JP2013212956A - Slurry composition and resin composition using the same - Google Patents

Slurry composition and resin composition using the same Download PDF

Info

Publication number
JP2013212956A
JP2013212956A JP2012084361A JP2012084361A JP2013212956A JP 2013212956 A JP2013212956 A JP 2013212956A JP 2012084361 A JP2012084361 A JP 2012084361A JP 2012084361 A JP2012084361 A JP 2012084361A JP 2013212956 A JP2013212956 A JP 2013212956A
Authority
JP
Japan
Prior art keywords
spherical silica
silica powder
value
particle size
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084361A
Other languages
Japanese (ja)
Other versions
JP5937403B2 (en
Inventor
Teruhiro Aikyo
輝洋 相京
Hisashi Ezaki
寿 江崎
Seigo Naruse
誠吾 成瀬
Nobuaki Abe
展明 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2012084361A priority Critical patent/JP5937403B2/en
Publication of JP2013212956A publication Critical patent/JP2013212956A/en
Application granted granted Critical
Publication of JP5937403B2 publication Critical patent/JP5937403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cured resin showing extremely high fluidity of a resin composition when being highly filled in a resin, and formed by dispersing spherical silica powder excellently.SOLUTION: In spherical silica powder, the volume average particle size is 0.46-1.3 μm, the value of a standard deviation to the volume average particle size is 45-110%, and the amount of reactive silanol group is 1.5-3.0/nm. Preferably, the ratio (D/D) of the cumulative volume 10% value (D) to the cumulative volume 50% value (D) in the particle size distribution is 0.1-0.6, and the BET specific surface area value is 4.2-7.5 m/g. A silica-containing slurry composition contains the spherical silica powder as much as 50-85 mass%.

Description

本発明は、シリカ粉末のスラリー組成物、およびそれを用いた樹脂組成物に関する。 The present invention relates to a slurry composition of silica powder and a resin composition using the same.

近年、電子機器の高速化、小型軽量化、高機能化に伴い、高密度実装・配線微細化に対応したプリント配線板が開発されている。多層ビルドアップ基板では、絶縁層と銅配線やICチップとの熱膨張率の違いによるクラック発生、製造時の耐熱性等の問題が生じ、微細配線の信頼性向上を目的として、従来にも増して、低熱膨張性が要求されている。 In recent years, with the increase in speed, size, weight, and functionality of electronic devices, printed wiring boards that support high-density mounting and wiring miniaturization have been developed. Multilayer build-up boards have problems such as cracking due to differences in thermal expansion coefficient between insulating layers and copper wiring and IC chips, and heat resistance during manufacturing. Therefore, low thermal expansion is required.

基板の熱膨張率低減には、シリカ粉末などのフィラーをエポキシ樹脂等のマトリックス樹脂に高充填する方法、剛直な樹脂を利用する等の方法が知られている。しかし、フィラーを樹脂に高充填すると、流動性及び成形性が著しく低下する。そのため、サブミクロン領域におけるフィラーの粒度分布、表面処理状態を制御することで、流動性及び成形性が改善されている。 In order to reduce the coefficient of thermal expansion of the substrate, there are known methods such as a method of highly filling a matrix resin such as an epoxy resin with a filler such as silica powder, and a method using a rigid resin. However, when the filler is highly filled in the resin, the fluidity and moldability are significantly reduced. Therefore, flowability and moldability are improved by controlling the particle size distribution and surface treatment state of the filler in the submicron region.

フィラーを樹脂に高充填かつ高流動させるために、粒度分布を調整して最密充填状態にすることが有効である。特許文献1では、平均粒子径0.1μm以上5μm以下、かつ真球度0.8以上の球状シリカ粒子と平均粒子径1nm以上50nm以下のシリカナノ粒子とを有機溶媒に分散させてなるスラリー組成物、ワニス組成物が開示されている。この場合、粒度の適正化が不十分であり、最密充填状態の形成に伴う流動性の改善効果は乏しく、さらに、表面処理状態に関する記載がなく、問題解決までに至っていない。特許文献2では、平均粒子径D50、100%相当径D100が規定されているが、高流動性は実現されていない。 It is effective to adjust the particle size distribution so that the filler is in a close-packed state in order to make the filler highly filled and flowable. In Patent Document 1, a slurry composition obtained by dispersing spherical silica particles having an average particle size of 0.1 μm to 5 μm and a sphericity of 0.8 or more and silica nanoparticles having an average particle size of 1 nm to 50 nm in an organic solvent. A varnish composition is disclosed. In this case, the optimization of the particle size is insufficient, the effect of improving the fluidity associated with the formation of the close-packed state is poor, and there is no description regarding the surface treatment state, and the problem has not been solved. In Patent Document 2, an average particle diameter D50 and a 100% equivalent diameter D100 are defined, but high fluidity is not realized.

