JP2012005971A - Organic wastewater treatment system and method - Google Patents

Organic wastewater treatment system and method Download PDF

Info

Publication number
JP2012005971A
JP2012005971A JP2010144786A JP2010144786A JP2012005971A JP 2012005971 A JP2012005971 A JP 2012005971A JP 2010144786 A JP2010144786 A JP 2010144786A JP 2010144786 A JP2010144786 A JP 2010144786A JP 2012005971 A JP2012005971 A JP 2012005971A
Authority
JP
Japan
Prior art keywords
treatment
anaerobic
aerobic
organic wastewater
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144786A
Other languages
Japanese (ja)
Other versions
JP2012005971A5 (en
JP5372845B2 (en
Inventor
Hisatomo Fukui
久智 福井
Masahiro Tatara
昌浩 多田羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010144786A priority Critical patent/JP5372845B2/en
Publication of JP2012005971A publication Critical patent/JP2012005971A/en
Publication of JP2012005971A5 publication Critical patent/JP2012005971A5/ja
Application granted granted Critical
Publication of JP5372845B2 publication Critical patent/JP5372845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic wastewater treatment system high in purification treatment capability.SOLUTION: The wastewater treatment system A for purifying organic wastewater by using microorganisms circulates the organic wastewater in a substantially-sealed anaerobic circulation water passage 21, and comprises an anaerobic treatment unit 2 which ferments methane. The wastewater treatment system also comprises an aerobic treatment unit 3 which circulates anaerobic treatment water in an aerobic circulation water passage 31 while aerating it, and makes aerobic microorganisms decompose organic substances. By fermenting the methane in the circulation water passage, operation cost and construction cost can be reduced. Furthermore, by continuously performing anaerobic treatment (fixed-floor methane fermentation treatment) and aerobic treatment (treatment by a fixed-floor oxidation ditch method), the purification treatment capacity with respect to the organic wastewater can largely be improved.

Description

本発明は、略密閉された嫌気性循環水路内でメタン発酵を行う有機性廃水処理システム、該嫌気性処理の後段処理としてオキシデーションディッチ法による好気性処理を行う有機性廃水処理システム、嫌気性又は好気性微生物の定着可能な固定床(例えば、不織布など)を設置した有機性廃水処理システム、それらと同様の有機性廃水処理方法などに関連する。   The present invention relates to an organic wastewater treatment system for performing methane fermentation in a substantially sealed anaerobic circulation channel, an organic wastewater treatment system for performing an aerobic treatment by an oxidation ditch method as a subsequent treatment of the anaerobic treatment, Or it is related with the organic wastewater treatment system which installed the fixed bed (for example, nonwoven fabric etc.) which can fix aerobic microorganisms, the organic wastewater treatment method similar to them, etc.

生活廃水・産業廃水など、有機物含有量の高い廃水が自然界の自浄作用を上回って河川などに流入すると、水質汚濁が進行する。有機性廃水が河川などに流入すると、一時的に好気性微生物が増殖し、溶存酸素が減少する。これにより、今度は、嫌気性微生物が活発になり、悪臭・水生生物への悪影響などが引き起こされ、生活環境・自然環境の悪化につながる。そこで、水質汚濁を防止するために、河川などに放流する前に、有機性廃水の適切な浄化処理を行うことが好ましい。   When wastewater with high organic matter content, such as domestic wastewater and industrial wastewater, flows into rivers, etc., exceeding the self-cleaning action of nature, water pollution progresses. When organic wastewater flows into rivers, aerobic microorganisms temporarily grow and dissolved oxygen decreases. This in turn activates anaerobic microorganisms, causing bad odors and adverse effects on aquatic organisms, leading to deterioration of living and natural environments. Therefore, in order to prevent water pollution, it is preferable to perform an appropriate purification treatment of organic waste water before releasing it into a river or the like.

有機性廃水の浄化手段として、活性汚泥法、メタン発酵法などが広く採用されている。   As a means for purifying organic wastewater, the activated sludge method, the methane fermentation method, etc. are widely adopted.

活性汚泥法は、好気性微生物を含む汚泥(活性汚泥)と有機性廃水を曝気しながら混合・攪拌し、有機物を酸化分解する廃水処理方法である。   The activated sludge method is a wastewater treatment method in which sludge containing aerobic microorganisms (activated sludge) and organic wastewater are mixed and stirred while aerated to oxidatively decompose organic matter.

酸素の存在のもとに、活性汚泥と有機性廃水を適当な比率で混合・攪拌すると、活性汚泥中の好気性微生物が有機物を利用して増殖し、微生物・有機物・無機物などの浮遊性粒子が凝集してフロックを形成する。良好なフロックは、凝集性・沈降性に優れているため、曝気後、汚泥を沈降分離・ろ過処理などで水中から除去することにより、清浄な水を得ることができる。   When activated sludge and organic wastewater are mixed and stirred in an appropriate ratio in the presence of oxygen, aerobic microorganisms in the activated sludge grow using organic matter, and floating particles such as microorganisms, organic matter, and inorganic matter Flocculate to form flocs. Since good flocs are excellent in cohesiveness and sedimentation, clean water can be obtained by removing sludge from the water after aeration by sedimentation separation / filtration.

活性汚泥法には、標準的活性汚泥法のほか、長時間曝気法(長時間エアレーション法)、オキシデーションディッチ法(酸化溝法)、二段曝気法、嫌気好気法(AO法)膜分離活性汚泥法などを含め、多くの変法が開発・実用化されている。   In addition to the standard activated sludge method, the activated sludge method includes a long-time aeration method (long-time aeration method), oxidation ditch method (oxidation groove method), two-stage aeration method, anaerobic aerobic method (AO method) membrane separation Many modified methods have been developed and put into practical use, including the activated sludge method.

そのうち、オキシデーションディッチ法は、循環水路(無終端水路)内で曝気しながら廃水を循環させることにより、活性汚泥と有機性廃水を混合・攪拌し、有機物を分解させる廃水処理方法である。運転管理上の操作が簡単である、流入廃水に水量・水質の時間的変動があっても安定した有機物除去を行うことができる、汚泥発生量を少なくできる、曝気量が少なくて済むため維持管理費を抑制できる、などの利点を有し、比較的小規模な廃水処理施設などで多く採用されている。   Among them, the oxidation ditch method is a wastewater treatment method in which activated sludge and organic wastewater are mixed and stirred to circulate wastewater while aerated in a circulating waterway (endless waterway) to decompose organic matter. Operation management is simple, stable removal of organic matter can be performed even if there is a temporal change in the amount and quality of the influent wastewater, the amount of sludge generated can be reduced, and the amount of aeration can be reduced. It has the advantage of being able to control costs and is often used in relatively small wastewater treatment facilities.

一方、メタン発酵法は、有機性廃水・有機性廃棄物などを嫌気性微生物によって分解させ、メタンを発生させる方法である。メタン発酵により、有機物がメタン・二酸化炭素・水などに分解される。メタンはエネルギー源としても利用できる。メタン発酵は、嫌気性条件で行われるため、曝気動力などが不要であり、省エネルギーな処理方法である。また、メタン発酵により、有機物含有量の高い廃水についても分解・浄化処理できる。   On the other hand, the methane fermentation method is a method of generating methane by decomposing organic wastewater, organic waste, etc. by anaerobic microorganisms. Organic matter is decomposed into methane, carbon dioxide, water, etc. by methane fermentation. Methane can also be used as an energy source. Since methane fermentation is performed under anaerobic conditions, it does not require aeration power and is an energy-saving processing method. In addition, wastewater with a high organic matter content can be decomposed and purified by methane fermentation.

メタン発酵法には、常温で発酵させるもののほか、37℃付近で発酵させる中温発酵法、55℃付近で発酵させる高温発酵法がある。そのうち、高温発酵法は、加温するためのエネルギー損失が大きい反面、有機物の分解効率が高い、発酵タンクを小さくできる、高温殺菌処理がなされるなどの利点を有する。   In addition to the fermentation at normal temperature, the methane fermentation method includes a medium temperature fermentation method in which fermentation is performed at around 37 ° C. and a high temperature fermentation method in which fermentation is performed at around 55 ° C. Among them, the high-temperature fermentation method has a large energy loss for heating, but has advantages such as high decomposition efficiency of organic substances, a small fermentation tank, and high-temperature sterilization treatment.

