JP2016203160A - High-temperature waste water treatment apparatus using membrane distillation process - Google Patents

High-temperature waste water treatment apparatus using membrane distillation process Download PDF

Info

Publication number
JP2016203160A
JP2016203160A JP2016017954A JP2016017954A JP2016203160A JP 2016203160 A JP2016203160 A JP 2016203160A JP 2016017954 A JP2016017954 A JP 2016017954A JP 2016017954 A JP2016017954 A JP 2016017954A JP 2016203160 A JP2016203160 A JP 2016203160A
Authority
JP
Japan
Prior art keywords
water
membrane distillation
membrane
reverse osmosis
temperature wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017954A
Other languages
Japanese (ja)
Other versions
JP6216810B2 (en
Inventor
チョ,キョンジン
Kyung Jin Cho
イ,ソクホン
Seock Heon Lee
ク,ホンチョル
Heon Cheol Koo
ジョン,ソンピル
Seong Pil Jeong
ベ,ヒョクァン
Hyo Kwan Bae
ユン,テクグン
Taek Geun Yun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JP2016203160A publication Critical patent/JP2016203160A/en
Application granted granted Critical
Publication of JP6216810B2 publication Critical patent/JP6216810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature waste water treatment apparatus using a membrane distillation process.SOLUTION: A high-temperature waste water treatment apparatus using a membrane distillation process includes a membrane distillation process and a reverse osmosis membrane process. In the membrane distillation process, high-temperature waste water is separated into high-temperature concentrated waste water and product water by steam pressure difference generated by temperature difference between the high-temperature waste water and a coolant fluid. In the reverse osmosis membrane process, the product water, which contains pure water and volatile contaminants, is separated into the volatile contaminants and the pure water. The produced pure water (treated water) is transported to a high-temperature waste water source or a treated-water side of the membrane distillation for reuse, or recycled as process water or domestic water in the neighborhood leading to energy saving and waste water reduction.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギーを節減し、汚染物質がほとんどない純水を生産することができる高温廃水処理装置に関する。   The present invention relates to a high-temperature wastewater treatment apparatus capable of producing pure water that saves energy and has almost no pollutants.

膜蒸留法(Membrane Distillation)は、溶媒や溶質(親水性物質)の表面張力が分離膜表面よりも大きくて、液状では膜気孔(membrane pore)を通過することができず、前記分離膜表面から反発するので、分離膜の表面気孔入口で分離対象物質を蒸気相に相変換させて気孔内に拡散、透過して、最終的に処理水側から凝縮及び分離される工程であって、不揮発性物質や揮発性が相対的に低い物質を分離除去する脱塩工程に用いられるか、水溶液中に揮発性の高い有機物の分離にも用いられる。   In the membrane distillation method, the surface tension of the solvent or solute (hydrophilic substance) is larger than that of the separation membrane surface, and in the liquid state, it cannot pass through the membrane pores. Because it repels, the separation target substance is converted into a vapor phase at the surface pore inlet of the separation membrane, diffused and permeated into the pores, and finally condensed and separated from the treated water side. It is used in a desalting step for separating and removing substances and substances having relatively low volatility, or for separating organic substances having high volatility in an aqueous solution.

膜蒸留に対する概念が、1960年に提案された以来、現在に至るまで膜蒸留についての研究は、主に米国、ヨーロッパ、日本、オーストラリアを中心に進められた。最近、膜蒸留分離工程を従来の蒸発または逆浸透圧膜を用いた分離工程に代替しようとする動きが活発である。   Since the concept of membrane distillation was proposed in 1960, to date, research on membrane distillation has been conducted mainly in the United States, Europe, Japan and Australia. Recently, there has been an active movement to replace the membrane distillation separation process with a conventional separation process using an evaporation or reverse osmosis membrane.

現在、純水製造や淡水化工程で使われている蒸発法と逆浸透圧法は、エネルギーが多くかかるが、特に、逆浸透圧法は、汚染とファウリングとの問題によって使用前に多くの段階の前処理過程を経るので、運転管理上の難点だけではなく、高圧力で運転されるので、ポンプ動力源である電気エネルギーが多く使われて、管理コストが多くかかるという問題がある。   Currently, the evaporation and reverse osmotic pressure methods used in pure water production and desalination processes are energy intensive, but in particular, reverse osmotic pressure methods are in many stages before use due to contamination and fouling problems. Since the pretreatment process is performed, not only the operation management is difficult, but also the operation is performed at a high pressure. Therefore, there is a problem that a lot of electric energy as a pump power source is used and the management cost is high.

一方、膜蒸留(membrane distillation)は、多孔性膜を使いながら、限外濾過法と逆浸透圧法とに比べて低圧力で運転され、蒸気圧分圧差によって分離がなされる。また、前記膜蒸留分離法を利用すれば、塩のような不揮発性物質を分離及び除去するに当たって、伝統的な蒸留法が有する飛沫同伴がなく、高圧力で運転される濾過器または分離膜を使わなくても良い。   On the other hand, membrane distillation is operated at a lower pressure than the ultrafiltration method and the reverse osmosis pressure method using a porous membrane, and is separated by a vapor pressure partial pressure difference. In addition, if the membrane distillation separation method is used, a filter or separation membrane that is operated at a high pressure without the entrainment of droplets that the traditional distillation method has in separating and removing non-volatile substances such as salts. You do not have to use it.

このような膜蒸留分離工程の長所によって、膜蒸留法を用いた淡水化(脱塩化)処理工程は、低コストのユーティリティーと分離装置の耐久性とに優れるので、全世界的に飲用水の生産において、競争力のある方法の1つとして浮び上がっている。   Due to the advantages of the membrane distillation separation process, the desalination (dechlorination) treatment process using the membrane distillation method is excellent in low-cost utilities and the durability of the separation device. Is emerging as one of the more competitive methods.

2011年12月末基準に大韓民国の産業界廃水排出業所は、49,201箇所であって、5,269千m/日の廃水が発生している(環境部、工場廃水の発生と処理、2013)。 しかも、世界的にも膨大な量の産業廃水が様々な産業工程から発生している。 このような産業工程で発生する廃水は、多様な毒性物質を高濃度で含有しているために、一般的な生物学的処理工法で処理するのは非常に難しく、これにより、別途の物理化学的処理工程を適用した処理方法も並行して使っている。これは、設備投資費を増加させるだけではなく、持続的な薬品処理費用が発生するために、より効率的な処理技術開発を要する実情である。また、産業界工場廃水中には、多様な工程で高温廃水が発生し、これは、熱源の損失を誘発し、溶存酸素が減少して河川水の自浄作用に悪い影響を与え、不適当な化学反応や生物学的反応が加速されて、下水の腐敗現象が進展される。 As of the end of December 2011, there are 49,201 industrial wastewater discharge plants in Korea, and 5,269,000 m 3 / day of wastewater is generated (Environment Department, factory wastewater generation and treatment, 2013). Moreover, a huge amount of industrial wastewater is generated from various industrial processes worldwide. Wastewater generated in such industrial processes contains a variety of toxic substances at high concentrations, so it is very difficult to treat with general biological treatment methods. A processing method to which a general processing process is applied is also used in parallel. This is not only an increase in capital investment costs but also a situation in which more efficient treatment technology development is required because continuous chemical treatment costs are incurred. In addition, industrial factory wastewater generates high-temperature wastewater in various processes, which induces loss of heat sources, reduces dissolved oxygen, adversely affects the self-purification of river water, and is inappropriate. Chemical and biological reactions are accelerated, and the sewage rot phenomenon develops.

したがって、多様な長所を有している膜蒸留法で高温廃水を処理する方法が要求されている。   Therefore, a method for treating high temperature wastewater by a membrane distillation method having various advantages is required.

米国公開特許第2014−0273060号US Published Patent No. 2014-0273060 大韓民国登録特許第0840976号Korean Registered Patent No. 0840976 大韓民国登録特許第0881757号Republic of Korea Registered Patent No. 0881757

本発明の目的は、エネルギーを節減し、汚染物質が最大限除去された純水を生産することができる膜蒸留工程を用いた高温廃水処理装置を提供することである。   An object of the present invention is to provide a high-temperature wastewater treatment apparatus using a membrane distillation process capable of producing pure water from which energy is reduced and contaminants are maximally removed.

