JP2016203077A - Multistage biological treatment apparatus - Google Patents
Multistage biological treatment apparatus Download PDFInfo
- Publication number
- JP2016203077A JP2016203077A JP2015086473A JP2015086473A JP2016203077A JP 2016203077 A JP2016203077 A JP 2016203077A JP 2015086473 A JP2015086473 A JP 2015086473A JP 2015086473 A JP2015086473 A JP 2015086473A JP 2016203077 A JP2016203077 A JP 2016203077A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- treatment tank
- air
- treatment
- biological treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、有機排水などを生物処理する多段型生物処理装置に関する。 The present invention relates to a multistage biological treatment apparatus for biologically treating organic wastewater or the like.
排水処理技術の主流である標準活性汚泥法 などの好気性生物処理法では、良好な処理水質が得られる反面、大量の余剰汚泥が発生するので、運転管理費が高くなる(非特許文献1)。排水処理装置において汚泥処理に使用されるエネルギーの割合は、送風動力などの水処理に使用されるエネルギーに次いで高い。また、汚泥処分費の運転管理費に占める割合も高く(非特許文献2)、発生汚泥量削減の意義は大きい。
活性汚泥法で発生する汚泥の減量化は脱水や乾燥、焼却により行われるが、その設備償却、維持管理、あるいは処分委託に多額の費用がかかる。特に中小規模の排水処理施設ほど汚泥処理費が割高になることから、汚泥発生量の削減は急務の課題となっている。そのような中で、食物連鎖を活用した多段型生物処理 は、その汚泥削減能力の高さと設備償却費、運転管理費の安さから、特に小規模分散型の排水処理装置として優位性を示している。
多段型生物処理装置は、生物処理槽を例えば8段、12段と多段に区切り、処理槽内の各段に繊維織物を生物担持担体として配置し、散気管により曝気することで好気的処理を行い、排水流入口から出口に向かって、細菌叢、原生生物叢、後生生物叢を形成させることにより、食物連鎖環境を形成し、有機物の消化を促進し、汚泥発生を抑えることが出来る(特許文献1、2)。
しかしながら、この種の多段型生物処理装置の曝気運転管理は、必要とされる通気量は各段により異なるにも関わらず、数段ごとにまとめて、経験的に通気量調節するのみであった。各段では段階的に有機物成分が減少するため、浄化に必要な通気量は後段になるほど少なくなる。このため各処理槽内では過曝気状態となり、余分な電力費用が必要となっていた。
The aerobic biological treatment method such as the standard activated sludge method, which is the mainstream of wastewater treatment technology, provides good treated water quality, but a large amount of excess sludge is generated, resulting in high operation management costs (Non-patent Document 1). . The ratio of energy used for sludge treatment in the wastewater treatment apparatus is the second highest after energy used for water treatment such as blowing power. In addition, the ratio of the sludge disposal cost to the operation management cost is high (Non-Patent Document 2), and the significance of reducing the amount of generated sludge is great.
The sludge generated by the activated sludge process is reduced by dehydration, drying, and incineration, but it requires a large amount of expenses for depreciation, maintenance, and consignment of the equipment. In particular, since sludge treatment costs are more expensive for small and medium-sized wastewater treatment facilities, reducing sludge generation is an urgent issue. Under such circumstances, multi-stage biological treatment utilizing food chains is particularly advantageous as a small-scale distributed wastewater treatment system because of its high sludge reduction capability, low equipment depreciation costs, and low operational management costs. Yes.
The multi-stage biological treatment apparatus is divided into multi-stages, for example, 8 stages and 12 stages, and a textile fabric is arranged as a biological carrier on each stage in the treatment tank, and aerobic treatment is performed by aeration with an air diffuser. By forming the bacterial flora, protozoan flora and metazoan flora from the drainage inlet to the outlet, a food chain environment can be formed, digestion of organic matter can be promoted, and sludge generation can be suppressed ( Patent Documents 1 and 2).
However, the aeration operation management of this type of multi-stage biological treatment apparatus was only to adjust the air flow empirically for several stages, even though the required air flow differs depending on each stage. . At each stage, organic components decrease step by step, and the amount of ventilation required for purification becomes smaller as the later stage. For this reason, it became an over-aeration state in each processing tank, and the extra power cost was needed.
本発明の目的は、排水を好気的に生物処理する多段型生物処理装置の曝気運転における過剰な曝気減少させ、電力費用の削減を実現できる多段型生物処理装置を提供することにある。 An object of the present invention is to provide a multistage biological treatment apparatus that can reduce excessive aeration in the aeration operation of a multistage biological treatment apparatus that aerobically biologically treats wastewater, thereby realizing a reduction in power costs.