シリカ粒子の粒子表面には反応サイトとして、シラノール基が存在しており、シランカップリング剤等の表面処理剤を用いた表面改質によって、樹脂に対する濡れ性が制御できることが知られている。そのため、樹脂組成物の流動性、成型性に合わせて、表面改質基量を制御することが重要である。特許文献3、文献4では、ヘキサメチルジシラザンによる表面改質を行ったシリカ粉末に導入されたトリメチルシリル基量(個/nm)と疎水化度の関係が開示されているだけである。 It is known that silanol groups exist as reaction sites on the particle surface of silica particles, and the wettability to the resin can be controlled by surface modification using a surface treatment agent such as a silane coupling agent. Therefore, it is important to control the amount of the surface modifying group in accordance with the fluidity and moldability of the resin composition. Patent Documents 3 and 4 only disclose the relationship between the amount of trimethylsilyl groups (number / nm 2 ) introduced into the silica powder subjected to surface modification with hexamethyldisilazane and the degree of hydrophobicity.

特開2006−36916号公報JP 2006-36916 A 特開2003−13002号公報JP 2003-13002 A 特開2007−39323号公報JP 2007-39323 A

球状シリカ粉末では、改質基で被覆されているシリカ粒子の表面積を、シリカ粒子の全表面積に対する割合で示す表面被覆率に基づく、表面処理量と樹脂組成物の流動性、成型性の関係が一般的に検討されているが、表面処理剤同士の反応が優先的に進み、凝集など予期せぬ状態に至る場合があり、改善が求められている。本発明者らは、表面処理剤と反応するシラノール基量と樹脂組成物の流動性、成型性に関する新たな知見を見いだし、本発明に至った。 In the spherical silica powder, there is a relationship between the surface treatment amount and the fluidity and moldability of the resin composition based on the surface coverage indicating the surface area of the silica particles coated with the modifying group as a percentage of the total surface area of the silica particles. Although generally examined, the reaction between the surface treatment agents proceeds preferentially and may lead to an unexpected state such as agglomeration, and improvement is required. The present inventors have found new knowledge about the amount of silanol groups that react with the surface treatment agent, the fluidity and moldability of the resin composition, and have reached the present invention.

本発明は、上記を鑑みてなされたものであり、特定の粒度分布と特定の反応性シラノール基を有する球状シリカ粉末を用いることにより、樹脂へ高充填した際に樹脂組成物の流動性が極めて高く、かつ球状シリカ粉末が良好に分散してなる樹脂硬化物を提供する。 The present invention has been made in view of the above, and by using a spherical silica powder having a specific particle size distribution and a specific reactive silanol group, the fluidity of the resin composition is extremely high when the resin is highly filled. Provided is a cured resin product that is high and in which spherical silica powder is well dispersed.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)体積平均粒径が0.46〜1.3μm、体積平均粒径に対する標準偏差の値が45〜110%、反応性シラノール基量が1.5〜3.0個/nmである球状シリカ粉末。
(2)粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比である(D10/D50)=0.1〜0.6、BET比表面積値が4.2〜7.5m/gである前記(1)に記載の球状シリカ粉末。
(3)前記(1)1又は(2)に記載の球状シリカ粉末を表面処理してなる球状シリカ粉末。
(4)前記(1)〜(3)のいずれか一項に記載の球状シリカ粉末を50〜85質量%含むシリカ含有スラリー組成物。
(5)前記(4)に記載のスラリー組成物と樹脂を配合してなる樹脂組成物。
The present invention employs the following means in order to solve the above problems.
(1) The volume average particle size is 0.46 to 1.3 μm, the standard deviation value with respect to the volume average particle size is 45 to 110%, and the amount of reactive silanol groups is 1.5 to 3.0 / nm 2 . Spherical silica powder.
(2) (D 10 / D 50 ) = 0.1 to 0.6, which is a ratio of the cumulative volume 10% value (D 10 ) and the cumulative volume 50% value (D 50 ) in the particle size distribution, and the BET specific surface area value is The spherical silica powder according to (1), which is 4.2 to 7.5 m 2 / g.
(3) A spherical silica powder obtained by subjecting the spherical silica powder according to (1) 1 or (2) to a surface treatment.
(4) A silica-containing slurry composition containing 50 to 85% by mass of the spherical silica powder according to any one of (1) to (3).
(5) The resin composition formed by mix | blending the slurry composition and resin as described in said (4).

特定の粒度分布と特定の反応性シラノール基を有する球状シリカ粉末を用いることにより、樹脂へ高充填した際に樹脂組成物の流動性が極めて高く、かつ球状シリカ粉末が良好に分散してなる樹脂硬化物を提供することができる。 By using spherical silica powder having a specific particle size distribution and specific reactive silanol groups, the resin composition has extremely high fluidity when the resin is highly filled, and the spherical silica powder is well dispersed. A cured product can be provided.

本発明は、体積平均粒径が0.46〜1.3μm、体積平均粒径に対する標準偏差の値が45〜110%、反応性シラノール基量が1.5〜3.0個/nmである球状シリカ粉末である。
球状シリカ粉末の体積平均粒径は0.46〜1.3μmであって、1.3μmを超えると、シリカ凝集物が発生し、成型性が不良になる可能性があり、0.46μm未満では、高い流動性が得られない可能性がある。好ましい範囲は0.50〜0.95μmである。
In the present invention, the volume average particle size is 0.46 to 1.3 μm, the standard deviation value with respect to the volume average particle size is 45 to 110%, and the amount of reactive silanol groups is 1.5 to 3.0 / nm 2 . A spherical silica powder.
The volume average particle diameter of the spherical silica powder is 0.46 to 1.3 μm, and if it exceeds 1.3 μm, silica agglomerates may be generated and the moldability may be poor, and if it is less than 0.46 μm , High fluidity may not be obtained. A preferable range is 0.50 to 0.95 μm.