前記目的を果たすための本発明の高温廃水処理装置は、高温廃水と冷却流体との温度差によって発生した水蒸気圧差によって、前記高温廃水を高温廃水濃縮水と生産水とに分離する膜蒸留工程と、純水と揮発性汚染物質とを含有する前記生産水に圧力を加えて、揮発性汚染物質と純水とを分離する逆浸透膜工程と、を含みうる。   The high-temperature wastewater treatment apparatus of the present invention for achieving the above object includes a membrane distillation step of separating the high-temperature wastewater into high-temperature wastewater concentrated water and production water by a water vapor pressure difference generated by a temperature difference between the high-temperature wastewater and the cooling fluid. A reverse osmosis membrane step of separating the volatile pollutant and the pure water by applying pressure to the production water containing the pure water and the volatile pollutant.

具体的に、前記膜蒸留工程は、高温廃水が流入され、膜蒸留分離膜を通過していない高温廃水濃縮水が残存する膜蒸留流入水側と、前記膜蒸留流入水側と膜蒸留処理水側とが分離されるように備えられ、水蒸気圧差によって、前記高温廃水に含まれた生産水のみ通過され、高温廃水濃縮水は通過されない膜蒸留分離膜と、冷却流体によって高温廃水との温度差を誘導して、前記膜蒸留分離膜を通過した生産水を集める膜蒸留処理水側と、を含み、前記膜蒸留流入水側に残存する高温廃水濃縮水の汚染物質を処理して排出させる濃縮水処理工程が追加されうる。   Specifically, the membrane distillation step includes a membrane distillation influent water side in which high temperature wastewater is introduced and high temperature wastewater concentrated water that has not passed through the membrane distillation separation membrane remains, the membrane distillation influent water side, and membrane distillation treated water. The temperature difference between the membrane distillation separation membrane through which only the production water contained in the high temperature wastewater is passed and the high temperature wastewater concentrated water is not passed, and the high temperature wastewater by the cooling fluid is provided. A membrane distillation treatment water side that collects the production water that has passed through the membrane distillation separation membrane, and concentrates the high temperature waste water concentrated water remaining on the membrane distillation inflow water side to process and discharge the contaminants A water treatment step can be added.

前記膜蒸留工程の原水貯蔵槽、前処理工程、膜蒸留工程には、追加的な熱源を供給することができる加温装置が追加されうる。   A heating device capable of supplying an additional heat source may be added to the raw water storage tank, the pretreatment step, and the membrane distillation step of the membrane distillation step.

前記膜蒸留工程には、濃縮水の廃熱を再び活用することができる熱交換装置が追加されうる。   In the membrane distillation process, a heat exchange device capable of reusing waste heat of concentrated water can be added.

前記膜蒸留分離膜は、疎水性高分子分離膜またはセラミック膜であり得る。   The membrane distillation separation membrane may be a hydrophobic polymer separation membrane or a ceramic membrane.

前記疎水性高分子分離膜は、ポリテトラフルオロエチレン(Polytetrafluoroethylene、PTFE)、フッ化ポリビニリデン(Polyvinylidene fluoride、PVDF)、ポリスルホン(polysulfone、PSF)、ポリエーテルスルホン(Polyether sulfone、PES)、ポリエーテルイミド(Polyether lmide、PEI)、ポリイミド(Polyimide、PI)、ポリエチレン(Polyethylene、PE)、ポリプロピレン(Polypropylene、PP)、及びポリアミド(Polyamide、PA)からなる群から選択された1種であり得る。   The hydrophobic polymer separation membrane includes polytetrafluoroethylene (Polytetrafluorethylene, PTFE), polyvinylidene fluoride (PVDF), polysulfone (PSF), polyethersulfone, PES, and polysulfone. (Polyether imide, PEI), polyimide (Polyimide, PI), polyethylene (Polyethylene, PE), polypropylene (Polypropylene, PP), and polyamide (Polyamide, PA).

また、具体的に、前記逆浸透膜工程は、前記膜蒸留工程から収得された生産水が流入され、逆浸透分離膜を通過していない揮発性汚染物質が残存する逆浸透流入水側と、前記逆浸透流入水側と逆浸透処理水側とが分離されるように備えられ、圧力によって前記生産水に含まれた純水のみが通過され、揮発性汚染物質は通過されない逆浸透分離膜と、前記逆浸透分離膜を通過した純水を集める逆浸透処理水側と、を含み、前記逆浸透流入水側に残存する揮発性汚染物質を結晶化、液肥化などの揮発性汚染物質処理工程が追加されうる。また、揮発性汚染物質処理工程には、生物学的窒素除去工程(硝酸化、脱硝あるいは嫌気性アンモニア酸化工程など)を含む。   Further, specifically, the reverse osmosis membrane step is the reverse osmosis influent water side in which the production water obtained from the membrane distillation step is flown and volatile contaminants that have not passed through the reverse osmosis separation membrane remain, A reverse osmosis separation membrane that is provided so that the reverse osmosis influent water side and the reverse osmosis treated water side are separated, and only pure water contained in the product water is passed by pressure and volatile contaminants are not passed; A reverse osmosis treatment water side for collecting pure water that has passed through the reverse osmosis separation membrane, and a volatile contaminant treatment step such as crystallization and liquid fertilization of volatile contaminants remaining on the reverse osmosis inflow water side Can be added. In addition, the volatile contaminant treatment process includes a biological nitrogen removal process (nitrification, denitration, anaerobic ammonia oxidation process, etc.).

前記逆浸透分離膜は、高圧分離膜または低圧分離膜であり得る。   The reverse osmosis separation membrane may be a high pressure separation membrane or a low pressure separation membrane.

前記逆浸透分離膜は、セルロースアセテート系(CA、cellulose acetate)またはポリアミド系(PA)であり得る。   The reverse osmosis separation membrane may be cellulose acetate (CA) or polyamide (PA).

前記膜蒸留工程に用いられる高温廃水は、前処理工程で前処理された廃水であり、前記前処理工程に流入される高温廃水は、高温廃水発生源から生産されて原水貯蔵槽に貯蔵された廃水であり得る。   The high temperature wastewater used in the membrane distillation process is wastewater pretreated in the pretreatment process, and the high temperature wastewater flowing into the pretreatment process is produced from a high temperature wastewater source and stored in a raw water storage tank. Can be wastewater.

また、前記膜蒸留工程から分離された生産水を貯蔵する膜蒸留、及び前記逆浸透膜工程から分離された純水を貯蔵する逆浸透生産槽を追加することができる。   Moreover, the membrane distillation which stores the production water isolate | separated from the said membrane distillation process, and the reverse osmosis production tank which stores the pure water isolate | separated from the said reverse osmosis membrane process can be added.

また、具体的に、前記純水生産工程は、紫外線(UV)工程、CDI(Capacitive deionization)、EDI(Electrodeionization)、イオン交換(ion exchange)工程などがあり、前記単一工程は、目的によって単一または融合工程で活用されうる。   More specifically, the pure water production process includes an ultraviolet (UV) process, a CDI (capacitive deionization), an EDI (electrodeposition) process, an ion exchange (ion exchange) process, and the like. One or a fusion process can be utilized.

前記処理された純水を前記膜蒸留工程の膜蒸留処理水側及び/または高温廃水発生源に内部搬送させる搬送配管を備えることができる。   The treated pure water can be provided with a conveyance pipe for internally conveying to the membrane distillation process water side of the membrane distillation step and / or a high temperature wastewater generation source.

本発明の高温廃水処理装置は、高温廃水を用いて温度差を用いた膜蒸留で汚染物質を分離し、汚染物質が分離された生産水を逆浸透槽の原水として提供して、さらに汚染物質を分離することによって、エネルギーを節減し、生産された純水を産業工程の工程水として再利用して、高温廃水発生源の原水を安定して確保することができる。前記生産された純水は、高温廃水工程以外にも、その他の工程水、生活用水としても用いられうる。   The high-temperature wastewater treatment apparatus of the present invention uses high-temperature wastewater to separate contaminants by membrane distillation using a temperature difference, and provides the production water from which the contaminants have been separated as raw water for a reverse osmosis tank, By separating the water, energy can be saved, and the produced pure water can be reused as process water for industrial processes, and the raw water of the high temperature wastewater source can be secured stably. The produced pure water can be used not only as a high temperature waste water process but also as other process water and domestic water.