かかる課題を解決する手段として、下記の多段型生物処理装置および該装置を用いた排水処理方法を見出した。
1. 排水を好気的に生物処理する複数の処理槽(A)を連続的に多段に配置し、処理槽(A)は、繊維状生物担持体(a)および処理槽(A)への空気の供給および処理槽(A)中の水流を作るための気泡を発生する散気管(b)を含む多段型生物処理装置であって、処理槽(A)は、散気管(b)からの気泡の発生量を制御する風量制御手段(c)を有することを特徴とする、前記多段型生物処理装置。
2. 風量制御手段(c)は、散気管(b)へ空気を供給量する送風手段(d)の送風量を制御する手段である上記1記載の多段型生物処理装置。
3. 風量制御手段(c)が、処理槽の各段におけるBOD(生物化学的酸素要求量)除去に必要な各理論酸素量(OD1)、内生呼吸に必要な各理論酸素量(OD2)および硝化反応に必要な各理論酸素量に必要な各理論酸素量(OD3)の合計に基づいて、送風手段(d)の送風量を制御する手段である、上記2記載の多段型生物処理装置。
4. 各処理槽におけるBOD除去に必要な理論酸素量(OD1)が、各処理槽における流入BODと流出BODの差分に対する流入水量および除去BODあたりの必要酸素量(=0.6kg−O2/kg−BOD)の積算値に基づいて決定される、上記3記載の多段型生物処理装置。
5. 該処理槽の各段における内生呼吸に必要な理論酸素量(OD2)が、単位MLVSS当りの内生呼吸による酸素消費量(=0.1kg−02/kg−MLVSS・day)と水理学的滞留時間HRT、流入水量Qin、活性汚泥中の有機物量MLVSSの積算値に基づいて決定される、上記3記載の多段型生物処理装置。
6. 該処理槽の各段における硝化反応に必要な理論酸素量(OD3)が、硝化反応に伴い消費される酸素量と硝化された窒素量の積算値に基づいて決定される、上記3記載の多段型生物処理装置。
7. 複数の処理槽(A)を連続的に多段に配置し、処理槽(A)は、繊維状生物担持体(a)および処理槽(A)への空気の供給および処理槽(A)中の水流を作るための気泡を発生する散気管(b)を含む多段型生物処理装置を用いて排水を好気的に生物処理する方法であって、各処理槽(A)へ供給する空気の量を、各処理槽(A)毎に必要な理論酸素量に基づいて制御することを特徴とする、排水の処理方法。
As means for solving such problems, the inventors have found the following multi-stage biological treatment apparatus and a wastewater treatment method using the apparatus.
1. A plurality of treatment tanks (A) for aerobic biological treatment of wastewater are continuously arranged in multiple stages, and the treatment tanks (A) are used to supply air to the fibrous biological carrier (a) and the treatment tank (A). A multi-stage biological treatment apparatus comprising a diffuser tube (b) that generates bubbles for creating a water flow in the supply and treatment tank (A), wherein the treatment tank (A) contains bubbles from the diffuser pipe (b) The multistage biological treatment apparatus, further comprising an air volume control means (c) for controlling the generation amount.
2. 2. The multistage biological treatment apparatus according to 1 above, wherein the air volume control means (c) is a means for controlling the air flow rate of the air blowing means (d) for supplying air to the air diffuser (b).
3. The air flow control means (c) is used to remove each theoretical oxygen amount (OD1) necessary for removing BOD (biochemical oxygen demand) in each stage of the treatment tank, each theoretical oxygen amount necessary for endogenous respiration (OD2), and nitrification. 3. The multistage biological treatment apparatus according to 2 above, which is a means for controlling the air flow rate of the air blowing means (d) based on the total amount of each theoretical oxygen amount (OD3) required for each theoretical oxygen amount required for the reaction.
4). The theoretical oxygen amount (OD1) required for BOD removal in each treatment tank is the inflow water amount and the necessary oxygen amount per removal BOD (= 0.6 kg−O 2 / kg−) for the difference between the inflow BOD and the outflow BOD in each treatment tank. 4. The multistage biological treatment apparatus according to 3 above, which is determined based on an integrated value of (BOD).