体積平均粒径(D50)に対する標準偏差の値(%)は、粒度分布の幅の広さを意味している。体積平均粒径(D50)に対する標準偏差の値(%)をCV値とすると、CV値は、下記の式(1)で示される。
CV値が45%未満の場合、シリカの最大充填率増加に伴う高い流動性が得られない。CV値が110%を超えると、粗大粒子の存在で、樹脂硬化物の外観にシリカの凝集ツブが生じる可能性がある。好ましいCV値の範囲は60〜90%である。

Figure 2013212956

The value (%) of the standard deviation with respect to the volume average particle size (D 50 ) means the breadth of the particle size distribution. When the standard deviation value (%) with respect to the volume average particle diameter (D 50 ) is defined as a CV value, the CV value is represented by the following formula (1).
When the CV value is less than 45%, high fluidity with an increase in the maximum filling rate of silica cannot be obtained. If the CV value exceeds 110%, the presence of coarse particles may cause silica aggregation in the appearance of the cured resin. A preferred CV value range is 60-90%.
Figure 2013212956

反応性シラノール基量は1.5〜3.0個/nmである。反応性シラノール基量が1.5個/nm未満であると、表面改質に伴う流動性改善効果が得られず、3.0個/nmを超えると、表面処理剤同士の反応が優先的に進み、凝集が発生する可能性がある。好ましい反応性シラノール基量は2.1〜2.8個/nmである。 The amount of reactive silanol groups is 1.5 to 3.0 / nm 2 . If the amount of reactive silanol groups is less than 1.5 / nm 2 , the fluidity improving effect accompanying surface modification cannot be obtained, and if it exceeds 3.0 / nm 2 , the reaction between the surface treatment agents will occur. Precedence may occur and aggregation may occur. The preferable amount of reactive silanol groups is 2.1 to 2.8 / nm 2 .

本発明の反応性シラノール基量(表面改質基量)(Aとする)は球状シリカ粉末の単位面積あたりのトリメチルシリル基の反応サイト数(個/nm)であり、C/Sアナライザー(CS−444LS、LECO社製)における炭素量(質量%)測定結果に基づく値である。
反応性シラノール基量は下記の式(2)で示される。
なお、トリメチルシリル基由来の炭素の総分子量を36.03とした。

Figure 2013212956

The reactive silanol group amount (surface modification group amount) (referred to as A) of the present invention is the number of reaction sites (number / nm 2 ) of trimethylsilyl groups per unit area of the spherical silica powder, and is represented by a C / S analyzer (CS It is a value based on the carbon amount (mass%) measurement result in -444LS and LECO.
The amount of reactive silanol groups is represented by the following formula (2).
The total molecular weight of carbon derived from the trimethylsilyl group was 36.03.
Figure 2013212956

本発明の反応性シラノール基を定量する際に使用する表面処理剤の反応サイトが1つであればよく、クロロシラン、トリメチルシラノール、ヘキサメチルジシラザン等がある。その中でも特に、ヘキサメチルジシラザンが良い。 There may be only one reaction site of the surface treatment agent used when quantifying the reactive silanol group of the present invention, and examples thereof include chlorosilane, trimethylsilanol, and hexamethyldisilazane. Of these, hexamethyldisilazane is particularly preferable.

球状シリカ粉末の粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比である(D10/D50)は0.1〜0.6が好ましい。(D10/D50)=0.6を超えると、球状シリカ粉末の最大充填率増加に伴う高い流動性が得られない。(D10/D50)=0.1未満であると、比表面積の増加に伴い系が熱力学的に不安定状態となるため、粒子同士が凝集し、流動性が損なわれる。好ましい、(D10/D50)の範囲は0.2〜0.4である。 The ratio (D 10 / D 50 ) of the cumulative volume 10% value (D 10 ) and the cumulative volume 50% value (D 50 ) in the particle size distribution of the spherical silica powder is preferably 0.1 to 0.6. When (D 10 / D 50 ) = 0.6 is exceeded, high fluidity accompanying an increase in the maximum filling rate of the spherical silica powder cannot be obtained. When (D 10 / D 50 ) = less than 0.1, the system becomes thermodynamically unstable with an increase in specific surface area, so that the particles aggregate and fluidity is impaired. A preferable range of (D 10 / D 50 ) is 0.2 to 0.4.

球状シリカ粉末の粒度分布、累積体積10%値(D10)、累積体積50%値(D50)、標準偏差は、レーザー回折光散乱法による粒度測定に基づく値であり、粒度分布測定機としては、例えば「モデルLS−230」(ベックマン・コールター社製) にて測定することができる。測定に際しては、溶媒には使用する有機溶剤を用い、前処理として、20秒間、超音波ホモジナイザーを用いて200Wの出力をかけて分散処理させる。また、PIDS(PolarizationIntensity Differential Scattering)濃度を45〜55質量%になるように調製した。なお、屈折率には、用いる溶剤の屈折率を用い、粉末の屈折率については粉末の材質の屈折率を考慮した。たとえば、非晶質シリカについては屈折率を1.50として測定した。なお、測定した粒度分布は、粒子径チャンネルがlog(μm)=0.04の幅になるよう変換した。 The particle size distribution, cumulative volume 10% value (D 10 ), cumulative volume 50% value (D 50 ), and standard deviation of spherical silica powder are values based on particle size measurement by the laser diffraction light scattering method. Can be measured by, for example, “Model LS-230” (manufactured by Beckman Coulter, Inc.). In the measurement, an organic solvent to be used is used as a solvent, and as a pretreatment, dispersion treatment is performed by applying an output of 200 W using an ultrasonic homogenizer for 20 seconds. Moreover, it prepared so that PIDS (PolarizationIntensity Differential Scattering) density | concentration might be 45-55 mass%. In addition, the refractive index of the solvent to be used was used for the refractive index, and the refractive index of the powder material was taken into consideration for the refractive index of the powder. For example, amorphous silica was measured with a refractive index of 1.50. The measured particle size distribution was converted so that the particle diameter channel had a width of log (μm) = 0.04.