特に、高温廃水を膜蒸留後、後段にある逆浸透膜工程に移動させて処理することによって、汚染物質が最大限除去された純水を生産して、システムの回収率を高め、各種廃水量を節減させることができる。   In particular, high-temperature wastewater is subjected to membrane distillation and then transferred to the reverse osmosis membrane process in the subsequent stage to produce pure water from which contaminants have been removed to the maximum. Can be saved.

また、高温廃水がアンモニアを含んだ場合には、工程の副産物として窒素系肥料を生産することができる。   In addition, when the high temperature wastewater contains ammonia, nitrogenous fertilizer can be produced as a by-product of the process.

本発明の一実施形態によって高温廃水を処理する装置を示す図面である。1 is a diagram illustrating an apparatus for treating high temperature wastewater according to an embodiment of the present invention. 本発明の実施形態によって多様な膜蒸留工程を示す図面である。4 is a diagram illustrating various membrane distillation processes according to an exemplary embodiment of the present invention.

本発明は、エネルギーを節減し、汚染物質がほとんどない純水を生産することができる膜蒸留工程を用いた高温廃水処理装置に関するものである。   The present invention relates to a high-temperature wastewater treatment apparatus using a membrane distillation process that can save energy and produce pure water with almost no contaminants.

以下、本発明を図1を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to FIG.

本発明の高温廃水処理装置10000は、図1に示したように、膜蒸留工程400及び逆浸透膜工程700を含み、具体的に、高温廃水発生源100、原水貯蔵槽200、前処理工程300、膜蒸留工程400、膜蒸留生産槽600、逆浸透膜工程700、揮発性汚染物質処理工程800、及び逆浸透生産槽900順に含みうる。また、必要に応じて逆浸透生産槽900以後に純水生産工程1000を追加することができる。 また、工程の状況によっては、逆浸透膜工程700を省略するか、或いは、逆浸透膜工程700の代わりに純水生産工程1000(CDI、EDI、イオン交換樹脂)を追加することもできる。   As shown in FIG. 1, the high-temperature wastewater treatment apparatus 10000 of the present invention includes a membrane distillation process 400 and a reverse osmosis membrane process 700, and specifically includes a high-temperature wastewater generation source 100, a raw water storage tank 200, and a pretreatment process 300. , Membrane distillation process 400, membrane distillation production tank 600, reverse osmosis membrane process 700, volatile contaminant treatment process 800, and reverse osmosis production tank 900. Moreover, the pure water production process 1000 can be added after the reverse osmosis production tank 900 as needed. Further, depending on the state of the process, the reverse osmosis membrane process 700 may be omitted or a pure water production process 1000 (CDI, EDI, ion exchange resin) may be added instead of the reverse osmosis membrane process 700.

図1で、点線は、純水が搬送される搬送管を意味する。   In FIG. 1, a dotted line means a transport pipe through which pure water is transported.

高温廃水発生源
高温廃水発生源100は、高温廃水を発生させる工程であって、製品生産のために冷却水が使われ、前記冷却水は、高温廃水発生源の生産過程から発生した汚染物質が含まれ、高温の熱を有した高温廃水に変化される。
High-temperature wastewater source The high-temperature wastewater source 100 is a process for generating high-temperature wastewater, and cooling water is used for product production, and the cooling water contains contaminants generated from the production process of the high-temperature wastewater source. It is contained and converted to high temperature wastewater with high temperature heat.

前記冷却水は、冷たい水であれば、特に限定されるものではないが、望ましくは、地表水、海水、下廃水、地下水または純水1000から処理された純水が挙げられる。   The cooling water is not particularly limited as long as it is cold water. Desirably, pure water treated from surface water, seawater, sewage wastewater, groundwater, or pure water 1000 is preferable.

前記高温廃水は、熱を用いる産業工程から発生する温度25℃以上の廃水、望ましくは、25℃〜2,000℃であって;鉄鋼廃水、染色廃水、メッキ廃水、食品加工廃水、石油精製廃水、石油化学工程廃水、パルプ加工廃水、製紙工場廃水、皮革加工廃水、繊維廃水、鉱業廃水、金属廃水、非金属廃水、ゴム及びプラスチック加工廃水、化学工程廃水などの高温廃水が排出されるあらゆる産業工程廃水が挙げられる。   The high temperature wastewater is wastewater having a temperature of 25 ° C. or higher, preferably 25 ° C. to 2,000 ° C. generated from an industrial process using heat; steel wastewater, dyeing wastewater, plating wastewater, food processing wastewater, petroleum refining wastewater Any industry that produces high temperature wastewater such as petrochemical process wastewater, pulp processing wastewater, paper mill wastewater, leather processing wastewater, textile wastewater, mining wastewater, metal wastewater, nonmetal wastewater, rubber and plastic processing wastewater, chemical process wastewater, etc. Process wastewater is mentioned.

原水貯蔵槽
原水貯蔵槽200は、前記高温廃水発生源100から生産された高温廃水を貯蔵して、多様な温度の廃水が混合された高温廃水を安定化させることができる。
Raw Water Storage Tank The raw water storage tank 200 stores the high temperature waste water produced from the high temperature waste water generation source 100 and can stabilize the high temperature waste water mixed with waste water having various temperatures.

前記原水貯蔵槽200の素材は、高温廃水と反応しない金属または非金属素材であれば、特に限定されるものではないが、望ましくは、ポリ塩化ビニル(Polyvinyl chloride、PVC)、繊維強化プラスチック(Fiber Reinforced Plastic、FRP)、SUS316L、DUPLEX Stainless Steelが挙げられる。   The material of the raw water storage tank 200 is not particularly limited as long as it is a metal or non-metal material that does not react with high-temperature wastewater, and is preferably polyvinyl chloride (PVC), fiber reinforced plastic (Fiber). Reinforced Plastic (FRP), SUS316L, and DUPLEX Stainless Steel.

また、高温廃水の温度を保持させるために、断熱材を使うことができるが、前記断熱材の素材は、温度を保持させることができる素材であれば、特に限定されるものではない。   Moreover, in order to hold | maintain the temperature of high temperature wastewater, a heat insulating material can be used, However, The raw material of the said heat insulating material will not be specifically limited if it is a material which can hold | maintain temperature.

前処理工程
前記原水貯蔵槽200に貯蔵された高温廃水は、ポンプまたは重力などを通じて前処理工程300に移送され、前記前処理工程300は、引き続き膜蒸留工程400の膜汚染(particulate fouling、organic fouling、bio−fouling、inorganic fouling(scaling))を発生させる各種汚染物質を予め制御することができるが、高温廃水の性状によって前処理工程300を省略することもできる。
Pre-treatment process The high-temperature wastewater stored in the raw water storage tank 200 is transferred to the pre-treatment process 300 through a pump or gravity, and the pre-treatment process 300 is continuously subjected to membrane fouling and organic fouling in the membrane distillation process 400. , Bio-fouling, organic fouling (scaling) can be controlled in advance, but the pretreatment step 300 can be omitted depending on the properties of the high-temperature wastewater.

前記前処理工程300としては、凝集、沈澱、濾過または殺菌工程が挙げられる。   Examples of the pretreatment process 300 include agglomeration, precipitation, filtration, and sterilization processes.

一例として、前処理工程300には、センサー部と処理部とを備えることができる。前記センサー部は、原水貯蔵槽200、膜蒸留工程400の流入水側または原水貯蔵槽と膜蒸留工程の流入水側を連結する配管のうち、何れか1箇所以上に結合されうる。また、前記注入部は、原水貯蔵槽200、膜蒸留工程の流入水側または原水貯蔵槽と膜蒸留工程の流入水側を連結する配管のうち、何れか1箇所以上に連結されうる。   As an example, the preprocessing step 300 may include a sensor unit and a processing unit. The sensor unit may be coupled to one or more of the raw water storage tank 200, the inflow water side of the membrane distillation process 400, or a pipe connecting the raw water storage tank and the inflow water side of the membrane distillation process. In addition, the injection unit may be connected to any one or more of the raw water storage tank 200 and the pipe connecting the raw water storage tank and the inflow water side of the membrane distillation process.