5. The theoretical oxygen amount (OD2) required for endogenous respiration in each stage of the treatment tank is the oxygen consumption (= 0.1 kg-02 / kg-MLVSS · day) per unit MLVSS and hydraulic 4. The multistage biological treatment apparatus according to 3 above, which is determined based on the accumulated value of the residence time HRT, the inflow water amount Qin, and the organic matter amount MLVSS in the activated sludge.
6). 4. The multistage as described in 3 above, wherein the theoretical oxygen amount (OD3) required for the nitrification reaction in each stage of the treatment tank is determined based on an integrated value of the oxygen amount consumed in the nitrification reaction and the nitrogen amount nitrified. Type biological treatment equipment.
7). A plurality of treatment tanks (A) are continuously arranged in multiple stages, and the treatment tank (A) supplies air to the fibrous biological carrier (a) and the treatment tank (A) and in the treatment tank (A). A method for aerobic biological treatment of wastewater using a multistage biological treatment apparatus including a diffuser pipe (b) that generates bubbles for creating water flow, and the amount of air supplied to each treatment tank (A) Is controlled based on the theoretical amount of oxygen required for each treatment tank (A).
本発明の多段型生物処理装置および排水処理方法によれば、2槽以上の多段に構成した生物処理槽において、各段毎に必要最小限の通気量を調節することができ、過剰曝気を防ぎ、省エネを実現することができる。 According to the multistage biological treatment apparatus and the wastewater treatment method of the present invention, in a biological treatment tank composed of two or more tanks, the necessary minimum aeration amount can be adjusted for each stage to prevent excessive aeration. , Energy saving can be realized.
<排水>
本発明の多段型生物処理装置に適用可能な排水は、生物により分解が可能な有機物を含んだ排水であり、生活排水、食品工場排水、化学工場排水、製薬工場排水など多岐にわたる。
<Drainage>
The wastewater applicable to the multistage biological treatment apparatus of the present invention includes wastewater containing organic matter that can be decomposed by living organisms, and includes a wide variety such as domestic wastewater, food factory wastewater, chemical factory wastewater, and pharmaceutical factory wastewater.
<処理槽(A)>
本発明の多段型生物処理装置は、排水を好気的に生物処理する複数の処理槽(A)を連続的に多段に配置した装置である。図1は、本発明の装置の模式図である。図1中、多段型生物処理装置は6個の処理槽(A)に仕切られている。各処理槽(A)連続的に配置され、原排水は第1処理槽から連続的に流れ第6処理槽の処理水の出口から排出される。
処理槽(A)は、固定担体あるいは流動担体を使用した接触酸化槽であることが好ましい。処理槽(A)は、コンクリート、プラスティック、金属製などの仕切り壁によって区切られた空間であることが好ましい。一つの多段型生物処理装置内に仕切り壁を入れることにより、第1槽、第2槽、第3槽へと処理槽(A)を多段に構成することができる。
処理槽から次の処理槽への排水の流れは、常に一方向であり、仕切り壁の上側をオーバーフローするか、仕切り壁の下側で処理槽間を連通することで流れることになる。処理槽(A)を2槽以上の多段に構成することにより、生物の優占種が前段から後段の槽に向かって微生物、原生生物、後生生物と変化し、多種多様な微生物により排水中の有機物は分解され除去される。食物連鎖を構成することで余剰汚泥が効率よく自己消化され、汚泥の減容化を図ることが出来る。
処理槽(A)の数は、好ましくは4〜16、より好ましくは6〜14、さらに好ましくは8〜12である。処理槽(A)の容量は、設計段階の水量、原水BOD濃度により決定される。
<Treatment tank (A)>
The multistage biological treatment apparatus of the present invention is an apparatus in which a plurality of treatment tanks (A) for aerobically biologically treating wastewater are continuously arranged in multiple stages. FIG. 1 is a schematic view of the apparatus of the present invention. In FIG. 1, the multistage biological treatment apparatus is partitioned into six treatment tanks (A). Each treatment tank (A) is continuously arranged, and the raw waste water continuously flows from the first treatment tank and is discharged from the treated water outlet of the sixth treatment tank.
The treatment tank (A) is preferably a contact oxidation tank using a fixed carrier or a fluid carrier. The treatment tank (A) is preferably a space separated by a partition wall made of concrete, plastic, metal, or the like. By putting a partition wall in one multistage biological treatment apparatus, the treatment tank (A) can be configured in multiple stages into the first tank, the second tank, and the third tank.