特許文献1には、メタン生成菌その他の嫌気性微生物群を用いた有機物含有液の嫌気処理方法及び装置が記載されている。また、オキシデーションディッチ法に関して、例えば、特許文献2には、曝気槽の前段に流量調整槽を設け、沈殿槽で沈殿させた汚泥を流量調整槽に返送し、流入下水と混合して汚泥を完全嫌気状態にした後、曝気槽に流入させるオキシデーションディッチにおける脱窒・脱リン方法が、特許文献3には、膜分離式オキシデーションディッチにおける窒素除去方法及び装置が、特許文献4には、好気ゾーンと嫌気ゾーンを備えたオキシデーションディッチ方法及び装置が、特許文献5には、オキシデーションディッチ型水処理装置の制御方法及び制御装置が、それぞれ記載されている。
特許第4368171号公報 特開平7−290083号公報 特開2003−1293号公報 特開2003−285095号公報 特開平8−323384号公報
Patent Document 1 describes an anaerobic treatment method and apparatus for an organic substance-containing liquid using methanogens and other anaerobic microorganisms. In addition, regarding the oxidation ditch method, for example, in Patent Document 2, a flow rate adjusting tank is provided in the front stage of the aeration tank, the sludge precipitated in the settling tank is returned to the flow rate adjusting tank, and mixed with the inflowing sewage to remove the sludge. The denitrification / dephosphorization method in the oxidation ditch that is allowed to flow into the aeration tank after the complete anaerobic state is disclosed in Patent Document 3, the nitrogen removal method and apparatus in the membrane separation type oxidation ditch, and in Patent Document 4, An oxidation ditch method and apparatus having an aerobic zone and an anaerobic zone are described in Patent Document 5, and a control method and a control apparatus for an oxidation ditch type water treatment apparatus are described.
Japanese Patent No. 4368171 JP-A-7-290083 JP 2003-1293 A JP 2003-285095 A JP-A-8-323384

本発明は、浄化処理能力の高い廃水処理手段を提供することなどを目的とする。   An object of the present invention is to provide a wastewater treatment means having a high purification capacity.

本発明では、第一に、微生物を用いて有機性廃水を浄化する有機性廃水処理システムであって、略密閉された嫌気性循環水路内で有機性廃水を循環させ、メタン発酵させる嫌気性処理手段を備えた有機性廃水処理システム、及び、それと同様の有機性廃水処理方法を提供する。   In the present invention, first, an organic wastewater treatment system for purifying organic wastewater using microorganisms, anaerobic treatment for circulating organic wastewater in a substantially sealed anaerobic circulation channel and methane fermentation Provided are an organic wastewater treatment system provided with a means, and an organic wastewater treatment method similar to that.

循環水路内で嫌気性処理(メタン発酵)を行うことにより、省動力で反応槽を混合・攪拌できるため、運転コストを低減しつつ、分解基質とメタン発酵微生物群との接触機会を保持させることができ、従来のメタン発酵処理施設とほぼ同等の廃水処理能力を保持できる。また、消化槽など建設費用を省略できるため、廃水処理施設建設の低コスト化を図ることができる。加えて、例えば、嫌気性循環水路内にメタン発酵微生物群の定着可能な固定床が設置することにより、嫌気性処理能力を大幅に向上でき、かつ、廃水処理の高速化又は廃水処理施設の小型化が可能になる。   By performing anaerobic treatment (methane fermentation) in the circulation channel, the reaction tank can be mixed and stirred with less power consumption, so that the opportunity for contact between the degradation substrate and the methane fermentation microorganism group is maintained while reducing the operating cost. It is possible to maintain the wastewater treatment capacity almost equivalent to that of a conventional methane fermentation treatment facility. In addition, since construction costs such as digestion tanks can be omitted, it is possible to reduce the cost of constructing a wastewater treatment facility. In addition, for example, by installing a fixed bed to which methane fermentation microorganisms can be established in an anaerobic circulation channel, the anaerobic treatment capacity can be greatly improved, and the wastewater treatment speed can be increased or the wastewater treatment facility can be downsized. Can be realized.

本発明では、第二に、嫌気性処理の後段処理として、好気性循環水路内で嫌気性処理水を曝気しながら循環させ、好気性微生物に有機物を分解させる好気性処理手段を備えた有機性廃水処理システム、及び、それと同様の有機性廃水処理方法を提供する。   In the present invention, secondly, as the latter stage treatment of the anaerobic treatment, the anaerobic treatment means is provided with an aerobic treatment means for circulating the anaerobic treatment water in the aerobic circulation channel while aeration, and decomposing the organic matter into the aerobic microorganisms. A wastewater treatment system and an organic wastewater treatment method similar to the wastewater treatment system are provided.

嫌気性処理の後段処理としてオキシデーションディッチ法による浄化処理を行うことにより、浄化処理能力を大幅に向上できる。従って、有機物含有量の高い廃水や有機物含有量の変動の大きな廃水が流入した場合でも、適切に浄化処理を行うことができる。その他、好気性循環水路内に、好気性微生物の定着可能な固定床を設置することにより、浄化処理能力をさらに大幅に向上できる。   By performing the purification process by the oxidation ditch method as a subsequent process of the anaerobic process, the purification capacity can be greatly improved. Therefore, even when wastewater with a high organic matter content or wastewater with a large fluctuation in the organic matter content flows in, the purification treatment can be appropriately performed. In addition, by installing a fixed bed in which aerobic microorganisms can be fixed in the aerobic circulation channel, the purification treatment capacity can be further greatly improved.

以上のように、循環水路内でメタン発酵を行うとともに、嫌気性処理(メタン発酵処理)と好気性処理(オキシデーションディッチ法による処理)とを連続して行うことにより、有機性廃水に対する浄化処理能力を大幅に向上できるため、大規模廃水処理が可能になる。また、従来の廃水処理手段と比較して、同等の処理能力のまま、廃水処理施設自体を大幅に小型化できる。   As described above, methane fermentation is performed in the circulation channel, and anaerobic treatment (methane fermentation treatment) and aerobic treatment (treatment by the oxidation ditch method) are performed continuously to purify organic wastewater. The capacity can be greatly improved, enabling large-scale wastewater treatment. Moreover, compared with the conventional wastewater treatment means, the wastewater treatment facility itself can be greatly downsized while maintaining the same treatment capacity.

その他、嫌気性処理手段と好気性処理手段の両者を循環水路にし、両者の形状・水循環手段などを近似させることにより、この廃水処理システムの建設コスト・運転コストを軽減できるという有利性がある。   In addition, by making both the anaerobic treatment means and the aerobic treatment means into circulation channels and approximating the shape and water circulation means of both, there is an advantage that the construction cost and operation cost of this wastewater treatment system can be reduced.

本発明により、有機性廃水に対する浄化処理能力を向上できる。   According to the present invention, it is possible to improve the purification treatment capacity for organic wastewater.

<本発明に係る有機性廃水処理システムについて>
本発明に係る有機性廃水処理システムの例について、以下、図1及び図2を用いて説明する。なお、本発明は、略密閉された嫌気性循環水路内で有機性廃水を循環させ、メタン発酵させる嫌気性処理手段を備えた構成を少なくとも有する有機性廃水処理システムをすべて包含し、以下に示す実施形態のみに狭く限定されない。
<About the organic wastewater treatment system according to the present invention>
Hereinafter, an example of the organic wastewater treatment system according to the present invention will be described with reference to FIGS. 1 and 2. The present invention includes all organic wastewater treatment systems having at least a configuration including anaerobic treatment means for circulating organic wastewater in a substantially sealed anaerobic circulation channel and performing methane fermentation. The present invention is not limited to the embodiments.

図1は、本発明に係る有機性廃水処理システムの例を示す概略模式図である。   FIG. 1 is a schematic diagram showing an example of an organic wastewater treatment system according to the present invention.

図1に示す有機性廃水処理システムAは、有機性廃水を貯留する貯留槽1と、略密閉された嫌気性循環水路21内で有機性廃水を循環させ、メタン発酵させる嫌気性処理手段2と、好気性循環水路31内で有機性廃水を曝気しながら循環させ、好気性微生物に有機物を分解させる好気性処理手段3と、を備える。   An organic wastewater treatment system A shown in FIG. 1 includes a storage tank 1 that stores organic wastewater, anaerobic treatment means 2 that circulates organic wastewater in a substantially sealed anaerobic circulation channel 21 and performs methane fermentation. And aerobic treatment means 3 that circulates organic wastewater in the aerobic circulation channel 31 while aeration, and decomposes organic matter into aerobic microorganisms.