前記センサー部は、場合によってはセンサー部測定限界以上の濃度を測定するために、前記センサー部に別途の希釈装置が追加されうる。前記希釈装置は、反応槽の形態または管状など如何なる形態でも良い。   In some cases, a separate diluting device may be added to the sensor unit in order to measure the concentration of the sensor unit above the sensor unit measurement limit. The diluting device may take any form such as a reaction tank or a tube.

前記処理部は、センサー部から測定された資料に基づいて、既に入力された資料または算式を活用するか、または測定を通じて貯蔵された資料を評価して、適正注入薬品量を計算するシステムが含まれ、計算された適正薬品量の情報を注入部に伝達する役割を行う。   The processing unit includes a system for calculating an appropriate amount of medicine to be injected based on data measured from a sensor unit, using already input data or formulas, or evaluating data stored through measurement. The information on the calculated appropriate chemical amount is transmitted to the injection part.

前記薬品は、例えば、pH調節剤、Eh調節剤、沈澱剤、凝集剤、消毒剤、anti−scalantからなる群から選択された1種以上が挙げられる。前記薬品を原水貯蔵槽から排出される原水に注入することによって、スケーリング(scaling)形成による膜蒸留工程内の分離膜分離性能(flux)の低下を防止し、これにより、分離膜洗浄周期を著しく増加させ、分離膜の寿命延長による分離膜の取り替え費用も著しく減らしうる。   Examples of the chemical include one or more selected from the group consisting of a pH regulator, an Eh regulator, a precipitant, a flocculant, a disinfectant, and an anti-scalant. By injecting the chemical into the raw water discharged from the raw water storage tank, the separation membrane separation performance (flux) in the membrane distillation process is prevented from being reduced due to the formation of scaling, thereby significantly reducing the separation membrane cleaning cycle. The cost for replacing the separation membrane due to the increase in the life of the separation membrane can be significantly reduced.

膜蒸留工程
膜蒸留工程400は、前記前処理工程300で前処理された高温廃水と別途に流入された冷却流体との温度差によって発生した水蒸気圧差によって、前記高温廃水を高温廃水濃縮水と生産水(例えば、純水及び揮発性汚染物質の混合水)とに分離させる。
Membrane Distillation Process Membrane distillation process 400 is a process for producing high-temperature wastewater and high-temperature wastewater concentrated water by using a water vapor pressure difference generated by a temperature difference between the high-temperature wastewater pretreated in the pretreatment process 300 and a separately supplied cooling fluid. Separated into water (for example, a mixture of pure water and volatile contaminants).

具体的に、前記膜蒸留工程400は、高温廃水が流入され、水蒸気圧差を用いて高温廃水を分離時に、膜蒸留分離膜を通過していない高温廃水濃縮水が残存する膜蒸留流入水側410と、前記膜蒸留流入水側410と膜蒸留処理水側430とが分離されるように備えられ、水蒸気圧差によって、前記高温廃水に含まれた生産水が通過され、高温廃水濃縮水は通過されない膜蒸留分離膜420と、冷却流体が流れる冷却部(図示せず)が備えられて、前記冷却流体によって高温廃水との温度差を誘導して、前記膜蒸留分離膜を通過した生産水のみを集める膜蒸留処理水側430と、を含む。   Specifically, in the membrane distillation process 400, the high temperature wastewater is flowed in, and when the high temperature wastewater is separated by using the water vapor pressure difference, the high temperature wastewater concentrated water that does not pass through the membrane distillation separation membrane 410 remains. And the membrane distillation influent side 410 and the membrane distillation treated water side 430 are separated, and due to the water vapor pressure difference, the production water contained in the high temperature wastewater is passed, and the high temperature wastewater concentrated water is not passed. A membrane distillation separation membrane 420 and a cooling unit (not shown) through which a cooling fluid flows are provided, and a temperature difference with high-temperature wastewater is induced by the cooling fluid, and only the production water that has passed through the membrane distillation separation membrane is obtained. A membrane distillation treated water side 430 to collect.

前記膜蒸留流入水側410に残存する高温廃水濃縮水は、目的によって適切な濃縮率に到逹するか、前記濃縮水の温度が流入される高温廃水の温度に比べて低くなる場合に、濃縮水処理工程500で汚染物質を処理して排出される。また、適切な濃縮率に到逹した濃縮水は、内部搬送配管を通じて膜蒸留流入水側410に搬送されることもある。また、前記濃縮水の廃熱は、熱交換装置440によって再利用されて、高温廃水発生源100、原水貯蔵槽200、前処理工程300の廃水に熱源として用いられうる。前記熱交換装置440は、濃縮水が濃縮水処理工程500に移動する中間に備えられうる。   The high temperature waste water concentrated water remaining on the membrane distillation influent side 410 reaches an appropriate concentration rate depending on the purpose, or is concentrated when the temperature of the concentrated water is lower than the temperature of the high temperature waste water into which it is introduced. In the water treatment process 500, contaminants are treated and discharged. Further, the concentrated water that has reached an appropriate concentration rate may be transported to the membrane distillation influent side 410 through the internal transport pipe. In addition, the waste heat of the concentrated water can be reused by the heat exchanger 440 and used as a heat source for the waste water of the high temperature waste water generation source 100, the raw water storage tank 200, and the pretreatment process 300. The heat exchange device 440 may be provided in the middle of the concentrated water moving to the concentrated water treatment process 500.

また、膜蒸留分離膜420は、疎水性高分子分離膜またはセラミック膜であり、具体的に、疎水性高分子分離膜は、ポリテトラフルオロエチレン(PTFE)、フッ化ポリビニリデン(PVDF)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、及びポリアミド(PA)からなる群から選択された1種以上が挙げられる。   The membrane distillation separation membrane 420 is a hydrophobic polymer separation membrane or a ceramic membrane. Specifically, the hydrophobic polymer separation membrane is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone. 1 or more types selected from the group consisting of (PSF), polyethersulfone (PES), polyetherimide (PEI), polyimide (PI), polyethylene (PE), polypropylene (PP), and polyamide (PA). It is done.

また、前記膜蒸留処理水側430に流れる冷却流体は、後段の逆浸透生産槽900または純水生産工程1000から処理された純水を内部搬送配管を通じて搬送された水であり得る。   In addition, the cooling fluid flowing to the membrane distillation process water side 430 may be water obtained by transporting pure water treated from the reverse osmosis production tank 900 or the pure water production process 1000 through an internal transport pipe.

また、前記膜蒸留処理水側430に集まられた生産水は、後段である膜蒸留生産槽600に移送されて保管される。   Further, the production water collected on the membrane distillation treated water side 430 is transferred to and stored in the membrane distillation production tank 600 which is a subsequent stage.

本発明による膜蒸留工程400は、その形態が特に定められたものではなく、例えば、浸漬式、加圧式など如何なる形態でも良い。また、本発明の膜蒸留水処里装置は、如何なる方式の膜蒸留用水処里装置でも良く、例えば、Direct Contact Membrane Distillation(DCMD)方式、Air Gap Membrane Distillation(AGMD)方式、Vacuum Membrane Distillation(VMD)方式、Sweep Gas Membrane Distillation(SGMD)方式などであり得る。図2に示したように、膜蒸留装置方式によって冷却部に液体(DCMD)またはガス(AGMD、SGMD)のような多様な冷却流体を使うか、冷却部を真空状態(VMD)で使うことができる。   The form of the membrane distillation process 400 according to the present invention is not particularly defined, and may be any form such as an immersion type or a pressure type. In addition, the membrane distilled water treatment apparatus of the present invention may be any type of membrane distillation water treatment apparatus, such as a Direct Contact Membrane Distillation (DCMD) method, an Air Gap Membrane Distillation (AGMD) method, and a Vacuum Membrane Drum ) Method, Sweep Gas Membrane Distillation (SGMD) method, and the like. As shown in FIG. 2, various cooling fluids such as liquid (DCMD) or gas (AGMD, SGMD) may be used for the cooling unit according to a membrane distillation apparatus, or the cooling unit may be used in a vacuum state (VMD). it can.

前記原水貯蔵槽200、前処理工程300及び膜蒸留工程400には、前記各槽及び前記各槽と連結された配管(各槽に処理水が流入される配管)に加温装置(図示せず)が追加されうる。   In the raw water storage tank 200, the pretreatment process 300, and the membrane distillation process 400, a heating device (not shown) is connected to each tank and a pipe connected to each tank (a pipe into which the treated water flows into each tank). ) May be added.