The flow of the waste water from the processing tank to the next processing tank is always unidirectional and flows by overflowing the upper side of the partition wall or communicating between the processing tanks on the lower side of the partition wall. By constructing the treatment tank (A) in multiple stages of two or more tanks, the dominant species of the organism changes from the front to the rear, from microorganisms, protists, and metazoans. Organic matter is decomposed and removed. By configuring the food chain, surplus sludge is efficiently self-digested and sludge volume reduction can be achieved.
The number of processing tanks (A) is preferably 4 to 16, more preferably 6 to 14, and still more preferably 8 to 12. The capacity of the treatment tank (A) is determined by the amount of water at the design stage and the concentration of raw water BOD.
<繊維状生物担持体(a)>
処理槽(A)中には、繊維状生物担持体(a)が設置されている。繊維状生物担持体(a)は、全ての処理槽(A)中に配置することが好ましい。しかし、繊維状生物担持体(a)が設置さていない処理槽(A)があっても良い。
繊維状生物担持体(a)は、繊維状の担体に、微生物が担持されたものである。
微生物は、汚泥が自然付着することにより担持される。微生物などの担持量は、原水の水量、BOD濃度により可変するが、容積あたり、500〜15,000mg/Lまで微生物などを担持できるものである。微生物として、微生物、原生生物、後生生物などが挙げられる。
処理槽内(A)内に生物担持体を設置すると、微生物が高密度に生育し、かつ、微生物の食物連鎖が処理槽内に成立する。第1処理槽から最終の処理槽の方向へ、細菌類→原生生物類→後生生物類へと生物叢が遷移する。
本発明の多段型生物処理装置は、繊維状生物担持体(a)を用いるので、微生物が担体表面に固着し、処理槽(A)外に流出することなく、槽内に固定されるので汚泥令が長くなる。汚泥令が長くなることにより、難分解性有機物への分解能力が上がるというメリットがある。また、担体表面に形成される微生物膜は、表面は好気菌で構成されるが、微生物膜の奥側は酸素濃度が低くなるため、通性嫌気菌が住みつき、通性嫌気菌と好気菌は相互に捕食しあうと考えられており、結果として、微生物膜内でも汚泥が減容するというメリットも発現 する。
<Fibrous organism carrier (a)>
A fibrous biological carrier (a) is installed in the treatment tank (A). The fibrous biological carrier (a) is preferably arranged in all the treatment tanks (A). However, there may be a treatment tank (A) in which the fibrous biological carrier (a) is not installed.
The fibrous biological support (a) is obtained by supporting microorganisms on a fibrous carrier.
Microorganisms are supported by the natural adhesion of sludge. The amount of microorganisms supported varies depending on the amount of raw water and the BOD concentration, but can support microorganisms up to 500 to 15,000 mg / L per volume. Examples of microorganisms include microorganisms, protists, and metazoans.
When the biological carrier is installed in the treatment tank (A), microorganisms grow at a high density, and a food chain of microorganisms is established in the treatment tank. In the direction from the first treatment tank to the final treatment tank, the flora transitions from bacteria to protists to metazoans.
Since the multi-stage biological treatment apparatus of the present invention uses the fibrous biological support (a), the microorganisms are fixed on the surface of the carrier, and are fixed in the tank without flowing out of the treatment tank (A). The decree becomes longer. As the sludge age becomes longer, there is a merit that the ability to decompose into persistent organic substances increases. In addition, although the microbial membrane formed on the carrier surface is composed of aerobic bacteria, the back side of the microbial membrane has a low oxygen concentration, so facultative anaerobes live, Bacteria are thought to prey on each other, and as a result, the merit that sludge is reduced in the microbial membrane is also expressed.
<散気管(b)>
処理槽(A)中には、散気管(b)が設置されている。散気管(b)は、処理槽への空気の供給および該処理槽中の水流を作るための気泡を発生する手段である。散気管(b)には、送気用の空気配管が接続し、処理槽内(A)内に空気を送ることができる構造となっている。
散気管(b)は好気性の微生物に空気を供給することを目的としており、できるだけ水への溶解効率を高めることが求められているが、同時に散気管の表面に微生物の繁殖による閉塞が起こらないことに配慮することも重要な要件となっている。散気管(b)のタイプには酸素の溶存効率を優先させた微細散気管や微生物による耐閉塞性を優先させた粗気散気管など様々なタイプが使用可能である。
散気管(b)は、全ての処理槽(A)中に配置することが好ましいが、散気管(b)がない処理槽(A)があっても良い。
散気管(b)の形状は、粗気泡方式、微細気泡方式であることが好ましい。散気管(b)は、上部繊維状生物担持体(a)に均等に空気が流れるように配置する。
<Air diffuser (b)>
An air diffuser (b) is installed in the treatment tank (A). The air diffuser (b) is a means for generating air bubbles to supply air to the processing tank and create a water flow in the processing tank. An air pipe for air supply is connected to the air diffuser pipe (b) so that air can be sent into the processing tank (A).