本発明の球状シリカ粉末の比表面積は、BET法に基づく値であり、比表面積測定機としては、例えば「Macsorb HM model−1208」(MACSORB社製)を用いて測定することができる。 The specific surface area of the spherical silica powder of the present invention is a value based on the BET method, and can be measured using, for example, “Macsorb HM model-1208” (manufactured by MACSORB) as a specific surface area measuring machine.

球状シリカ粉末のBET比表面積値は、4.2〜7.5m/gが好ましい。4.2m/g未満では、粗大粒子の存在により成型性が不良になる可能性があり、7.5m/gを超えると、シリカ凝集物が発生し、成型性が不良になる可能性がある。 The BET specific surface area value of the spherical silica powder is preferably 4.2 to 7.5 m 2 / g. If it is less than 4.2 m 2 / g, the moldability may be poor due to the presence of coarse particles, and if it exceeds 7.5 m 2 / g, silica agglomerates may be generated and the moldability may be poor. There is.

球状シリカ粉末は、表面処理が施されていることが望ましい。表面処理を予め施すことで、シリカ粒子の凝集を抑制することができ、樹脂組成物中にシリカ粒子を良好に分散させることができる。表面処理剤は、シラン系、チタネート系、アルミネート系の各種カップリング剤、エポキシ樹脂、シリコーンオイル、アルキルシラザン類等を用いて行うことができる。例えば、シランカップリング剤による表面処理は、球状シリカ粉末を処理容器内で浮遊層等を形成させた状態で気化させたシランカップリング剤と反応させればよい。 The spherical silica powder is preferably subjected to a surface treatment. By performing the surface treatment in advance, aggregation of the silica particles can be suppressed, and the silica particles can be favorably dispersed in the resin composition. The surface treatment agent can be used using various silane, titanate, and aluminate coupling agents, epoxy resins, silicone oils, alkylsilazanes, and the like. For example, the surface treatment with the silane coupling agent may be performed by reacting the spherical silica powder with a silane coupling agent vaporized in a state where a floating layer or the like is formed in the treatment container.

球状シリカ粉末1gあたりの表面処理量(g)(Bとする)は、反応性シラノール基量に基づく値であり、以下の式(3)で算出される。

Figure 2013212956

The surface treatment amount (g) (referred to as B) per 1 g of spherical silica powder is a value based on the amount of reactive silanol groups, and is calculated by the following formula (3).
Figure 2013212956

球状シリカ粉末の原料としては、金属珪素粉末、二酸化珪素粉末を用いることができるが、好ましくは金属珪素粉末である。 As a raw material for the spherical silica powder, metallic silicon powder and silicon dioxide powder can be used, and metallic silicon powder is preferred.

本発明の球状シリカ粉末の製造方法は、例えば、金属珪素粉末スラリーを製造炉で可燃性ガスと助燃性ガスとからなる高温火炎中に供給し、該火炎中で該金属珪素粉末を気化、酸化させることにより得られる。金属珪素粉末原料のCV値が70〜120%であることが好ましい。これにより、スラリー中の金属珪素粉末が良好に分散される状態を作り出すことができる。反応性シラノール基量の制御は、製造時の反応容器内の水蒸気量と金属珪素粉末スラリーの供給量で行えばよい。 The method for producing the spherical silica powder of the present invention includes, for example, supplying a metal silicon powder slurry into a high-temperature flame composed of a combustible gas and an auxiliary combustion gas in a production furnace, and vaporizing and oxidizing the metal silicon powder in the flame. Is obtained. The CV value of the metal silicon powder raw material is preferably 70 to 120%. Thereby, the state in which the metal silicon powder in the slurry is well dispersed can be created. The amount of reactive silanol groups may be controlled by the amount of water vapor in the reaction vessel during production and the amount of metal silicon powder slurry supplied.

スラリー組成物について、説明する。
球状シリカ粉末は、水、有機溶媒を用いたスラリー組成物として、好適に使用することができる。シリカ粒子を分散させる有機溶媒としては、その種類が特に限定されるものではない。樹脂に応じて選択すればよい。例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル等の極性溶媒が用いられる。
その中でも特に、メチルエチルケトンが好ましい。
The slurry composition will be described.
The spherical silica powder can be suitably used as a slurry composition using water or an organic solvent. The type of the organic solvent in which the silica particles are dispersed is not particularly limited. What is necessary is just to select according to resin. For example, polar solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, and ethyl acetate are used.
Of these, methyl ethyl ketone is particularly preferable.