膜蒸留生産槽
前記膜蒸留生産槽600は、膜蒸留工程400から分離された中温の生産水(例えば、純水及び揮発性汚染物質の混合水)を貯蔵する貯蔵槽であって、前記生産水の温度保持のために断熱材が備えられうる。
Membrane Distillation Production Tank The membrane distillation production tank 600 is a storage tank that stores medium temperature production water (for example, mixed water of pure water and volatile contaminants) separated from the membrane distillation process 400, and the production water. Insulation may be provided to maintain the temperature.

前記断熱材は、中温の温度で変質されない素材であれば、特に限定されず、発泡スタイロフォーム、ガラス繊維など空気層が含まれている素材が含まれうる。   The heat insulating material is not particularly limited as long as it is a material that is not denatured at a medium temperature, and may include a material containing an air layer such as a foamed styrofoam or glass fiber.

前記‘中温’は、前記高温廃水の温度よりも低い温度を意味する。   The “medium temperature” means a temperature lower than the temperature of the high temperature waste water.

逆浸透膜工程
前記逆浸透膜工程700は、加圧ポンプを通じて膜蒸留生産槽600から純水及び揮発性汚染物質の混合水である生産水を供給された後、前記生産水に圧力を加えて揮発性汚染物質と純水とに分離させる。
Reverse Osmosis Membrane Process In the reverse osmosis membrane process 700, production water that is a mixed water of pure water and volatile pollutants is supplied from the membrane distillation production tank 600 through a pressure pump, and then pressure is applied to the production water. Separate into volatile pollutants and pure water.

具体的に、前記逆浸透膜工程700は、前記膜蒸留工程400から収得された生産水が流入され、生産水分離時に、逆浸透分離膜を通過していない揮発性汚染物質が残存する逆浸透流入水側710と、前記逆浸透流入水側と逆浸透処理水側とが分離されるように備えられ、圧力によって前記生産水に含まれた純水のみが通過され、揮発性汚染物質は通過されない逆浸透分離膜720と、前記逆浸透分離膜を通過した純水を集める逆浸透処理水側730と、を含む。   Specifically, in the reverse osmosis membrane process 700, the production water obtained from the membrane distillation process 400 is introduced, and the reverse osmosis in which volatile contaminants that have not passed through the reverse osmosis separation membrane remain during the production water separation. The inflow water side 710 is provided to be separated from the reverse osmosis inflow water side and the reverse osmosis treated water side, and only pure water contained in the product water is passed by pressure, and volatile pollutants pass. A reverse osmosis separation membrane 720, and a reverse osmosis water side 730 that collects pure water that has passed through the reverse osmosis separation membrane.

前記逆浸透流入水側710に残存する揮発性汚染物質を含有する濃縮水は、目的によって適切な濃縮率に到逹するまで内部搬送配管を通じて逆浸透流入水側710に搬送されるか、直ちに揮発性汚染物質処理工程800に移動する。   Concentrated water containing volatile contaminants remaining on the reverse osmosis inflow side 710 is transferred to the reverse osmosis inflow side 710 through an internal transfer pipe until it reaches an appropriate concentration rate depending on the purpose, or is immediately volatilized. The process moves to the processing step 800 for treating a toxic contaminant.

前記揮発性汚染物質処理工程800は、濃縮水に存在する揮発性汚染物質を除去または結晶化する。前記揮発性汚染物質が窒素である場合には、結晶化または液肥に切り替えて肥料化するか、生物学的窒素除去工程(硝酸化、脱硝または嫌気性アンモニア酸化工程など)で除去する。肥料化時に、部分的な硝酸化工程をさらに行うことができる。この際、前記揮発性汚染物質は、膜蒸留工程400では除去されず、逆浸透膜工程700でのみ除去されるあらゆる揮発性汚染物質を意味する。   The volatile contaminant treatment process 800 removes or crystallizes volatile contaminants present in the concentrated water. When the volatile pollutant is nitrogen, it is switched to crystallization or liquid fertilizer and fertilized, or removed by a biological nitrogen removal step (nitrification, denitration, anaerobic ammonia oxidation step or the like). A partial nitrification step can be further performed during fertilization. In this case, the volatile contaminant means any volatile contaminant that is not removed in the membrane distillation process 400 and is removed only in the reverse osmosis membrane process 700.

具体的に、揮発性汚染物質としては、アセトアミド(Acete amide)、アニリン(Aniline)、メチルアルコール(Methyl alcohol)、2−プロパノール(2−propanol)、N,N−ジメチルホルムアミド(N,N−Dimethylformamide)、シアン化水素(Hydrogen cyanide)、ニトロメタン(Nitromethane)、メチルエチルケトン(Methyl ethyl ketone)、フルフラール(Furfural)、1,2−エポキシブタン(1,2−Epoxybutane)、2−クロロエタノール(2−Chloroethanol)、プロピオノニトリル(Propiononitrile)、アクリロニトリル(Acrylonitrile)、アリルアルコール(Allyl alcohol)、クロロメチルメチルエーテル(Chloromethyl methyl ether)、フェノール(Phenol)、2−メトキシエタノール(2−Methoxyethanol)、ジエチルアミン(Diethylamine)、2−エトキシエタノール(2−Ethoxyethanol)、テトラフルオロエチレン(Tetrafluoroethylene)、1,4−ジオキサン(1,4−Dioxane)、酢酸エチル(Ethyl acetate)、ヒドラジン(Hydrazine)、グリシドール(Glycidol)、イソチオシアン酸メチル(Methyl isothiocyanate)、ヘキサメチルホスホルアミド(Hexamethyl phosphoramide)、クロトンアルデヒド(Crotonaldehyde)、塩化水素(Hydrogen chloride)、フッ化水素(Hydrogen fluoride)、アンモニア(Ammonia)、硝酸(Nitric acid)、過酸化水素(Hydrogen peroxide)、臭化水素(Hyrdogen bromide)、アセトアルデヒド(Acete aldehyde)、アセチレン(Acetylene)、二塩化アセチレン(Acetylene dichloride)、アクロレイン(Acrolein)、アクリロニトリル(Acrylonitrile)、ベンゼン(Benzene)、1,3−ブタジエン(1,3−Butadiene)、ブタン(Butane)、1−ブテン(1−Butene)、2−ブテン(2−Butene)、四塩化炭素(Carbon Tetrachloride)、クロロホルム(Chloroform)、シクロヘキサン(Cyclohexane)、1,2−ジクロロエタン(1,2−Dichloroethane)、ジエチルアミン(Diethylamine)、ジメチルアミン(Dimethylamine)、エチレン(Ethylene)、ホルムアルデヒド(Formaldehyde)、n−ヘキサン(n−Hexane)、イソプロピルアルコール(Isopropyl Alcohol)、メタノール(Methanol)、メチルエチルケトン(Methyl Ethyl Ketone)、メチレンクロライド(Methylene Chloride)、MTBE(Methyl Tertiary Butyl Ether)、プロピレン(Propylene)、プロピレンオキシド(Propylene Oxide)、1,1,1−トリクロロエタン(1,1,1−Trichloroethane)、トリクロロエチレン(Trichloroethylene)、ガソリン(Gasoline)、ナフサ(Naphtha)、原油(Crude Oil)、酢酸(Acetic Acid)、エチルベンゼン(Ethylbenzene)、ニトロベンゼン(Nitrobenzene)、トルエン(Toluene)、テトラクロロエチレン(Tetrachloroethylene)、キシレン(Xylene)、及びスチレン(Styrene)からなる群から選択された1種以上が挙げられる。   Specifically, volatile contaminants include acetamide, aniline, methyl alcohol, 2-propanol, N, N-dimethylformamide (N, N-dimethylformamide). ), Hydrogen cyanide, nitromethane, methyl ethyl ketone, furfural, 1,2-epoxybutane, 1,2-chloroethanol (2-chloroethane), hydrogen cyanide, nitromethane, methyl ethyl ketone, furfural, 1,2-epoxybutane, 2-chloroethanol, 2-chloroethane. Ononitrile (Propionontrile), Acrylonitrile (Acrylonitile) ), Allyl alcohol, chloromethyl methyl ether, phenol, 2-methoxyethanol, diethylamine, 2-ethoxyethanol, and tetraethoxyethanol. Fluoroethylene (Tetrafluoroethylene), 1,4-Dioxane (1,4-Dioxane), Ethyl acetate (Ethyl acetate), Hydrazine, Glycidol, Methyl isothiocyanate (Hexamethylphosphonate) Hexamethyl ph spheramide, crotonaldehyde, hydrogen chloride, hydrogen fluoride, ammonia, nitric acid, hydrogen peroxide, hydrogen bromide hydrogen, hydrogen bromide hydrogen, hydrogen bromide hydrogen, hydrogen bromide hydrogen , Acetaldehyde, acetylene, acetylene dichloride, acrolein, acrylonitrile, benzene, 1,3-butadiene, 1,3-butane Butane), 1-bute (1-Butene), 2-butene (2-Butene), Carbon Tetrachloride, Chloroform, Cyclohexane, 1,2-Dichloroethane, 1,2-Diethylamine ), Dimethylamine, ethylene, formaldehyde, n-hexane, isopropyl alcohol, methanol, methyl ethyl ketone, methylene ethyl ketone, methylene ethyl ketone, methylene ethyl ketone, methylene ethyl ketone, and methylene ethyl ketone. Chloride) MTBE (Methyl Tertiary Butyl Ether), Propylene (Propylene), Propylene Oxide (Propylene Oxide), 1,1,1-Trichloroethane (1,1,1-Trichloroethane), Trichlorethylene (Trichloroethylene), Gasoline (Gasoline), Selected from Naphtha, Crude Oil, Acetic Acid, Ethylbenzene, Nitrobenzene, Toluene, Tetrachloroethylene, Xylene, and Styrene 1 done Or more, and the like.