The air diffuser (b) is intended to supply air to aerobic microorganisms and is required to increase the dissolution efficiency in water as much as possible, but at the same time, the surface of the air diffuser is clogged by the propagation of microorganisms. It is also an important requirement to consider not being. Various types can be used as the type of the air diffuser (b), such as a fine air diffuser that prioritizes the dissolution efficiency of oxygen and a coarse air diffuser that prioritizes blocking resistance by microorganisms.
The air diffuser (b) is preferably arranged in all the treatment tanks (A), but there may be a treatment tank (A) without the air diffuser (b).
The shape of the air diffuser (b) is preferably a coarse bubble method or a fine bubble method. The air diffuser (b) is arranged so that air flows evenly through the upper fibrous biological carrier (a).
<風量制御手段(c)>
風量制御手段(c)は、散気管からの気泡の発生量を制御する手段である。風量制御手段(c)として、バルブ制御、インバーター制御などが挙げられる。風量制御手段(c)は、散気管(b)へ空気を供給量する送風手段(d)の送風量を制御する手段であることが好ましい。送風手段(d)として、ブロワなどが挙げられる。
<Air volume control means (c)>
The air volume control means (c) is a means for controlling the amount of bubbles generated from the air diffuser. Examples of the air volume control means (c) include valve control and inverter control. The air volume control means (c) is preferably a means for controlling the air blowing amount of the air blowing means (d) for supplying air to the air diffuser (b). A blower etc. are mentioned as a ventilation means (d).
<必要風量>
風量制御手段(c)は、下記式のように各段の生物処理槽中の排水からのBOD除去に必要な理論酸素量(OD1)、内生呼吸に必要な理論酸素量(OD2)、および硝化反応に必要な理論酸素量(OD3)の和(必要酸素量:AOR)に基づいて送風量を制御することが好ましい。
AOR=OD1+OD2+OD3
この際、必要風量は次式で計算される。
必要風量=SOR/(EA・ρ・Ow)×(273+T2)/273×(1/1440)×60×24
但し、SOR:T1℃における清水状態での酸素供給量(kgO2/d)
EA:酸素移動効率(%)
ρ:空気密度・・・1.293kg−空気/Nm3
Ow:空気中酸素含有量・・・0.232kg−O2/kg−空気
<Required air volume>
The air volume control means (c) has a theoretical oxygen amount (OD1) necessary for removing BOD from the wastewater in the biological treatment tank at each stage as shown in the following formula, a theoretical oxygen amount (OD2) necessary for endogenous respiration, and It is preferable to control the blowing rate based on the sum of the theoretical oxygen amount (OD3) necessary for the nitrification reaction (necessary oxygen amount: AOR).
AOR = OD1 + OD2 + OD3
At this time, the required air volume is calculated by the following equation.
Necessary air volume = SOR / (EA · ρ · Ow) × (273 + T2) / 273 × (1/1440) × 60 × 24
However, SOR: oxygen supply amount in a fresh water state at T1 ° C. (kgO 2 / d)
EA: Oxygen transfer efficiency (%)
ρ: Air density: 1.293 kg-air / Nm 3
Ow: oxygen content in air: 0.232 kg-O 2 / kg-air
なお、AORとSORについては、次式が成立する。
AOR/SOR=[1.024(T2−T1)×α×(β・Cs2・γ−C0)]/(Cs1・γ)×(P/101.3)
但し、AOR:反応タンクにおけるT2℃での必要酸素量(kgO2/d)
T1:エアレーション装置性能の前提となる清水温度(℃)・・・20℃とする
T2:混合液の水温・・・20℃とする
Cs1:清水T1℃での飽和酸素濃度(mg/L)・・・101.3kPaとする
Cs2:清水T2℃での飽和酸素濃度(mg/L)・・・101.3kPaとする
C0:混合液のDO濃度(mg/L)
α:総括酸素移動容量係数Klaの補正係数
β:飽和酸素濃度の補正係数
γ:散気水深による飽和酸素濃度の補正係数
γ=0.5+0.5×(1+h(散気水深m)/10.332)
P:処理場における大気圧(kPa)・・・101.3kPaとする
For AOR and SOR, the following equation holds.