分散処理は、ボールミル、超音波分散機、各種ミキサー、高圧ホモジナイザー等の機器を使用して行えばよい。尚、スラリーの変性を防ぐため、窒素雰囲気下等の非酸化性雰囲気下で製造を行うことが望ましい。 The dispersion treatment may be performed using equipment such as a ball mill, an ultrasonic disperser, various mixers, and a high-pressure homogenizer. In order to prevent the slurry from being modified, it is desirable to perform the production in a non-oxidizing atmosphere such as a nitrogen atmosphere.

スラリー組成物に含まれる球状シリカ粉末の含有量は特に制限はないが、樹脂組成物の成形性の観点から50〜85質量%である。   Although content in particular of the spherical silica powder contained in a slurry composition does not have a restriction | limiting, it is 50-85 mass% from a viewpoint of the moldability of a resin composition.

樹脂組成物について、説明する。
スラリー組成物を用いて、ビルドアップ基板や層間絶縁フィルム等の樹脂基板を製造する場合には、樹脂としてエポキシ樹脂を採用することが好ましい。
The resin composition will be described.
When manufacturing a resin substrate such as a build-up substrate or an interlayer insulating film using the slurry composition, it is preferable to employ an epoxy resin as the resin.

樹脂組成物に用いるエポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重要分子量を有する2種類以上を併用もでき、1種類または2種類以上することもできる。
これらエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。
The epoxy resin used in the resin composition is not particularly limited, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and phenoxy type epoxy resin. Can be mentioned. One of these can be used alone, two or more having different important molecular weights can be used in combination, and one or two or more can be used.
Among these epoxy resins, bisphenol A type epoxy resins are particularly preferable.

本発明の樹脂組成物は、公知の硬化剤を用いればよいが、フェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類などを単独あるいは2種以上組み合わせて使用することができる。   Although the resin composition of this invention should just use a well-known hardening | curing agent, a phenol type hardening | curing agent can be used. As the phenolic curing agent, a phenol novolac resin, an alkylphenol novolac resin, polyvinylphenols and the like can be used alone or in combination of two or more.

前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が1.0未満、0.1以上が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。   As for the compounding quantity of the said phenol hardening | curing agent, the equivalent ratio (phenolic hydroxyl group equivalent / epoxy group equivalent) with an epoxy resin is less than 1.0, and 0.1 or more are preferable. As a result, there remains no unreacted phenol curing agent, and the moisture absorption heat resistance is improved.

樹脂組成物に配合される球状シリカ粉末の量は、耐熱性、熱膨張率の観点から、多いことが好ましい。樹脂組成物の全体質量に対して、80質量%以上であることが望ましい。 The amount of spherical silica powder blended in the resin composition is preferably large from the viewpoints of heat resistance and coefficient of thermal expansion. It is desirable that it is 80 mass% or more with respect to the whole mass of a resin composition.