また、前記逆浸透分離膜720は、高圧分離膜または低圧分離膜であるが、エネルギーの節減のために低圧分離膜を使うことが望ましい。前記逆浸透分離膜720は、セルロースアセテート系(CA)またはポリアミド系(PA)など、特に限定せず、その形態は、平膜、中空糸膜、渦巻型膜などであり得る。   The reverse osmosis separation membrane 720 is a high-pressure separation membrane or a low-pressure separation membrane, but it is desirable to use a low-pressure separation membrane to save energy. The reverse osmosis separation membrane 720 is not particularly limited, such as cellulose acetate (CA) or polyamide (PA), and the form may be a flat membrane, a hollow fiber membrane, a spiral membrane, or the like.

逆浸透生産槽
前記逆浸透生産槽900は、逆浸透膜工程700から分離された純水を貯蔵し、前記純水を高温廃水発生源100、膜蒸留処理水側430などに搬送して再利用するか、近隣の工程水または生活用水として再利用されうる。逆浸透膜工程700から生産される生産水よりも高いレベルの純水が必要な場合には、純水生産工程1000に搬入させて、微量の汚染物質を除去することができる。この際、微量の汚染物質は、逆浸透膜工程700から除去されないあらゆる汚染物質を意味する。
Reverse Osmosis Production Tank The reverse osmosis production tank 900 stores the pure water separated from the reverse osmosis membrane process 700, transports the pure water to the high temperature wastewater generation source 100, the membrane distillation treated water side 430, etc., and reuses it. Or it can be reused as nearby process water or domestic water. If pure water at a higher level than the production water produced from the reverse osmosis membrane process 700 is required, it can be carried into the pure water production process 1000 to remove a trace amount of contaminants. Here, a trace amount of contaminant means any contaminant that is not removed from the reverse osmosis membrane process 700.

純水生産工程
前記純水生産工程1000では、逆浸透膜工程700から分離されない汚染物質を除去するために備えられうる。具体的に、前記純水生産工程1000は、逆浸透膜工程700から発生した純水以上の純水が冷却水または工程水として必要な場合に追加されうる。当該工程としては、紫外線(UV)工程、CDI、EDI、イオン交換工程などがあり、前記単一工程は、目的によって単一または融合工程で活用されうる。純水生産工程1000から生産される純水は、搬送配管を通じて高温廃水発生源100、膜蒸留処理水側430などに搬送されて再利用するか、近隣の工程水または生活用水として再利用されうる。但し、再利用水の性状基準によって純水生産工程1000を省略することもできる。
Pure water production process The pure water production process 1000 may be provided to remove contaminants that are not separated from the reverse osmosis membrane process 700. Specifically, the pure water production process 1000 may be added when pure water equal to or higher than the pure water generated from the reverse osmosis membrane process 700 is required as cooling water or process water. Examples of the process include an ultraviolet (UV) process, CDI, EDI, and ion exchange process, and the single process can be used as a single process or a fusion process depending on the purpose. The pure water produced from the pure water production process 1000 can be transported to the high-temperature wastewater generation source 100, the membrane distillation process water side 430, etc. through the transport pipe and reused, or can be reused as nearby process water or domestic water. . However, the pure water production process 1000 can be omitted according to the property standard of reused water.

本発明による高温廃水処理装置10000は、高温の廃水を処理するために、膜蒸留工程で高温廃水を流入源として、冷却流体を冷却源として高温廃水から生産水を収得し、前記収得された生産水を逆浸透膜工程で処理して純水を収得することである。この際、本発明のように、膜蒸留工程−逆浸透膜工程処理方式ではない逆浸透膜工程−膜蒸留工程方式で処理される場合には、逆浸透膜工程を経た廃水の温度が低くなって、膜蒸留工程で廃水を流入源として使うことができないので、コストが上昇し、汚染物質が最大限除去された純水を収得することができない。   The high-temperature wastewater treatment apparatus 10000 according to the present invention obtains the production water from the high-temperature wastewater using the high-temperature wastewater as the inflow source and the cooling fluid as the cooling source in the membrane distillation process in order to treat the high-temperature wastewater. It is to obtain pure water by treating water in a reverse osmosis membrane process. At this time, as in the present invention, when treated by a reverse osmosis membrane step-membrane distillation step method that is not a membrane distillation step-reverse osmosis membrane step treatment method, the temperature of the wastewater that has passed through the reverse osmosis membrane step is lowered. In addition, since waste water cannot be used as an inflow source in the membrane distillation process, the cost increases and it is impossible to obtain pure water from which contaminants are removed to the maximum extent.

前述したように、当業者は、本発明がその技術的思想や必須的特徴を変更せずとも、他の具体的な形態で実施可能であることを理解できるであろう。本発明の範囲は、前記の詳細な説明よりは後述する特許請求の範囲によって表われ、特許請求の範囲の意味及び範囲、そして、その等価概念から導出されるあらゆる変更または変形された形態が、本発明の範囲に含まれると解釈されねばならない。   As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical idea and the essential features. The scope of the present invention is expressed by the following claims rather than the above detailed description, and the meaning and scope of the claims, and any modified or modified forms derived from the equivalent concept thereof, It should be construed as included in the scope of the present invention.

本発明は、膜蒸留工程を用いた高温廃水処理装置に用いられうる。   The present invention can be used in a high-temperature wastewater treatment apparatus using a membrane distillation process.

10000:高温廃水処理装置
100:高温廃水発生源
200:原水貯蔵槽
300:前処理工程
400:膜蒸留工程
410:膜蒸留流入水側
420:膜蒸留分離膜
430:膜蒸留処理水側
440:熱交換装置
500:濃縮水処理工程
600:膜蒸留生産槽
700:逆浸透膜工程
710:逆浸透流入水側
720:逆浸透分離膜
730:逆浸透処理水側
800:揮発性汚染物質処理工程
900:逆浸透生産槽
1000:純水生産工程
10000: High-temperature wastewater treatment apparatus 100: High-temperature wastewater generation source 200: Raw water storage tank 300: Pretreatment process 400: Membrane distillation process 410: Membrane distillation influent water side 420: Membrane distillation separation membrane 430: Membrane distillation treatment water side 440: Heat Exchange device 500: Concentrated water treatment process 600: Membrane distillation production tank 700: Reverse osmosis membrane process 710: Reverse osmosis inflow water side 720: Reverse osmosis separation membrane 730: Reverse osmosis treatment water side 800: Volatile pollutant treatment process 900: Reverse osmosis production tank 1000: Pure water production process

Claims (21)