図1の有機性廃水処理システムAでは、有機性廃水は、まず嫌気性処理手段2に供給され(符号X1参照)、その循環水路21内を循環する(符号X2参照)。その際に、前段処理として嫌気性処理が行われ、メタン発酵により、有機物が分解される。メタン発酵により発生したバイオガスは回収され(符号Y1参照)、エネルギー資源として利用できる。   In the organic wastewater treatment system A shown in FIG. 1, the organic wastewater is first supplied to the anaerobic treatment means 2 (see symbol X1) and circulates in the circulation channel 21 (see symbol X2). In that case, an anaerobic process is performed as a front | former stage process, and organic substance is decomposed | disassembled by methane fermentation. Biogas generated by methane fermentation is recovered (see symbol Y1) and can be used as an energy resource.

次に、嫌気性処理手段2によって処理された一次処理水は、好気性処理手段3に送られ(符号X3参照)、その循環水路31内を循環する(符号X4参照)。その際に、好気性処理が行われ、有機物が分解される。以上の過程を経て、浄化処理された処理水を得る(符号X5参照)。   Next, the primary treated water treated by the anaerobic treatment means 2 is sent to the aerobic treatment means 3 (see symbol X3) and circulates in the circulation channel 31 (see symbol X4). At that time, an aerobic treatment is performed to decompose the organic matter. Through the above process, treated water that has been purified is obtained (see symbol X5).

貯留槽1は、廃水処理前に、有機性廃水を貯留する部位で、必要に応じて適宜設けることができる。例えば、ポンプなど公知の供液手段(図示せず。)などを用いて、供給量を調節しながら、嫌気性処理手段2に有機性廃水を供給する構成にし、連続的に有機性廃水処理システムAの運転を行ってもよい。   The storage tank 1 is a part for storing organic wastewater before wastewater treatment, and can be appropriately provided as necessary. For example, an organic wastewater treatment system is configured to supply organic wastewater to the anaerobic treatment means 2 while adjusting the supply amount using a known liquid supply means (not shown) such as a pump. Operation A may be performed.

有機性廃水は、有機物を含有する廃水であればよく、例えば、生活廃水(台所・浴場・洗濯・清掃などで生じた廃水、し尿などを含む。)、産業廃水(食品工場・バイオ燃料製造工場・その他の工場などで発生した工場廃水、し尿などの畜産廃水などを含む。)、各種汚濁物質やその他の有機性廃棄物の水混合液、並びにそれらと雨水が混合した下水などを広く包含する。   The organic wastewater may be any wastewater containing organic matter, for example, domestic wastewater (including wastewater generated from kitchens, bathhouses, washing, cleaning, etc.) and industrial wastewater (food factories, biofuel manufacturing factories).・ Including plant wastewater generated at other factories, livestock wastewater such as human waste, etc.), water mixture of various pollutants and other organic waste, and sewage mixed with rainwater .

嫌気性処理手段2は、略密閉された循環水路(無終端水路)21を備える。この水路21内で有機性廃水を循環させ、嫌気性条件下でメタン発酵させることにより、有機物を分解し、かつ発生したバイオガスをエネルギー資源として回収する。   The anaerobic treatment means 2 includes a substantially sealed circulation channel (endless channel) 21. The organic wastewater is circulated in the water channel 21 and subjected to methane fermentation under anaerobic conditions to decompose organic matter and recover the generated biogas as an energy resource.

上述の通り、循環水路内でメタン発酵を行うことにより、省動力で反応槽を混合・攪拌できるため、運転コストを低減しつつ、分解基質とメタン発酵微生物群との接触機会を保持することができ、従来のメタン発酵処理施設とほぼ同等の廃水処理能力を保持できる。また、消化槽など建設費用を省略できるため、廃水処理施設建設の低コスト化を図ることができる。   As described above, by performing methane fermentation in the circulation channel, the reaction tank can be mixed and stirred with power saving, so the opportunity to contact the decomposition substrate and the methane fermentation microorganism group can be maintained while reducing the operating cost. It is possible to maintain the wastewater treatment capacity almost equivalent to that of the conventional methane fermentation treatment facility. In addition, since construction costs such as digestion tanks can be omitted, it is possible to reduce the cost of constructing a wastewater treatment facility.

嫌気性処理手段2は、循環水路を形成していればよく、その形状・材質・大きさ・深さなどは特に限定されない。例えば、鉄筋コンクリートなどで所定の溝を形成してもよい。なお、嫌気性処理手段2と後述する好気性処理手段3の形状・水循環手段などを近似させることにより、建設コスト・運転コストを削減できる。   The anaerobic treatment means 2 only needs to form a circulation channel, and the shape, material, size, depth, etc. thereof are not particularly limited. For example, the predetermined groove may be formed of reinforced concrete. The construction cost and operation cost can be reduced by approximating the shape of the anaerobic treatment means 2 and the shape of the aerobic treatment means 3 described later, the water circulation means, and the like.

嫌気性処理手段2では、嫌気性処理を行うので、略密閉構造にする必要がある。略密閉構造にする手段については、公知の方法を用いることができ、特に限定されない。   Since the anaerobic treatment means 2 performs anaerobic treatment, it needs to have a substantially sealed structure. A known method can be used for the means for providing a substantially sealed structure, and is not particularly limited.

一般に、メタン発酵は常温でも反応が進行するが、メタン発酵の反応効率を高める観点から、循環水の温度を中温(37℃前後、例えば、30〜40℃)又は高温(55℃前後、例えば、50〜70℃)に調節する機構を備える構成にしてもよい。   In general, methane fermentation proceeds at room temperature, but from the viewpoint of increasing the reaction efficiency of methane fermentation, the temperature of the circulating water is set to medium temperature (around 37 ° C., for example, 30 to 40 ° C.) or high temperature (around 55 ° C., for example, You may make it the structure provided with the mechanism adjusted to 50-70 degreeC.

これにより、有機物の分解効率(有機性廃水の浄化能力)を高くでき、循環水路21を小型化できる。その他、例えば、高温でメタン発酵処理を行うことには、高温殺菌処理がなされるなどの有利性もある。なお、中温発酵又は高温発酵を行う場合には、貯留槽1、嫌気性処理手段2、その間の流路(符号X1の部分)などに、適宜、加温手段、温度調節手段などを設置してもよい(図示せず)。加温手段、温度調節手段は、公知のものを用いることができる。   Thereby, the decomposition | disassembly efficiency (purification capability of organic wastewater) of organic substance can be made high, and the circulating water channel 21 can be reduced in size. In addition, for example, performing methane fermentation treatment at high temperature has an advantage that high-temperature sterilization treatment is performed. In addition, when performing intermediate temperature fermentation or high temperature fermentation, a heating means, a temperature control means, etc. are suitably installed in the storage tank 1, the anaerobic processing means 2, the flow path between them (part of the code | symbol X1), etc. It is good (not shown). A well-known thing can be used for a heating means and a temperature control means.

嫌気性循環水路21内に、メタン発酵微生物群の定着可能な固定床22を設置してもよい。嫌気性循環水路内に固定床22を設置し、その固定床22にメタン発酵微生物群を定着させることにより、嫌気性処理能力を向上できる。これにより、有機物含有量の高い有機性廃水に対する浄化処理能力を大幅に向上でき、かつ、廃水処理の高速化又は廃水処理施設の小型化が可能になる。また、流入する有機物の含有量に大きな変動がある場合にも、同程度に浄化された処理水を安定的に得ることができる。   In the anaerobic circulation channel 21, a fixed bed 22 capable of fixing the methane fermentation microorganism group may be installed. By installing the fixed bed 22 in the anaerobic circulation channel and fixing the methane fermentation microorganism group on the fixed bed 22, the anaerobic treatment capacity can be improved. Thereby, the purification treatment capacity for organic wastewater having a high organic matter content can be greatly improved, and the wastewater treatment can be speeded up or the wastewater treatment facility can be downsized. Moreover, even when there is a large variation in the content of the inflowing organic matter, treated water purified to the same degree can be stably obtained.