AOR / SOR = [1.024 (T2−T1) × α × (β · Cs2 · γ−C0)] / (Cs1 · γ) × (P / 101.3)
However, AOR: required oxygen amount at T2 ° C. in the reaction tank (kgO2 / d)
T1: Fresh water temperature (° C.) as a premise of aeration apparatus performance: 20 ° C. T2: Water temperature of the mixed solution ... 20 ° C. Cs1: Saturated oxygen concentration at fresh water T 1 ° C. (mg / L). ..101.3 kPa Cs2: Saturated oxygen concentration at T2 ° C. of fresh water (mg / L)... 101.3 kPa C0: DO concentration of mixed liquid (mg / L)
α: Correction coefficient of overall oxygen transfer capacity coefficient Kla β: Correction coefficient of saturated oxygen concentration γ: Correction coefficient of saturated oxygen concentration due to diffused water depth γ = 0.5 + 0.5 × (1 + h (diffused water depth m) / 10. 332)
P: Atmospheric pressure (kPa) at the treatment plant: 101.3 kPa
<BOD除去に必要な理論酸素量(OD1)>
処理槽における有機物除去に必要な理論酸素量(OD1)は、各処理槽における流入BODと流出BODの差分に対する流入水量および除去BODあたりの必要酸素量(=0.6kg−O2/kg−BOD)の積算値に基づいて決定されることが好ましい。
OD1=[(CBODin−CBODeff)・Qin×0.001−ΔLn・K]・A
但し、CBODin:流入水BOD(mg/L)
CBODeff:処理水BOD(mg/L)
Qin:流入水量(m3/d)
ΔLn:脱窒量(kgN/d)
K:脱窒により消費されるBOD量(kg−BOD/kg−N)
A:除去BOD当たりに必要な酸素量(kg−O2/kg−BOD)
<Theoretical oxygen amount required to remove BOD (OD1)>
The theoretical oxygen amount (OD1) necessary for organic substance removal in the treatment tank is the inflow water amount and the necessary oxygen amount per removal BOD (= 0.6 kg-O 2 / kg-BOD) for the difference between the inflow BOD and the outflow BOD in each treatment tank. ) Is preferably determined based on the integrated value.
OD1 = [(CBODin−CBODeff) · Qin × 0.001−ΔLn · K] · A
However, CBODin: Influent water BOD (mg / L)
CBODeff: treated water BOD (mg / L)
Qin: Inflow water volume (m 3 / d)
ΔLn: Denitrification amount (kgN / d)
K: BOD amount consumed by denitrification (kg-BOD / kg-N)
A: Oxygen amount required per removed BOD (kg-O 2 / kg-BOD)
<内生呼吸に必要な理論酸素量(OD2)>
処理槽の各段における内生呼吸に必要な理論酸素量は、単位MLVSS当りの内生呼吸による酸素消費量(=0.1kg−02/kg−MLVSS・day)と水理学的滞留時間HRT、流入水量Qin、活性汚泥中の有機物量MLVSSの積算値に基づいて決定されることが好ましい。
OD2=B・HRT・Qin・MLVSS
但し、B:単位MLVSS当たりの内生呼吸による酸素消費量(kg−O2/kg−MLVSS/d)
RT:滞留時間(d)
MLVSS:活性汚泥中の有機物量(mg/L)
<Theoretical oxygen required for endogenous breathing (OD2)>
The theoretical oxygen amount required for endogenous respiration in each stage of the treatment tank is the oxygen consumption amount by endogenous respiration per unit MLVSS (= 0.1 kg-02 / kg-MLVSS · day) and the hydraulic residence time HRT, It is preferably determined based on the integrated value of the inflow water amount Qin and the organic matter amount MLVSS in the activated sludge.
OD2 = B / HRT / Qin / MLVSS
However, B: Oxygen consumption by endogenous respiration per unit MLVSS (kg-O 2 / kg-MLVSS / d)
RT: Residence time (d)
MLVSS: Amount of organic matter in activated sludge (mg / L)
<硝化反応に必要な理論酸素量(OD3)>
また、生物処理槽の各段における硝化反応に必要な理論酸素量(OD3)は、硝化反応に伴い消費される酸素量Cと硝化された窒素量の積算値に基づいて決定されることが好ましい。
OD3=C・硝化量
但し、C:硝化反応により伴い消費される酸素量:4.57(kg−O2/kg−N)
硝化量:硝化された窒素量(kg−N/d)
<Theoretical oxygen required for nitrification reaction (OD3)>
Moreover, it is preferable that the theoretical oxygen amount (OD3) required for the nitrification reaction in each stage of the biological treatment tank is determined based on the integrated value of the oxygen amount C consumed in the nitrification reaction and the nitrified nitrogen amount. .