高温廃水と冷却流体との温度差によって発生した水蒸気圧差によって、前記高温廃水を高温廃水濃縮水と生産水とに分離する膜蒸留工程と、
純水と揮発性汚染物質とを含有する前記生産水に圧力を加えて、揮発性汚染物質と純水とを分離する逆浸透膜工程と、
を含むことを特徴とする膜蒸留工程を用いた高温廃水処理装置。
A membrane distillation step of separating the high temperature waste water into high temperature waste water concentrated water and product water by a water vapor pressure difference generated by a temperature difference between the high temperature waste water and the cooling fluid;
A reverse osmosis membrane step of separating the volatile pollutant and pure water by applying pressure to the production water containing pure water and volatile pollutant;
A high-temperature wastewater treatment apparatus using a membrane distillation process characterized by comprising:
前記膜蒸留工程は、
高温廃水が流入され、膜蒸留分離膜を通過していない高温廃水濃縮水が残存する膜蒸留流入水側と、
前記膜蒸留流入水側と膜蒸留処理水側とが分離されるように備えられ、水蒸気圧差によって、前記高温廃水に含まれた生産水が通過され、高温廃水濃縮水は通過されない膜蒸留分離膜と、
冷却流体によって高温廃水との温度差を誘導して、前記膜蒸留分離膜を通過した生産水を集める膜蒸留処理水と、
を含むことを特徴とする請求項1に記載の膜蒸留工程を用いた高温廃水処理装置。
The membrane distillation step includes
Membrane distillation influent water side in which high temperature wastewater is introduced and high temperature wastewater concentrated water that has not passed through the membrane distillation separation membrane remains,
The membrane distillation separation membrane is provided so that the membrane distillation influent water side and the membrane distillation treated water side are separated, and the production water contained in the high temperature wastewater is passed by the water vapor pressure difference, and the high temperature wastewater concentrated water is not passed. When,
Membrane distillation treated water that induces a temperature difference with the high temperature wastewater by the cooling fluid and collects the production water that has passed through the membrane distillation separation membrane,
The high-temperature wastewater treatment apparatus using the membrane distillation process according to claim 1, wherein
前記膜蒸留工程は、前記膜蒸留流入水側に残存する高温廃水濃縮水の汚染物質を処理して排出させる濃縮水処理工程が追加されることを特徴とする請求項2に記載の膜蒸留工程を用いた高温廃水処理装置。   The membrane distillation step according to claim 2, wherein the membrane distillation step is further added with a concentrated water treatment step of treating and discharging contaminants of the high-temperature wastewater concentrated water remaining on the membrane distillation influent side. High temperature wastewater treatment equipment using 前記膜蒸留工程には、熱交換装置がさらに備えられることを特徴とする請求項2に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 2, wherein the membrane distillation process further comprises a heat exchange device. 前記膜蒸留分離膜は、疎水性高分子分離膜またはセラミック膜であることを特徴とする請求項2に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 2, wherein the membrane distillation separation membrane is a hydrophobic polymer separation membrane or a ceramic membrane. 前記疎水性高分子分離膜は、ポリテトラフルオロエチレン(PTFE)、フッ化ポリビニリデン(PVDF)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、及びポリアミド(PA)からなる群から選択された1種以上であることを特徴とする請求項5に記載の膜蒸留工程を用いた高温廃水処理装置。   The hydrophobic polymer separation membrane includes polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polysulfone (PSF), polyethersulfone (PES), polyetherimide (PEI), polyimide (PI), polyethylene The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 5, wherein the apparatus is one or more selected from the group consisting of (PE), polypropylene (PP), and polyamide (PA). 前記逆浸透膜工程は、
前記膜蒸留工程から収得された生産水が流入され、逆浸透分離膜を通過していない揮発性汚染物質が残存する逆浸透流入水側と、
前記逆浸透流入水側と逆浸透処理水側とが分離されるように備えられ、圧力によって前記生産水に含まれた純水のみが通過され、揮発性汚染物質は通過されない逆浸透分離膜と、
前記逆浸透分離膜を通過した純水を集める逆浸透処理水側と、
を含むことを特徴とする請求項1に記載の膜蒸留工程を用いた高温廃水処理装置。
The reverse osmosis membrane process includes:
The reverse osmosis influent water side in which the production water obtained from the membrane distillation step flows in and volatile contaminants not passing through the reverse osmosis separation membrane remain,
A reverse osmosis separation membrane that is provided so that the reverse osmosis influent water side and the reverse osmosis treated water side are separated, and only pure water contained in the product water is passed by pressure and volatile contaminants are not passed; ,
A reverse osmosis treated water side for collecting pure water that has passed through the reverse osmosis separation membrane;
The high-temperature wastewater treatment apparatus using the membrane distillation process according to claim 1, wherein
前記逆浸透膜工程は、前記逆浸透流入水側に残存する揮発性汚染物質を結晶化、液肥化または脱硝化させて排出させる揮発性汚染物質処理工程が追加されることを特徴とする請求項7に記載の膜蒸留工程を用いた高温廃水処理装置。   The volatile pollutant treatment step is added to the reverse osmosis membrane step, wherein a volatile pollutant remaining on the reverse osmosis inflow water side is crystallized, liquid fertilized or denitrated to be discharged. A high-temperature wastewater treatment apparatus using the membrane distillation step according to claim 7. 前記逆浸透分離膜は、高圧分離膜または低圧分離膜であることを特徴とする請求項7に記載の膜蒸留工程を用いた高温廃水処理装置。   The high temperature wastewater treatment apparatus using a membrane distillation process according to claim 7, wherein the reverse osmosis separation membrane is a high pressure separation membrane or a low pressure separation membrane. 前記逆浸透分離膜は、セルロースアセテート系(CA)またはポリアミド系(PA)であることを特徴とする請求項7に記載の膜蒸留工程を用いた高温廃水処理装置。   The high temperature wastewater treatment apparatus using a membrane distillation process according to claim 7, wherein the reverse osmosis separation membrane is a cellulose acetate type (CA) or a polyamide type (PA). 前記高温廃水は、前処理工程で前処理された廃水であることを特徴とする請求項1に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 1, wherein the high-temperature wastewater is wastewater pretreated in a pretreatment process. 前記前処理工程に流入される高温廃水は、高温廃水発生源から生産されて原水貯蔵槽に貯蔵されたことを特徴とする請求項11に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 11, wherein the high-temperature wastewater flowing into the pretreatment process is produced from a high-temperature wastewater source and stored in a raw water storage tank. 前記原水貯蔵槽、前処理工程及び膜蒸留工程には、加温装置がさらに備えられることを特徴とする請求項12に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 12, wherein the raw water storage tank, the pretreatment process, and the membrane distillation process are further provided with a heating device. 前記膜蒸留工程から分離された生産水を貯蔵する膜蒸留生産槽を追加することを特徴とする請求項1に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 1, further comprising a membrane distillation production tank for storing production water separated from the membrane distillation process. 前記逆浸透膜工程から収得された純水を貯蔵する逆浸透生産槽を追加することを特徴とする請求項1または2に記載の膜蒸留工程を用いた高温廃水処理装置。   The high temperature wastewater treatment apparatus using a membrane distillation process according to claim 1 or 2, wherein a reverse osmosis production tank for storing pure water obtained from the reverse osmosis membrane process is added. 前記収得された純水の汚染物質を除去する純水生産工程を追加することを特徴とする請求項15に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 15, further comprising a pure water production process for removing contaminants of the obtained pure water. 前記処理された純水を前記膜蒸留工程の膜蒸留処理水側に内部搬送させる搬送配管を備えることを特徴とする請求項16に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 16, further comprising a transfer pipe for internally conveying the treated pure water to the membrane distillation process water side of the membrane distillation process. 前記逆浸透膜工程から収得された純水を貯蔵する逆浸透生産槽を追加することを特徴とする請求項13に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 13, further comprising a reverse osmosis production tank for storing pure water obtained from the reverse osmosis membrane process. 前記収得された純水の汚染物質を除去する純水生産工程を追加することを特徴とする請求項18に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 18, further comprising a pure water production process for removing contaminants of the obtained pure water. 前記純水生産工程には、紫外線(UV)工程、CDI、EDI、イオン交換工程が単独または融合で使われることを特徴とする請求項19に記載の廃水処理工程。   The wastewater treatment process according to claim 19, wherein the pure water production process includes an ultraviolet (UV) process, a CDI, an EDI, and an ion exchange process. 前記処理された純水を前記高温廃水発生源に内部搬送させる搬送配管を備えることを特徴とする請求項19に記載の膜蒸留工程を用いた高温廃水処理装置。   The high-temperature wastewater treatment apparatus using a membrane distillation process according to claim 19, further comprising a conveyance pipe for internally conveying the treated pure water to the high-temperature wastewater generation source.
JP2016017954A 2015-04-17 2016-02-02 High temperature wastewater treatment system using membrane distillation process Expired - Fee Related JP6216810B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0054505 2015-04-17
KR1020150054505A KR20160123822A (en) 2015-04-17 2015-04-17 Apparatus for treatment of a high temperature wastewater by using a membrane distillation process