固定床22は、メタン発酵微生物群が定着可能な材質で構成されていればよく、特に限定されない。例えば、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、フェルトなどからなる織布・不織布、フェルトなどの不織布、アクリル繊維などからなる炭素繊維、炭素繊維を配合した不織布、ポリエステル綿などは、多孔質で微生物が付着しやすい点、比較的安価で設置も容易な点などから好適である。   The fixed bed 22 is not particularly limited as long as it is made of a material capable of fixing the methane fermentation microorganism group. For example, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, non-woven fabric such as felt, non-woven fabric such as felt, carbon fiber composed of acrylic fiber, etc. Nonwoven fabrics, polyester cotton, and the like are preferable because they are porous and easily adhere to microorganisms, and are relatively inexpensive and easy to install.

嫌気性循環水路21内に供給された廃水の循環手段23は公知のものを用いることができ、特に限定されない。例えば、図1に示すように、攪拌羽根などを回転させることにより循環水を形成してもよいし、ポンプ(図示せず。)など公知の液循環手段で貯留水を循環させてもよい。循環手段23は、一箇所に設置してもよく、複数個所に設置してもよい。また、循環手段23の位置・向きなども、貯留水が一定方向に循環されるように適宜設定すればよい。   A known means for circulating the wastewater 23 supplied into the anaerobic circulation channel 21 can be used, and is not particularly limited. For example, as shown in FIG. 1, the circulating water may be formed by rotating a stirring blade or the like, or the stored water may be circulated by a known liquid circulating means such as a pump (not shown). The circulation means 23 may be installed at one place or may be installed at a plurality of places. Further, the position and orientation of the circulation means 23 may be set as appropriate so that the stored water is circulated in a certain direction.

好気性処理手段3は、循環水路(無終端水路)31を備える。この循環水路31内で有機性廃水・嫌気性処理水を曝気しながら循環させることにより、好気性微生物に有機物を分解させる。   The aerobic treatment means 3 includes a circulating water channel (endless water channel) 31. By circulating the organic wastewater / anaerobic treated water in the circulation channel 31 while aeration, the aerobic microorganisms decompose organic substances.

好気性処理手段3は、循環水路を形成していればよく、その形状・材質・大きさ・深さなどは特に限定されない。例えば、前記と同様、鉄筋コンクリートなどで所定の溝を形成してもよい。   The aerobic treatment means 3 only needs to form a circulation channel, and the shape, material, size, depth, etc. thereof are not particularly limited. For example, as described above, the predetermined groove may be formed of reinforced concrete.

好気性循環水路31内に、好気性微生物の定着可能な固定床32を設置してもよい。上記と同様、好気性循環水路31内に固定床32を設置し、その固定床32に好気性微生物を定着させることにより、好気性処理能力を向上できる。また、嫌気性処理(メタン発酵処理)と好気性処理(オキシデーションディッチ法による処理)を連続的に行うとともに、固定床22、32のいずれか又は両方を設置することで、有機性廃水に対する浄化処理能力をさらに大幅に向上できる。   In the aerobic circulation channel 31, a fixed bed 32 on which aerobic microorganisms can be fixed may be installed. Similarly to the above, by installing a fixed bed 32 in the aerobic circulation channel 31 and fixing aerobic microorganisms on the fixed bed 32, the aerobic treatment capacity can be improved. In addition, anaerobic treatment (methane fermentation treatment) and aerobic treatment (treatment by the oxidation ditch method) are continuously performed, and either or both fixed beds 22 and 32 are installed to purify organic wastewater. The processing capacity can be further greatly improved.

固定床32は、好気性微生物が定着可能な材質で構成されていればよく、特に限定されない。例えば、上記と同様、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、フェルトなどからなる織布・不織布、フェルトなどの不織布、アクリル繊維などからなる炭素繊維、炭素繊維を配合した不織布、ポリエステル綿などは、多孔質で微生物が付着しやすい点、比較的安価で設置も容易な点などから好適である。   The fixed bed 32 is not particularly limited as long as it is made of a material capable of fixing aerobic microorganisms. For example, as above, aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, woven fabric / nonwoven fabric made of felt, etc. Nonwoven fabric such as felt, carbon fiber made of acrylic fiber, etc. Nonwoven fabrics and polyester cotton blended with fibers are suitable because they are porous and easily adhere to microorganisms, and are relatively inexpensive and easy to install.

好気性循環水路31内に供給された廃水の循環手段33は公知のものを用いることができ、特に限定されない。例えば、上記と同様、攪拌羽根などを回転させることにより循環水を形成してもよいし、ポンプ(図示せず。)など公知の液循環手段で貯留水を循環させてもよい。循環手段33は、一箇所に設置してもよく、複数個所に設置してもよい。また、循環手段33の位置・向きなども、貯留水が一定方向に循環されるように適宜設定すればよい。   As the circulation means 33 of the waste water supplied into the aerobic circulation water channel 31, a publicly known one can be used, and it is not particularly limited. For example, similarly to the above, circulating water may be formed by rotating a stirring blade or the like, or the stored water may be circulated by known liquid circulation means such as a pump (not shown). The circulation means 33 may be installed at one place, or may be installed at a plurality of places. The position and orientation of the circulation means 33 may be set as appropriate so that the stored water is circulated in a certain direction.

好気性処理手段3では、好気性条件を維持するため、好気性循環水路31内に曝気手段34を設ける。曝気手段34は、公知のものを採用できる。また、上記の液循環手段33で貯留水を循環させるとともに曝気する構成にしてもよい。但し、例えば、図1では、好気性循環水路内に固定床32を設置することにより、好気性微生物が増殖している。従って、高い浄化処理能力を維持するためには、貯留水の溶存酸素を高く維持する必要があるため、曝気手段34を別途設置し、貯留水への酸素供給を充分に行うことが好ましい。   In the aerobic treatment means 3, an aeration means 34 is provided in the aerobic circulation channel 31 in order to maintain an aerobic condition. A well-known thing can be employ | adopted for the aeration means 34. FIG. Further, the stored water may be circulated by the liquid circulation means 33 and aerated. However, in FIG. 1, for example, aerobic microorganisms are growing by installing the fixed bed 32 in the aerobic circulation channel. Therefore, in order to maintain a high purification treatment capacity, it is necessary to maintain the dissolved oxygen at a high level. Therefore, it is preferable to install the aeration means 34 separately to sufficiently supply oxygen to the stored water.

以上の通り、図1に示す有機性廃水処理システムAは、嫌気性処理手段2(メタン発酵処理)と好気性処理手段3(オキシデーションディッチ法による処理)の両方を備える。   As described above, the organic wastewater treatment system A shown in FIG. 1 includes both the anaerobic treatment means 2 (methane fermentation treatment) and the aerobic treatment means 3 (treatment by the oxidation ditch method).

メタン発酵による嫌気性処理とオキシデーションディッチ法による好気性処理を連続的に行うことにより、運転管理上の操作が簡単である、流入廃水に水量・水質の時間的変動があっても安定した有機物除去を行うことができる、汚泥発生量を少なくできる、曝気量が少なくて済むため維持管理費を抑制できる、などのオキシデーションディッチ法における各利点を保持したまま、有機性廃水に対する浄化処理能力をさらに大幅に向上できる。従って、従来のメタン発酵法又はオキシデーションディッチ法による廃水処理と比較して、同等の処理能力を保持したまま、廃水処理施設自体をさらに大幅に小型化できる。   By performing anaerobic treatment by methane fermentation and aerobic treatment by oxidation ditch method, the operation management operation is simple. Stable organic matter even if the amount of water and quality of the influent wastewater vary over time. The ability to purify organic wastewater while maintaining the advantages of the oxidation ditch method, such as the ability to remove, reduce the amount of sludge generated, and reduce the amount of aeration, so that maintenance costs can be reduced. This can be further improved. Therefore, compared with the wastewater treatment by the conventional methane fermentation method or oxidation ditch method, the wastewater treatment facility itself can be further downsized while maintaining the same treatment capacity.

図2は、本発明に係る有機性廃水処理システムの別の例を示す概略模式図である。   FIG. 2 is a schematic diagram showing another example of the organic wastewater treatment system according to the present invention.