実施例1−20 比較例1−6 Example 1-20 Comparative Example 1-6

(1)球状シリカ粉末の製造
最外部より、可燃性ガス供給管、助燃性ガス供給管、金属粉末スラリー供給管の順に組まれた三重巻管構造のバーナーを製造炉の頂部に設置する一方、製造炉の下部を捕集系(生成粉末をブロワーで吸引しバッグフィルターにて捕集)に接続されてなる装置を用い、金属酸化物粉末を製造した。なお、バーナーの外周には外周火炎を形成させる外周バーナーが更に3本設置されている。可燃性ガス供給管からLPGを5Nm3/hr、助燃性ガス供給管から酸素を10 Nm3/hr供給して、製造炉内に高温火炎を形成した。金属シリコン粉末をメチルアルコールに分散させて調製した濃度50質量%のスラリーを、スラリーポンプを用いて、金属粉末スラリー供給管から供給し、球状シリカ粉末をバグフィルターにて捕集した。
(2)球状シリカ粉末の粒度分布
球状シリカ粉末の粒度分布、累積体積10%値(D10)、累積体積50%値(D50)、標準偏差の測定は、レーザー回折光散乱法による粒度分布測定機として、ベックマン・コールター社製「モデルLS−230」を用いて、段落(0017)に記載の方法で行った。
(3)球状シリカ粉末の比表面積
球状シリカ粉末の比表面積は、BET法に基づく値であり、MACSORB社製「Macsorb HM model−1208」を用いて行った。
(4)球状シリカ粉末の反応性シラノール基量
金属粉末スラリー法で製造された球状シリカ粉末に97質量部に対し、HMDS(信越化学社製、ヘキサメチルジシラザン)を3質量部添加し、表面処理を施した。表面処理2日後、表面処理シリカを100℃、5hrの条件下にて処理を行った。得られた表面処理シリカをC/Sアナライザー(CS−444LS、LECO社製)測定を行い、球状シリカ粉末の反応性シラノール基量を算出した。
(5)樹脂硬化物の作製
金属粉末スラリー法で製造された球状シリカ粉末に表面処理を施して、表面処理球状シリカ粉末とした。表面処理は、シランカップリング剤のビニルトリメトキシシラン「KBM−1003」(信越化学工業株式会社製、分子量148.2)を用いた。表面処理量は反応性シラノール基量に基づく値とした。次いで、得られた球状シリカ粉末をメチルエチルケトン(MEK)に分散させて、固形分濃度が75質量%のスラリーを調製した。それらの配合量を表1に示す。
(6)球状シリカ粉末の平均球形度
球状シリカ粉末の平均球形度については、すべて0.90以上であった。平均球形度は、実体顕微鏡(ニコン社製商品名「モデルSMZ−10型」)を用いて、20000倍で撮影した粒子像を画像解析装置(マウンテック社製商品名「MacView」)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)から測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとなるので、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)となる。このようにして得られた任意の粒子100個の球形度を求め、その平均値を平均球形度とした。
(1) From the outermost part of the production of spherical silica powder, a burner having a triple-winding tube structure assembled in the order of a combustible gas supply pipe, an auxiliary combustible gas supply pipe, and a metal powder slurry supply pipe is installed at the top of the production furnace, A metal oxide powder was produced using an apparatus in which the lower part of the production furnace was connected to a collection system (product powder was sucked with a blower and collected with a bag filter). In addition, three outer peripheral burners for forming an outer peripheral flame are installed on the outer periphery of the burner. 5 Nm 3 / hr of LPG from the combustible gas feed pipe, and oxygen 10 Nm 3 / hr supplied from the combustion supporting gas supply tube, to form a high temperature flame in the production furnace. A slurry having a concentration of 50% by mass prepared by dispersing metal silicon powder in methyl alcohol was supplied from a metal powder slurry supply pipe using a slurry pump, and spherical silica powder was collected by a bag filter.
(2) Particle size distribution of spherical silica powder Particle size distribution of spherical silica powder, cumulative volume 10% value (D 10 ), cumulative volume 50% value (D 50 ), and standard deviation are measured by laser diffraction light scattering method. The measurement was performed by the method described in paragraph (0017) using “Model LS-230” manufactured by Beckman Coulter.
(3) Specific surface area of spherical silica powder The specific surface area of the spherical silica powder is a value based on the BET method, and was performed using “Macsorb HM model-1208” manufactured by MACSORB.
(4) Reactive silanol group of spherical silica powder 3 parts by mass of HMDS (manufactured by Shin-Etsu Chemical Co., Hexamethyldisilazane) is added to 97 parts by mass of spherical silica powder produced by the metal powder slurry method. Treated. Two days after the surface treatment, the surface-treated silica was treated at 100 ° C. for 5 hours. The obtained surface-treated silica was subjected to C / S analyzer (CS-444LS, manufactured by LECO) measurement, and the amount of reactive silanol groups in the spherical silica powder was calculated.
(5) Preparation of cured resin The surface-treated spherical silica powder was obtained by subjecting the spherical silica powder produced by the metal powder slurry method to surface treatment. For the surface treatment, silane coupling agent vinyltrimethoxysilane “KBM-1003” (manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 148.2) was used. The surface treatment amount was a value based on the amount of reactive silanol groups. Subsequently, the obtained spherical silica powder was dispersed in methyl ethyl ketone (MEK) to prepare a slurry having a solid content concentration of 75% by mass. Their blending amounts are shown in Table 1.
(6) Average sphericity of spherical silica powder The average sphericity of the spherical silica powder was all 0.90 or more. The average sphericity is obtained by using a stereomicroscope (trade name “Model SMZ-10” manufactured by Nikon Corporation) and capturing a particle image taken at 20000 times into an image analyzer (trade name “MacView” manufactured by Mountec Co., Ltd.). From the projected area (A) and the perimeter (PM) of the particles. If the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle is A / B. Then, since PM = 2πr and B = πr 2 , B = π × (PM / 2π) 2 , and the sphericity of each particle is sphericity = A / B = A × 4π / (PM) 2 . Become. The sphericity of 100 arbitrary particles thus obtained was determined, and the average value was defined as the average sphericity.

エポキシ樹脂としてビスフェノールA型エポキシ樹脂「EPICLON−850」(DIC株式会社製、エポキシ当量186g/eq)10.0質量部、硬化剤としてノボラック型フェノール樹脂「PSM−4261」(群栄化学工業株式会社製、水酸基当量106g/eq、軟化点80℃)5.9質量部、硬化促進剤として2−フェニルイミダゾール(2PZ)「四国化成工業株式会社製」0.2質量部を得られたスラリー組成物100質量部に溶解し、樹脂組成物(エポキシ樹脂ワニス)を調製した。この樹脂組成物を基材にアプリケーターを用いて塗布し、50℃下で真空脱泡後、温度150℃、2時間乾燥し、樹脂硬化物を得た。得られた樹脂組成物の流動性、分散性及び樹脂硬化物の成型性を以下に示す方法に従って評価した。それらの評価結果を表1〜3に示す。   10.0 parts by mass of bisphenol A type epoxy resin “EPICLON-850” (manufactured by DIC Corporation, epoxy equivalent 186 g / eq) as an epoxy resin, novolak type phenol resin “PSM-4261” (Gunei Chemical Industry Co., Ltd.) as a curing agent 5.9 parts by mass of hydroxyl group equivalent 106 g / eq, softening point 80 ° C., and 0.2 parts by mass of 2-phenylimidazole (2PZ) “manufactured by Shikoku Kasei Kogyo Co., Ltd.” as a curing accelerator It melt | dissolved in 100 mass parts and prepared the resin composition (epoxy resin varnish). This resin composition was applied to a substrate using an applicator, vacuum degassed at 50 ° C., and then dried at a temperature of 150 ° C. for 2 hours to obtain a cured resin. The fluidity and dispersibility of the obtained resin composition and the moldability of the cured resin were evaluated according to the methods shown below. The evaluation results are shown in Tables 1-3.