OD3 = C / amount of nitrification However, C: amount of oxygen consumed by nitrification reaction: 4.57 (kg-O 2 / kg-N)
Nitrification amount: Nitrified nitrogen amount (kg-N / d)
12段の処理槽(A)を有する多段型生物処理装置を用い、必要風量を、上記理論風量を実現するように各段で風量制御を行った場合と、前段、後段で風量を2/3に減少させる通常管理風量 の場合とを比較した。この際、通常管理風量では、生物処理槽の第1段から第6段の風量を2.10m3/分、第7段から第12段の風量を第1段から第6段の2/3の1.40m3/分とした。 Using a multi-stage biological treatment apparatus having a 12-stage treatment tank (A), the required air volume is controlled at each stage so as to realize the theoretical air volume, and the air volume is reduced to 2/3 at the front and rear stages. Compared to the case of normal management air volume, which is reduced to a low level. At this time, in the normal management air volume, the air flow of the first to sixth stages of the biological treatment tank is 2.10 m 3 / min, and the air volume of the seventh to twelfth stages is 2/3 of the first to sixth stages. Of 1.40 m 3 / min.
表1、図3に示すように、各段の曝気風量を理論風量に制御することで、供給風量の33.6%を削減することが出来る。汚泥削減効果については両者に差は無く、曝気風量を供給するのための消費エネルギーの削減を行うことが出来た。
<曝気停止後のDO減少挙動(図4) >
本発明の多段型生物処理装置には、風量制御手段として、間欠的に気泡を発生させる制御手段を備える。多段の後段部位、特に9−12段目についてはBODが低下し、生物膜 形成も少ない。理論風量で運転した場合であっても過曝気となる傾向があるため、間欠曝気で運転することも可能である。 通水および曝気停止後の各段の溶存酸素濃度DOの推移を図4に示す。9段、12段のDOは曝気停止後45分経過後であってもDOが3mg/Lを維持している。空気の過剰供給をさけるためにDOが3.0−6.0mg/Lの範囲に収まるよう専用ブロワで間欠曝気することが可能となる。
As shown in Table 1 and FIG. 3, 33.6% of the supplied air volume can be reduced by controlling the aeration air volume at each stage to the theoretical air volume. There was no difference between the two in terms of sludge reduction effect, and energy consumption for supplying aeration air volume could be reduced.
<DO reduction behavior after aeration stop (Fig. 4)>
The multistage biological treatment apparatus of the present invention includes a control unit that intermittently generates bubbles as an air volume control unit. The BOD is lowered and the formation of biofilms is less at the subsequent stages of the multistage, especially the 9th to 12th stages. Even when operating with the theoretical air volume, since there is a tendency to over-aerate, it is also possible to operate with intermittent aeration. FIG. 4 shows the transition of dissolved oxygen concentration DO at each stage after stopping water flow and aeration. The 9th and 12th stages of DO maintain 3 mg / L of DO even after 45 minutes have passed since aeration was stopped. In order to avoid excessive supply of air, intermittent aeration can be performed with a dedicated blower so that DO falls within the range of 3.0 to 6.0 mg / L.
本発明の多段型生物処理装置に適用可能な排水は、生物により分解が可能な有機物を含んだ排水であり、生活排水、食品工場排水、化学工場排水、製薬工場排水など多岐にわたる。かかる広範な適用分野いずれにおいても、運転(曝気)に要する費用を削減できるため、本発明の利用価値は高い。 The wastewater applicable to the multistage biological treatment apparatus of the present invention includes wastewater containing organic matter that can be decomposed by living organisms, and includes a wide variety such as domestic wastewater, food factory wastewater, chemical factory wastewater, and pharmaceutical factory wastewater. In any of such wide application fields, the cost required for operation (aeration) can be reduced, and thus the utility value of the present invention is high.