図2に示す有機性排水処理システムA’は、嫌気性循環水路21内で有機性廃水を曝気しながら循環させ、メタン発酵微生物群に嫌気性処理をさせる嫌気性処理手段2を備え、この嫌気性循環水路21内に、メタン発酵微生物群の定着可能な固定床22が設置された構成を有する。   The organic wastewater treatment system A ′ shown in FIG. 2 includes anaerobic treatment means 2 that circulates organic wastewater in the anaerobic circulation channel 21 while aeration and causes the methane fermentation microorganism group to undergo anaerobic treatment. In the sex circulation channel 21, a fixed bed 22 capable of fixing methane fermentation microorganisms is installed.

図2の有機性廃水処理システムA’では、有機性廃水は、嫌気性処理手段2に供給され(符号X1参照)、その循環水路21内を循環する(符号X2参照)。その際に、メタン発酵による嫌気性処理が行われ、有機物が分解されるとともに、メタン発酵により発生したバイオガスは回収される(符号Y1参照)。以上の過程を経て、浄化処理された処理水を得る(符号X3参照)。なお、循環手段23については、図1と同様である。   In the organic wastewater treatment system A ′ shown in FIG. 2, the organic wastewater is supplied to the anaerobic treatment means 2 (see symbol X1) and circulates in the circulation channel 21 (see symbol X2). In that case, the anaerobic process by methane fermentation is performed, organic substance is decomposed | disassembled, and the biogas generated by methane fermentation is collect | recovered (refer code | symbol Y1). Through the above process, treated water that has been purified is obtained (see symbol X3). The circulation means 23 is the same as that shown in FIG.

固定床22の設置箇所については、特に限定されない。例えば、図1と同様、循環水路21の周壁面などに設置してもよいし、循環水路21内に固定床設置面を別途設け、その箇所に固定床22’を設置してもよい。   The installation location of the fixed floor 22 is not particularly limited. For example, as in FIG. 1, it may be installed on the peripheral wall surface of the circulating water channel 21, or a fixed floor installation surface may be separately provided in the circulating water channel 21, and the fixed floor 22 ′ may be installed there.

固定床22の設置方法についても、特に限定されない。例えば、循環水路21の周壁面や固定床設置面などに打設・貼付などして設置してもよいし、固定床22を予め設置した枠体・板状体などを循環水路内に設置・固定してもよい。   The installation method of the fixed floor 22 is not particularly limited. For example, it may be installed by placing or sticking on the peripheral wall surface or fixed floor installation surface of the circulating water channel 21, or a frame or plate-like body in which the fixed floor 22 is previously installed is installed in the circulating water channel. It may be fixed.

なお、この固定床の設置箇所・設置方法などは、図1で示した好気性処理手段3における固定床32の設置にも適用できる。   It should be noted that the installation location and installation method of the fixed floor can also be applied to the installation of the fixed floor 32 in the aerobic processing means 3 shown in FIG.

<本発明に係る有機性廃水処理方法について>
本発明に係る有機性廃水処理方法について、以下、説明する。
<About the organic wastewater treatment method according to the present invention>
The organic wastewater treatment method according to the present invention will be described below.

本発明に係る有機性廃水処理方法は、好気性処理工程の前段処理として、略密閉された嫌気性循環水路内で有機性廃水を循環させ、メタン発酵させる嫌気性処理工程(第一工程)と、嫌気性処理水又は有機性廃水を曝気しながら循環させ、好気性微生物に有機物を分解させる好気性処理工程(第二工程)とを含む。但し、第一工程と第二工程のいずれかのみを含む有機性廃水処理方法についても本発明に広く包含され、本発明は第一工程と第二工程の両者を含むもののみに狭く限定されない。   The organic wastewater treatment method according to the present invention includes an anaerobic treatment step (first step) in which organic wastewater is circulated in a substantially sealed anaerobic circulation channel and subjected to methane fermentation as a pre-treatment of the aerobic treatment step. And an aerobic treatment step (second step) in which anaerobic treated water or organic waste water is circulated while aerated to decompose an organic substance into an aerobic microorganism. However, the organic wastewater treatment method including only either the first step or the second step is also widely included in the present invention, and the present invention is not limited to the one including both the first step and the second step.

嫌気性処理工程(第一工程)では、好気性処理工程(第二工程)の前段処理として、嫌気性循環水路内で有機性廃水のメタン発酵を行い、該廃水中の有機物を分解するとともに、発生したバイオガスをエネルギー資源として回収する。   In the anaerobic treatment step (first step), as a pre-treatment of the aerobic treatment step (second step), methane fermentation of organic wastewater is performed in the anaerobic circulation channel, and the organic matter in the wastewater is decomposed. Collect the generated biogas as an energy resource.

好気性処理工程の前段処理として嫌気性処理を行うことにより、廃水からバイオガスを生成できるほか、システムA全体における有機性廃水に対する浄化処理能力を大幅に向上できる。   By performing anaerobic treatment as a pre-treatment of the aerobic treatment step, biogas can be generated from wastewater, and the purification treatment capacity for organic wastewater in the entire system A can be greatly improved.

また、嫌気性処理と好気性処理の両方を循環水路内で行うことにより、建設コスト・運転コストを削減できる。   Moreover, construction cost and operation cost can be reduced by performing both anaerobic treatment and aerobic treatment in the circulation channel.

嫌気性循環水路内に、メタン発酵菌群の定着可能な固定床を設置してもよい。嫌気性循環水路内に固定床を設置し、その固定床にメタン発酵菌群を定着させることにより、嫌気性処理能力を向上できる。これにより、有機物含有量の高い有機性廃水に対する浄化処理能力を大幅に向上できる。また、流入する有機物の含有量に大きな変動がある場合にも、同程度に浄化された処理水を安定的に得ることができる。   In the anaerobic circulation channel, a fixed bed capable of fixing the methane fermentation bacteria group may be installed. An anaerobic treatment capacity can be improved by installing a fixed bed in the anaerobic circulation channel and fixing a group of methane fermentation bacteria on the fixed bed. Thereby, the purification processing capability with respect to organic wastewater with high organic substance content can be improved significantly. Moreover, even when there is a large variation in the content of the inflowing organic matter, treated water purified to the same degree can be stably obtained.

続いて、好気性処理工程(第二工程)では、好気性循環水路内で有機性廃水・嫌気性処理水を曝気しながら循環させ、好気性微生物に有機物を分解させることにより、廃水の浄化処理を行う。   Subsequently, in the aerobic treatment process (second process), organic wastewater and anaerobic treated water are circulated while aerated in the aerobic circulation channel, and organic matter is decomposed into aerobic microorganisms, thereby purifying wastewater. I do.

好気性循環水路内に、好気性微生物の定着可能な固定床を設置してもよい。上記と同様、好気性循環水路内に固定床を設置し、その固定床に好気性微生物を定着させることにより、好気性処理能力を向上できる。また、嫌気性処理(メタン発酵処理)と好気性処理(オキシデーションディッチ法による処理)を連続的に行うとともに、いずれか又は両方の循環水路内に固定床を設置することで、有機性廃水に対する浄化処理能力をさらに大幅に向上できる。   In the aerobic circulation channel, a fixed bed capable of fixing aerobic microorganisms may be installed. As described above, the aerobic treatment capacity can be improved by installing a fixed bed in the aerobic circulation channel and fixing aerobic microorganisms on the fixed bed. In addition, the anaerobic treatment (methane fermentation treatment) and the aerobic treatment (treatment by the oxidation ditch method) are continuously performed, and a fixed bed is installed in one or both of the circulation channels, so that organic wastewater can be treated. The purification treatment capacity can be further greatly improved.

以上の通り、嫌気性処理(メタン発酵処理)と好気性処理(オキシデーションディッチ法による処理)を連続的に行うことにより、運転管理上の操作が簡単である、流入廃水に水量・水質の時間的変動があっても安定した有機物除去を行うことができる、汚泥発生量を少なくできる、曝気量が少なくて済むため維持管理費を抑制できる、などのオキシデーションディッチ法における各利点を保持したまま、有機性廃水に対する浄化処理能力をさらに大幅に向上できる。従って、従来のオキシデーションディッチ法による廃水処理手段と比較して、同等の処理能力を保持したまま、廃水処理施設自体をさらに大幅に小型化できる。   As described above, by performing anaerobic treatment (methane fermentation treatment) and aerobic treatment (treatment by oxidation ditch method) continuously, the operation management operation is simple. Retains the advantages of the oxidation ditch method, such as stable organic removal even with global fluctuations, reduced sludge generation, and reduced maintenance costs due to less aeration. In addition, the purification capacity for organic wastewater can be further greatly improved. Therefore, compared with the wastewater treatment means by the conventional oxidation ditch method, the wastewater treatment facility itself can be further reduced in size while maintaining the same treatment capacity.