樹脂組成物及び樹脂硬化物の評価方法を以下の(1)〜(3)に示す。
(1)流動性
真空脱泡後の樹脂組成物をE型粘度計(東機産業株式会社製:TVE−10)にて10 rpm時(測定温度25 ℃)の粘度を測定した。この際、2.0Pa・s以上を不良とした。
(2)分散性
樹脂組成物をJIS− K5101に準拠して、幅90mm、長さ240mm、最大深さ100μmのグラインドゲージを用いることにより、分散性として評価した。
各符号は以下の通りである。
◎:1cm以上の筋(線状痕)が3本発生した位置の目盛りが5μm未満
○:1cm以上の筋(線状痕)が3本発生した位置の目盛りが8μm未満
△:1cm以上の筋(線状痕)が3本発生した位置の目盛りが8μm以上
×:1cm以上の筋(線状痕)が3本発生した位置の目盛りが10μm以上
(3)成形性/シリカ粒子の凝集物
得られた樹脂硬化物の面積1cm中に存在する10μm以上のシリカ粒子の凝集物の個数を表面形状検査システムKURASURF−PH(倉敷紡績株式会社製)を用いて、縞パターンを照射し位相差シフトを行うことで表面形状の凹凸を検出し、次の基準で成形性として評価した。
各符号は以下の評価基準である。
◎:10μm未満の凝集物なし
○:10μm未満の凝集物5個未満
×:10μm以上の凝集物5個以上
The evaluation methods of the resin composition and the cured resin product are shown in the following (1) to (3).
(1) Fluidity The viscosity of the resin composition after vacuum defoaming was measured with an E-type viscometer (manufactured by Toki Sangyo Co., Ltd .: TVE-10) at 10 rpm (measurement temperature 25 ° C.). At this time, 2.0 Pa · s or more was regarded as defective.
(2) The dispersible resin composition was evaluated as dispersibility by using a grind gauge having a width of 90 mm, a length of 240 mm, and a maximum depth of 100 μm in accordance with JIS-K5101.
Each code is as follows.
◎ The scale at the position where 3 streaks (linear traces) of 1 cm or more are generated is less than 5 μm. ○ The scale at the position of 3 streaks (linear traces) of 1 cm or more is less than 8 μm. The scale where the three (linear traces) are generated is 8 μm or more × 1 cm or more where the scale where the three lines (linear traces) are 10 μm or more. (3) Formability / silica particle aggregate The number of aggregates of silica particles of 10 μm or more present in an area of 1 cm 3 of the cured resin product is irradiated with a fringe pattern using a surface shape inspection system KURASURF-PH (manufactured by Kurashiki Boseki Co., Ltd.), and phase difference shift is performed. As a result, surface irregularities were detected and evaluated as moldability according to the following criteria.
Each code is the following evaluation criteria.
A: No aggregate less than 10 μm ○: Less than 5 aggregates less than 10 μm ×: 5 or more aggregates greater than 10 μm

Figure 2013212956
Figure 2013212956

Figure 2013212956
Figure 2013212956

Figure 2013212956
Figure 2013212956

実施例および比較例の対比から明らかなように、本発明の球状シリカ粉末をエポキシ樹脂に高充填した際、極めて流動性の高いスラリー組成物及び球状シリカ粒子が良好に分散してなる樹脂組成物を得ることができる。   As is clear from the comparison between Examples and Comparative Examples, when the spherical silica powder of the present invention is highly filled in an epoxy resin, a slurry composition having extremely high fluidity and a resin composition in which spherical silica particles are well dispersed. Can be obtained.

本発明のスラリー組成物、樹脂組成物は、例えば、プリント配線板等の電子機器分野において、半導体パッケージ基板に使用することができる。
The slurry composition and resin composition of the present invention can be used for a semiconductor package substrate in the field of electronic equipment such as a printed wiring board.

Claims (5)

体積平均粒径が0.46〜1.3μm、体積平均粒径に対する標準偏差の値が45〜110%、反応性シラノール基量が1.5〜3.0個/nmである球状シリカ粉末。 Spherical silica powder having a volume average particle size of 0.46 to 1.3 μm, a standard deviation value of 45 to 110% with respect to the volume average particle size, and a reactive silanol group amount of 1.5 to 3.0 / nm 2 . 粒度分布における累積体積10%値(D10)と累積体積50%値(D50)の比である(D10/D50)=0.1〜0.6、BET比表面積値が4.2〜7.5m/gである請求項1に記載の球状シリカ粉末。 The ratio of the cumulative volume 10% value (D 10 ) to the cumulative volume 50% value (D 50 ) in the particle size distribution (D 10 / D 50 ) = 0.1 to 0.6, and the BET specific surface area value is 4.2. The spherical silica powder according to claim 1, which is ˜7.5 m 2 / g. 請求項1又は2に記載の球状シリカ粉末を表面処理してなる球状シリカ粉末。   A spherical silica powder obtained by surface-treating the spherical silica powder according to claim 1. 請求項1〜3のいずれか一項に記載の球状シリカ粉末を50〜85質量%含むシリカ含有スラリー組成物。 A silica-containing slurry composition comprising 50 to 85 mass% of the spherical silica powder according to any one of claims 1 to 3. 請求項4に記載のスラリー組成物と樹脂を配合してなる樹脂組成物。
A resin composition comprising the slurry composition according to claim 4 and a resin.
JP2012084361A 2012-04-02 2012-04-02 Slurry composition and resin composition using the same Active JP5937403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084361A JP5937403B2 (en) 2012-04-02 2012-04-02 Slurry composition and resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084361A JP5937403B2 (en) 2012-04-02 2012-04-02 Slurry composition and resin composition using the same