イ 原排水
ロ 処理水
ハ 空気
A 処理槽
a 繊維状生物担持体
b 散気管
d 送風手段
1 沈砂池
2 流量調整槽
3 最初沈殿池
4 分流槽
5 多段型生物処理装置
6 最終沈殿池
7 減菌池
8 汚泥貯留槽
A Raw wastewater B Treated water C Air A Treatment tank a Fibrous organism carrier b Air diffuser d Air blow means 1 Sedimentation basin 2 Flow rate adjustment tank 3 First sedimentation tank 4 Split flow tank 5 Multistage biological treatment device 6 Final sedimentation tank 7 Sterilization Pond 8 Sludge storage tank
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015086473A JP2016203077A (en) | 2015-04-21 | 2015-04-21 | Multistage biological treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015086473A JP2016203077A (en) | 2015-04-21 | 2015-04-21 | Multistage biological treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016203077A true JP2016203077A (en) | 2016-12-08 |
Family
ID=57488363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015086473A Pending JP2016203077A (en) | 2015-04-21 | 2015-04-21 | Multistage biological treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016203077A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111825212A (en) * | 2019-04-17 | 2020-10-27 | 上海交通大学 | Integrated three-dimensional biological ecological sewage treatment device and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07148496A (en) * | 1993-11-29 | 1995-06-13 | Meidensha Corp | Method for controlling operation of modified process for circulation of activated sludge |
JPH09155391A (en) * | 1995-12-07 | 1997-06-17 | Japan Organo Co Ltd | Biological water-treatment apparatus |
JP2002210484A (en) * | 2001-01-22 | 2002-07-30 | Sumitomo Heavy Ind Ltd | Method and apparatus for treating organic waste water |
JP2012135717A (en) * | 2010-12-27 | 2012-07-19 | Water Agency Inc | Operation assisting apparatus and operation assisting method of sewage treatment plant |
JP2012148231A (en) * | 2011-01-19 | 2012-08-09 | Hitachi Ltd | Water treatment plant |
WO2013133443A1 (en) * | 2012-03-09 | 2013-09-12 | メタウォーター株式会社 | Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program |
-
2015
- 2015-04-21 JP JP2015086473A patent/JP2016203077A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07148496A (en) * | 1993-11-29 | 1995-06-13 | Meidensha Corp | Method for controlling operation of modified process for circulation of activated sludge |
JPH09155391A (en) * | 1995-12-07 | 1997-06-17 | Japan Organo Co Ltd | Biological water-treatment apparatus |
JP2002210484A (en) * | 2001-01-22 | 2002-07-30 | Sumitomo Heavy Ind Ltd | Method and apparatus for treating organic waste water |
JP2012135717A (en) * | 2010-12-27 | 2012-07-19 | Water Agency Inc | Operation assisting apparatus and operation assisting method of sewage treatment plant |
JP2012148231A (en) * | 2011-01-19 | 2012-08-09 | Hitachi Ltd | Water treatment plant |
WO2013133443A1 (en) * | 2012-03-09 | 2013-09-12 | メタウォーター株式会社 | Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111825212A (en) * | 2019-04-17 | 2020-10-27 | 上海交通大学 | Integrated three-dimensional biological ecological sewage treatment device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7445715B2 (en) | System for treating wastewater and a controlled reaction-volume module usable therein | |
CN106977059A (en) | A kind of new and effective sewage disposal system and method | |
CN107311405A (en) | Urban sewage treatment system and technique | |
KR100876323B1 (en) | Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus | |
JP5883698B2 (en) | Wastewater treatment method | |
JP5862597B2 (en) | Biological treatment method and apparatus for organic wastewater | |
JP2016043281A (en) | Purification method, and purification tank | |
KR101190472B1 (en) | A none piping membrane bioreactor with circulation-agitater | |
CN110540293A (en) | Sewage treatment device and method suitable for large-amplitude fluctuation of water quantity | |
CN206927755U (en) | Integrated sewage treating apparatus | |
WO2015151571A1 (en) | Biological treatment method and apparatus for organic waste water | |
EP2858951B1 (en) | A new wastewater treatment and solids reduction process | |
JP2012005971A (en) | Organic wastewater treatment system and method | |
JP2016203077A (en) | Multistage biological treatment apparatus | |
Rodríguez-Hernández et al. | Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment | |
CN212954766U (en) | Continuous mode nanometer bubble moving bed biofilm reactor system | |
WO2018055793A1 (en) | Biological treatment method for organic wastewater | |
CN207243682U (en) | Urban sewage treatment system | |
KR20030097075A (en) | Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater | |
RU2644904C1 (en) | Method of biological purification of wastewater from nitrogen phosphoric and organic compounds | |
WO2017064982A1 (en) | Method for biologically treating organic waste water | |
JP5850097B2 (en) | Biological treatment method and biological treatment apparatus for organic wastewater | |
JP5883697B2 (en) | Waste water treatment apparatus and waste water treatment method | |
CN213171977U (en) | Integrated sewage treatment equipment | |
JP2011020050A (en) | Method and apparatus for treating wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190716 |