実施例1では、蒸留酒製造工程で生成された廃水を用いて、本発明に係る有機性廃水処理の性能試験を行った。   In Example 1, the performance test of the organic wastewater treatment according to the present invention was performed using the wastewater generated in the distilled liquor manufacturing process.

有機性廃水処理システムの試作モデルとして、次のものを製作した。6L容の略密閉された嫌気性循環水路及び6L容の好気性循環水路を製作し、両循環水路に攪拌器を設置するとともに、好気性循環水路には曝気装置を設置し、嫌気好気処理の試作モデルとした。また、両循環水路の壁面に、固定床としてポリエチレン製の不織布を設置し、固定床嫌気好気処理の試作モデルとした。   The following was produced as a prototype model of the organic wastewater treatment system. Manufactures 6L-volume, almost sealed anaerobic circulation channels and 6L-size aerobic circulation channels, installs agitators in both circulation channels, and installs aeration equipment in the aerobic circulation channels, anaerobic aerobic treatment The prototype model. In addition, a polyethylene non-woven fabric was installed as a fixed bed on the walls of both circulation channels, and a prototype model of fixed bed anaerobic aerobic treatment was used.

これらの各試作モデルに、蒸留酒製造工程で生成された廃水(流入水質及び負荷率については下記表1参照)を供給し、嫌気性循環水路で水理学的滞留時間8日間処理し(第一処理)、次に、好気性循環水路で水理学的滞留時間8日間処理し(第二処理)、水質を測定した。   To each of these prototype models, the wastewater generated in the distilled liquor production process (see Table 1 below for the influent water quality and load factor) is supplied and treated in an anaerobic circulation channel for 8 days (1st Treatment) Next, the water was treated in an aerobic circulation channel for 8 days (second treatment), and the water quality was measured.

水質測定の結果を表1及び表2に示す。表1は嫌気好気処理の試作モデルにおける水質測定の結果を、表2は固定床嫌気好気処理の試作モデルにおける水質測定の結果を、それぞれ表す。表中、「COD Cr」は二クロム酸カリウムを用いて測定した化学的酸素要求量(Chemical oxygen demand)を、「SS」は浮遊物質(Suspended
solids)を、「VSS」は揮発性浮遊物質(Volatile suspended solids)を、それぞれ表す。表中、「流入水質」は試験に用いた廃水の水質を、「負荷率」は廃水処理システムに供給した廃水の水質を1日当たりで換算した値を、「嫌気処理後」は第一処理後の水質を、「好気処理後」は第一処理及び第二処理後の水質を、それぞれ表す。

Figure 2012005971
Figure 2012005971
Tables 1 and 2 show the results of water quality measurement. Table 1 shows the results of water quality measurement in a prototype model of anaerobic aerobic treatment, and Table 2 shows the results of water quality measurement in a prototype model of fixed-bed anaerobic aerobic treatment. In the table, “COD Cr” is the chemical oxygen demand measured using potassium dichromate and “SS” is the suspended matter (Suspended)
solids) and “VSS” represent volatile suspended solids, respectively. In the table, “Influent water quality” is the quality of the wastewater used in the test, “Load factor” is the value of the wastewater supplied to the wastewater treatment system, converted to the value per day, and “After anaerobic treatment” is after the first treatment. “After aerobic treatment” represents the water quality after the first treatment and the second treatment, respectively.
Figure 2012005971
Figure 2012005971

また、表1及び表2から算出された分解率を表3及び表4に示す。表3は嫌気好気処理の試作モデルにおける分解率を、表4は固定床嫌気好気処理の試作モデルにおける分解率を、それぞれ表す。表中、「第一処理後の分解率」は処理前の廃水(流入水質)と比較した場合における第一処理後の有機物の分解率を、「第一〜第二処理の分解率」は第一処理後の処理水と比較した場合における第二処理後の有機物の分解率を、「全体の分解率」は処理前の廃水(流入水質)と比較した場合における第一処理・第二処理後の有機物の分解率を、それぞれ表す。

Figure 2012005971
Figure 2012005971
The decomposition rates calculated from Tables 1 and 2 are shown in Tables 3 and 4. Table 3 shows the decomposition rate in the prototype model of the anaerobic aerobic treatment, and Table 4 shows the decomposition rate in the prototype model of the fixed-bed anaerobic aerobic treatment. In the table, “decomposition rate after the first treatment” is the decomposition rate of the organic matter after the first treatment when compared with the waste water before treatment (inflow water quality), “decomposition rate of the first to second treatment” is the first The degradation rate of the organic matter after the second treatment when compared with the treated water after one treatment, and the “total degradation rate” is after the first treatment and second treatment when compared with the wastewater before treatment (inflow water quality) Represents the decomposition rate of organic matter.
Figure 2012005971
Figure 2012005971

表1及び表3に示す通り、流入水質16,600mg/Lの有機性廃水を、水理学的滞留時間8日間、循環水路で嫌気性処理を行った場合、例えば、COD Crにおける分解率が73.3%であった。この値は、消化槽などを用いた通常のメタン発酵における処理能力とほぼ同等である。一方、上述の通り、循環水路内でメタン発酵を行うことにより、建設コスト、運転コストを低減できる。従って、本結果は、嫌気性処理を循環水路で行うことにより、建設コスト、運転コストを低減でき、かつ、通常のメタン発酵の場合とほぼ同等の処理能力を保持できることを示唆する。   As shown in Tables 1 and 3, when organic wastewater having an influent water quality of 16,600 mg / L is subjected to anaerobic treatment in a circulation channel for 8 days of hydraulic residence time, for example, the decomposition rate in COD Cr is 73 3%. This value is almost equivalent to the processing capacity in ordinary methane fermentation using a digester. On the other hand, as described above, construction cost and operation cost can be reduced by performing methane fermentation in the circulation channel. Therefore, this result suggests that the construction cost and the operation cost can be reduced by performing the anaerobic treatment in the circulation channel, and the treatment capacity almost equal to that in the case of normal methane fermentation can be maintained.

また、表2及び表4に示す通り、嫌気性処循環水路の壁面に、固定床としてポリエチレン製の不織布を設置した場合、例えば、COD Crにおける分解率が93.0%であった。この結果は、嫌気性循環水路内に、メタン発酵微生物群の定着可能な固定床を設置することにより、メタン発酵処理能力を大幅に向上できることを示す。   Moreover, as shown in Table 2 and Table 4, when the nonwoven fabric made from polyethylene was installed as the fixed bed on the wall surface of the anaerobic treatment circulation channel, for example, the decomposition rate in COD Cr was 93.0%. This result shows that the methane fermentation treatment capacity can be greatly improved by installing a fixed bed capable of fixing the methane fermentation microorganism group in the anaerobic circulation channel.

一方、表1及び表3に示す通り、嫌気性処理と好気性処理を連続的に行った場合(嫌気好気処理)、例えば、COD Crにおける分解率が91.1%であった。この結果は、嫌気性処理の後段処理として循環水路内で好気性処理を行うことにより、メタン発酵処理能力を大幅に向上できることを示す。   On the other hand, as shown in Tables 1 and 3, when the anaerobic treatment and the aerobic treatment were continuously performed (anaerobic aerobic treatment), for example, the decomposition rate in COD Cr was 91.1%. This result shows that the methane fermentation treatment capacity can be greatly improved by performing the aerobic treatment in the circulation channel as the latter stage treatment of the anaerobic treatment.

また、表2及び表4に示す通り、両循環水路に不織布を設置した場合(固定床嫌気好気処理)、例えば、COD Crにおける分解率が99.3%であった。この結果は、固定床メタン発酵処理と固定床オキシデーションディッチ法による処理を連続的に行うことにより、有機性廃水に対する浄化処理能力をさらに大幅に向上できることを示す。   Moreover, as shown in Table 2 and Table 4, when a nonwoven fabric was installed in both circulation channels (fixed-bed anaerobic aerobic treatment), for example, the decomposition rate in COD Cr was 99.3%. This result shows that the purification treatment capacity for organic wastewater can be further greatly improved by continuously performing the fixed bed methane fermentation treatment and the treatment by the fixed bed oxidation ditch method.

なお、両循環水路に不織布を設置した場合と不織布を設置しなかった場合の両者とも、本試験の嫌気性処理において得られたバイオガス回収量は、約1NL/L−reactor/日、メタン濃度は約60%であった。   In addition, the biogas recovery amount obtained in the anaerobic treatment of this test was about 1 NL / L-reactor / day, the methane concentration in both the case where the nonwoven fabric was installed in both circulation channels and the case where the nonwoven fabric was not installed. Was about 60%.

実施例2では、有機物負荷を増大させて、本発明に係る有機性廃水処理の性能試験を行った。   In Example 2, the organic material load was increased and the performance test of the organic wastewater treatment according to the present invention was performed.

実施例1と同様、6L容の略密閉された嫌気性循環水路及び6L容の好気性循環水路を作成し、両循環水路に攪拌器を設置するとともに、好気性循環水路には曝気装置を設置し、両循環水路の壁面にポリエチレン製の不織布を設置し、固定床嫌気好気処理の試作モデルとした。   As in Example 1, a 6-L approximately sealed anaerobic circulation channel and a 6-L aerobic circulation channel were created, and a stirrer was installed in both circulation channels, and an aeration device was installed in the aerobic circulation channel Then, a non-woven fabric made of polyethylene was installed on the wall surfaces of both circulation channels to make a prototype model of fixed-bed anaerobic aerobic treatment.

この試作モデルに、蒸留酒製造工程で生成された廃水(流入水質及び負荷率については下記表5参照)を供給し、嫌気性循環水路で水理学的滞留時間3日間処理し(第一処理)、次に、好気性循環水路で水理学的滞留時間3日間処理し(第二処理)、水質を測定した。   This prototype model is supplied with the wastewater generated in the distilled liquor manufacturing process (see Table 5 below for influent water quality and load factor) and treated in an anaerobic circulation channel for 3 days in the hydraulic retention time (first treatment) Then, the hydrological residence time was treated for 3 days in the aerobic circulation channel (second treatment), and the water quality was measured.

水質測定の結果を表5に示す。表5は有機物含有量の高い廃水を固定床嫌気好気処理した場合における水質測定の結果を表す。表中の各項目は、表1又は表2と同様である。

Figure 2012005971
Table 5 shows the results of water quality measurement. Table 5 shows the result of water quality measurement when wastewater with a high organic content is subjected to fixed-bed anaerobic aerobic treatment. Each item in the table is the same as in Table 1 or Table 2.
Figure 2012005971

また、表5から算出された分解率を表6に示す。表中の各項目は、表3又は表4と同様である。

Figure 2012005971
Table 6 shows the decomposition ratio calculated from Table 5. Each item in the table is the same as in Table 3 or Table 4.
Figure 2012005971

表5及び表6に示す通り、本発明に係る固定床嫌気好気処理を行うことにより、有機物負荷の高い廃水であっても充分量の有機物を分解できた。この結果は、固定床メタン発酵処理と固定床オキシデーションディッチ法による処理を連続的に行うことにより、有機性廃水に対する浄化処理能力をさらに大幅に向上できることを示す。   As shown in Tables 5 and 6, by performing the fixed-bed anaerobic aerobic treatment according to the present invention, a sufficient amount of organic matter could be decomposed even with wastewater with a high organic matter load. This result shows that the purification treatment capacity for organic wastewater can be further greatly improved by continuously performing the fixed bed methane fermentation treatment and the treatment by the fixed bed oxidation ditch method.

なお、本試験の嫌気性処理において得られたバイオガス回収量は、約3.65NL/L−reactor/日、メタン濃度は約60%であった。   Note that the biogas recovery amount obtained in the anaerobic treatment of this test was about 3.65 NL / L-reactor / day, and the methane concentration was about 60%.

実施例3では、実施例2と同様の試作モデルに、実施例2と同様の水質の廃水を供給し、COD Crの分解率が流入水質の90%以上になる水理学的滞留時間を算出した。なお、固定床を設置していない好気性循環水路で好気性処理のみを行った場合には、COD Crの分解率が流入水質の90%以上にならなかった。   In Example 3, waste water having the same water quality as in Example 2 was supplied to the prototype model similar to that in Example 2, and the hydraulic residence time at which the decomposition rate of COD Cr was 90% or more of the influent water quality was calculated. . In addition, when only the aerobic treatment was performed in the aerobic circulation channel having no fixed bed, the decomposition rate of CODCr did not become 90% or more of the influent water quality.

結果を表7に示す。表7は、各条件で浄化処理を行った場合における水理学的滞留時間を表す。表中、「嫌気処理・固定床なし+好気処理・固定床なし」は、固定床を設置していない嫌気性循環水路で嫌気性処理を行った後、固定床を設置していない好気性循環水路で好気性処理を行った場合の結果を、「嫌気処理のみ・固定床あり」は、固定床を設置した嫌気性循環水路で嫌気性処理を行い、好気性処理は行わなかった場合の結果を、「嫌気処理・固定床あり+好気処理・固定床あり」は、固定床を設置した嫌気性循環水路で嫌気性処理を行った後、固定床を設置した好気性循環水路で好気性処理を行った場合の結果を、それぞれ表わす。表中の日数は水理学的滞留時間を表し、それぞれ、嫌気性処理を行った日数、好気性処理を行った日数、その合計の水理学的滞留時間をそれぞれ表わす。

Figure 2012005971
The results are shown in Table 7. Table 7 shows the hydraulic residence time when the purification treatment is performed under each condition. In the table, “anaerobic treatment / no fixed bed + aerobic treatment / no fixed floor” means anaerobic treatment without an aerobic treatment after anaerobic treatment in an anaerobic circulation channel without a fixed bed. The result of aerobic treatment in the circulation channel is the result of “anaerobic treatment only with fixed bed” when anaerobic treatment is performed in the anaerobic circulation channel with a fixed bed and no aerobic treatment is performed. The result is that “anaerobic treatment with fixed bed + aerobic treatment with fixed bed” is an anaerobic circulation channel with a fixed bed and then an anaerobic circulation channel with a fixed bed. The results when the tempering process is performed are respectively shown. The number of days in the table represents the hydraulic retention time, and represents the number of days for which anaerobic treatment was performed, the number of days for which aerobic treatment was performed, and the total hydraulic residence time, respectively.
Figure 2012005971

表7に示す通り、嫌気性処理と好気性処理を行うことにより、有機物含有量の高い有機性廃水であっても、所定期間内に、CODCrの値で、流入水質の90%以上まで有機物を分解できた。また、嫌気性循環水路に固定床を設置することにより、また、嫌気性循環水路と好気性循環水路の両方に固定床を設置することにより、水理学的滞留時間を顕著に短縮できた。   As shown in Table 7, by performing anaerobic treatment and aerobic treatment, even in the case of organic wastewater with a high organic matter content, the organic matter can be reduced to 90% or more of the influent water quality at a value of CODCr within a predetermined period. I was able to break it down. In addition, by installing a fixed bed in the anaerobic circulation channel, and by installing a fixed bed in both the anaerobic circulation channel and the aerobic circulation channel, the hydraulic residence time can be significantly shortened.

本発明に係る有機性廃水処理システムの例を示す概略模式図。1 is a schematic diagram showing an example of an organic wastewater treatment system according to the present invention. 本発明に係る有機性廃水処理システムの別の例を示す概略模式図。The schematic schematic diagram which shows another example of the organic wastewater treatment system which concerns on this invention.

1 貯留槽
2 嫌気性処理手段
21 嫌気性循環水路
22 固定床
23 循環手段
3 好気性処理手段
31 好気性循環水路
32 固定床
33 循環手段
34 曝気手段
A、A’ 有機性廃水処理システム
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Anaerobic treatment means 21 Anaerobic circulation channel 22 Fixed bed 23 Circulation means 3 Aerobic treatment means 31 Aerobic circulation channel 32 Fixed bed 33 Circulation means 34 Aeration means A, A 'Organic wastewater treatment system

Claims (8)

微生物を用いて有機性廃水を浄化する有機性廃水処理システムであって、
略密閉された嫌気性循環水路内で有機性廃水を循環させ、メタン発酵させる嫌気性処理手段を備えた有機性廃水処理システム。
An organic wastewater treatment system that purifies organic wastewater using microorganisms,
An organic wastewater treatment system equipped with anaerobic treatment means for circulating organic wastewater in a substantially sealed anaerobic circulation channel and performing methane fermentation.
前記嫌気性循環水路内に、メタン発酵微生物群の定着可能な固定床が設置された請求項1記載の有機性廃水処理システム。   The organic wastewater treatment system according to claim 1, wherein a fixed bed capable of fixing methane fermentation microorganisms is installed in the anaerobic circulation channel. 前記嫌気性処理の後段処理として、
好気性循環水路内で前記嫌気性処理水を曝気しながら循環させ、好気性微生物に有機物を分解させる好気性処理手段を備えた請求項1記載の有機性廃水処理システム。
As a subsequent process of the anaerobic process,
The organic wastewater treatment system according to claim 1, further comprising aerobic treatment means for circulating the anaerobic treated water in the aerobic circulation channel while aeration, and decomposing organic substances into aerobic microorganisms.
前記好気性循環水路内に、好気性微生物の定着可能な固定床が設置された請求項3記載の有機性廃水処理システム。   The organic wastewater treatment system according to claim 3, wherein a fixed bed capable of fixing aerobic microorganisms is installed in the aerobic circulation channel. 略密閉された嫌気性循環水路内で有機性廃水を循環させ、メタン発酵させる嫌気性処理工程を少なくとも備えた有機性廃水処理方法。   An organic wastewater treatment method comprising at least an anaerobic treatment step in which organic wastewater is circulated in a substantially sealed anaerobic circulation channel and subjected to methane fermentation. 前記嫌気性循環水路内に、メタン発酵菌群の定着可能な固定床が設置された請求項5記載の有機性廃水処理方法。   The organic wastewater treatment method according to claim 5, wherein a fixed bed capable of fixing methane fermentation bacteria is installed in the anaerobic circulation channel. 前記嫌気性処理工程の後段処理として、
前記嫌気性処理水を曝気しながら循環させ、好気性微生物に有機物を分解させる好気性処理工程を少なくとも含む請求項5記載の有機性廃水処理方法。
As a subsequent process of the anaerobic treatment process,
The organic wastewater treatment method according to claim 5, comprising at least an aerobic treatment step in which the anaerobic treatment water is circulated while aerated to decompose an organic substance into an aerobic microorganism.
前記好気性循環水路内に、前記好気性微生物の定着可能な固定床が設置された請求項7記載の有機性廃水処理方法。   The organic wastewater treatment method according to claim 7, wherein a fixed bed capable of fixing the aerobic microorganism is installed in the aerobic circulation channel.
JP2010144786A 2010-06-25 2010-06-25 Organic wastewater treatment system and method Active JP5372845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144786A JP5372845B2 (en) 2010-06-25 2010-06-25 Organic wastewater treatment system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144786A JP5372845B2 (en) 2010-06-25 2010-06-25 Organic wastewater treatment system and method

Publications (3)

Publication Number Publication Date
JP2012005971A true JP2012005971A (en) 2012-01-12
JP2012005971A5 JP2012005971A5 (en) 2013-01-17
JP5372845B2 JP5372845B2 (en) 2013-12-18

Family

ID=45537161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144786A Active JP5372845B2 (en) 2010-06-25 2010-06-25 Organic wastewater treatment system and method

Country Status (1)

Country Link
JP (1) JP5372845B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
JP6122232B1 (en) * 2016-05-27 2017-04-26 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
CN108585347A (en) * 2018-03-21 2018-09-28 北京工业大学 A kind of device and method that segmental influent oxidation ditch process adjusts low C/N municipal sewages
CN110921828A (en) * 2019-12-20 2020-03-27 深圳市中环生物能源科技有限公司 Normal-temperature anaerobic treatment system in biochemical synthesis and treatment method thereof
CN114031172A (en) * 2021-11-19 2022-02-11 重庆中创鼎新智能化节能技术有限公司 Intelligent online biological agent feeding and conveying system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312298A (en) * 1989-06-09 1991-01-21 Kajima Corp Aerobic and anaerobic combination type waste water treatment apparatus
JP2005081238A (en) * 2003-09-08 2005-03-31 Kajima Corp Anaerobic treatment method and apparatus for organic substance-containing liquid
JP2006289153A (en) * 2005-04-05 2006-10-26 Best Tech:Kk Method of cleaning sewage and apparatus thereof
JP2007209905A (en) * 2006-02-09 2007-08-23 Kajima Corp Anaerobic bioreactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312298A (en) * 1989-06-09 1991-01-21 Kajima Corp Aerobic and anaerobic combination type waste water treatment apparatus
JP2005081238A (en) * 2003-09-08 2005-03-31 Kajima Corp Anaerobic treatment method and apparatus for organic substance-containing liquid
JP2006289153A (en) * 2005-04-05 2006-10-26 Best Tech:Kk Method of cleaning sewage and apparatus thereof
JP2007209905A (en) * 2006-02-09 2007-08-23 Kajima Corp Anaerobic bioreactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
CN106573809A (en) * 2014-09-26 2017-04-19 松下知识产权经营株式会社 Liquid processing unit and liquid processing device
JPWO2016047060A1 (en) * 2014-09-26 2017-06-15 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing apparatus
JP6122232B1 (en) * 2016-05-27 2017-04-26 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
WO2017203684A1 (en) * 2016-05-27 2017-11-30 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
CN108585347A (en) * 2018-03-21 2018-09-28 北京工业大学 A kind of device and method that segmental influent oxidation ditch process adjusts low C/N municipal sewages
CN110921828A (en) * 2019-12-20 2020-03-27 深圳市中环生物能源科技有限公司 Normal-temperature anaerobic treatment system in biochemical synthesis and treatment method thereof
CN114031172A (en) * 2021-11-19 2022-02-11 重庆中创鼎新智能化节能技术有限公司 Intelligent online biological agent feeding and conveying system

Also Published As

Publication number Publication date
JP5372845B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
CN106977059A (en) A kind of new and effective sewage disposal system and method
CN104386819A (en) Sewage treatment process for dispelling sludge in situ through biological regulation and control
CN106145343B (en) A kind of compound anaerobic membrane bioreactor and application thereof
Fan et al. Treatment and reuse of toilet wastewater by an airlift external circulation membrane bioreactor
KR101394888B1 (en) 1,4-dioxane-containing wastewater treatment method and disposal plant
CN108383320B (en) Integrated treatment method for livestock and poultry breeding wastewater
CN206089346U (en) Domestic sewage treatment system
JP5372845B2 (en) Organic wastewater treatment system and method
CN105731724A (en) Treating and recycling method for offshore-platform high-salt domestic wastewater
Li et al. The membrane aerated biofilm reactor for nitrogen removal of wastewater treatment: Principles, performances, and nitrous oxide emissions
CN208071545U (en) A kind of mine domestic wastewater processing unit
CN205676312U (en) A kind of offshore platform high salt life sewage treatment and reuse equipment
CN114315012A (en) Excrement wastewater treatment system and method applied to scenic spot
CN211595374U (en) Sewage treatment equipment combining suspended biological membrane with deep filtration
CN217947891U (en) Kitchen garbage effluent disposal system
CN111018101A (en) Membrane biofilm culture domestication process and membrane biofilm reaction device for treating high-salinity wastewater
CN206457319U (en) A kind of and oxygen MBR film domestic sewage treatment devices
CN203360232U (en) Sewage treatment equipment for reclaimed water reuse
CN205313331U (en) Treatment of domestic sewage retrieval and utilization equipment
CN114853271A (en) Landfill leachate wastewater treatment system and treatment method
CN204981497U (en) Handle two membrane inner loop bioreaction system of low concentration organic waste water
CN209619106U (en) Domestic sewage processing system
CN209989139U (en) Anaerobic membrane biological treatment device for chlorophenol wastewater
CN106745708A (en) A kind of compound type sludge bed reactor and its application
CN205892999U (en) Integration sewage treatment plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250