Publications (2)

Publication Number Publication Date
JP2013212956A true JP2013212956A (en) 2013-10-17
JP5937403B2 JP5937403B2 (en) 2016-06-22

Family

ID=49586616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084361A Active JP5937403B2 (en) 2012-04-02 2012-04-02 Slurry composition and resin composition using the same

Country Status (1)

Country Link
JP (1) JP5937403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
CN114585684A (en) * 2019-10-24 2022-06-03 松下知识产权经营株式会社 Resin composition for sealing and semiconductor device
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136909A (en) * 1984-12-04 1986-06-24 Mitsubishi Chem Ind Ltd Aqueous dispersion liquid composition of anhydrous silicon acid
JPH07316345A (en) * 1994-05-27 1995-12-05 Toray Dow Corning Silicone Co Ltd Curable resin composition and cured resin
JP2004083651A (en) * 2002-08-23 2004-03-18 Toray Ind Inc Hygroscopic polyester composition and polyester fiber
JP2005054011A (en) * 2003-08-01 2005-03-03 Denki Kagaku Kogyo Kk Method for producing superfine powder silica dispersed slurry for resin filling
JP2006328111A (en) * 2005-05-23 2006-12-07 Sumitomo Rubber Ind Ltd Rubber composition and composite using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136909A (en) * 1984-12-04 1986-06-24 Mitsubishi Chem Ind Ltd Aqueous dispersion liquid composition of anhydrous silicon acid
JPH07316345A (en) * 1994-05-27 1995-12-05 Toray Dow Corning Silicone Co Ltd Curable resin composition and cured resin
JP2004083651A (en) * 2002-08-23 2004-03-18 Toray Ind Inc Hygroscopic polyester composition and polyester fiber
JP2005054011A (en) * 2003-08-01 2005-03-03 Denki Kagaku Kogyo Kk Method for producing superfine powder silica dispersed slurry for resin filling
JP2006328111A (en) * 2005-05-23 2006-12-07 Sumitomo Rubber Ind Ltd Rubber composition and composite using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016001613; デンカ溶融シリカ(DF) 超微粒子球状タイプ(SFP-M・UFP) カタログ [online] , 20160113, デンカ株式会社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204236A (en) * 2015-04-28 2016-12-08 株式会社トクヤマ Amorphous spherical silica powder
CN114585684A (en) * 2019-10-24 2022-06-03 松下知识产权经营株式会社 Resin composition for sealing and semiconductor device
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials

Also Published As

Publication number Publication date
JP5937403B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP6121845B2 (en) Surface-treated silica powder, slurry composition and resin composition using the same
TWI564381B (en) Thermal conductive composition and thermal conductive body
JP2010177679A (en) Electronic assembly that includes underfill bonding composition filled with nanoparticle, and method of manufacturing the same
JP2009013227A (en) Resin composition for electrical insulating material and its manufacturing method
JP2017133023A (en) Semiconductor package resin composition and usage method thereof
JP6395009B2 (en) Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
JP2003238141A (en) Surface modified spherical silica, its production method, and resin composition for semiconductor sealing
JP5937403B2 (en) Slurry composition and resin composition using the same
KR101878478B1 (en) A Silica Sol Composition with Excellent Dispersibility in Cyanate Resin and the Method for Preparation of the Same
JPWO2009139425A1 (en) Amorphous siliceous powder, production method and use thereof
JP2005171208A (en) Filler and resin composition
JP2010070582A (en) Heat conductive paste composition for filling substrate hole, and printed wiring board
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
JP5719690B2 (en) Spherical silica powder, slurry used therefor, and resin composition
JP6347644B2 (en) Surface-modified silica powder and slurry composition
KR102607973B1 (en) Silica powder with excellent dispersibility, resin composition using the same, and method for producing the same
JP4428618B2 (en) Surface-modified spherical silica, method for producing the same, and sealing resin composition
JP5449860B2 (en) Method for producing surface-treated silica particles, surface-treated silica particles, epoxy resin composition, and semiconductor device
JP6038064B2 (en) Surface-modified silica powder, slurry composition and resin composition using the same
JP5758686B2 (en) Amorphous silica particles
JP2012227448A (en) Amorphous silica particle
JP2021066641A (en) Filler material, liquid composition, resin composition, and method for producing them
JP2012087027A (en) Metal oxide ultrafine powder, manufacturing method of the same, and use of the same
JP5536709B2 (en) Amorphous silica particles
JP6320838B2 (en) Metal oxide particles coated with a polymer having a (meth) acrylic group and a method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250