 와커 헤미 아게 Method for producing pyrogenic silica
KR20190082895A (en) * 2017-03-10 2019-07-10 와커 헤미 아게 Method for producing pyrogenic silica
JP2020505307A (en) * 2017-03-10 2020-02-20 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing fumed silica
CN113365943A (en) * 2019-02-28 2021-09-07 株式会社德山 Silica powder, resin composition and dispersion
WO2020175160A1 (en) * 2019-02-28 2020-09-03 株式会社トクヤマ Silica powder, resin composition, and dispersion
CN113365943B (en) * 2019-02-28 2023-06-09 株式会社德山 Silica powder, resin composition and dispersion
TWI816978B (en) * 2019-02-28 2023-10-01 日商德山股份有限公司 Silica powder, resin composition and dispersion
JP7430700B2 (en) 2019-02-28 2024-02-13 株式会社トクヤマ Silica powder, resin compositions and dispersions
US12098076B2 (en) 2019-02-28 2024-09-24 Tokuyama Corporation Silica powder, resin composition, and dispersion
KR20210126109A (en) * 2019-03-12 2021-10-19 제지앙 써드 에이지 매터리얼 테크놀로지 컴퍼니., 리미티드 Manufacturing method of spherical silica powder filler, spherical silica powder filler obtained therefrom, and application thereof
KR102653644B1 (en) * 2019-03-12 2024-04-01 제지앙 써드 에이지 매터리얼 테크놀로지 컴퍼니., 리미티드 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby, and application thereof
WO2021215285A1 (en) * 2020-04-24 2021-10-28 株式会社トクヤマ Method for producing surface-treated silica powder
CN115298137A (en) * 2020-04-24 2022-11-04 株式会社德山 Method for producing surface-treated silica powder
CN115298137B (en) * 2020-04-24 2023-12-19 株式会社德山 Method for producing surface-treated silica powder
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials

Also Published As

Publication number Publication date
JP4789080B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4789080B2 (en) Method for producing amorphous fine silica particles
JP3796565B2 (en) Method for producing spherical silica fine particles
JP4904567B2 (en) Amorphous fine silica particles and their applications
EP1361195B1 (en) Amorphous, fine silica particles, and method for their production and their use
US20050129603A1 (en) High-purity silica powder, and process and apparatus for producing it
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
TWI488811B (en) Synthetic amorphous silica powder and process for producing the same
US11492282B2 (en) Preparation of quartz glass bodies with dew point monitoring in the melting oven
US7083770B2 (en) Amorphous, fine silica particles, and method for their production and their use
TWI525041B (en) Synthetic amorphous silica powder and method for producing the same
US20200123039A1 (en) Preparation of a quartz glass body
US20190152827A1 (en) Preparation of quartz glass bodies from silicon dioxide powder
JP4440157B2 (en) Silicon dioxide powder produced by pyrolysis method
US20190062193A1 (en) Preparation of a quartz glass body in a multi-chamber oven
US7910081B2 (en) Process for the production of fumed silica
US20190077672A1 (en) Reducing carbon content of silicon dioxide granulate and the preparation of a quartz glass body
TW201132590A (en) Synthetic amorphous silica powder
TW201738179A (en) Glass fibers and pre-forms made of homogeneous quartz glass
JP6745005B2 (en) Silica powder having excellent dispersibility, resin composition using the same, and method for producing the same
JPWO2011083710A1 (en) Synthetic amorphous silica powder and method for producing the same
CN101195487A (en) Amorphous fine silicon dioxide particles, producing method and uses thereof
JP2006509713A (en) Silica produced by pyrolysis
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
JP2012027142A (en) External additive for electrophotographic toner and electrophotographic toner
JP3672592B2 (en) Method for producing synthetic quartz glass member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term