Publications (2)

Publication Number Publication Date
JP2016203160A true JP2016203160A (en) 2016-12-08
JP6216810B2 JP6216810B2 (en) 2017-10-18

Family

ID=57251570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017954A Expired - Fee Related JP6216810B2 (en) 2015-04-17 2016-02-02 High temperature wastewater treatment system using membrane distillation process

Country Status (2)

Country Link
JP (1) JP6216810B2 (en)
KR (1) KR20160123822A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381919A (en) * 2017-08-25 2017-11-24 苏州赛比膜分离科技有限公司 A kind of high slat-containing wastewater is separated by filtration mechanism
KR20180091517A (en) 2017-02-07 2018-08-16 한국광해관리공단 Zero liquid discharge apparatus by membrane And Method thereof
JP2020151626A (en) * 2019-03-18 2020-09-24 大阪瓦斯株式会社 Waste acid liquid treatment apparatus and waste acid liquid treatment method
CN112939736A (en) * 2021-03-09 2021-06-11 江苏卓博环保科技有限公司 Resource utilization device and method for post-treatment of high-salt waste liquid by thermal PVDF ultrafiltration membrane
CN113149307A (en) * 2021-02-26 2021-07-23 中国华能集团清洁能源技术研究院有限公司 Desulfurization wastewater thermal method and membrane method coupling concentration system and method
WO2023037772A1 (en) * 2021-09-07 2023-03-16 株式会社デンソー Water treatment system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201617347D0 (en) * 2016-10-13 2016-11-30 VWS (UK) Limited Method and apparatus for providing ultrapure water
KR102111605B1 (en) * 2016-12-26 2020-05-15 주식회사 엘지화학 Method for treating solvent included in waste water
KR101896482B1 (en) * 2017-05-16 2018-09-10 한국과학기술연구원 Apparatus for removing ammonia in Membrane Distillation-treated water
KR102011309B1 (en) * 2017-11-16 2019-10-21 한국과학기술연구원 Wearable membrane distillation apparatus using body heat as a heat source
KR102296777B1 (en) * 2019-12-26 2021-09-03 한국건설기술연구원 Superoleophobic-superhydrophobic hollow fiber membrane for membrane distillation (md) in anaerobic wastewater treatment, and fabricating method for the same
KR102325892B1 (en) * 2021-03-03 2021-11-12 한수테크니칼서비스(주) Method for treating waste water containing ammonia
CN114132995A (en) * 2021-12-13 2022-03-04 同济大学 Coal chemical wastewater concentration and crystallization integrated and reclaimed water recovery device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219299A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Water circulating system
JPS6274407A (en) * 1985-09-27 1987-04-06 Hitachi Ltd Gasified permeable membrane process
JP2003002775A (en) * 2001-06-21 2003-01-08 Nikki-Bioscan Co Ltd Fertilizer response accelerator and method for manufacturing the same, fertilizer containing fertilizer response accelerator and method for cultivating plant
US20060144789A1 (en) * 2004-12-06 2006-07-06 Cath Tzahi Y Systems and methods for purification of liquids
KR20090054151A (en) * 2007-11-26 2009-05-29 주식회사 미래엔지니어링 System and method for producing drinking water by treating waste water
JP2010075808A (en) * 2008-09-25 2010-04-08 Toray Ind Inc Method and apparatus for producing fresh water
JP2014188468A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Water treatment system for space applications
KR20140123347A (en) * 2013-04-12 2014-10-22 한국과학기술연구원 Water Treatment System Using Membrane Distillation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100881757B1 (en) 2007-02-15 2009-02-06 에틴시스템 주식회사 Process of fully utilizable resource recovery system with various waste under emission free basis
KR100840976B1 (en) 2007-03-29 2008-06-24 세메스 주식회사 Apparatus for treating high temperature waste water used in substrate processing apparatus
ES2869919T3 (en) 2013-03-12 2021-10-26 Abbott Lab White blood cell analysis system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219299A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Water circulating system
JPS6274407A (en) * 1985-09-27 1987-04-06 Hitachi Ltd Gasified permeable membrane process
JP2003002775A (en) * 2001-06-21 2003-01-08 Nikki-Bioscan Co Ltd Fertilizer response accelerator and method for manufacturing the same, fertilizer containing fertilizer response accelerator and method for cultivating plant
US20060144789A1 (en) * 2004-12-06 2006-07-06 Cath Tzahi Y Systems and methods for purification of liquids
KR20090054151A (en) * 2007-11-26 2009-05-29 주식회사 미래엔지니어링 System and method for producing drinking water by treating waste water
JP2010075808A (en) * 2008-09-25 2010-04-08 Toray Ind Inc Method and apparatus for producing fresh water
JP2014188468A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Water treatment system for space applications
KR20140123347A (en) * 2013-04-12 2014-10-22 한국과학기술연구원 Water Treatment System Using Membrane Distillation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091517A (en) 2017-02-07 2018-08-16 한국광해관리공단 Zero liquid discharge apparatus by membrane And Method thereof
CN107381919A (en) * 2017-08-25 2017-11-24 苏州赛比膜分离科技有限公司 A kind of high slat-containing wastewater is separated by filtration mechanism
JP2020151626A (en) * 2019-03-18 2020-09-24 大阪瓦斯株式会社 Waste acid liquid treatment apparatus and waste acid liquid treatment method
JP7213727B2 (en) 2019-03-18 2023-01-27 大阪瓦斯株式会社 Waste acid liquid treatment apparatus and waste acid liquid treatment method
CN113149307A (en) * 2021-02-26 2021-07-23 中国华能集团清洁能源技术研究院有限公司 Desulfurization wastewater thermal method and membrane method coupling concentration system and method
CN112939736A (en) * 2021-03-09 2021-06-11 江苏卓博环保科技有限公司 Resource utilization device and method for post-treatment of high-salt waste liquid by thermal PVDF ultrafiltration membrane
WO2023037772A1 (en) * 2021-09-07 2023-03-16 株式会社デンソー Water treatment system

Also Published As

Publication number Publication date
KR20160123822A (en) 2016-10-26
JP6216810B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6216810B2 (en) High temperature wastewater treatment system using membrane distillation process
KR101749158B1 (en) Osmotic separation systems and methods
US8029671B2 (en) Combined membrane-distillation-forward-osmosis systems and methods of use
Criscuoli et al. Treatment of dye solutions by vacuum membrane distillation
Luo et al. High retention membrane bioreactors: challenges and opportunities
JP5691522B2 (en) Fresh water generation system and operation method thereof
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
KR20110028363A (en) Forward osmosis separation processes
TWM526569U (en) Recovery apparatus for sewage treatment
Kunz et al. Hydrophobic membrane technology for ammonia extraction from wastewaters
JP2018015684A (en) Wastewater treatment apparatus and method
JP6183213B2 (en) Fresh water generation method and fresh water generation apparatus
JP2014171926A (en) Desalination method and desalination apparatus
US9133048B2 (en) Seawater desalination method
Venkata Swamy et al. Processing of biscuit industrial effluent using thin film composite nanofiltration membranes
KR20140123347A (en) Water Treatment System Using Membrane Distillation
Paul et al. Membrane Bioreactor: A Potential Stratagem for Wastewater Treatment
JP2011104504A (en) Washing method of water treatment facility
JP2011041907A (en) Water treatment system
US20140076808A1 (en) Sanitary cold water treatment systems and methods
JP2014221450A (en) Method for producing fresh water
JP6235133B2 (en) Combined membrane separation process for IPA concentration and wastewater treatment from IPA containing wastewater
Ladewig et al. Introduction to membrane bioreactors
Kafle et al. Advancement of membrane separation technology for organic pollutant removal
CN206447720U (en) Dyeing waste water zero discharge treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6216810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees